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Abstract. In this paper, the projective synchronization of BAM neural networks with time-varying
delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered
neural networks, which can achieve projective synchronization. Then, based on the adaptive
controller, some novel and useful conditions are obtained to ensure the projective synchronization
of considered neural networks. To our knowledge, different from other forms of synchronization,
projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile
nature. Besides, we solve the projective synchronization problem between two different chaotic
BAM neural networks, while most of the existing works only concerned with the projective
synchronization chaotic systems with the same topologies. Compared with the controllers in
previous papers, the designed controllers in this paper do not require any activation functions during
the application process. Finally, an example is provided to show the effectiveness of the theoretical
results.

Keywords: BAM neural networks, projective synchronization, time-varying delay, adaptive
controller.

1 Introduction

Over the past several tens of years, more and more scholars devoted many efforts to
study the artificial neural networks (NNs) dynamical behaviors since they have appli-
cation value in many different fields, such as image processing, associative memories,
and classification of patterns [9, 16, 18, 22, 23, 27, 42]. NNs fall into several categories
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including Hopfield NNs, cellular NNs, BAM NNs (BAMNNs), and Cohen–Grossberg
NNs. Among them, Kosko firstly introduce the BAMNNs in 1988 [18]. BAMNNs are
constructed of neurons ordered in double layers. Generally speaking, the neurons in
one layer are completely incorporated to neurons in another layer. BAMNNs have been
applied successfully to pattern recognition due to its generalization of the single-layer auto
associative Hebbian correlator to a two-layer pattern-matched hetero associative circuit.

BAMNNs are deemed as one of the most important NNs. Compared with the general
NNs, BAMNNs are consisted of neurons distributed in two layers. The neurons distributed
in one layer are fully interconnected with the neurons distributed in the other layer,
while there is no interconnection between the neurons distributed in the same layer. In
implementation of NNs, time delays appeared because of the finite switching speed of
amplifiers and neurons, which leads to network instability or oscillatory behavior. For
these reasons, more and more researches pay more attention to the stability for NNs with
time delays [3–6, 15, 38, 41].

Synchronization is originally introduced by Pecora and Carrol [25] in which two iden-
tical systems can be synchronized with different initial values. Recently, many researches
studied the synchronization of NNs because of their applications in the rain activity,
engineering areas, nonlinear system optimization, and secure communications [34]. In the
meantime, scholars proposed many types of synchronization of NNs controllers including
the sliding mode controller, feedback controller, impulsive controller, adaptive controller,
and active controller [26, 28, 35, 43]. Compared with other controller schemes, adaptive
controller has more effectiveness, fast response, and good transient performance. Because
of these advantages, many scholars considered the stabilization and synchronization of
NNs [7, 12, 19, 24, 33].

Synchronization can be divided into few types including projective synchronization
(PS), lag synchronization, phase synchronization, impulsive synchronization, and gener-
alized synchronization [1, 8, 10, 13, 17, 20, 21, 30, 36, 37]. Lag synchronization indicates
that the two systems exist a coincidence of shifted-in-time states like u(t) → v(t − σ),
t → ∞ (where σ > 0 is propagation delay). Generalized synchronization means that the
drive and response systems have some functional relation like u(t) → φ(v(t)) (where
t→∞). Complete synchronization means the state variables were equal, while evolving
in time like u(t) → v(t) (where t → ∞). Impulsive synchronization means that the
system behaviors abrupt changes at certain moments. PS means that the two systems
can be synchronized by a scaling factor Pi like u(t)→ Piv(t) (where t→∞). Different
from other forms of synchronization, PS is more suitable to clearly represent the nonlinear
systems fragile nature, and there is a typical advantage in PS due to unpredictability of
proportional constant will additionally enhance the communication security [1]. There-
fore, PS of chaotic nonlinear systems received hot research attention [1, 8, 10, 36, 37].

In [8], the writers introduced the analysis for PS of fractional-order memristor-based
NNs based on the fractional-order differential inequality and Caputo’s fractional deriva-
tion. In [10], based on the matrix measure and Halanay inequality, the authors achieved
the weak PS of coupled NNs. In [36], the authors studied the PS of fractional-order
NNs via adaptive control. In [37], by introducing the sliding mode control, the authors
studied the PS os NNs. In [1], authors derived sufficient conditions achieving the GDPS
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of BAMNNs by applying Lyapunov functional approach and differential inclusion theory.
However, there are potential space to discuss the PS of BAMNNs with time-varying delay
via adaptive controller.

Based on the above discussion, we study the PS of BAMNNs with time-delays. This
paper has the following contributions. First, the definition of PS for BAMNNs is intro-
duced. What is more, based on the adaptive controller and Lyapunov theory [11, 39, 40],
some novel and useful conditions are given to ensure the PS of considered NNs. In par-
ticular, the synchronization between drive-response systems develops into the complete
synchronization as Pi = 1. The synchronization between drive-response systems devel-
ops into the anti-synchronization as Pi = −1. The synchronization problem develops into
the chaos problem as Pi = 0. Finally, an example is given to prove the adaptability of
the theoretical results. Complete synchronization and anti-synchronization are the special
case of PS.

The structure of this paper is as follows. Definition, assumptions, lemma, and the sys-
tem description are given in Section 2. By designing a novel type of adaptive controller,
we derive some sufficient criteria of PS in Section 3. In Section 4, an example is given
to prove the adaptability of results. Lastly, the conclusion about this paper is given in
Section 5.

2 Model description and preliminaries

In this paper, we consider the following BAMNNs system:

ẋi(t) = −cixi(t) +
n∑
j=1

ajifj
(
yj(t)

)
+

n∑
j=1

bjifj
(
yj
(
t− τ(t)

))
+ Ii,

ẏj(t) = −djyj(t) +
m∑
i=1

pijgi
(
xi(t)

)
+

m∑
i=1

hijgi
(
xi
(
t− σ(t)

))
+ Jj ,

(1)

where xi(t) and yj(t) indicate the state variable of the neurons at time t, respectively;
fj(·) and gi(·) are activation functions; τ(·) and σ(·) denote the time-varying delays,
which satisfy 0 6 τ(·) 6 τ and 0 6 σ(·) 6 σ; ci, dj denote the self connection of the
ith, the jth neurons; aji, bji, pij , and hij are connection weights; i ∈ I = {1, 2, . . . ,m}
and j ∈ J = {1, 2, . . . , n}; m > 2 and n > 2 are the number of units in NNs; Ii and Jj
are the input of the ith and jth neurons.

Assumption 1. τ(t) and σ(t) are differential functions with 0 6 τ̇(t) 6 ε < 1, 0 6
σ̇(t) 6 µ < 1.

Remark 1. From Assumption 1 we obtained the following inequality:

1 6
1− τ̇(t)
1− ε

, 1 6
1− σ̇(t)
1− µ

.
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Assumption 2. Solutions xi(t, x0i ), yj(t, y
0
j ), i ∈ I, j ∈ J , t > 0, of system (1) are

bounded with x0i , y
0
j ∈ R being the initial values. That is, there exist positive constants

Mf
i and Mg

j such that ∣∣xi(t, x0i )∣∣ 6Mf
i ,

∣∣yi(t, y0j )∣∣ 6Mg
j .

Assumption 3. For all j ∈ J , u ∈ R, there exist positive constants Lfj and Lgj such that∣∣ḟj(u)∣∣ 6 Lfj ,
∣∣ġj(u)∣∣ 6 Lgj .

Remark 2. If the activation functions satisfy Assumption 3 [2], then from Lagrange
mean value theorem, it is not difficult to check that fj(u) and gj(u) satisfy the globally
Lipschitz condition. That is,∣∣fj(u1)− fj(u2)∣∣ 6 Nf

j |u1 − u2|,∣∣gj(u1)− gj(u2)∣∣ 6 Ng
j |u1 − u2|,

where u1, u2 ∈ R, Lfj = Nf
j > 0, Lgj = Ng

j > 0.

Consider system (1) as the drive system, then the response system is written by

u̇i(t) = −ciui(t) +
n∑
j=1

ajifj
(
vj(t)

)
+

n∑
j=1

bjifj
(
vj
(
t− τ(t)

))
+ Ii + qi(t),

v̇j(t) = −djvj(t) +
m∑
i=1

pijgi
(
ui(t)

)
+

m∑
i=1

hijgi
(
ui
(
t− σ(t)

))
+ Jj + rj(t),

(2)

where qi(t) and rj(t) are the controllers to be designed later.
Let ei(t) = ui(t) − Pixi(t) and zj(t) = vj(t) − P̃jyj(t), then the error system can

be represented as

ėi(t) = −ciei(t) +
n∑
j=1

ajiϕj
(
zj(t)

)
+

n∑
j=1

bjiϕj
(
zj(t− τ(t)

))
+ (1− Pi)Ii + qi(t),

żj(t) = −djzj(t) +
m∑
i=1

pijψi
(
ei(t)

)
+

m∑
i=1

hijψi
(
ei
(
t− σ(t)

))
+ (1− P̃j)Jj + rj(t),

where ϕj(zj(·)) = fj(vj(·))− P̃jfj(yj(·)), ψi(ei(·)) = gi(ui(·))− Pigi(xi(·)), Pi, and
P̃j are scaling constants.
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Definition 1. (See [31].) The drive-response system (1) and (2) are PS if there exist
bounded continuously differentiable scaling constants Pi and P̃j satisfying

lim
t→∞

∥∥ei(t)∥∥ = lim
t→∞

∣∣ui(t)− Pixi(t)∣∣ = 0,

lim
t→∞

∥∥zj(t)∥∥ = lim
t→∞

∣∣vj(t)− P̃jyj(t)∣∣ = 0,

where ‖·‖ stands for the Euclidean vector norm.

Lemma 1. (See [29].) If function F (u) : [0,∞) → R is uniformly continuous and
limu→∞

∫ u
0
F (v) dv exists and is bounded, then F (u)→ 0 as u→ +∞.

3 Main results

In this section, we will get some effective conditions to achieve the PS between the drive-
response systems. Now introduce the controllers qi(t), rj(t) as follows:

qi(t) = −αi(t) sign
(
ei(t)

)
− βi(t)ei(t),

rj(t) = −γj(t) sign
(
zj(t)

)
− ξj(t)zj(t),

(3)

where

α̇i(t) = ki
∣∣ei(t)∣∣, γ̇j(t) = k̃j

∣∣zj(t)∣∣,
β̇i(t) = die

2
i (t), ξ̇j(t) = d̃jz

2
j (t),

ki, k̃j , di, and d̃j are arbitrary positive constants, which to be given later.
According to controller (3), we can derive the following theorem.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. The drive-response systems (1)
and (2) are PS if the response system (2) is controlled under the adaptive controller (3).

Proof. First, giving the definitions of ψi(ei(t)) and ϕj(zj(t)), one has

ϕj
(
zj(t)

)
= fj

(
vj(t)

)
− fj

(
P̃jyj(t)

)
+ fj

(
P̃jyj(t)

)
− P̃jfj

(
yj(t)

)
,

ϕj
(
zj
(
t− τ(t)

))
= fj

(
vj
(
t− τ(t)

))
− fj

(
P̃jyj

(
t− τ(t)

))
+ fj

(
P̃jyj

(
t− τ(t)

))
− P̃jfj(yj(t− τ(t)

))
,

ψi
(
ei(t)

)
= gi

(
ui(t)

)
− gi

(
Pixi(t)

)
+ gi

(
Pixi(t)

)
− Pigi

(
xi(t)

)
,

ψi
(
ei
(
t− σ(t)

))
= gi

(
ui
(
t− σ(t)

))
− gi

(
Pixi

(
t− σ(t)

))
+ gi

(
Pixi

(
t− σ(t)

))
− Pigi

(
xi
(
t− σ(t)

))
.

Based on the Lagrange mean value theorem, one has

fj
(
P̃jyj(·)

)
− P̃jfj

(
yj(·)

)
= ḟj

(
η1j
)
P̃jyj(·)− P̃j ḟj

(
η2j
)
yj(·) + (1− P̃i)fj(0),

gi
(
Pixi(·)

)
− Pigi

(
xi(·)

)
= ġi

(
ξ1i
)
Pixi(·)− Piġi

(
ξ2i
)
xi(·) + (1− Pi)gi(0),

Nonlinear Anal. Model. Control, 26(1):41–56

https://doi.org/10.15388/namc.2021.26.21204


46 M. Sader

where

η1j ∈
(
min

{
0, P̃jyj(·)

}
, max

{
0, P̃jyj(·)

})
,

η2j ∈
(
min

{
0, yj(·)

}
, max

{
0, yj(·)

})
,

ξ1i ∈
(
min

{
0, Pixi(·)

}
, max

{
0, Pixi(·)

})
,

ξ2i ∈
(
min

{
0, xi(·)

}
, max

{
0, xi(·)

})
.

Using Assumption 2, we get

ḟj
(
η1j
)
P̃jyj(·) 6 LfjM

f
j |P̃j |, P̃iḟj

(
η2j
)
yj(·) 6 LfjM

f
j |P̃i|,

ġi
(
ξ1i
)
Pixi(·) 6 LgiM

g
i |Pi|, Piġi

(
ξ2i
)
xi(·) 6 LgiM

g
i |Pi|,

which leads to ∣∣ϕij(zj(t))∣∣ 6 Lfj
∣∣zj(t)∣∣+ rfij ,∣∣ψij(ei(t))∣∣ 6 Lgi
∣∣ei(t)∣∣+ rgij ,∣∣ϕij(zj(t− τ(t)))∣∣ 6 Lfj
∣∣zj(t− τ(t))∣∣+ rfij ,∣∣ψij(ei(t− τ(t)))∣∣ 6 Lgi
∣∣ei(t− τ(t))∣∣+ rgij ,

where

rfij = LfjM
f
j

(
|P̃j |+ |P̃i|

)
+
∣∣(1− P̃i)∣∣∣∣fj(0)∣∣,

qgij = LgiM
f
i

(
|Pj |+ |Pi|

)
+
∣∣(1− Pi)∣∣∣∣gi(0)∣∣.

Now, introduce the following novel Lyapunov functional:

V (t) = V1(t) + V2(t).

Here

V1(t) =
1

2

m∑
i=1

e2i (t) +
1

2(1− µ)

m∑
i=1

n∑
j=1

|bij |Lfj

t∫
t−σ(t)

e2i (s) ds

+
1

2

m∑
i=1

1

di

(
βi(t)− βi

)2
+

1

2

m∑
i=1

1

ki

(
αi(t)− αi

)2
,

V2(t) =
1

2

n∑
j=1

z2j (t) +
1

2(1− ε)

m∑
i=1

n∑
j=1

|hij |Lgj

t∫
t−τ(t)

z2j (s) ds

+
1

2

n∑
j=1

1

d̃j

(
ξj(t)− ξj

)2
+

1

2

n∑
j=1

1

k̃j

(
γj(t)− γj

)2
,

where αi, βi, ξj , and γj are positive constants.
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Calculating the V (t) derivation, one has

V̇1(t) =

n∑
i=1

ei(t)ėi(t) +
1

ki

n∑
i=1

(
αi(t)− αi

)
α̇i(t) +

n∑
i=1

1

di

(
βi(t)− βi

)
β̇i(t)

+
1

2(1− µ)

n∑
i=1

n∑
j=1

|bij |Lfj e
2
i (t)−

1− σ̇(t)
2(1− µ)

n∑
i=1

n∑
j=1

|bij |Lfj e
2
i

(
t− σ(t)

)
,

6
m∑
i=1

{
−cie2i (t) +

n∑
j=1

|aji|
∣∣ei(t)∣∣(Lfj ∣∣zj(t)∣∣+ rfij

)
+

n∑
j=1

|bji|
∣∣ei(t)∣∣(Lfj ∣∣zj(t− τ(t))∣∣+ rfij

)
+
∣∣ei(t)∣∣∣∣(1− Pi)Ii∣∣− αi∣∣ei(t)∣∣

− βie2i (t) +
1

2(1− µ)

n∑
j=1

|bji|Lfj e
2
i (t)−

1

2

n∑
j=1

|bji|Lfj e
2
i

(
t− τ(t)

)}
,

6
m∑
i=1

[
−βi − ci +

1

2

n∑
j=1

|bji|Lfj +
1

2

n∑
j=1

|aji|Lfj +
1

2(1− µ)

n∑
j=1

|bji|Lfj

]
e2i (t)

+

n∑
i=1

[
−αi +

∣∣(1− Pi)Ii∣∣+ n∑
j=1

|aji|rfij +
n∑
j=1

|bji|rfij

]∣∣ei(t)∣∣
+

1

2

n∑
j=1

|aij |Lfi z
2
j (t) +

1

2

n∑
j=1

|bji
∣∣(Lfj ∣∣zj(t− τ(t))∣∣2,

V̇2(t) =

n∑
j=1

zj(t)żj(t) +
1

k̃j

n∑
j=1

(
γj(t)− γj

)
γ̇j(t) +

n∑
j=1

1

d̃j

(
ξj(t)− ξj

)
ξ̇j(t)

+
1

2(1− ε)

m∑
i=1

n∑
j=1

|hij |Lgjz
2
j (t)−

1− τ̇(t)
2(1− ε)

m∑
i=1

n∑
j=1

|hij |Lgjz
2
j

(
t− τ(t)

)
,

6
n∑
j=1

{
−djz2j (t) +

m∑
i=1

|pji|
∣∣zi(t)∣∣(Lgi ∣∣ei(t)∣∣+ qgij

)
+

m∑
i=1

|hij |
∣∣zi(t)∣∣(Lgi ∣∣ei(t− σ(t))∣∣+ qgij

)
+
∣∣zj(t)∣∣∣∣(1− P̃j)Jj∣∣− γj∣∣zj(t)∣∣

− ξjz2j (t) +
1

2(1− ε)

n∑
j=1

|hij |Lgjz
2
j (t)−

1

2

n∑
j=1

|hij |Lgjz
2
j

(
t− τ(t)

)}
,

6
n∑
j=1

[
−ξj − dj +

1

2

m∑
i=1

|hji|Lgj +
1

2

m∑
i=1

|pij |Lgj

+
1

2(1− ε)

m∑
i=1

|hij |Lgj

]
z2j (t)
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+

n∑
j=1

[
−γj +

∣∣(1− P̃j)Jj∣∣+ m∑
i=1

|pij |qgij +
m∑
i=1

|hij |qgij

]∣∣zj(t)∣∣
+

1

2

m∑
i=1

|pij |Lgje
2
i (t) +

1

2

m∑
i=1

|hij |Lgi
∣∣ei(t− σ(t))∣∣2,

where the inequality 2xy 6 x2 + y2 for all x, y ∈ R is used. Take the αi, βi, ξj , and γj
large enough such that

βi > −ci +
1

2

n∑
j=1

|bji|Lfj +
1

2

n∑
j=1

|aji|Lfj +
1

2(1− µ)

n∑
j=1

|bji|Lfj

+
1

2

m∑
i=1

|pij |Lgj + εi,

αi >
∣∣(1− pi)Ii∣∣+ n∑

j=1

|aji|rfij +
n∑
j=1

|bji|rfij ,

ξj > −dj +
1

2

m∑
i=1

|hji|Lgj +
1

2

m∑
i=1

|pij |Lgj +
1

2(1− ε)

m∑
i=1

|hij |Lgj

+
1

2

n∑
j=1

|aij |Lfi + νj ,

γj >
∣∣(1− P̃j)Jj∣∣+ m∑

i=1

|pij |qgij +
m∑
i=1

|hij |qgij ,

where εi > 0, νj > 0 are arbitrarily chosen constants.
Let ε = mini∈I{εi} > 0, ν = minj∈J {νj} > 0, then we get

dV (t)

dt
6 −

m∑
i=1

εie
2
i (t)−

n∑
j=1

νjz
2
j (t) 6 −εeT(t)e(t)− νzT(t)z(t).

Therefore,

eT(t)e(t) + zT(t)z(t)

6 2V (t) = 2V (0) + 2

t∫
0

V̇ (s) ds

6 2V (0)− 2ε

t∫
0

eT(s)e(s) ds− 2ν

t∫
0

zT(s)z(s) ds. (4)

Hence, V (t) 6 V (0) for all t ∈ [0,+∞), which drives that e(t), z(t), ė(t), and ż(t)
are bounded for all t ∈ [0,+∞). Consequently, the derivative of e(t)Te(t) and z(t)Tz(t)
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are bounded. By integrating of (4) we get

t∫
0

eT(s)e(s) ds+

t∫
0

zT(s)z(s) ds 6
V (0)

ε
+
V (0)

ν
,

therefore,

lim
t→∞

t∫
0

eT(s)e(s) ds+

t∫
0

zT(s)z(s) ds 6
V (0)

ε
+
V (0)

ν
< +∞.

Based on the Lemma 1, we get

lim
t→∞

e(t)Te(t) = 0, lim
t→∞

z(t)Tz(t) = 0.

Based on the Definition 1, the drive-response systems can achieve PS under the adap-
tive control law (3). The proof is thus completed.

Remark 3. In [8, 10, 36, 37], the authors considered the PS of NNs based on some types
of stability techniques, for example, Halanay inequality, Lyapunov–Krasovskii, and linear
inequality. Very recently, the GDPS (general decay projective synchronization) of NNs
was investigated in [1]. However, the Lagrange mean value theorem is introduced in this
work. From this point, the results in this paper are quite distinct from the previous works.

Corollary 1. Let τ = τ(t), σ = σ(t), then system (1) and (2) become as

ẋi(t) = −cixi(t) +
n∑
j=1

ajifj
(
yj(t)

)
+

n∑
j=1

bjifj
(
yj(t− τ)

)
+ Ii,

ẏj(t) = −djyj(t) +
m∑
i=1

pijgi
(
xi(t)

)
+

m∑
i=1

hijgi
(
xi(t− σ)

)
+ Jj

and

u̇i(t) = −ciui(t) +
n∑
j=1

ajifj
(
vj(t)

)
+

n∑
j=1

bjifj
(
vj(t− τ)

)
+ Ii + qi(t),

v̇j(t) = −djvj(t) +
m∑
i=1

pijgi
(
ui(t)

)
+

m∑
i=1

hijgi
(
ui(t− σ)

)
+ Jj + rj(t).

If Assumptions 1, 2, and 3 hold, the above drive-response NNs are PS under the above
adaptive controller.

Assumption 4. If gj(v) and hj(v) are bounded, then there exist positive constants Gj
and Wj such that ∣∣gj(v)∣∣ 6 Gj ,

∣∣hj(v)∣∣ 6Wj ∀v ∈ R, j ∈ J .
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Corollary 2. If Assumption 4 holds, then the NNs (1) and (2) are PS according to the
adaptive controller (3).

Remark 4. It is worth to point out that in most of the existing works [14, 31, 32], the
authors achieved the PS by introducing very specific but complex controllers, which
are sometimes too difficult to implement physically. For instance, in order to offset the
unmatched terms caused by scaling factor Pi when computing the derivative of error
system, most of the above-mentioned works constructed very complex controllers, which
were consisted by linear terms ei(t), zj(t) , ei(t− σ(t)), and zj(t− τ(t)) relevant to the
activation functions fj(ej(t)), gi(zi(t)), fj(ej(t−σ(t))), and gi(zi(t− τ(t))). However,
in some special cases, for example, when the solutions of drive a system are bounded,
we can optimize the controller by removing the terms relevant to the terms fj(ej(t)),
gi(zi(t)), fj(ej(t − σ(t))), and gi(zi(t − τ(t))). Thus, it is interesting to develop a
simple and easy implementing controller for realizing PS between derive-response chaotic
systems.

4 Numerical simulations

In this section, a numerical example is shown to describe the adaptability of the derived
results in the paper.

Example. When n = 2, consider the following BAMNNs system:

ẋi(t) = −cixi(t) +
2∑
j=1

ajifj
(
yj(t)

)
+

2∑
j=1

bjifj
(
yj
(
t− τ(t)

))
+ Ii,

ẏj(t) = −djyj(t) +
2∑
i=1

pijgi
(
xi(t)

)
+

2∑
i=1

hijgi
(
xi
(
t− σ(t)

))
+ Jj ,

(5)

where f1(s) = f2(s) = g1(s) = g2(s) = tanh(s), c1 = c2 = 1, d1 = d2 = 1.05,
a11 = 2, a12 = −0.1, a21 = −5, a22 = 3, b11 = −1.5, b12 = −0.1, b21 = −0.2,
b22 = −2.5, p11 = 2.08, p12 = −0.104, p21 = −5.2, p22 = 3.12, h11 = −1.56,
h12 = −0.104, h21 = −0.208, h22 = −2.6, σ(t) = et/(5 + et), τ(t) = et/(0.01 + et),
Ii = 0 = Jj = 0 (i, j = 1, 2).

The chaotic attractor of the drive system (5) with the initial values x1(s) = 0.5,
x2(s) = −0.1, y1(s) = 0.5, and y2(s) = −0.1 (s ∈ [−1, 0]) are shown in Fig. 1.

The response system is given as

u̇i(t) = −ciui(t) +
2∑
j=1

ajifj
(
vj(t)

)
+

2∑
j=1

bjifj
(
vj
(
t− τ(t)

))
+ Ii + qi(t),

v̇j(t) = −djvj(t) +
2∑
i=1

pijgi
(
ui(t)

)
+

2∑
i=1

hijgi
(
ui
(
t− σ(t)

))
+ Jj + rj(t),

(6)
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where ci, di, aji, bji, pij , hij , fj , gj , σ(t), τ(t), Ii, and Jj have the same value as in those
system (5). The controllers qi(t) and rj(t) are written as follows:

qi(t) = −αi(t) sign
(
ei(t)

)
− βi(t)ei(t),

rj(t) = −γj(t) sign
(
zj(t)

)
− ξj(t)zj(t),

where ei(t) = ui(t)− Pixi(t), zj(t) = vj(t)− P̃jyj(t).
It can be easily checked that Assumptions 1 and 3 hold with Lf1 = Lf2 = 1, Lg1 =

Lg2 = 1, ε = µ = 1. Moreover, from system (5) in Fig. 1 we can easy find that the solu-
tions of system (5) are bounded and Assumption 3 holds. Consequently, based on Theo-
rem 1, systems (5) and (6) are PS. When Pi = P̃j = 1, the estimation of synchronization
errors are given in Fig. 2, and the state trajectories of drive-response systems are given in
Fig. 3. In Fig. 4, the time evolution of the controllers gains βi, αi, γi, ξi is given. Figures 5
and 6 show the time estimations of synchronization curves and errors for p̃j = −1.
The time evolution of the controllers gains as Pi = P̃j = −1 are shown in Fig. 7.

Figure 1. The phase behavior of system (5).

Figure 2. Synchronization errors as Pi = 1, P̃j = 1.
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Figure 3. Synchronization curves as Pi = 1, P̃j = 1.

Figure 4. Controller gains βi, αi, γj , and ξj as Pi = 1, P̃j = 1.

Figure 5. Synchronization errors as Pi = −1, P̃j = −1.
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Figure 6. Synchronization errors as Pi = −1, P̃j = −1.

Figure 7. Controller gains βi, αi, γj , and ξj for Pi = −1, P̃j = −1.

5 Conclusion

In this paper, the PS problem of BAMNNs with time-varying delay is studied by adapting
a novel adaptive controller. Some sufficient conditions are given by using inequality
technique and Lyapunov theory. Finally, an example is given to prove the effectiveness
of the obtained results. The results given in this paper can be seen as the extension and
improvement of some existing works on the PS of BAMNNs with or without time-varying
delays.
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