9 research outputs found

    NON-LINEAR INDUCTOR CONTRIBUTION TO HARMONIC SPECTRUM IN POWER CONVERTERS

    Get PDF
    The paper investigates the harmonic content in DC/DC power converters where the inductor is operated in the non-linear region. This operation is often exploited to use lighter and cheaper inductors; as a drawback, an increasing number of harmonics is noticeable. A theoretical analysis is proposed. It is based on a polynomial model of the inductor used in a boost converter. Results are given by the spectra of the output voltage performed on a circuit prototype

    Self-Heating Induced Instability of a Non-Linear Inductor in a SMPS: a Case Study

    Get PDF
    This paper proposes a case study to show that the non-linear operation of a power inductor in a SMPS can induce instability of the control system leading to overheating of the inductor beyond its allowable temperature and to an excessive peak of the maximum current. The case study is performed by a commercial ferrite inductor employed in a synchronous boost converter encompassing a control system to adjust the duty cycle, assuring a constant output voltage. The thermal transient is described by the time domain waveforms and thermal images

    Fuel cell/supercapacitor passive configuration sizing approach for vehicular applications

    Get PDF
    Active configuration i.e., source coupling via a power converter, is the most common configuration for fuel cell/supercapacitor (FC/SC) vehicles. Passive connection of the FC with the SCs without any converters is an original and less expensive solution to distribute the power among the sources. This passive configuration does not require an energy management strategy. In fact, the power distribution only depends on the FC and SC impedance characteristics. Conventional methods to size the SC follow two criteria: storage capacity and maximum voltage. In this paper, a third criterion is added which is the FC operating current dynamics. This novel sizing methodology reduces the FC degradation and improves the global system efficiency. Experimental results provide validation to the proposed sizing approach. The SCs boost the FC to meet the requirements of the load with a guarantee of system stability reaching higher global performances and less stress to the FC

    Stratégies de gestion d’énergie pour véhicules électriques et hybride avec systèmes hybride de stockage d’énergie

    Get PDF
    Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le domaine du transporte. En raison des limites des différents systèmes de stockage et de conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées • un sous-système de stockage d'énergie hybride combinant des batteries et des supercondensateurs (SC) ; • et un sous-système de traction hybride parallèle combinant moteur à combustion interne et entraînement électrique. Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, ce qui peut être difficile à réaliser dans des applications réelles. L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont systématiques et performantes. Les performances des SGE proposées sont vérifiées en simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, les capacités en temps réel des SGE développées sont validées via des expériences en « hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des stratégies proposées développées par l'approche unifiée de la thèse.Abstract: Electric and hybrid vehicles are among the keys to solve the problems of global warming and exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and energy converters in terms of power and energy, hybridizations are of interest for future electrified vehicles. Two typical hybridizations are studied in this thesis: • hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and • hybrid traction subsystem combining internal combustion engine and electric drive. Such combined energy sources and converters must be handled by energy management strategies (EMSs). In which, optimization-based methods are of interest due to their high performance. Nonetheless, these methods are often complicated and computation consuming which can be difficult to be realized in real-world applications. The objective of this thesis is to develop simple but effective real-time optimization-based EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The complexities of the studied system are tackled by using Energetic Macroscopic Representation (EMR) which helps to conduct reduced models for energy management at the supervisory level. Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. These strategies are simple due to the suitable model reductions but systematic and high-performance due to the optimization-based methods. The performances of the proposed strategies are verified via simulations by comparing with off-line optimal benchmark deduced by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated via experiments by using reduced-scale power hardware-in-the-loop simulation. The results confirm the advantages of the proposed strategies developed by the unified approach in the thesis

    Modeling and identification of power electronic converters

    Get PDF
    Nowadays, many industries are moving towards more electrical systems and components. This is done with the purpose of enhancing the efficiency of their systems while being environmentally friendlier and sustainable. Therefore, the development of power electronic systems is one of the most important points of this transition. Many manufacturers have improved their equipment and processes in order to satisfy the new necessities of the industries (aircraft, automotive, aerospace, telecommunication, etc.). For the particular case of the More Electric Aircraft (MEA), there are several power converters, inverters and filters that are usually acquired from different manufacturers. These are switched mode power converters that feed multiple loads, being a critical element in the transmission systems. In some cases, these manufacturers do not provide the sufficient information regarding the functionality of the devices such as DC/DC power converters, rectifiers, inverters or filters. Consequently, there is the need to model and identify the performance of these components to allow the aforementioned industries to develop models for the design stage, for predictive maintenance, for detecting possible failures modes, and to have a better control over the electrical system. Thus, the main objective of this thesis is to develop models that are able to describe the behavior of power electronic converters, whose parameters and/or topology are unknown. The algorithms must be replicable and they should work in other types of converters that are used in the power electronics field. The thesis is divided in two main cores, which are the parameter identification for white-box models and the black-box modeling of power electronics devices. The proposed approaches are based on optimization algorithms and deep learning techniques that use non-intrusive measurements to obtain a set of parameters or generate a model, respectively. In both cases, the algorithms are trained and tested using real data gathered from converters used in aircrafts and electric vehicles. This thesis also presents how the proposed methodologies can be applied to more complex power systems and for prognostics tasks. Concluding, this thesis aims to provide algorithms that allow industries to obtain realistic and accurate models of the components that they are using in their electrical systems.En la actualidad, el uso de sistemas y componentes eléctricos complejos se extiende a múltiples sectores industriales. Esto se hace con el propósito de mejorar su eficiencia y, en consecuencia, ser más sostenibles y amigables con el medio ambiente. Por tanto, el desarrollo de sistemas electrónicos de potencia es uno de los puntos más importantes de esta transición. Muchos fabricantes han mejorado sus equipos y procesos para satisfacer las nuevas necesidades de las industrias (aeronáutica, automotriz, aeroespacial, telecomunicaciones, etc.). Para el caso particular de los aviones más eléctricos (MEA, por sus siglas en inglés), existen varios convertidores de potencia, inversores y filtros que suelen adquirirse a diferentes fabricantes. Se trata de convertidores de potencia de modo conmutado que alimentan múltiples cargas, siendo un elemento crítico en los sistemas de transmisión. En algunos casos, estos fabricantes no proporcionan la información suficiente sobre la funcionalidad de los dispositivos como convertidores de potencia DC-DC, rectificadores, inversores o filtros. En consecuencia, existe la necesidad de modelar e identificar el desempeño de estos componentes para permitir que las industrias mencionadas desarrollan modelos para la etapa de diseño, para el mantenimiento predictivo, para la detección de posibles modos de fallas y para tener un mejor control del sistema eléctrico. Así, el principal objetivo de esta tesis es desarrollar modelos que sean capaces de describir el comportamiento de un convertidor de potencia, cuyos parámetros y/o topología se desconocen. Los algoritmos deben ser replicables y deben funcionar en otro tipo de convertidores que se utilizan en el campo de la electrónica de potencia. La tesis se divide en dos núcleos principales, que son la identificación de parámetros de los convertidores y el modelado de caja negra (black-box) de dispositivos electrónicos de potencia. Los enfoques propuestos se basan en algoritmos de optimización y técnicas de aprendizaje profundo que utilizan mediciones no intrusivas de las tensiones y corrientes de los convertidores para obtener un conjunto de parámetros o generar un modelo, respectivamente. En ambos casos, los algoritmos se entrenan y prueban utilizando datos reales recopilados de convertidores utilizados en aviones y vehículos eléctricos. Esta tesis también presenta cómo las metodologías propuestas se pueden aplicar a sistemas eléctricos más complejos y para tareas de diagnóstico. En conclusión, esta tesis tiene como objetivo proporcionar algoritmos que permitan a las industrias obtener modelos realistas y precisos de los componentes que están utilizando en sus sistemas eléctricos.Postprint (published version

    Zero-voltage switching control of an bi-directional buck/boost converter with variable coupled inductor

    Get PDF
    Upravljanje mekim prekidanjem kod dvosmernog buck/boost pretvarača zasnovano na elementu sa strujno regulisanim koefcijentom magnetne sprege Glavni ciljevi istraživanja predstavljenog u okviru ove disertacije su razvoj nove magnetno simetrične strukture, sa strujno regulisanim koefcijentom sprege i simetrične raspodele magnetnog fluksa, pogodne za primenu u više-faznim pretvaračima i razvoj novog načina upravljanja mekim prekidanjem energetskih prekidača u slučaju dvosmernog buck/boost pretvarača, putem strujno regulisanog elementa upravljive magnetne sprege. Postojeće realizacije magnetnih regulatora sa strujno regulisanom magnetnom spregom mogu se podeliti u dve grupe. U prvu grupu spadaju magnetno nesimetrični elementi spregnutih induktivnosti sa strujno regulisanim koefcijentom sprege, kod kojih vrednost indukovanog napona, usled promene fluksa, nije jednaka u svim namotajima elementa i koji se kao takvi ne mogu smatrati pogodnim za primenu u višefaznim energetskim pretvaračima. Drugu grupu elemenata čine magnetno simetrične strukture, kod kojih magnetno polje usled struje predmagnećenja uvećava jednosmernu radnu tačku magnetnog materijala u celom jezgru i time značajno uvećava gubitke u magnetnom materijalu. Magnetno simetrična struktura razvijena u okviru ovog istraživanja sačinjena je od namenski izrađenih feritnih jezgra, gde su kontrolne magnetne grane smeštene simetrično, na jednakim udaljenostima od radnih grana. Takođe, vazdušni procepi u magnetnom materijalu su distribuirani i postavljeni u obe radne magnetne grane, kako bi na taj način magnetno polje koje potiče od struje predmagnećenja bilo ograničeno samo u kontrolnim magnetnim granama strukture. Realizacijom strukture na prethodno opisan način, omogućena je regulacija vrednosti koefcijenta sprege između radnih namotaja putem struje predmagnetizacije, dok je distribucija jednosmernog magnetnog polja ograničena samo u kontrolnim granama magnetne strukture. Distribucija jednosmernog magnetnog polja u predloženoj magnetnoj strukturi, verifkovana je primenom simulacije, metodom konačnih elemenata (Finite Element Method – FEM). Električne osobine predložene strukture predstavljene su pomoću analitičkog modela, gde je korelisanje parametra modela sa realizovanom strukturom izvršeno na osnovu eksperimentalno dobijenih rezultata. Maksimalan opseg promene kontrolisanevrednosti koefcijenta sprege predstavljen je u odnosu na različite vrednosti odnosa reluktance radne i kontrolne magnetne grane. Takođe, u okviru istraživanja, predstavljena je analiza uticaja promenljive vrednosti koefcijenta sprege elementa spregnutih induktivnosti na performanse dvo-faznog boost DC-DC pretvarača, koji radi u kontinualnom režimu vođenja energetskih prekidača. Pored predstavljene analize uticaja promenljive vrednosti koefcijenta sprege, naveden je i primer određivanja parametara predložene magnetne strukture u slučaju dvo-faznog boost DC-DC pretvarača.Main goals of the research presented in this dissertation are development of new symmetrical magnetic structure, with current regulated value of the coupling coefcient and symmetrical distribution of the magnetic flux, suitable for use in the multi-phase power converters, and development of new approach for soft-switching control in case of the bi-directional buck/boost power converter, by utilizing the coupled inductor with the variable coupling coefcient. Existing realizations of the magnetic regulators with the current controlled magnetic coupling can be divided into two groups. The frst group includes magnetically asymmetric coupled elements with the current controlled magnetic coupling, in which value of induced voltage, due to variable magnetic flux, isn’t equal in all windings of the element, and which as such cannot be considered suitable for use in multiphase power converters. The second group of elements consists of the magnetically symmetric structures, in which the magnetic feld, due to the DC bias current, increases the bias magnetic feld in the magnetic material, throughout the magnetic core, and thus signifcantly increases the losses. The magnetically symmetric structure developed in this research is implemented using custom made ferrite cores, where the control magnetic legs are arranged symmetrically, at equal distances from the main magnetic legs. Also, the air gaps in the magnetic material are distributed and positioned in both main magnetic legs, so that the magnetic feld originating from the DC bias current is limited only in the control magnetic legs of the structure. The realization of the structure in the manner described above enabled the regulation of the value of the coupling coefcient between the main windings by the mean of DC bias current, while the bias magnetic feld was limited only in the control legs of the magnetic structure. The distribution of the DC bias magnetic feld in the proposed magnetic structure has been verifed using a Finite Element Method (FEM) by simulation. The electrical properties of the proposed structure are presented using an analytical model, where correlation of the model parameters with the realized structure was performed based on the experimentally obtained results. The maximum range of variation of the control value of the coupling coefcient is presented in relation to different values of the ratio of the reactance of the main and the control magnetic legs. Also, within this research, an analysis of the influence of the variable value of the coupling coefcient on the performance of a two-phase boost DC-DC converter, operating in the continuous conduction mode is presented. In addition to the presented analysis of the influence of the variable value of the coupling coefcient, an example of determining the parameters of the proposed magnetic structure in the case of a two-phase boost DC-DC converter is given

    Convertisseurs à bobine variable pour applications de transport durables

    Get PDF
    Abstract: Power electronics converters are key components and enable efficient conversion and management of electrical energy in a wide range of applications. For vehicular use, there is an inevitable need to improve their performance and reducing their size. This is particularly important in case of powertrain DC-DC converters as they are required to have improved performance while respecting the specifications, characteristics and stringent space limitations. These objectives define research targets and a particular progress is essential in the field of passive components, semiconductor devices, converter topologies and control. At the current state of technologies, the passive components particularly the power inductors are dominant components which affect the overall volume, cost and performance of power electronic converters. Considering the aforementioned critical aspects, this thesis proposes a variable inductor (VI) concept in order to reduce the weight and size power inductors which are traditionally bulky and have fairly limited operating range. By modulating the permeability of the magnetic material, this concept enhances the current handling capability of power inductors, controls the current ripples, reduces the magnetic and switching losses, as well as the stresses applied to switching devices. Furthermore, it enables the use of smaller cores which leads to the reduction of mass and volume allowing improvements in the converter operation and its overall performance. However, to integrate it into powertrain DC-DC converters, it is fundamental, to question the design of the component itself, the selection of suitable magnetic core materials, and the control of current in the auxiliary winding and saturation management of magnetic cores. This thesis systematically addresses these different research challenges. A particular attention is paid to the experimental study of a VI prototype to demonstrate the concept on a small-scale in order to explore its viability. Subsequently a detailed characterization was developed using finite element analysis to determine the intrinsic functionality of the passive component. Furthermore, this thesis proposed an RMS current based VI design to reduce oversizing of power inductors for electric vehicles application. In this methodology, the selection of a suitable magnetic core material is a crucial step to assure smaller and efficient converters. Hence, this thesis proposes a simplified approach based on weighted property method (WPM) for an appropriate selection of magnetic core in accordance to the needs of the user. Furthermore, to validate the integration of this concept in DC-DC converter topology used in the powertrain of electrified vehicles, an affine parameterization method is used to design the control parameters and a simple management strategy is proposed to enable dynamic control of the VI. The converter control and the proposed strategy are evaluated through simulations of a complete powertrain of a three-wheel recreational vehicle. The small-scale experimental and simulations, and full-scale simulations have demonstrated an interesting capacity of the VI for improving the performance of DC-DC converters for electrified vehicles and manage the saturation of the magnetic core while reducing the size and weight of magnetic components.Les convertisseurs d’électroniques de puissance sont des composants clés de la conversion et gestion efficace de l’énergie électrique dans une large gamme d’applications. Pour des utilisations véhiculaires, il est inévitablement nécessaire d’améliorer leurs performances et de réduire leur taille. Ceci est particulièrement important dans le cas des convertisseurs à courant continu (CC) de la chaine de traction où des performances améliorées en réponse à une large gamme de variations de charge sont recherchées tout en respectant les spécificités, caractéristiques et limitation d’espace nécessaires aux véhicules électrifiés. Ces objectifs définissent une cible de recherche et en particulier des progrès sont essentiels dans le domaine des composants passifs, des dispositifs semi-conducteurs, des topologies des convertisseurs et leurs commandes pour généraliser l’utilisation de véhicules électriques. Les composants passifs, en particulier les inductances de puissance, sont des composants dominants qui affectent le volume global, le coût et les performances de ces convertisseurs d’électroniques de puissance. Compte tenu de ces aspects, cette thèse propose un concept de bobine variable afin de réduire le poids et la taille des inductances de puissance qui sont traditionnellement encombrantes et ont une gamme de fonctionnement assez limitée. En modulant la perméabilité du matériau magnétique, ce concept améliore la capacité de gestion du courant des bobines de puissance, contrôle les ondulations du courant et réduit les pertes magnétiques et par commutation, bien comme les contraintes appliquées aux dispositifs de commutation. En outre, il permet l’utilisation de noyaux plus petits, ce qui entraîne une réduction de masse et de volume, en permettant une amélioration du fonctionnement du convertisseur et de ses performances globales. Cependant, pour l’intégrer aux convertisseurs CC-CC utilisés dans la chaine de traction, il est fondamental de se questionner sur la conception du composant lui-même, la sélection du matériau magnétique, la commande du courant de l’enroulement auxiliaire et la gestion de la saturation du noyau magnétique. Cette thèse aborde de manière systématique ces différents défis de recherche. Une attention particulière est accordée à l’étude expérimentale d’un prototype de bobine variable pour faire la preuve de concept à petite échelle afin d’explorer sa viabilité. Par la suite, une large caractérisation par éléments finis a été développée pour déterminer le fonctionnement intrinsèque de ce composant passif. De plus, cette thèse propose une méthode systématique de design de bobine variable basée sur le courant RMS pour réduire le surdimensionnement traditionnellement associer aux inductances de puissance pour des applications véhiculaires. Dans cette méthodologie, la sélection appropriée du matériau pour le noyau magnétique est une étape cruciale pour garantir des convertisseurs plus petits et efficaces, donc une démarche de sélection simplifiée basée sur la méthode des propriétés pondérées pour le choix de noyau magnétique approprié au besoin de l’application a été mis au point. De plus, pour valider l’intégration de ce concept dans une topologie de convertisseur CC-CC traditionnellement utilisée dans la chaine de traction des véhicules électrifiés, une méthode de synthèse affine a été utilisée pour définir les paramètres des contrôleurs de courant et une stratégie de gestion de la saturation du noyau a été proposée pour permettre le contrôle dynamique de la bobine variable. La commande du convertisseur et la stratégie ont été évaluées par simulation d’une chaine de traction complète d’un véhicule récréatif réel. Les résultats expérimentaux à petite échelle et simulations à pleine échelle ont démontrés des capacités intéressantes de cette bobine variable pour l’amélioration des performances des convertisseurs CC-CC, ayant la capacité de gestion de la saturation du noyau magnétique tout en réduisant la taille et le poids de ces composants passifs, dans le but de son utilisation dans la chaine de traction des véhicules électrifiés

    Design and characterisation of a high energy-density inductor

    Get PDF
    Power electronics is an enabler for the low-carbon economy, delivering flexible and efficient control and conversion of electrical energy in support of renewable energy technologies, transport electrification and smart grids. Reduced costs, increased efficiency and high power densities are the main drivers for future power electronic systems, demanding innovation in materials, component technologies, converter architectures and control. Power electronic systems utilise semiconductor switches and energy storage devices, such as capacitors and inductors to realise their primary function of energy conversion. Presently, roughly 50% of the volume of a typical power electronic converter is taken up by the energy storage components, so reducing their weight and volume can help to reduce overall costs and increase power densities. In addition, the energy storage densities of inductors are typically much lower than those of capacitors, providing a compelling incentive to investigate techniques for improvement. The main goal of this research was to improve the design of an inductor in order to achieve higher energy densities by combining significantly increased current densities in the inductor windings with the ability to limit the temperature increase of the inductor through a highly effective cooling system. Through careful optimisation of the magnetic, electrical and thermal design a current density of 46 A/mm2 was shown to be sustainable, yielding an energy storage density of 0.537 J/ kg. A principal target for this enhanced inductor technology was to achieve a high enough energy density to enable it to be readily integrated within a power module and so take a step towards a fully-integrated “converter in package” concept. The research included the influence of the operating dc current, current ripple, airgap location and operating frequency on the inductor design and its resulting characteristics. High frequency analysis was performed using an improved equivalent circuit, allowing the physical structure of the inductor to be directly related to the circuit parameters. These studies were validated by detailed small-signal ac measurements. The large signal characteristics of the inductor were determined under conditions of triangular, high-frequency current as a function of frequency, current (flux) ripple amplitude and dc bias current (flux) and a model developed allowing the inductor losses to be predicted under typical power electronic operating conditions

    Design and characterisation of a high energy-density inductor

    Get PDF
    Power electronics is an enabler for the low-carbon economy, delivering flexible and efficient control and conversion of electrical energy in support of renewable energy technologies, transport electrification and smart grids. Reduced costs, increased efficiency and high power densities are the main drivers for future power electronic systems, demanding innovation in materials, component technologies, converter architectures and control. Power electronic systems utilise semiconductor switches and energy storage devices, such as capacitors and inductors to realise their primary function of energy conversion. Presently, roughly 50% of the volume of a typical power electronic converter is taken up by the energy storage components, so reducing their weight and volume can help to reduce overall costs and increase power densities. In addition, the energy storage densities of inductors are typically much lower than those of capacitors, providing a compelling incentive to investigate techniques for improvement. The main goal of this research was to improve the design of an inductor in order to achieve higher energy densities by combining significantly increased current densities in the inductor windings with the ability to limit the temperature increase of the inductor through a highly effective cooling system. Through careful optimisation of the magnetic, electrical and thermal design a current density of 46 A/mm2 was shown to be sustainable, yielding an energy storage density of 0.537 J/ kg. A principal target for this enhanced inductor technology was to achieve a high enough energy density to enable it to be readily integrated within a power module and so take a step towards a fully-integrated “converter in package” concept. The research included the influence of the operating dc current, current ripple, airgap location and operating frequency on the inductor design and its resulting characteristics. High frequency analysis was performed using an improved equivalent circuit, allowing the physical structure of the inductor to be directly related to the circuit parameters. These studies were validated by detailed small-signal ac measurements. The large signal characteristics of the inductor were determined under conditions of triangular, high-frequency current as a function of frequency, current (flux) ripple amplitude and dc bias current (flux) and a model developed allowing the inductor losses to be predicted under typical power electronic operating conditions
    corecore