377 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Finite-time generalized synchronization of nonidentical delayed chaotic systems

    Get PDF
    This paper deals with the finite-time generalized synchronization (GS) problem of drive-response systems. The main purpose of this paper is to design suitable controllers to force the drive-response system realize GS in a finite time. Based on the finite-time stability theory and nonlinear control theory, sufficient conditions are derived that guarantee finite-time GS. This paper extends some basic results from generalized synchronization to delayed systems. Because finite-time GS means the optimality in convergence time and has better robustness, the results in this paper are important. Numerical examples are given to show the effectiveness of the proposed control techniques

    Lag synchronization of switched neural networks via neural activation function and applications in image encryption

    Get PDF
    This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Projective synchronization analysis for BAM neural networks with time-varying delay via novel control

    Get PDF
    In this paper, the projective synchronization of BAM neural networks with time-varying delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered neural networks, which can achieve projective synchronization. Then, based on the adaptive controller, some novel and useful conditions are obtained to ensure the projective synchronization of considered neural networks. To our knowledge, different from other forms of synchronization, projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile nature. Besides, we solve the projective synchronization problem between two different chaotic BAM neural networks, while most of the existing works only concerned with the projective synchronization chaotic systems with the same topologies. Compared with the controllers in previous papers, the designed controllers in this paper do not require any activation functions during the application process. Finally, an example is provided to show the effectiveness of the theoretical results

    Some new less conservative criteria for impulsive synchronization of a hyperchaotic Lorenz system based on small impulsive signals

    Get PDF
    In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective. (C) 2009 Elsevier Ltd. All rights reserved

    Lag Synchronization in Coupled Multistable van der Pol-Duffing Oscillators

    Get PDF
    We consider the system of externally excited identical van der Pol-Duffing oscillators unidirectionally coupled in a ring. When the coupling is introduced, each of the oscillator’s trajectories is on different attractor. We study the changes in the dynamics due to the increase in the coupling coefficient. Studying the phase of the oscillators, we calculate the parameter value for which we obtain the antiphase lag synchronization of the system and also the bifurcation values for which we observe qualitative changes in the dynamics of already synchronized system. We give evidence that lag synchronization is typical for coupled multistable systems

    Exponential Lag Synchronization of Cohen-Grossberg Neural Networks with Discrete and Distributed Delays on Time Scales

    Full text link
    In this article, we investigate exponential lag synchronization results for the Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an arbitrary time domain by applying feedback control. We formulate the problem by using the time scales theory so that the results can be applied to any uniform or non-uniform time domains. Also, we provide a comparison of results that shows that obtained results are unified and generalize the existing results. Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these results. In the last section, we provide two simulated examples for different time domains to show the effectiveness and generality of the obtained analytical results.Comment: 20 pages, 18 figure
    corecore