10,676 research outputs found

    Theoretical and experimental assessment of the non-linear scattering functions for the cad of non-linear microwave circuits

    Get PDF
    The Non-Linear Scattering Functions have been theoretically defined and experimentally measured for the linear-equivalent design of non-linear circuits in arbitrary large signal conditions. Non-linear measures and simulations have been compared, with good agreement. Linear CAD concepts can therefore be extended to non-linear circuits in a rigorous way

    Wave techniques for noise modeling and measurement

    Get PDF
    The noise wave approach is applied to analysis, modeling, and measurement applications. Methods are presented for the calculation of component and network noise wave correlation matrices. Embedding calculations, relations to two-port figures-of-merit, and transformations to traditional representations are discussed. Simple expressions are derived for MESFET and HEMT noise wave parameters based on a linear equivalent circuit. A noise wave measurement technique is presented and experimentally compared with the conventional method

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    A filter synthesis technique applied to the design of multistage broad-band microwave amplifiers

    Get PDF
    A method for designing multistage broad-band amplifiers based upon well-known filter synthesis techniques is presented. Common all-pole low-pass approximations are used to synthesize prototype amplifier circuits that may be scaled in frequency and impedance. All-pass filters introduced at the first stage are shown to improve input match while maintaining circuit performance less 6 dB gain. A theoretical comparison is made with the distributed amplifier and the cascaded single-stage distributed amplifier. Theoretically, a larger gain-bandwidth product is achieved using the synthesis technique. A proof-of-concept Butterworth low-pass two-stage amplifier was designed, simulated, and measured and achieved a flat gain performance of 1–4 GHz with a power gain of 14.5±1 dB close to the predicted 1–4.2 GHz, 15±1 dB

    Distributed Integrated Circuits: An Alternative Approach to High-Frequency Design

    Get PDF
    Distributed integrated circuits are presented as a methodology to design high-frequency communication building blocks. Distributed circuits operate based on multiple parallel signal paths working in synchronization that can be used to enhance the frequency of operation, combine power, and enhance the robustness of the design. These multiple signal paths usually result in strong couplings inside the circuit that necessitate a treatment spanning architecture, circuits, devices, and electromagnetic levels of abstraction

    Obtaining quasi-static models using a frequency domain extraction methodology

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”This contribution illustrates how a realistic nonlinear quasi-static model for FET-type devices can be extracted using an original frequency domain extraction technique. An ideal ‘made-up’ device is built from the measured bias dependence of a GaN medium power device. This ideal device is excited by two ideal voltage sources and its response (drain current) is used to illustrate how the extraction procedure can separate conduction and displacement current components provided the total current spectrum (or, alternatively, waveform) and control voltages are known.This work has been supported by the Junta de Andalucía under Grant (TIC2012-1237). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An efficient nonlinear circuit simulation technique

    Get PDF
    This paper proposes a novel method for the analysis and simulation of integrated circuits (ICs) with the potential to greatly shorten the IC design cycle. The circuits are assumed to be subjected to input signals that have widely separated rates of variation, e.g., in communication systems, an RF carrier modulated by a low-frequency information signal. The proposed technique involves two stages. Initially, a particular order result for the circuit response is obtained using a multiresolution collocation scheme involving cubic spline wavelet decomposition. A more accurate solution is then obtained by adding another layer to the wavelet series approximation. However, the novel technique presented here enables the reuse of results acquired in the first stage to obtain the second-stage result. Therefore, vast gains in efficiency are obtained. Furthermore, a nonlinear model-order reduction technique can readily be used in both stages making the calculations even more efficient. Results will highlight the efficacy of the proposed approac

    A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design

    Get PDF
    Designing integrated circuits able to work under low-voltage (LV) low-power (LP) condition is currently undergoing a very considerable boom. Reducing voltage supply and power consumption of integrated circuits is crucial factor since in general it ensures the device reliability, prevents overheating of the circuits and in particular prolongs the operation period for battery powered devices. Recently, non-conventional techniques i.e. bulk-driven (BD), floating-gate (FG) and quasi-floating-gate (QFG) techniques have been proposed as powerful ways to reduce the design complexity and push the voltage supply towards threshold voltage of the MOS transistors (MOST). Therefore, this paper presents the operation principle, the advantages and disadvantages of each of these techniques, enabling circuit designers to choose the proper design technique based on application requirements. As an example of application three operational transconductance amplifiers (OTA) base on these non-conventional techniques are presented, the voltage supply is only ±0.4 V and the power consumption is 23.5 µW. PSpice simulation results using the 0.18 µm CMOS technology from TSMC are included to verify the design functionality and correspondence with theory

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201
    corecore