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The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is
considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple
and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms
are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of
the proposed methods.

1. Introduction

Complex networks become more and more important in
modern society. Up to now, the investigation on the syn-
chronization of complex networks has attracted a great deal
of attentions due to its potential applications in various
fields, such as physics, secure communication, automatic
control, biology, and sociology [1–5]. In literature, there
are many widely studied synchronization patterns, which
define the correlated in-time behaviors among the nodes in
a dynamical network, for example, complete synchronization
[6–8], phase synchronization [9, 10], lag synchronization [11–
13], antisynchronization [14–16], projective synchronization
[17–29], and so on. Projective synchronization reflects a kind
of proportionality between the synchronized states, so it is an
interesting research topic and has many applications.

Recently, projective synchronization under various cases
of complex dynamical networks has been studied [17–
29]. In [19], Du et al. studied the problem of function
projective synchronization for general complex dynamical
networks with time delay. A hybrid feedback control method
is designed to achieve function projective synchroniza-
tion for complex dynamical networks with constant time
or time-varying delay. In [20], Liu investigated the syn-
chronization problem of fractional-order complex networks

with nonidentical nodes, and the generalized projective
synchronization criterion of fractional-order complex net-
works with order 0 < 𝑞 < 1 is obtained. In [21], Yao andWang
explored a new cluster projective synchronization scheme
in time-varying delay coupled complex dynamical networks
with nonidentical nodes in consideration of the community
structure of the networks.

In most existing research, the two complex networks (so-
called driver-response networks) evolve along the same or
inverse direction with respect to real number, real matrix,
or even real function in a complex plane [17, 19–21, 23–
29]. However, in real world, the systems can often evolve in
different directions with a constant intersection angle with
respect to complex number; for example, 𝑦 = 𝜌𝑒

𝑗𝜃
𝑥, where

𝑥 denotes the drive system, 𝑦 denotes the response system,
𝜌 > 0 denotes the zoom rate, 𝜃 ∈ [0, 2𝜋) denotes the
rotation angle, and 𝑗 = √−1. This synchronization scheme
has a large number of real-life examples. For instance, in
distributed computers collaboration, each distributed com-
puter (response system) not only to receive unified command
from server (drive system), but also they are mutual to use
resources for collaboration [30]. Furthermore, in a social
network or games in economic activities, and behaviors of
individuals (those response systems) will be affected not only
by powerful one (the drive system used in the present paper),
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but also those with a similar role as themselves [22]. Recently,
some related works have come out, such as [18, 22]. In [18,
22], Wu et al. introduced the concept of complex projective
synchronization based on Lyapunov stability theory, several
typical chaotic complex dynamical systems are considered
and the corresponding controllers are designed to achieve the
complex projective synchronization.

In many systems, the impulsive effects are common
phenomena due to instantaneous perturbations at certain
moments [31–33]. In the past several years, impulsive control
strategies have been widely used to stabilize and synchronize
coupled complex dynamical system, such as signal process-
ing system, computer networks, automatic control systems,
and telecommunications. In [31], Cai et al. investigated
the robust impulsive synchronization of complex delayed
dynamical networks. Yang and Cao [32] studied the expo-
nential synchronization of complex dynamical network with
a coupling delay and impulsive disturbance. Zhu et al. gave
some global impulsive exponential synchronization criteria
of time-delayed coupled chaotic systems in [33]. Xu et al.
studied the synchronization problem of stochastic complex
networks with Markovian switching and time-varying delays
are investigated by using impulsive pinning control scheme
in [34].

Besides, due to the finite information transmission and
processing speeds among the units, the connection delays in
realistic modeling of many large networks with communi-
cation must be taken into account, such as [19, 23, 24, 35].
What ismore, uncertainties commonly exist in the real world,
such as stochastic forces on the physical systems and noisy
measurements caused by environmental uncertainties; the
stochastic forms from the same noise of one-dimensional
vector to the different noise perturbations of vector were
investigated in [9, 10, 15, 17, 25]. Therefore, it is important to
study the effect of time delay and stochastic noise in complex
projective synchronization of drive-response networks.

Based on the above-mentioned content, the complex
projective synchronization in drive-response stochastic cou-
pled networks with complex-variable systems and linear
coupling time delays by impulsive pinning control scheme are
considered in this paper. Several simple and practical criteria
for complex projective synchronization are obtained by using
Lyapunov functional method, stochastic differential theory,
and linear matrix inequality (LMI) approaches.

Notation. Throughout this paper, C𝑛 and C𝑚×𝑛 denote 𝑛-
dimensional complex vectors and the set of 𝑚 × 𝑛 complex
matrices, respectively. For Hermite matrix 𝐻, the notation
𝐻 > 0 (𝐻 < 0) means that the matrix 𝐻 is positive
definite (negative definite). For any complex (real) matrix𝑀,
𝑀
𝑠
= 𝑀
𝑇
+𝑀. For any complex number (or complex vector)

𝑥, the notations 𝑥
𝑟 and 𝑥

𝑖 denote its real and imaginary
parts, respectively, and 𝑥 denotes the complex conjugate of 𝑥.
𝜆min(𝐴)(𝜆max(𝐴)) represents the smallest(largest) eigenvalue
of a symmetric matrix 𝐴. ⊗ is the Kronecker product. The
superscript 𝑇 of 𝑥𝑇 or 𝐴𝑇 denotes the transpose of the vector
𝑥 ∈ R𝑛 or the matrix 𝐴 ∈ R𝑚×𝑛. 𝐼𝑛 is identity matrix with 𝑛

nodes.

2. Model Description and Preliminaries

Consider a drive-response network coupled with 1 + 𝑁

identical partially linear stochastic complex network with
coupling time delay, which is described as follows:

𝑥̇ (𝑡) = 𝑀 (𝑧 (𝑡)) 𝑥 (𝑡) ,

𝑧̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑧 (𝑡)) ,

(1)

𝑑𝑦𝑖 (𝑡) = {𝑀(𝑧 (𝑡)) 𝑦𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑦𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑦𝑘 (𝑡 − 𝜏)}𝑑𝑡

+ 𝜎𝑖 (𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑤𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where 𝑥(𝑡) = (𝑥1, 𝑥2, . . . , 𝑥𝑚)
𝑇

∈ C𝑚 and 𝑧(𝑡) ∈ R are the
drive system variables and 𝑦𝑖(𝑡) = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑚)

𝑇
∈ C𝑚

is the state variable of a node 𝑖 in the response network.
𝑀(𝑧(𝑡)) ∈ R𝑚×𝑚 is a complex matrix function, 𝜀1 > 0, 𝜀2 >
0 is the coupling strength, and Γ ∈ R𝑚×𝑚 is the inner
coupling matrix. 𝜏 is the coupling time delay. Matrices 𝐴 =

(𝑎𝑖𝑗)𝑁×𝑁 and 𝐵 = (𝑏𝑖𝑗)𝑁×𝑁 are the zero-row-sum outer
coupling matrix, which denote the network topology and
are defined as follows. If there is a connection (information
transmission) from node 𝑗 to node 𝑖 (𝑖 ̸= 𝑗), then 𝑎𝑖𝑗 ̸= 0 and
𝑏𝑖𝑗 ̸= 0; otherwise, 𝑎𝑖𝑗 = 0 and 𝑏𝑖𝑗 = 0, and 𝑤𝑖(𝑡) = (𝑤𝑖1(𝑡),

𝑤𝑖2(𝑡), . . . , 𝑤𝑖𝑛(𝑡))
𝑇

∈ R𝑛 is a bounded vector-form Weiner
process, satisfying

E𝑤𝑖𝑗 (𝑡) = 0, E𝑤
2
𝑖𝑗 (𝑡) = 1,

E𝑤𝑖𝑗 (𝑡) 𝑤𝑖𝑗 (𝑠) = 0 (𝑠 ̸= 𝑡) .

(3)

Now, two mathematical definitions for the generalized
projective synchronization are introduced as follows.

Definition 1. If there is a complex 𝛼 such that

𝑁

∑

𝑖=1

E
󵄩󵄩󵄩󵄩𝑦𝑖(𝑡) − 𝛼𝑥𝑖(𝑡)

󵄩󵄩󵄩󵄩

2
≤ 𝐾𝑒
−𝜅𝑡

, (4)

for some 𝐾 > 0 and some 𝜅 > 0, then the drive-response
networks (1) and (2) are said to achieve complex projective
synchronization in mean square, and the parameter 𝛼 is
called a scaling factor.

Without loss of generality, let 𝛼 = 𝜌(cos 𝜃+𝑗 sin 𝜃), where
𝜌 = |𝛼| is the module of 𝛼 and 𝜃 ∈ [0, 2𝜋) is the phase of 𝛼.
Therefore, the projective synchronization is achieved when
𝜃 = 0 or 𝜋. Furthermore, the complete synchronization is
achieved when 𝜌 = 1 and 𝜃 = 0, and the antisynchronization
is achieved when 𝜌 = 1 and 𝜃 = 𝜋 [22].
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Definition 2 (see [22]). Matrix𝐴 = (𝑎𝑖𝑘)
𝑁
𝑖,𝑘 is said to belong to

class 𝐴1, denoted as 𝐴 ∈ 𝐴1, if

(1) 𝑎𝑖𝑘 ≥ 0, 𝑖 ̸= 𝑘, 𝑎𝑖𝑖 = −∑
𝑁
𝑘=1,𝑘 ̸= 𝑖 𝑎𝑖𝑘 = −∑

𝑁
𝑘=1,𝑘 ̸= 𝑖 𝑎𝑘𝑖, 𝑖 =

1, 2, . . . , 𝑁;
(2) 𝐴 is irreducible.

The following lemmas and assumption are used through-
out the paper.

Lemma 3 (see [22]). Let𝑚×𝑚 complex matrix𝐻 be Hermi-
tian; then

(1) 𝑥𝑇𝐻𝑥 is real for all 𝑥 ∈ 𝐶
𝑚;

(2) all the eigenvalues of𝐻 are real.

Lemma 4 (see [35]). If 𝐴 = (𝑎𝑖𝑗)𝑚×𝑚 is irreducible, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ≥

0, for 𝑖 ̸= 𝑗, and ∑
𝑚
𝑗=1 𝑎𝑖𝑗 = 0, for all 𝑖 = 1, 2, . . . , 𝑚, then all

eigenvalues of the matrix

(

𝑎11 − 𝜖 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑚

𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑚
...

... d
...

𝑎𝑚1 𝑎𝑚2 ⋅ ⋅ ⋅ 𝑎𝑚𝑚

) (5)

are negative for any positive constant 𝜖.

Lemma5 (see [30, 36]). Consider an 𝑛-dimensional stochastic
differential equation

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) .

(6)

Let 𝐶2,1(C+ × C𝑛;R+) denote the family of all nonnegative
functions 𝑉(𝑡, 𝑥) on R+ × C𝑛, which are twice continuously
differentiable in 𝑥 and once differentiable in 𝑡. If 𝑉 ∈ 𝐶

2,1
(R+×

C𝑛;R+), define an operatorL𝑉 from R+ × C𝑛 to R by

L𝑉 (𝑡, 𝑥) = 𝑉𝑡 (𝑡, 𝑥) + 𝑉𝑥 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
Tr [𝜎(𝑡, 𝑥, 𝑦)𝑇𝑉𝑥𝑥𝜎 (𝑡, 𝑥, 𝑦)] ,

(7)

where 𝑉𝑡(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑡, 𝑉𝑥(𝑡, 𝑥) = (𝜕𝑉(𝑡, 𝑥)/𝜕𝑥1, . . . ,

𝜕𝑉(𝑡, 𝑥)/𝜕𝑥𝑛), and 𝑉𝑥𝑥(𝑡, 𝑥) = (𝜕
2
𝑉(𝑡, 𝑥)/𝜕𝑥𝑖𝑥𝑗)𝑛×𝑛. If 𝑉 ∈

𝐶
2,1
(R+ × C𝑛;R+), then, for any∞ > 𝑡 > 𝑡0 ≥ 0,

E𝑉 (𝑡, 𝑥 (𝑡)) = E𝑉 (𝑡0, 𝑥 (𝑡0)) + E∫

𝑡

𝑡0

L𝑉 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (8)

as long as the expectations of the integrals exist.

Assumption 6 (see [22]). Suppose that there exists a constant
𝐿 such that the largest eigenvalue of𝑀𝑠(𝑧(𝑡)) satisfies

𝜆max (𝑀
𝑠
(𝑧 (𝑡))) ≤ 𝐿. (9)

Remark 7. All the chaotic systems satisfy Assumption 6 due
to the fact that 𝑧(𝑡) is bounded [22].

Assumption 8. Denote 𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝛼𝑥(𝑡), and suppose
𝜎𝑖(𝑒(𝑡), 𝑒(𝑡 − 𝜏)) = 𝜎𝑖(𝑦(𝑡), 𝑦(𝑡 − 𝜏)). Then, there exist positive
definite constantmatricesΥ𝑖1 andΥ𝑖2, for 𝑖 = 1, 2, . . . , 𝑁, such
that

Tr [𝜎𝑇𝑖 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏)) 𝜎𝑖(𝑒(𝑡), 𝑒(𝑡 − 𝜏))]

≤

𝑁

∑

𝑗=1

𝑒
𝑇
𝑗 (𝑡) Υ𝑖1𝑒𝑗(𝑡) +

𝑁

∑

𝑗=1

𝑒
𝑇
𝑗 (𝑡 − 𝜏) Υ𝑖2𝑒𝑗(𝑡 − 𝜏).

(10)

Remark 9. Assumption 8 is easily satisfied; for instance,
because of existing noise in the process of informa-
tion transmission, the noise strength is 𝜎𝑖(𝑦(𝑡), 𝑦(𝑡 −

𝜏)) = |𝜎𝑖∑
𝑁
𝑘=1 𝑎𝑖𝑘(𝑦𝑘(𝑡)−𝑦𝑖(𝑡)) + 𝜎̃𝑖∑

𝑁
𝑘=1 𝑏𝑖𝑘(𝑦𝑘(𝑡−𝜏)−𝑦𝑖(𝑡−

𝜏))|, which depends on the states of the nodes, where 𝜎𝑖 and
𝜎̃𝑖 are constants, 𝑖 = 1, 2, . . . , 𝑁, so that Υ𝑖1 = 𝜎𝑖𝑁 diag
{𝑎
2
𝑖1, 𝑎
2
𝑖2, . . . , 𝑎

2
𝑖𝑁}, Υ𝑖2 = 𝜎̃𝑖𝑁 diag{𝑎2𝑖1, 𝑎

2
𝑖2, . . . , 𝑎

2
𝑖𝑁}.

3. Main Results

Our objective here is to achieve complex projective syn-
chronization in the drive-response networks (1) and (2) by
adopting different control schemes. Firstly, several sufficient
conditions are obtained for achieving complex projective
synchronization in drive-response networks (1) and (2) by
applying proper controllers 𝑢𝑖(𝑡) on the response network.
Then, the controlled response network is

𝑑𝑦𝑖 (𝑡) ={𝑀(𝑧 (𝑡)) 𝑦𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑦𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑦𝑘 (𝑡 − 𝜏) + 𝑢𝑖 (𝑡)} 𝑑𝑡

+ 𝜎𝑖 (𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑤𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(11)

Define the synchronization errors between the drive
network (1) and the response network (2) as 𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) −

𝛼𝑥(𝑡), because of 𝜎𝑖(𝑒(𝑡), 𝑒(𝑡−𝜏)) = 𝜎𝑖(𝑦(𝑡), 𝑦(𝑡−𝜏)); then we
have the following error system:

𝑑𝑒𝑖 (𝑡) ={𝑀(𝑧 (𝑡)) 𝑒𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑒𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑒𝑘 (𝑡 − 𝜏) + 𝑢𝑖 (𝑡)} 𝑑𝑡

+ 𝜎𝑖 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏)) 𝑑𝑤𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(12)
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Next, we consider complex projective synchronization
between (1) and (6) via impulsive control under the assump-
tions 𝐴 ∈ 𝐴1, 𝐵 ∈ 𝐴1, and Γ > 0,

𝑑𝑒𝑖 (𝑡) = {𝑀(𝑧 (𝑡)) 𝑒𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑒𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑒𝑘 (𝑡 − 𝜏) }𝑑𝑡

+ 𝜎𝑖 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏)) 𝑑𝑤𝑖 (𝑡) ,

𝑡 ̸= 𝑡𝑘, 𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑁,

Δ𝑒𝑖 (𝑡𝑘) = 𝜖𝑖𝑘𝑒𝑖 (𝑡
−
𝑘 ) , 𝑡 = 𝑡𝑘, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁.

(13)

Theorem 10. Supposing that Assumptions 6 and 8 hold, 𝐴 ∈

𝐴1,𝐵 ∈ 𝐴1, and Γ > 0.The complex projective synchronization
in the drive-response networks (1) and (2) with the impulsive
control (14) can be achieved if the following condition is
satisfied:

(𝛾 + 𝑎 + 𝑏𝑒
𝛾𝜏
) (𝜏 + 𝑇) + 2 ln 󵄨󵄨󵄨󵄨1 + 𝜖V

󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0, (14)

where 𝛾 > 0, 𝑎 = 𝜆max(𝐿𝐼𝑁𝑚 + 𝜀1𝐴
𝑠
⊗ Γ + Υ𝑖1 ⊗ 𝐼𝑁) and

𝑏 = 𝜆max(𝜀2(𝐵 ⊗ Γ)
𝑠
+ Υ𝑖2 ⊗ 𝐼𝑁).

Proof. Consider the Lyapunov functional candidate

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇
𝑖 (𝑡) 𝑒𝑖 (𝑡). (15)

For any 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 = 1, 2, . . ., by Lemma 5, we have

L𝑉 (𝑡) =

𝑁

∑

𝑖=1

{[𝑒
𝑇
𝑖 (𝑡)𝑀

𝑇
(𝑧 (𝑡)) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘𝑒
𝑇
𝑘 (𝑡) Γ

𝑇

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘𝑒
𝑇
𝑘 (𝑡 − 𝜏) Γ

𝑇
] 𝑒𝑖(𝑡)

+ 𝑒
𝑇
𝑖 (𝑡) [𝑀 (𝑧 (𝑡)) 𝑒𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑒𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑒𝑘(𝑡 − 𝜏)]}

+
1

2

𝑁

∑

𝑖=1

Tr [𝜎𝑖(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏))
𝑇
𝜎𝑖 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏))]

≤

𝑁

∑

𝑖=1

𝐿𝑒
𝑇
𝑖 (𝑡) 𝑒𝑖 (𝑡)

+ 𝜀1

𝑁

∑

𝑖=1

𝑁

∑

𝑘=1

𝑎𝑖𝑘 [𝑒
𝑇
𝑘 (𝑡) Γ

𝑇
+ 𝑒
𝑇
𝑖 (𝑡) Γ] 𝑒𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑖=1

𝑁

∑

𝑘=1

𝑏𝑖𝑘 [𝑒
𝑇
𝑘 (𝑡 − 𝜏) Γ

𝑇
+ 𝑒
𝑇
𝑖 (𝑡) Γ] 𝑒𝑘 (𝑡 − 𝜏)

+

𝑁

∑

𝑖=1

𝑒
𝑇
𝑖 (𝑡) Υ𝑖1𝑒𝑖 (𝑡) +

𝑁

∑

𝑖=1

𝑒
𝑇
𝑖 (𝑡 − 𝜏) Υ𝑖2𝑒𝑖(𝑡 − 𝜏).

(16)

Let 𝑒(𝑡) = (𝑒
𝑇
1 , 𝑒
𝑇
2 , . . . , 𝑒

𝑇
𝑁); then one has

L𝑉 (𝑡) ≤ 𝑒
𝑇
(𝑡) (𝐿𝐼𝑁𝑚 + 𝜀1𝐴

𝑠
⊗ Γ) + Υ𝑖1𝑒(𝑡)

+ 𝑒
𝑇
(𝑡 − 𝜏) (𝜀2(𝐵 ⊗ Γ)

𝑠
+ Υ𝑖2) 𝑒 (𝑡 − 𝜏).

(17)

In view of condition (14), we have

L𝑉 (𝑡) ≤ 𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏) . (18)

Define

𝑊(𝑡) = 𝑒
𝛾𝑡
𝑉 (𝑡) (19)

and use (14) to compute the operator

L𝑊(𝑡) = 𝑒
𝛾𝑡
[𝛾𝑉 (𝑡) +L𝑉 (𝑡)]

≤ 𝑒
𝛾𝑡
[𝛾𝑉 (𝑡) + 𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏)] ,

(20)

which, after applying the generalized Itô’s formula, gives

𝑒
𝛾𝑡
E𝑉 (𝑡) = E𝑉 (0) + E∫

𝑡

0

L𝑊(𝑠) 𝑑𝑠 (21)

for any 𝑡𝑘 > 𝑡 > 𝑡0 > 𝑡𝑘−1 ≥ 0. Hence, we have

𝑒
𝛾𝑡
E𝑉 (𝑡) ≤ E𝑉 (𝑡0)

+ E∫

𝑡

𝑡0

𝑒
𝛾𝑠
[𝛾𝑉 (𝑠) + 𝑎𝑉 (𝑠) + 𝑏𝑉 (𝑠 − 𝜏)] 𝑑𝑠

≤ E𝑉 (𝑡0) + (𝛾 + 𝑎)∫

𝑡

𝑡0

𝑒
𝛾𝑠
E𝑉 (𝑠) 𝑑𝑠

+ 𝑏𝑒
𝛾𝜏
∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏)

E𝑉 (𝑠 − 𝜏) 𝑑𝑠.

(22)

By changing variable 𝑠 − 𝜏 = 𝑢, we have

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏)

E𝑉 (𝑠 − 𝜏) 𝑑𝑠 =∫

𝑡−𝜏

𝑡0−𝜏

𝑒
𝛾𝑢
E𝑉 (𝑢) 𝑑𝑢

≤∫

𝑡

𝑡0−𝜏

𝑒
𝛾𝑢
E𝑉 (𝑢) 𝑑𝑢.

(23)

Substituting (23) into (22), we get

𝑒
𝛾𝑡
E𝑉 (𝑡) ≤ E𝑉 (𝑡0) + (𝛾 + 𝑎 + 𝑏𝑒

𝛾𝜏
) ∫

𝑡

𝑡0−𝜏

𝑒
𝛾𝑢
E𝑉 (𝑢) 𝑑𝑢.

(24)
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Figure 1: The topology structures of the networks for 9 nodes.
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Figure 2: The evolution of the synchronization trajectory 𝑦𝑖 (𝑖 = 1, 2, . . . , 10) by impulsive pinning control.
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Figure 3: The evolution of the synchronization errors 𝑦𝑖 (𝑖 = 1, 2, . . . , 10) by impulsive pinning control.

By using Gronwall’s inequality, we get

E𝐸 (𝑡) ≤ E𝐸 (𝑡𝑡0
) 𝑒
(𝛾+𝑎+𝑏𝑒𝛾𝜏)(𝑡−𝑡𝑡0+𝜏)+𝛾(𝑡0−𝑡). (25)

On the other hand, from the construction of𝐸(𝑡), we have

𝐸 (𝑡𝑘) ≤ (1 + 𝜖𝑘)
2
𝐸 (𝑡
−
𝑘 ) ,

(26)

where |1 + 𝜖𝑘| = max𝑖=1,2,...,𝑁|1 + 𝜖𝑖𝑘|. According to (25) and
(26), letting 𝑘 = ⌊(𝑡 − 𝑡0)/𝑇⌋, for any 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), we get

E𝑉 (𝑡) ≤ E𝐸 (𝑡𝑘) 𝑒
(𝛾+𝑎+𝑏𝑒𝛾𝜏)(𝑡−𝑡𝑘+𝜏)+𝛾(𝑡𝑘−𝑡)

≤ E𝑉 (𝑡
−
𝑘−1) 𝑒
(𝛾+𝑎+𝑏𝑒𝛾𝜏)(𝑡−𝑡𝑘−1+𝜏)+𝛾(𝑡𝑘−𝑡)+2 ln |1+𝜖𝑘−1|

≤ ⋅ ⋅ ⋅ ≤ E𝐸 (0) 𝑒
(𝛾+𝑎+𝑏𝑒𝛾𝜏)(𝑡+𝑘𝜏)−𝛾𝑡+∑

𝑘−1

V=1 2 ln |1+𝜖V|.

(27)

Letting |1 + 𝜖| = maxV∈𝑍+ |1 + 𝜖V|, we have

E𝐸 (𝑡) ≤ E𝐸 (0) 𝑒
(𝛾+𝑎+𝑏𝑒𝛾𝜏)(𝑡+𝑘𝜏)−𝛾𝑡+2(𝑘−1) ln |1+𝜖|

. (28)

Using condition (31) of Theorem 10, there exist positive
numbers 𝐾 and 𝜅 such that E‖𝑒𝑖(𝑡)‖ ≤ 𝐾𝑒

−𝜅(𝑡−𝑡0). The proof
of Theorem 10 is completed.

When considering the systemwithout delay, that is, 𝜏 = 0,
we can derive the following controlled response network and
the error system:

𝑑𝑦𝑖 (𝑡) = {𝑀(𝑧 (𝑡)) 𝑦𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑦𝑘 (𝑡) + 𝑢𝑖 (𝑡)} 𝑑𝑡

+ 𝜎𝑖 (𝑦 (𝑡)) 𝑑𝑤𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(29)

𝑑𝑒𝑖 (𝑡) = {𝑀(𝑧 (𝑡)) 𝑒𝑖 (𝑡) + 𝜀1

𝑁

∑

𝑘=1

𝑎𝑖𝑘Γ𝑒𝑘 (𝑡)

+ 𝜀2

𝑁

∑

𝑘=1

𝑏𝑖𝑘Γ𝑒𝑘 (𝑡 − 𝜏) }𝑑𝑡

+ 𝜎𝑖 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏)) 𝑑𝑤𝑖 (𝑡) ,

𝑡 ̸= 𝑡𝑘, 𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑁,

Δ𝑒𝑖 (𝑡𝑘) = 𝜖𝑖𝑘𝑒𝑖 (𝑡
−
𝑘 ) , 𝑡 = 𝑡𝑘, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁.

(30)

Then, without loss of generality, one has the following
corollary.
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Corollary 11. Supposing that Assumptions 6 and 8 hold, 𝐴 ∈

𝐴1,𝐵 ∈ 𝐴1, and Γ > 0.The complex projective synchronization
in the drive-response networks (1) and (29) with the impulsive
control (31) can be achieved if the following condition is
satisfied:

(𝛾 + 𝑎) (𝜏 + 𝑇) + 2 ln 󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0, (31)

where 𝛾 > 0, 𝑎 = 𝜆max(𝐿𝐼𝑁𝑚 + 𝜀1𝐴
𝑠
⊗ Γ + Υ𝑖1 ⊗ 𝐼𝑁).

4. Numerical Simulations

In this section, we conduct some numerical simulations to
illustrate the effectiveness of the theorems of the previous
section.

Consider a driver-response network coupled with the
following complex Lorenz systems:

𝑥̇ = 𝑀 (𝑧) 𝑥,

𝑧̇ = −𝑏𝑧 +
1

2
(𝑥1𝑥2 + 𝑥1𝑥2) ,

(32)

where

𝑀(𝑧) = (
−𝜎 𝜎

𝑟 − 𝑧 −𝑎
) (33)

which exhibit chaotic behavior when 𝜎 = 2, 𝑏 = 0.8,
𝑟 = 60 + 0.02𝑗, and 𝑎 = 1 − 0.06𝑗. And the noise
strength is 𝜎𝑖(𝑦(𝑡), 𝑦(𝑡 − 𝜏)) = |0.001∑

𝑁
𝑘=1 𝑎𝑖𝑘(𝑦𝑘(𝑡) − 𝑦𝑖(𝑡)) +

0.001∑
𝑁
𝑘=1 𝑏𝑖𝑘(𝑦𝑘(𝑡 − 𝜏) − 𝑦𝑖(𝑡 − 𝜏))|.

Consider complex projective synchronization in a drive-
response network coupled with 1 + 9 identical complex
Lorenz systems via impulsive pinning control, where the
outer coupling matrices 𝐴 and 𝐵 are in Figures 1(a) and 1(b),
respectively.

Choosing 𝛼 = 1 + 0.1𝑗, Γ = diag(1, 1), 𝑇 = 0.1, and
𝜖𝑖𝑘 = 0.75. By simple calculation, then one can choose 𝜀 = 200

such that condition (18) holds. The initial values of complex
state variables 𝑦𝑖(𝑡) (𝑖 = 1, 2, . . . , 10) are chosen as 𝑦𝑖1(0) =

3 + 2𝑖 + 𝑗(4 + 𝑖) and 𝑦𝑖2(0) = (5 + 2𝑖) + 𝑗(6 + 2𝑖), 𝑥1(0) =

2.040 + 2.020𝑗, 𝑥2(0) = 5.062 + 4.067𝑗, 𝑧 = 5.1 is the
synchronization orbit. Figures 2 and 3 show the evolution of
synchronization trajectory and errors by impulsive pinning
control, respectively.

5. Conclusion

The synchronization in drive-response stochastic coupled
networks with complex-variable systems is considered in this
paper. Because drive-response systems may evolve in differ-
ent directions with a constant intersection angle in many real
situations but may not simultaneously evolve along the same
or inverse direction based on real number, real matrix, or
even real function in a complex plane, we focus on the pro-
jective synchronization of this situation by impulsive pinning
control through a theorem and a corollary. Eventually, several
numerical simulations verified the validity of those results.
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