205 research outputs found

    LSTM-Attention-Embedding Model-Based Day-Ahead Prediction of Photovoltaic Power Output Using Bayesian Optimization

    Get PDF
    Photovoltaic (PV) output is susceptible to meteorological factors, resulting in intermittency and randomness of power generation. Accurate prediction of PV power output can not only reduce the impact of PV power generation on the grid but also provide a reference for grid dispatching. Therefore, this paper proposes an LSTM-attention-embedding model based on Bayesian optimization to predict the day-ahead PV power output. The statistical features at multiple time scales, combined features, time features and wind speed categorical features are explored for PV related meteorological factors. A deep learning model is constructed based on an LSTM block and an embedding block with the connection of a merge layer. The LSTM block is used to memorize and attend the historical information, and the embedding block is used to encode the categorical features. Then, an output block is used to output the prediction results, and a residual connection is also included in the model to mitigate the gradient transfer. Bayesian optimization is used to select the optimal combined features. The effectiveness of the proposed model is verified on two actual PV power plants in one area of China. The comparative experimental results show that the performance of the proposed model has been significantly improved compared to LSTM neural networks, BPNN, SVR model and persistence model

    Research on operation optimization of building energy systems based on machine learning

    Get PDF
    北九州市立大学博士(工学)本研究では、建築エネルギーシステムの運用を最適化するために機械学習を応用し、建築エネルギーシステムの運用コストを削減し、再生可能エネルギーの自給率を向上させることを重点的に扱っています。これらの一連の研究成果は、この分野に新たな知見をもたらし、建築エネルギーシステムの経済的効率を向上させるのに役立っています。In this study, we focus on applying machine learning to optimize the operation of building energy systems, with a primary emphasis on reducing the operational costs of these systems and enhancing the self-sufficiency of renewable energy. This series of research outcomes has brought new insights to the field and contributes to improving the economic efficiency of building energy systems.doctoral thesi

    Smart models to improve agrometeorological estimations and predictions

    Get PDF
    La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los estándares de vida y la situación de emergencia climática (aumento de la temperatura, intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores limitantes en la producción de cultivos. Para garantizar una producción agrícola sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural. Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos pueden proporcionar estimaciones y predicciones precisas de variables clave como la precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar información valiosa a los técnicos, agricultores, gestores y responsables políticos de la planificación hídrica y agraria en zonas clave. Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos de precipitación a diferentes escalas utilizando redes neuronales. También se han desarrollado modelos de estimación de radiación solar utilizando exclusivamente parámetros térmicos y validados en zonas con características climáticas similares a lugar de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. Analógamente, se han desarrollado modelos de estimación y predicción de evapotranspiración de referencia a nivel local y regional utilizando también solamente datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional (AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo supervisado que mejore la toma de decisiones en otras áreas de interés.The world population, which is constantly growing, is estimated to reach 9.7 billion people in 2050. This increase, combined with the rise in living standards and the climate emergency situation (increase in temperature, intensification of the water cycle, etc.), presents us with the enormous challenge of managing increasingly scarce resources in a sustainable way. The agricultural sector must face important challenges such as improving natural resource management, reducing environmental degradation, and ensuring food and nutritional security. All of this is conditioned by water scarcity and aridity, limiting factors in crop production. To guarantee sustainable agricultural production under these conditions, it is necessary to based all the decision made on knowledge, innovation, and the digitization of agriculture to ensure the resilience of agroecosystems, especially in arid, semi-arid, and sub-humid dry environments where water deficit is structural. Therefore, this work focuses on improving the precision of current agrometeorological models by applying artificial intelligence techniques. These models can provide accurate estimates and predictions of key variables such as precipitation, solar radiation, and reference evapotranspiration. This way, it is possible to promote more sustainable agricultural strategies by reducing water and energy consumption, for example. In addition, the number of measurements required as input parameters for these models has been reduced, making them more accessible and applicable in rural areas and developing countries that cannot afford the high cost of installing, calibrating, and maintaining complete automatic weather stations. This approach can help provide valuable information to technicians, farmers, managers, and policy makers in key wáter and agricultural planning areas. This doctoral thesis has developed and validated new methodologies based on artificial intelligence that have been used to improve the precision of crucial variables in the agrometeorological field: precipitation, solar radiation, and reference evapotranspiration. Specifically, prediction systems and gap-filling models for precipitation at different scales have been modeled using neural networks. Models for estimating solar radiation using only thermal parameters have also been developed and validated in areas with similar climatic characteristics to the training location, without the need to be geographically in the same region or country. Similarly, models for estimating and predicting reference evapotranspiration at the local and regional level have been developed using only temperature data for the entire process: regionalization, training, and validation. Finally, an internationally open-source Python library (AgroML) has been created to facilitate the development and application of artificial intelligence models, not only focused on the agrometeorological sector but also on any supervised model that improves decision-making in other areas of interest

    Solar Power System Plaing & Design

    Get PDF
    Photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of solar energy into electricity are technologically robust, scalable, and geographically dispersed, and they possess enormous potential as sustainable energy sources. Systematic planning and design considering various factors and constraints are necessary for the successful deployment of PV and CSP systems. This book on solar power system planning and design includes 14 publications from esteemed research groups worldwide. The research and review papers in this Special Issue fall within the following broad categories: resource assessments, site evaluations, system design, performance assessments, and feasibility studies

    Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression

    Get PDF
    Renewable energy from wind and solar resources can contribute significantly to the decarbonisation of the conventionally fossil-driven electricity grid. However, their seamless integration with the grid poses significant challenges due to their intermittent generation patterns, which is intensified by the existing uncertainties and fluctuations from the demand side. A resolution is increasing energy storage and standby power generation which results in economic losses. Alternatively, enhancing the predictability of wind and solar energy as well as demand enables replacing such expensive hardware with advanced control and optimization systems. The present research contribution establishes consistent sets of data and develops data-driven models through machine-learning techniques. The aim is to quantify the uncertainties in the electricity grid and examine the predictability of their behaviour. The predictive methods that were selected included conventional artificial neural networks (ANN), support vector regression (SVR) and Gaussian process regression (GPR). For each method, a sensitivity analysis was conducted with the aim of tuning its parameters as optimally as possible. The next step was to train and validate each method with various datasets (wind, solar, demand). Finally, a predictability analysis was performed in order to ascertain how the models would respond when the prediction time horizon increases. All models were found capable of predicting wind and solar power, but only the neural networks were successful for the electricity demand. Considering the dynamics of the electricity grid, it was observed that the prediction process for renewable wind and solar power generation, and electricity demand was fast and accurate enough to effectively replace the alternative electricity storage and standby capacity

    Smart Metering System: Developing New Designs to Improve Privacy and Functionality

    Get PDF
    This PhD project aims to develop a novel smart metering system that plays a dual role: Fulfil basic functions (metering, billing, management of demand for energy in grids) and protect households from privacy intrusions whilst enabling them a degree of freedom. The first two chapters of the thesis will introduce the research background and a detailed literature review on state-of-the-art works for protecting smart meter data. Chapter 3 discusses theory foundations for smart meter data analytics, including machine learning, deep learning, and information theory foundations. The rest of the thesis is split into two parts, ‘Privacy’ and ‘Functionality’, respectively. In the ‘Privacy’ part, the overall smart metering system, as well as privacy configurations, are presented. A threat/adversary model is developed at first. Then a multi-channel smart metering system is designed to reduce the privacy risks of the adversary. Each channel of the system is responsible for one functionality by transmitting different granular smart meter data. In addition, the privacy boundary of the smart meter data in the proposed system is also discovered by introducing a data mining algorithm. By employing the algorithm, a three-level privacy boundary is concluded. Furthermore, a differentially private federated learning-based value-added service platform is designed to provide flexible privacy guarantees to consumers and balance the trade-off between privacy loss and service accuracy. In the ‘Functionality’ part, three feeder-level functionalities: load forecasting, solar energy separation, and energy disaggregation are evaluated. These functionalities will increase thepredictability, visibility, and controllability of the distributed network without utilizing household smart meter data. Finally, the thesis will conclude and summarize the overall system and highlight the contributions and novelties of this project
    corecore