148 research outputs found

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    6th International Maar Conference-Abstracts

    Get PDF

    Novel Approaches in Landslide Monitoring and Data Analysis

    Get PDF
    Significant progress has been made in the last few years that has expanded the knowledge of landslide processes. It is, therefore, necessary to summarize, share and disseminate the latest knowledge and expertise. This Special Issue brings together novel research focused on landslide monitoring, modelling and data analysis

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    From site-scale to large areas monitoring of ground deformation phenomena by integration of different DInSAR techniques in Crotone Province (Southern Italy)

    Get PDF
    One of the most significant aims of this research project has been to apply SAR methods for the monitoring, the investigation and the evaluation of ground deformation phenomena in the Crotone province (Southern Italy). In detail, landslides and subsidence are the most remarkable and dangerous natural hazards in the study area, affecting people, buildings and main infrastructures. The intention was to show the potential of Differential Interferometry SAR (DInSAR) techniques for the detection and the estimation of the velocities and of the deformation of surface displacements, both on very local scale (slope scale) and on wide areas (kilometre-size extension). Such aim is achievable through the integration of DInSAR techniques along with conventional monitoring tools. The general idea of the project has been to assess the landslide hazard in selected areas of the Crotone province and to update the related landslide inventory map of the area, dated back to 2006, by means of DInSAR techniques. These goals have been reached through the comprehension and the understanding of the movements, on one hand on a very local scale (slope), and on the other hand, on a wide-area scale (the whole Crotone province). Additionally, two other case studies of subsidence, originated by different sources, have been studied with interferometry techniques, showing the suitability of such methods for other types of ground deformation. Several Multi Temporal Interferometry (MTI, Wasowski & Bovenga, 2014) approaches have been here applied, in order to investigate and analyze displacements present in the area, and the integration with “conventional” methods, such as inclinometers, piezometers and geomorphological surveys, turned out to be relevant for these purposes, providing very precise information about the nature and causes of ground deformation

    Seismic hazards and damage assessments based on remote sensing and GIS technologies

    Get PDF
    13301甲第4329号博士(工学)金沢大学博士論文本文Full 以下に掲載:Soil dynamics and Earthquake Engineering 66 pp.263-280 2014. Elsevier. 共著者:Sadra Karimzadeh, Masakatsu Miyajima, Reza Hassanzadeh, Reza amiraslanzadeh, Batoul Kame

    Urban Hydrogeology Studies

    Get PDF
    Urbanization worldwide is a pervasive phenomenon of our time, and sustainable urban development is one of the greatest challenges faced by the contemporary world. The subsurface plays a range of roles in such developments through the complex processes of urbanization, including building development, constructing roads, and providing water supplies, drainage, sanitation, and even solid waste disposal.Urban groundwater problems are usually predictable; however, they are not predicted early enough. During recent decades, progressive advances in the scientific understanding of urban hydrogeological processes and the groundwater regimes of a substantial number of cities have been documented. This extensive array of subsurface challenges that cities have to contend with lies at the core of the sustainability of the urban water cycle. This is threatened by the increasing scale and downward extent of urban subsurface construction, including utilities (cables, sewage, and drainage), transportation (tunnels, passages), and storage (cellars, parking lots, and thermal energy). The cumulative impact of this subsurface congestion on the surrounding geology, and especially on the groundwater system, has to be constantly studied and addressed.In this volume, key connections amongst urban hydrogeology activities are identified as being consistent with scientific results and good practices in their relationship to subsurface data and knowledge on subsurface systems. The volume supports a useful dialogue between the providers and consumers of urban groundwater data and knowledge, offering new perspectives on the existing research themes

    Análisis de subsidencia del terreno en el Valle de Toluca a partir del método Dual Pair Interferometry (DPI)

    Get PDF
    El crecimiento urbano tanto de la Ciudad de México como de la Ciudad de Toluca ha dependido de la continua disposición de los recursos del Acuífero del Valle de Toluca (AVT), por lo que los altos niveles de explotación han provocado un impacto negativo en el acuífero como el descenso del nivel freático, la disminución de caudales en ríos y desecación de humedales. La máxima expresión de la explotación del acuífero en la superficie la identificamos a partir de procesos de subsidencia del terreno que pueden llegar a afectar el equipamiento urbano y uso habitacional. Dichos procesos diferenciales pueden ser intensificados cuando el acuífero se encuentra constituido geológicamente por rellenos granulares y por la compactación de los materiales que rodean la cuenca, es decir, la presión ejercida sobre el terreno. Existen diversos factores que causan el abatimiento del Acuífero del Valle de Toluca. En los últimos 60 años el Estado de México abastece de agua potable al Valle de México cubriendo el 30% del líquido consumido en el Valle diariamente, lo que ha dado como consecuencia una sobreexplotación a un ritmo mucho mayor correspondiente por la densidad de población que alberga el Valle de Toluca

    Earth resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 579 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis
    corecore