301 research outputs found

    Latency and bit-error-rate evaluation for radio-over-ethernet in optical fiber front-haul networks

    Get PDF
    Nowadays several research projects are under progress to manage a soft migration toward the 5th generation networks. Radio over Ethernet (RoE) is one of recent topics that try to have a cost efficient and independent front-haul network. In this paper, we discuss the requirements of the 5G networks and analyze the conditions for the implementation of a RoE protocol. For this purpose we digitalize radio frames that are taken from BBU or RRH and create RoE basic frames considering all the requirements of protocol. We then encapsulate RoE basic frames into an Ethernet packet and finally experimentally evaluate this Ethernet packet as a case of study for RoE applications. The packet is transmitted through different fiber spans, measuring the BER and latency on each case. The system achieves BER values below the FEC limit and a manageable latency. These results serve as a guideline and proof of concept for applications on RoE, showing the viability of its implementation as part of the next generation of front-haul networks

    Integrated Wireless Backhaul Over Optical Access Networks

    Get PDF
    Recent technological advances and deployments are creating a new landscape in access networks, with an integration of wireless and fiber technologies a key supporting technology. In the past, a separation between those with fiber in the access networks and those with wireless networks, the relatively low data-rate requirements of backhaul and the relatively large cell sites, have all combined to keep fiber deployment low in wireless backhaul. As fiber has penetrated the access network and the latest wireless standards have demanded smaller, higher bandwidth cells, fiber connectivity has become key. Choices remain as to where the demarcation between key elements should be in the network and whether fiber should be used as just a high data-rate backhaul path or if a transition to radio-over-fiber techniques can afford benefits. This paper will explore the network options available in particular those demonstrated in recent European Union (EU) projects, how they can be integrated with existing access networks and how techniques such as radio-over-fiber can be deployed to offer increased functionality

    Cloud radio access network fronthaul solution using optimized dynamic bandwidth allocation algorithm

    Get PDF
    In order to address the challenges that have come with the exploding demand for higher speed, traffic growth and mobile wireless devices, Mobile network operators have decided to move to the notion of small cells based on cloud radio access network. The merits of cloud based RAN includes the ease of infrastructure deployment and network management as well as the fact that its performance are optimized and it is cost effective the merits of cloud based RAN includes the ease of infrastructure deployment and network management as well as the fact that its performance are optimized and it is cost effective. Notwithstanding, cloud radio access network comes with so many strict requirements to be fulfilled for its fronthaul network. In this paper, we have presented these requirements for a 5G fronthaul network. Particular interest on the time division multiplex passive optical network’s challenge of latency was treated by proposing an optimized version of the round robin dynamic bandwidth allocation algorithm. Results obtained show an improvement in the latency of the original algorithm which meets the fronthaul requirement. Other test parameters like jitter and BER were also improved by our proposed optimized algorithm

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Next-Generation Optical Fronthaul in the iCirrus Project

    Get PDF
    We discuss next-generation fronthaul solutions for 5G and legacy radio access networks. Architectures, findings and experimental results from recent lab and field trial activities are reported

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications
    corecore