38,003 research outputs found

    Experimental Evaluation of Latent Variable Models for Dimensionality Reduction

    Get PDF
    We use electropalatographic (EPG) data as a test bed for dimensionality reduction methods based in latent variable modelling, in which an underlying lower dimension representation is inferred directly from the data. Several models (and mixtures of them) are investigated, including factor analysis and the generative topographic mapping. Experiments indicate that nonlinear latent variable modelling reveals a low-dimensional structure in the data inaccessible to the investigated linear model

    Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference

    Full text link
    Gaussian process latent variable models (GPLVM) are a flexible and non-linear approach to dimensionality reduction, extending classical Gaussian processes to an unsupervised learning context. The Bayesian incarnation of the GPLVM Titsias and Lawrence, 2010] uses a variational framework, where the posterior over latent variables is approximated by a well-behaved variational family, a factorized Gaussian yielding a tractable lower bound. However, the non-factories ability of the lower bound prevents truly scalable inference. In this work, we study the doubly stochastic formulation of the Bayesian GPLVM model amenable with minibatch training. We show how this framework is compatible with different latent variable formulations and perform experiments to compare a suite of models. Further, we demonstrate how we can train in the presence of massively missing data and obtain high-fidelity reconstructions. We demonstrate the model's performance by benchmarking against the canonical sparse GPLVM for high-dimensional data examples.Comment: AISTATS 202

    Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models

    Get PDF
    Gaussian processes (GPs) are a powerful tool for probabilistic inference over functions. They have been applied to both regression and non-linear dimensionality reduction, and offer desirable properties such as uncertainty estimates, robustness to over-fitting, and principled ways for tuning hyper-parameters. However the scalability of these models to big datasets remains an active topic of research. We introduce a novel re-parametrisation of variational inference for sparse GP regression and latent variable models that allows for an efficient distributed algorithm. This is done by exploiting the decoupling of the data given the inducing points to re-formulate the evidence lower bound in a Map-Reduce setting. We show that the inference scales well with data and computational resources, while preserving a balanced distribution of the load among the nodes. We further demonstrate the utility in scaling Gaussian processes to big data. We show that GP performance improves with increasing amounts of data in regression (on flight data with 2 million records) and latent variable modelling (on MNIST). The results show that GPs perform better than many common models often used for big data.Comment: 9 pages, 8 figure
    • …
    corecore