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We consider the system of externally excited identical van der Pol-Duffing oscillators unidirectionally coupled in a ring. When the
coupling is introduced, each of the oscillator’s trajectories is on different attractor. We study the changes in the dynamics due to
the increase in the coupling coefficient. Studying the phase of the oscillators, we calculate the parameter value for which we obtain
the antiphase lag synchronization of the system and also the bifurcation values for which we observe qualitative changes in the
dynamics of already synchronized system. We give evidence that lag synchronization is typical for coupled multistable systems.

First studies about the synchronization of the mechanical
systems date back to the 17th century, when Christiaan
Huygenswatched twopendulumclocks hung on the common
beam. As a result of the vibrations transmitted by this beam
from one clock to the other, after a while they started to move
with the same frequency. The huge development of science,
especially the theory of the nonlinear dynamical systems,
caused the expansion of the researches about different types
of the synchronization phenomena. Today, the concept of the
synchronization has applications in many areas of science.

In this paper we study the phenomenon known as
the lag synchronization [1–15]. We have two cases of this
phenomenon. In the in-phase lag synchronization, the state
of the first coupled system at any moment of time 𝑡 is the
same as the state of the second coupled system in moment
𝑡 − 𝜏, where 𝜏 is a fixed lag. The case of the antiphase lag
synchronization ismore complicated.Thedynamics is similar
to the previously described one, but the values of the phase
variables for the first system are opposite to the values of
these variables for the second one. In our researches, we
have observed the second type of the lag synchronization
phenomenon. Lag synchronization has been observedmostly
in chaotic [1–11] and hyperchaotic [12, 13] coupled systems,
but it has been even found in nonchaotic dynamics [15].
There are many papers about this phenomenon in Rössler

systems [1, 9–12] and in various types of time delay systems
[2–5, 13–15]. Papers [3–8] contain interesting results of this
phenomenon in neuron systems. Works [9, 13] present how
this type of synchronization turns into other types due to the
changes in the system parameters. In our considerations, we
focus not on the issue when and how the coupled system
achieves the synchronization but on how it behaves after
reaching it. We try to answer the question “how will the
dynamics of the synchronized multistable oscillators change
when the strength that couples them will be increased?”

As an example, we consider externally forced van der Pol-
Duffing oscillator [16–33], which is multistable and has rare
attractors [16]. The phenomenon of uncertainty due to the
initial positions on the attractors has also been shown for this
system [17]. In [18–22], considerations about various types of
bifurcations for van der Pol-Duffing oscillator can be found.
Most of the researches relate to chaotic behaviour of this
system [23–26], but there are also considerations about peri-
odic and quasiperiodic attractors [24]. The synchronization
of coupled van der Pol-Duffing oscillators with various types
of coupling and the time delay feedback have been described
in [19, 25–33].Thismultiplicity of properties ensures that each
study on this system gives new, interesting results and extends
the knowledge of nonlinear dynamics.
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Figure 1: Poincaré maps of the subsystems of (1) for different initial conditions and 𝜀 = 0. Maps (a)–(i) show periodic solutions, where the
period is equal to number of dots onmapmultiplied by 2𝜋/0.962 (period of the excitation).The last map (j) represents quasiperiodic attractor.

In this paper, we consider ten externally excited identical
van der Pol-Duffing oscillators unidirectionally coupled in
a ring. The system is given by ten second-order ordinary
differential equations:
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𝑖 = 2, . . . , 10,
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where 𝛼, 𝜔, and 𝐹 are constant. The coupling between the 1st
(𝑥
1
) and the 10th (𝑥

10
) oscillator implicates first equation.We

assume that 𝛼 = 0.2,𝐹 = 1, and 𝜔 = 0.962 and consider 𝜀 as
a coupling coefficient.

In [16], it has been shown that single van der Pol-Duffing
oscillator is multistable and that depending on the value of
the parameter 𝜔 the attractors of different types coexist (i.e.,
periodic, quasiperiodic, and chaotic). In [16], the basins of
attraction for some of these attractors are also contained. In

our case, for 𝜔 = 0.962, we obtain periodic and quasiperiodic
orbits.

At the beginning, when the coupling is introduced, the
assumed initial conditions are presented as red dots on
Poincaré maps in Figures 1(a)–1(j). For each map, points are
taken from the trajectory of corresponding subsystem and the
time interval between the consecutive values on the trajectory
is equal to the period of the excitation −2𝜋/0.962. Horizontal
axes correspond to the 𝑥

𝑖
coordinates, while vertical axes

correspond to the 𝑥̇
𝑖
coordinates (𝑖 = 1, . . . , 10). In this case,

nine of the subsystems are on periodic trajectories and the
10th one is on the quasiperiodic one.

We focus on determining the smallest value of the
coupling coefficient 𝜀 for which the oscillators of the system
(1) synchronize. We will also study the qualitative changes in
the dynamics of this systemwhenwe increase 𝜀 parameter. To
do this, the concept of the phase of the system is used. For the
subsystem 𝑖 ∈ {1, . . . , 10}, we consider phase function 𝜑

𝑖
(𝑡) :=

arctan(𝑥̇
𝑖
(𝑡)/𝑥
𝑖
(𝑡)), where for 𝑥

𝑖
(𝑡) = 0we assume 𝜑

𝑖
(𝑡) = 𝜋/2
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Figure 2: Mean phase 𝜑 of the 1st subsystem versus the coupling coefficient 𝜀. On (b), changes of the 𝜑 in the small intervals around 𝜀
1
, 𝜀
2
,

𝜀
3
, and 𝜀

4
are presented.

or 𝜑
𝑖
(𝑡) = −𝜋/2, depending on the sign of 𝑥̇

𝑖
(𝑡). For special

case 𝑥̇
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) = 0, we assume 𝜑

𝑖
(𝑡) = 0. For fixed 𝑡, if

point (𝑥
𝑖
(𝑡), 𝑥̇
𝑖
(𝑡)) is located in the 1st or 4th quadrant of two-

dimensional Cartesian system, then the above-mentioned
function defines the angle on the plane between the half-line
[0,∞) and the segment which begins in point (0, 0) and ends
in point (𝑥

𝑖
(𝑡), 𝑥̇
𝑖
(𝑡)). If point (𝑥

𝑖
(𝑡), 𝑥̇
𝑖
(𝑡)) is located in the 2nd

or 3rd quadrant, then the function defines the angle between
the half-line (−∞, 0] and the previously described segment
(0, 0); (𝑥

𝑖
(𝑡), 𝑥̇
𝑖
(𝑡)).

If two subsystems’ trajectories are the same in phase
space, or one of them is symmetrical across point (0, 0) to
the second (i.e., the trajectories are on the same attractor or
on attractors symmetrical across point (0, 0)), then the mean
values of the phases of these subsystems are equal. This fact
is very helpful while examining the bifurcation diagrams of
mean phase versus 𝜀 for two oscillators. Overlapping of these
diagrams suggests the synchronization of the subsystems.
However, it should be emphasized that this fact is only a
necessary but not sufficient condition for this phenomenon.
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ẋi

xi

(e)

0 5

150

75

0

10 15

𝜀 = 74.648

−15 −10 −5

−75

−150

ẋi
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Figure 3: Poincaré maps of the subsystems of (1). On (a), the map for 1st oscillator is presented. Maps (b)-(c) refer to all of the subsystems
(maps overlap). Maps (d)–(h) also refer to all of the oscillators, but maps of the 1st, 3rd, 5th, 7th, and 9th oscillators are marked by blue colour
while maps for the 2nd, 4th, 6th, 8th, and 10th by red colour.
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In Figure 2(a) the changes of the mean phase (denoted
by 𝜑) of the 1st subsystem are presented. On horizontal axis
are possible values of coupling coefficient in interval [0, 80]
and on vertical axis the values of 𝜑.The bifurcation points are
marked as 𝜀

1
, 𝜀
2
, 𝜀
3
, and 𝜀

4
. In Figure 2(b) the changes in the

small intervals around this bifurcation are shown.
The changes in the dynamics of the subsystems in bifur-

cation points are shown on Poincaré maps in Figure 3. The
actual value of 𝜀 parameter for which we calculate the map is
above each of them.

When 𝜀 ∈ [0, 𝜀
1
) the 𝜑 fluctuates, but after reaching 𝜀

1
it

changes continuously (except bifurcations in 𝜀
2
, 𝜀
3
, and 𝜀

4
).

This behaviour is common for all of the oscillators; that is,
the diagrams calculated for all of the subsystems overlap for
𝜀 ∈ (𝜀

1
, 80]. For coupling coefficient equal to 𝜀

1
, we obtain

the synchronization of the system. Indeed, Poincaré map for
𝜀 = 0.311 represents chaotic behaviour of the oscillators
(Figure 3 shown for the 1st one) but then for 𝜀 = 0.312
all of them are synchronized on one common quasiperiodic
attractor. The described behaviour continues for 𝜀 ∈ [𝜀

1
, 𝜀
2
).

It changes for 𝜀
2
when the common attractor is destroyed

and two symmetrical attractors appear. For 𝜀 = 13.0125
subsystems are on one attractor and for 𝜀 = 13.013 they group
equally on two tori. This continues for 𝜀 ∈ [𝜀

2
, 𝜀
3
) and for 𝜀

3

we obtain another bifurcation known as the doubling of torus
[34, 35]. Previously, subsystems are grouped equally on the
attractors and for 𝜀 ∈ [𝜀

3
, 𝜀
4
) there are no qualitative changes

in the dynamics. Finally, in 𝜀
4
we obtain the critical moment

when the coupling coefficient is so large that the dynamics is
caused only by the external force and so the oscillators vibrate
periodically (with the period of the excitation). In Figure 3,
for 𝜀 = 76.676 two quasiperiodic attractors coexist and for
𝜀 = 76.6765 we obtain a single point on Poincaré map for
each subsystem. From now on, no matter howmuch 𝜀will be
increased, the dynamics of the system does not change.

It is also worth mentioning that when the oscillators are
synchronized for the fixed value of 𝜀, the lag in the synchro-
nization between them can be easily numerically found by
analyzing the differences in positions of coupled subsystems.
Here, we considered the function 𝛿(𝜏) := max{|𝑥

𝑖
(𝑡) −

(−𝑥
𝑖+1
(𝑡 + 𝜏))| : 𝑡 ≥ 𝑡

𝑠
}, where 𝑖 ∈ {1, . . . , 10} is the number

of one of the oscillators and 𝑡
𝑠
is the time moment from

which the subsystems are synchronized. For fixed argument,
this function describes the value of maximum difference
between positions of corresponding oscillators in the whole
time interval. The position of the first oscillator is taken in
time 𝑡 while the position of the second one in time 𝑡 + 𝜏.
The lag value 𝜏 in the synchronization is the argument for
which the function value 𝛿(𝜏) is sufficiently small. We made
calculations for 𝜏 ∈ [0, 100] and obtained the following
results: for 𝜀 = 0.312 the lag is 𝜏 = 22.84 and 𝛿(𝜏) = 0.0102;
for 𝜀 = 13.013 the lag is 𝜏 = 42.485 and 𝛿(𝜏) = 0.022; for 𝜀 =
74.648 the lag is 𝜏 = 87.36 and 𝛿(𝜏) = 0.0215; for 𝜀 = 76.6765
the lag is 𝜏 = 3.265 and 𝛿(𝜏) = 0 (ideal lag synchronization).

To summarize, by coupling the van der Pol-Duffing
oscillators and properly selecting the value of the coupling
coefficient we observe the lag synchronization of the oscil-
lators. As mentioned in the preliminaries, the dynamics of

the single system is very rich and this is the main reason
why simple complete synchronization is not obtained. We
have determined the critical value forwhich the phenomenon
occurs (𝜀

1
) and examined the changes in the dynamics while

increasing the coupling coefficient. The common attractor
on which all subsystems synchronize due to increase in
parameter 𝜀 changes not only quantitatively but also qual-
itatively. Single torus, common to all of the oscillators, due
to bifurcations occurring for 𝜀

2
, 𝜀
3
, and 𝜀

4
converts into two

double tori, then into two single tori, and finally into periodic
orbits. The observed phenomena are robust as they can be
observed for the wide range of system parameters.

The obtained results suggest that when coupling the
systems that have similar properties as van der Pol-Duffing
oscillator, the characteristics of the structure that couples the
subsystems should be selected very carefully (e.g., it may be a
spring and its coefficient of elasticity). Apart from basic cases
when this coefficient reaches the smallest value for which the
system synchronizes and a large enough value for which the
subsystems begin to oscillate at a frequency of an external
force, there is a range of intermediate values of this coefficient
that cause the qualitative changes in the dynamics of the
synchronized system. This fact should be taken into account
while constructing certainmechanical models.We argue that
the lag synchronization is typical for coupled multistable
systems.
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