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Abstract. In future Radio Access Network (RAN), many small cells will be densely deployed to meet the capacity9

demand of mobile users. Centralized Radio Access Network (CRAN) is a potential solution to increase the capacity10

demand of RAN. CRAN breaks the functionality of RAN between Remote Radio Head (RRH) and Base Band Unit11

(BBU) where RRH and BBU are preferably connected by an optical link called fronthaul link. However, the deploy-12

ment of fiber for fronthaul connectivity, at each Small Cell (SC) location, is impossible or impractical due to cost or13

other constraints. As such, Passive Optical Network (PON) and Free Space Optic (FSO) technologies have emerged14

as potential candidates for fronthaul transmission when the complete optical fiber-based infrastructure for fronthaul15

network cannot be deployed alone. In this paper, we propose a hybrid PON and FSO based method for SC fronthaul16

connections that considers three different network constraints i.e. bandwidth, data rate, and latency. Based on this,17

we formulate the problem and propose a novel method to perform cell association, namely Minimum Sum Selection18

(MSS). The performance is evaluated in terms of the number of SCs connected and the proposed method is compared19

with two other baselines, namely: Minimum Rate Selection (MRS) and Random Selection Method (RSM). The results20

show that despite MSS requiring knowledge of all network constraints, it has a better performance at the cost of more21

computation resources, achieving gains of 7% and 6.5% in cell connections when compared to the other two baseline22

methods.23

Keywords: Centralized Radio Access Network (CRAN), Passive Optical Network (PON), Front Haul (FH), Free24

Space Optics (FSO), NGPON2, Fifth generation (5G)..25

*Syed Saeed Jaffar, saeed.jaffar@gmail.com26

1 Introduction27

1.1 Background28

Mobile traffic is increasing day by day and this trend is expected to be continued for many years29

in the future.1 This expected growth continues in terms of both numbers of connected devices30

and new services. Some causes of the increase in network traffic include machine-to-machine31

communication, tactile internet, online gaming, and social networking sites. Such huge bandwidth32

demands cannot be fulfilled by existing cellular networks, thus, causing the demands of next-33

generation technology in the wireless world i.e. Fifth Generation (5G).2 In 5G, many Small Cells34
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(SCs) will be densely deployed and some requirements of 5G network are discussed in.3–5 To meet35

these demands, network operators require cost and energy-efficient deployment strategies.36

Therefore, to satisfy network/users requirement and at the same time to align revenue growth37

of telecommunication operators, academia and industry have explored evolution in radio network38

deployment strategy i.e. Centralized Radio Access Network (CRAN).6–10 CRAN is a novel radio39

network architecture that reduces both the capital and operational cost of a network at almost 50%40

as reported by different network operators such as Nokia, Siemens, and Intel.11, 12 In CRAN, the41

functionality of the base station is split into two parts, i.e. Radio Remote Head (RRH) and Base42

Band Unit (BBU) where RRH and antenna remain at the cell site and the BBU moves from cell site43

to central office or an aggregation point. Multiple RRH’s need to be connected to the BBU with a44

high-speed transport network called the fronthaul interface, which requires data rate up to gigabit45

level.13 Therefore, the radio network evolution requires the integration of high speed, flexible, and46

cost-effective fronthaul transport networks.47

There exist multiple gigabit-capable technologies that can support fronthaul transport networks48

such as Passive Optical Network (PON), Free Space Optic (FSO), and millimeter waves are strik-49

ing options.14–18 In this paper, we target both optical-based technologies i.e. PON and FSO for50

fronthaul connections. This leads to significant economies of scale in the design of the fronthaul51

network. PON is point-to-multipoint passive optical technology and is gradually replacing the52

copper-based network from the access end.2 PON comprises three layers, i.e. Optical Line Ter-53

minal (OLT), Optical Network Unit (ONU), and Optical Distribution Network (ODN). The OLT54

is placed at an operator central building while the ONU is placed near customer locations. One55

OLT can connect multiple ONUs through ODN and a passive splitter as shown in Fig. 1. PON56

was created by the Full-Service Access Network (FSAN) in the 90’s and since then Institute of57
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Fig 1: A typical architecture of passive optical network.

Electrical & Electronics Engineering (IEEE) and International Telecommunication Union (ITU)58

have standardized PON technologies.19–21 There are four main PON standards and are classified59

into two main groups. The first class of PON architecture is called Asynchronous Transfer Mode60

(ATM) and includes ATMPON, Broadband PON (BPON), and Gigabit PON (GPON). The second61

architecture is called Ethernet PON (EPON).21, 22 Nowadays, EPON is mostly deployed in Asia,62

while GPON is deployed in other regions. Technologies beyond GPON are called next-generation63

PON that have been standardized by ITU-T.2 At the moment, ITU standardized Next Generation64

Passive Optical Network (NGPON2) for implementing next-generation PON technology and it can65

provide gigabit bandwidth connection, with low cost, to fronthaul network.23, 24
66

The basic requirements of NGPON2 is summarized by ITU25 and FSAN.26 The NGPON267

evolved in the most valuable optical fiber band, the C band, and L+ band.27 Depending on the68

technical solution for the laser control for Time Wavelength Divisional Multiplexing (TWDM)69

(NGPON2), the 100 GHz grid may be too tight for the receiver discrimination filter at the ONU,70

and the 1000 GHz could be too coarse for the optimum band usage.71

On the other hand, FSO is also gaining popularity as a cost-effective and high bandwidth tech-72
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nology that can offer bandwidth up to 1.2 Tbps over 1 km distance.28 However, the capacity of FSO73

is affected by weather turbulences.29 The 1550 nm wavelength is best for both rain and haze as74

there is less attenuation than any other wavelength. The FSO link performance can be determined75

by several parameters such as data rate, power link range, number of users, and channel spacing.76

In critical weather conditions, short link distance and lower data rates can be used to optimize the77

FSO system for successful transmission.30 Furthermore, the study31 summarizes the work based78

on different parameters like wavelength, power level, data rate, and link distance with different79

techniques to analyze the performance of FSO link.80

Additionally FSO link performance can also be degraded due to integration with WDM or81

PON signal. The FSO system currently offers a much lower capacity than the current fiber com-82

munication systems and typically showed error bursts in long-time operation, resulting in a high83

average Bit Error Ratio (BER). The highest presented results on FSO transmission 16 × 10 Gb/s84

in a terrestrial link,32 and 2 × 40 Gb/s system working over an aerial link. Both systems were85

one-way and suffered from sudden system outage (means BER higher than 10−8). The authors in33
86

demonstrated the outdoor field trials that FSO links can be used to achieve high reliability against87

weather and misalignment conditions and limited data rate degradation for relatively low distances88

i.e. up to 100 m.89

Optical fiber due to its low loss, reliability, and high data rates is the most suitable solution for90

fronthaul network, however, in some situations, fiber installation is not alone appropriate solution91

for instance in difficult terrain, a short-lived event such as in the stadium or disaster management,92

etc.34, 35 In these cases, FSO provides ease of setup, tear down, and provides alternative to fiber. As93

compared to Radio Frequency (RF) communication, FSO has the advantages of higher capacity,94

cost-effectiveness, immunity to electromagnetic interference, and licensed-free bandwidth.36, 37 On95
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Fig 2: Basic architecture of free space optic network.

the other hand, FSO has some limitations such as atmospheric attenuation and turbulence-induced96

scintillation.38–41 In these situations, Integrated PON and FSO are the best solutions for fronthaul97

sections of 5G as both systems share the same transmission wavelength and system components98

to transfer data.42–45 We use the idea of employing a macro cell as fronthaul hub and present an99

efficient algorithm for the association of macro cell and distributed RRH. The basic structure of100

FSO is shown in Fig. 2.101

1.2 Related Work102

The 5G mobile network can support the massive deployment of SCs. This approach can be ef-103

ficiently handled by CRAN. However, CRAN put stringent requirements on the transport section104

i.e. on the fronthaul network. Therefore, various researchers worked on this field.2 The idea of105

addressing the fronthaul service through PON solution such as Wavelength Division Multiplexing106

(WDM) PON and Ultra-Dense (UD) WDM-PON is presented in.46 Another idea of using hybrid107

technology of PON i.e. Time Wavelength Division Multiplexing (TWDM) PON with FSO tech-108

nology is presented in.18 To solve the fronthaul operational and capital expenditure, Waqar et al.47
109

use a PON-based link for long distances by adding the Erbium-Doped Fiber Amplifier(EDFA).110

By adding the EDFA link, the limitation of fronthaul improves but it simultaneously increases the111

cost of fronthaul network. Similarly, Larsen et al.48 reviewed different functional split options to112

reduce the data rate requirement on the fronthaul network. Studied shows that a high-level func-113

tional split option can reduce the data rate requirement on the fronthaul network and therefore this114
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option can increase the link length of the fronthaul network. On the other hand, a low-level split115

option can support low distance due to high data rate requirements. But both methods have their116

pros and cons as discussed in.2 Shibata et al.49 deployed the Time Division Multiplexing Passive117

Optical Network (TDM-PON) method and used the compression techniques to reduce the data rate118

requirements on fronthaul and simultaneously increase the transmission distance of the fronthaul119

network. Waqar et al.50 discussed the pros and cons of different fronthaul transport technolo-120

gies in detail concerning distance, cost, and performance measurement. Wan et al.51 proposed a121

software-defined network for PON based fronthaul network for achieving different data rates and122

cost benefits.123

Generally, the fronthaul network is realized by different technologies such as optical fiber124

and wireless fronthaul.11 Therefore researchers also worked on optical wireless communication125

technology and considered it as an alternative or complementary solution to RF wireless tech-126

nology.52–55 The issue to provide service in those areas where high bandwidth is required cost-127

effectively and where optical fiber cannot be easily deployed, the researchers considered WDM128

and FSO technology as a promising solution.18 Ciaramella et al.56 worked up to 1.28 Tbps WDM129

transmission and demonstrated that FSO with WDM technology is suitable for high quality as well130

as for high bandwidth application services.131

In the literature, different techniques are discussed for the integration of PON and FSO which132

are summarized in.57–59 To provide flexible and high-speed connectivity of optical fiber with the133

free-space optical communications, a new compact laser communication terminal has been de-134

veloped at the National Institute of Information Communication Technology Tokyo, Japan. The135

terminal has a feature to connect the free-space laser beam directly to single-mode fiber by us-136

ing a special fiber coupler to focus the free-space laser beam and couple it into the single-mode137
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fiber. Furthermore, it is also reported that FSO transmission systems are fully compatible with op-138

tical fiber communication networks, especially with PONs.18 Thanks to the development of FSO139

terminals which can be transparently connected to single-mode fibers.60
140

In our proposed hybrid system approach, FSO and optical fiber links (based on TWDMPON),141

share the identical transmission wavelengths (1550 nm) and system components. The use of142

TWDM-PON enables the system for long-range and extended capacity while the use of FSO tech-143

nology offers flexibility and cost-effectiveness. The NGPON2 (TWDM PON) system manages144

efficiently the varied traffic demands from the end-user. In the literature, researchers discussed145

various bandwidth allocation algorithms for NGPON2 such as the conventional DBA algorithm61
146

that includes a fixed window algorithm that allocates a fixed transmission window (bandwidth)147

regardless of a user traffic condition, a gated window algorithm in which the OLT allocates a re-148

quested bandwidth if the ONU calculates the amount of the traffic of the end-users queuing at the149

ONU and requests the corresponding bandwidth allocation. A credit window algorithm is used in150

which the OLT allocates the extra bandwidth to ONU’S. A wavelength and bandwidth allocation151

algorithm for TWDM-PON for variable mobile fronthaul traffic via the dynamic wavelength and152

bandwidth allocation (DWBA) scheme was also proposed.61, 62
153

Through literature, we have observed the biggest obstacle in CRAN implementation is the re-154

quirement of huge capacity and cost-efficient fronthaul link i.e. efficient front hauling remains155

a significant challenge in CRAN deployment. Among practical transmission media, optical fiber156

has been the obvious choice for fronthaul links mainly due to its large bandwidth capabilities.11, 63
157

However, implementation and maintenance of optical fiber systems are costly and it is not al-158

ways possible to deploy fiber in any environment. The FSO has emerged as a potential candidate159

technology for last-mile access for many applications. It provides the same bandwidth over the160
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short-range as the optical fiber system does. FSO is also cost-efficient, flexible, and easy to up-161

grade technology. The hybrid approach of PON-FSO has emerged future direction of research for162

C-RAN front haul application as both technologies provide a cost-efficient solution to the network163

operator to built the fronthaul network, especially in hard reach areas.164

In order to implement the above-mentioned challenges, the main contributions of our work are165

as follows:166

1. We considered the use of a novel hybrid PON-FSO based fronthaul architecture to provide167

fronthaul connectivity to ultra-dense small cell networks. As totally fiber or deep fiber-168

based architecture for fronthaul applications is not a cost-effective/feasible solution and it is169

impossible to deploy fiber especially in densely populated urban areas.170

2. We formulated the association problem of macro base stations with SCs considering many171

parameters of macro cell link such as bandwidth, data rate, latency, and a number of sup-172

ported links. These are the major design concerned in the cell association process. We173

present an efficient solution to these problems to maximize the sum rate of overall network174

metrics.175

3. We proposed novel methods for the SCs association, namely: Minimum Sum Selection176

(MSS), and evaluate its performance using Monte Carlo simulations. The proposed method177

is compared to the Baseline of Random Selection Method (RSM) and Minimum Rate Selec-178

tion (MRS).179

The remainder of this paper is organized as follows. Section 2 presents the system model of180

the proposed hybrid PON and FSO framework. Section 3 formulates the problem, while Section181
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Fig 3: Proposed hybrid PON & FSO network for fronthaul architecture.

4 presents the proposed solution. Results are discussed in Section 5 and conclusions are drawn in182

Section 6.183

2 System Model184

In this work, a heterogeneous network is considered which is composed of a macro cell and multi-185

ple SCs. A macro cell is randomly distributed in an area of 1000 m2 according to a Matern Type-I186

hardcore process.55 In addition, a set of SCs, S = {s1, s2, s3, · · · , sn} are also distributed, within187

the coverage of macro base station, following a Matern Type-I hardcore process. An example of188

network stochastic geometry is shown in Fig. 5. In CRAN architecture, fronthaul traffic of each189

SC is processed in the cloud so each SC can be communicated with one or many macro cells for190

fronthaul connection. The combined fronthaul architecture of both technologies is presented in191

Fig. 3.192

In the proposed model, the SCs can be connected directly to the macro cell, i.e. Point-to-Point193

(PtP) FSO link or indirectly point-to-multipoint multi-hop fashion as shown in Fig. 3. In both194
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Fig 4: Illustration of FSO and RRH unit at Small Cell.

cases, the latency (L) of the link is dependent upon the line of sight propagation delay, which is a195

function of distance over the speed at which the signal propagates, i.e. distance of the small cell196

form macro cell divided by the speed of light. The distance (d) between macro cell and small cell197

can be calculated as follows198

d =

√
(x− x0)2 + (y − y0)2, (1)

where x and y are the positions of macro cell along the x-axis and y-axis respectively, x0 and y0199

are the the position of SC along the x-axis and y-axis respectively. While the latency, is expressed200

as201

L =
C

d
(2)

where L is latency, C is speed of light, d is distance between macro cell and SC.202

We have proposed at every SC an FSO link and RRH unit as shown in Figure 4. At each203

SC we convert optical signal into electrical signal through RRH. The RRH unit which are dis-204

tributed across cell sites provide wireless signal coverage to User Equipment (UE). Each RRH is205

also connected to BBU (through PON and FSO). The RRH passes quantized samples of analog206

wireless signals via the Common Public Radio Interface (CPRI) to the BBUs for further process-207

ing. Whereas the physical location of BBUs can be in a Central Office (CO) that stretches tens208
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of kilometers from the RRH’s but is connected through a reliable optical network, namely, the209

fronthaul.210

All signal processing such as wavelength management, and modulation are performed at the211

BBU. The role of RRH is simply to convert the optical signal to electrical form and vice versa and212

perform amplification and transmission of the wireless signal at a designated frequency and thus213

making the RRH simple and inexpensive2, 64 or we can say that in the proposed architecture, RF214

signals are generated at the RRH by using all-optical processing. RRHs can be equipped with FSO215

devices easily and thus simplifying the network deployment.65
216

It is also mentioned in Fig. 4, the RRH of SCs communicated to macro cell through the FSO217

link. In this work, we use the FSO link as an extension of optical fiber in the proposed fronthaul218

segment with a very short FSO link length with a wavelength of 1550 nm. The use of 1550 nm219

operating wavelength for the FSO link is also compatible with most commercial FSO systems. At220

this wavelength, the FSO links can be longer and better able to operate in unfavorable meteorolog-221

ical conditions, e.g., fog and it is also suitable for EDFA and high-quality transceivers.66, 67 In the222

proposed work we have adapted ground to ground free space communication for the typical link223

range of up to 1 km which can be expressed as h = hlhpha, where hl is the path loss (static link224

distance), hp denoting the pointing error, and ha representing the turbulence fading. We have as-225

sumed the atmospheric turbulence loss (cloud, rain, smoke, gases, temperature variations, fog, and226

aerosol) i.e. free space attenuation up to 10 db/km (in a moderate situation) as a system parameter227

during a simulation. However, the primary motivation for our research is to study the association228

of SCs with macro cell considering several parameters such as bandwidth, data rate, latency, and229

number of supported links.230

Moreover, macro cell aggregates, fronthaul traffic of RRH’s, and multiplexer on a single shared231
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fiber infrastructure through (TWDM-PON). The components that are used in the integration of232

PON and FSO are OLT and ONU.68 TWDM-PON OLT provides a multi-service platform that233

serves mobile fronthaul/backhaul services, business, residential, Machine to Machine (M2M), and234

Internet of Things (IoT) services. Each TWDM port will serve 64 clients (Residential, fixed broad-235

band or MFH/MBH) with an aggregated bandwidth of 10 Gb/s (maximum on single downlink236

wavelength).237

In the proposed solution we have considered only the MFH users (with variable data rate which238

can be requested by different small cells in the area of 1 km). Our PON system is deployed239

in brownfield scenario where broadband services through PON are already deployed. When the240

demand for high data rate in the region where the PON is installed is predicted high, (more heavy241

users, business and MBH), the number of TWDM ports should be kept low, allowing a moderate242

number of users and the average data rate is higher than 600Mb/s. If the region is an area where243

the majority of the clients are moderate to light users, then the number of ports of TWDM is higher244

with the average data rate up to 280 Mb/s.245

Another reason not to use (Tb/s data rate in our system ) is the accounting for Optical Path246

Penalties (OPP) in an optical-based system. For NGPON2 we have to consider some physical pa-247

rameters of fiber in the system such as chromatic-dispersion-related penalties (When using 10 Gb/s248

in the C/L-band, and just 20 km of fiber) some form of dispersion compensation is necessary to249

achieve the OPP values in G.989.2. This can increase the cost of the fronthaul network. Apart250

from this the relatively high optical power and multi-wavelength usage in NGPON2 causes an-251

other degradation in the system called Raman nonlinearity. This can result in nonlinear cross-talk252

and signal depletion for certain wavelengths.253
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3 Problem Formulation254

We formulate the association problem of macro base stations with SCs considering several pa-255

rameters of macro cell as discussed above such as bandwidth, data rate, latency, and a number of256

supported links. These are the major design concerns in the cell association process. We present an257

efficient solution of these problems in order to maximize the sum rate of overall network metrics.258

Therefore, our objective is to find out how many SCs can be efficiently associated with single259

macro cell in order to get the front haul connection. In the optimization problem, we incorporated260

number of constraints including maximum number of links that macro cell and every SC can261

support also denoted by Z and z respectively, maximum bandwidth (B) supported by macro cell,262

maximum data rate (R) and latency limit (L). Moreover, cell association also depends upon SC263

requires bandwidth (b), data rate (r), and latency (l). Macro cell will give priority to SCs whose264

requirements are less or equal than the total planned capacity of macro cell. If the requirements265

cannot be satisfied by macro cells the SCs will be disassociated from the network. The decision266
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making process of SCs association with macro cell can be formulated as follows:267

maximize
B,R,L,Z

Nm∑
i=1

NSC∑
j=1

Ai,j, (3a)

subject to
Nm∑
i=1

NSC∑
j=1

Ai,j.bi,j ≤ Bi, (3b)

Nm∑
i=1

NSC∑
j=1

Ai,j.ri,j ≤ Ri, (3c)

Nm∑
i=1

NSC∑
j=1

Ai,j.li,j + Li ≤ LTα, (3d)

Nm∑
i=1

NSC∑
j=1

Ai,j ≤ Z. (3e)

From the optimization problem shown in Eq. 3a, it can be seen it is subject to four different268

constraints. Constraint (Eq. 3b) specifies that the total bandwidth (
∑∑

Aij bij) of all small cells269

connected to the macro cell should not exceed the total bandwidth of the macro cell (B). Besides,270

constraints (Eq. 3c) states that the total data rate of all SCs connected to the macro cell should not271

exceed the total data rate of the macro cell (R). Constraint (Eq. 3d) states that the latency between272

the connected SCs, either by single- hop (lij) or multi-hop (Li) should not exceed a threshold273

(LTot). We assume that the macro cell has a fixed latency to the core network, of 20 ms (given by274

Li). All other small cells that connect to the macro cell, have a latency dependent on the distance275

between them and the number of hops (which can be more than one). Thus, if a small cell is able276

to connect to the macro cell, either directly or by multi hops, Ai,j will be 1, otherwise it will be set277

to 0. In the event that no small cells are able to connect to the macro cell, only the fixed latency278

between the macro cell and the core network is considered. Moreover, constraint (Eq: 3e) refers279
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that the total SCs connected to the macro cell should not exceed the total link support of the macro280

cell (Z).281

Actually the proposed fronthaul system is designed with NGPON2 and FSO. We can transmit282

up to certain data rate on PON link (say 10 Gb/s on a single wavelength for downlink channel).283

But when we consider FSO its transmission characteristics depends upon many factors such as284

distance, environment and the link type (point to point link, point to multipoint).285

Therefore, we have considered in the simulation all these constraints i.e. bandwidth, data rate,286

latency, and a number of supported links that can support macro cell/aggregation point. In the287

simulation, we have considered the area of 1 km maximum (macro cell and SCs are randomly288

distributed in the average area capacity of 1 km according to a Matern Type-I hardcore process). In289

a practical scenario, we have multiple macro cells for the coverage of another specified region (we290

have numbers of SCs in these areas). So all these macro cells/SCs will get fronthaul connectivity291

from the same PON (as shown in Fig. 3).292

4 Proposed Solution293

We propose a novel method for the SCs association problem, namely MSS and evaluate its perfor-294

mance using Monte Carlo simulations. The proposed method is compared to the baseline of RSM295

and MRS. In MSS method, we select SCs according to the sum of all requirements (bandwidth,296

data rate, and latency), in ascending order. Such that:297

s1 < s2 < s3 < · · · < sNSC
, where s = b+ r + l (4)

15



In RSM, the SC requirements are chosen randomly between either bandwidth, data rate or latency,298

and later sorted in ascending order. Such that:299

x1 < x2 < x3 < · · · < xNSC
(5)

where x is randomly chosen between bandwidth, data rate or latency. Lastly, MRS select SCs300

according to its data rate demand (in ascending order). Such that:301

r1 < r2 < r3 < · · · < rNSC
(6)

where r is the data rate of the small cells.302

Based on these three methods, the performance of the proposed solution, MSS, is evaluated and303

compared to the other two baselines for a varying number of small cells. Furthermore, the impact304

that each SC requirement (bandwidth, data rate, and latency) has on the fronthaul connectivity is305

also investigated. Results are generated by averaging a total of 100 Monte Carlo simulations.306

In addition, the macro cell can only support a fixed number of links, given by Z. Each SC307

also has a limited number of connections it can support. In this case, each SC can have at most 2308

connections. In our scenario, one macro cell is randomly deployed according to a Matern process.309

In the coverage area, number of SCs i.e. NSC = [12, 16, · · · , 60] are deployed as shown in Fig. 5.310

The position of the SC is also random (Matern process). Each SC has random requirements in311

terms of bandwidth (b), data rate (r), and latency (l).312
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Algorithm 1: Hybrid PON and FSO based connection method for small cell fronthaul
Input: Macro and small cell positions, B, R, L, Z, b, r, l, z, A, and λ, α, β
Output: Allocated SC Aij

1 for each Monte Carle iteration do
2 for each method do
3 reset SC count
4 for each SC in set do
5 for all iterations do
6 Calculate position of macro cell
7 Calculate positions of SC
8 Calculate distance of SC from macro cell
9 Calculate latency of each SC in a given set

10 Select bandwidth for each SC
11 Select data rate for each SC
12 Calculate distances between SC
13 if method is MRS then
14 Sort the data rates (r) of SCs
15 end
16 if method is RSM then
17 Sort randomly between bandwidth (b), data rate (r) and latency (l) of

SCs
18 end
19 if method is MSS then
20 Sort the sum of bandwidth (b), data rate (r) and latency (l) of SCs
21 end
22 for all small cells do
23 Update association vector (Aij) status with 0 or 1
24 end
25 end
26 end
27 end
28 Return allocated SC Aij
29 end
30 Calculate the average of SC connections
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Fig 5: Network Geometry.

Table 1: Simulation parameters

Parameter Value

Number of macro cells 1

Macro cell radius 500 m

Area 1 km

Number of SCs (NSC) 12 : 04 : 60

Bandwidth of macro Cell (B) [1, 50, 100, 150, 200, 500] MHz

Data rates supported by macro cell (R) [0.1, 0.25, 0.5, 0.75, 1] Gbps

Latency limit of macro cell (L) [1, 5, 10, 15, 20, 50] µsec

Maximum number of links in macro cell (Z) 3

Bandwidth of SCs (b) [1.4, 3, 5, 10, 20] MHz

Maximum number of links in SCs (z) 2

Latency limit of SCs (l) 200 µsec

5 Results and Discussions313

5.1 Metrics314

Before the results for each method are presented, it is important to define the metrics which will be315

used to compare them. In this context, the proposed solution MSS, with the other two baselines,316

RMS and MRS are compared in terms of 2 different metrics, which are317

• Number of connected SCs when varying each one of the parameters, namely: B, R, and L;318
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Fig 6: Number of connected SCs for each method, when varying the number of SCs and maximum
B.

Fig 7: Number of connected SCs for each method, when varying the number of SCs and maximum
B.

• Relative gain.319
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Fig 8: Number of connected SCs for each method, when varying the number of SCs and maximum
R.

Fig 9: Number of connected SCs for Each method, when varying the number of SCs and the
maximum L.

The relative gain is measured only for the proposed MSS solution and is defined as320

G = 100 · XMSS −Xbs

XMSS

, (7)

where XMSS represents the metric being evaluated for the MSS solution and Xbs represents the321

metric being evaluated for any of the other two baseline methods. Note that if G is negative, it322

represents a loss, whereas if G is positive it represents a gain.323
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5.2 Numerical Analysis324

Fig. 6 (Number of connected SCs for each method when varying the number of SCs for fixed B,325

R, L) shows that performance of all three methods is very similar up to 24 SCs. After 24 SCs326

when the number of SCs increases MSS outperforms the other two methods by 7% and 6.3% when327

comparing to MRS and RSM. Fig. 7 (Number of connected SCs for each method when varying the328

number of SCs and maximum B). We can see that the performance of MSS is always better than329

the other two methods. We can also see that when the maximum B increases, the gap between330

MSS and MRS and RSM increases, reaching up to 7% and 6.5% gains when compared to MRS331

and RSM respectively. It can also be seen that bandwidth represents a bottleneck in the system,332

as when the bandwidth increases up to 500 GHz the number of SCs connected increase up to 33.333

Fig. 8 (Number of connected SCs for each method, when varying the number of SCs and maximum334

R). Similar to Fig. 7, the performance of MSS is always superior to MRS and RSM. We can also335

see that when the number of SCs is below 24, the performance of MSS and MRS are very similar336

(with MSS outperforming MRS by around 2.3%). When the number of SCs increases past 24, the337

gap between MSS and the other methods enlarges, reaching gains of 7% and 6.5% respectively.338

Fig. 9 (Number of connected SCs for each method, when varying the number of SCs and the339

maximum L). From Fig. 9, it is cleared that when the number of SCs is below 24, the performance340

of all three methods is very similar with MSS slightly outperforming the other two. When the341

number of SCs increases past 24, the gap between methods increases, with MSS having gain in the342

order of 7% and 6.5% when compared to MRS and RSM. For this specific scenario, bandwidth is343

the bottleneck of the system, since when B is varied, a large gain in terms of the number of SCs344

connected can be seen. One way of solving this issue can be the deployment of another macro cell,345
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to increase the total fronthaul bandwidth.346

6 Conclusions347

In this paper, we addressed the problem of fronthaul connection and small cell association in a348

PON-FSO heterogeneous network scenario. We have proposed solutions considering four network349

parameters, such as bandwidth, data rate, latency, and a number of fronthaul links. MRS selects350

cells based on data rate, while RSM considers the SCs randomly i.e. bandwidth, data rate, latency.351

Based on the simulation results, it is observed that MSS is 7% and 6.5% better performance than352

RSM and MRS respectively. This approach is vital for the implementation of the SC deployment353

process in the 5G network.354

In the future, we plan to evaluate a more complex network scenario, with more macro cell in355

a realistic distribution, including other performance parameters such as energy efficiency and a356

further reduction in latency and cost-saving.357
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