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Abstract 

This PhD project aims to develop a novel smart metering system that plays a dual role: Fulfil 

basic functions (metering, billing, management of demand for energy in grids) and protect 

households from privacy intrusions whilst enabling them a degree of freedom. The first two 

chapters of the thesis will introduce the research background and a detailed literature review 

on state-of-the-art works for protecting smart meter data. Chapter 3 discusses theory 

foundations for smart meter data analytics, including machine learning, deep learning, and 

information theory foundations. The rest of the thesis is split into two parts, ‘Privacy’ and 

‘Functionality’, respectively. In the ‘Privacy’ part, the overall smart metering system, as well 

as privacy configurations, are presented. A threat/adversary model is developed at first. Then 

a multi-channel smart metering system is designed to reduce the privacy risks of the adversary. 

Each channel of the system is responsible for one functionality by transmitting different 

granular smart meter data. In addition, the privacy boundary of the smart meter data in the 

proposed system is also discovered by introducing a data mining algorithm. By employing the 

algorithm, a three-level privacy boundary is concluded. Furthermore, a differentially private 

federated learning-based value-added service platform is designed to provide flexible privacy 

guarantees to consumers and balance the trade-off between privacy loss and service accuracy. 

In the ‘Functionality’ part, three feeder-level functionalities: load forecasting, solar energy 

separation, and energy disaggregation are evaluated. These functionalities will increase the 

predictability, visibility, and controllability of the distributed network without utilizing 

household smart meter data. Finally, the thesis will conclude and summarize the overall system 

and highlight the contributions and novelties of this project.  
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Chapter 1 Introduction  

1.1 Introduction 

This chapter starts by introducing the research background and motivation of the 

thesis. Then research questions and objectives are determined. The rest of this chapter 

illustrates the methodology and contributions, and the publications list is presented at 

the end of this chapter.  

1.2 Research Background 

The smart grid is a worldwide modernization of electrical power systems in the 21st 

century. Two-way communication networks enable smart grids to collect real-time 

data from both the electricity supply (i.e., power stations) and demand (i.e., 

households) sides and further boost the power system’s reliability, availability, and 

efficiency.  

As an essential enabler and prerequisite of the smart grid, smart meters are being 

installed country- and worldwide at single houses to collect real-time data on energy 

consumption. As shown in Figure 1-1, a steady increase in the shipment volume of 

the smart meters is estimated from 2018 to 2024. The overall shipment of the smart 

meters is expected to surpass 200 million in 2024, which will increase by 35% since 

2018 [1]. In North American countries such as the United States and Canada, the smart 

meter market is well-developed, and around 30-40% of consumers have already 

installed the smart meters. In Europe, driven by large roll-out plans, the smart meter 

penetration rate is also growing and approaching maturity. As for the Asia-Pacific 
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region, the emerging markets led by China and India make Asia-Pacific the largest 

region in global shipment volume. In 2018, the number occupied 60% of the overall 

volume. 

 
Figure 1-1. Global smart meter shipment volume by region (Adopted from [1]). 

However, with the large-scale roll-out plans worldwide, worries about privacy 

intrusions caused by smart meters are rising as well. Researchers point out that private 

household information can be revealed by smart meters [2-4]. Through continuously 

monitoring the real-time smart meter data, the adversaries could have an inside view 

of household activities and behaviours (e.g., how many residents live in the house, 

when people leave home, what the residents are doing at particular durations, such as 

sleeping, bathing, watching TV, washing clothes, etc.). Although data collection may 

be justified on ethical grounds of utilitarianism (i.e., ensuring the greater, collective 

good of energy efficiencies in smart grids), the intrusion into privacy could also have 

negative ethical and social consequences, including the conditional shaping of 

freedom and behaviour of individuals and households [5, 6].  

At a legal level, the General Data Protection Regulation (GDPR) has been in force 

since 25th May 2018 [7]. Covering all European countries, the purpose of GDPR is to 

protect all EU citizens from privacy and data violation, providing more power to 

individuals to control their personal information. With these operational and legal 

operational possibilities, it is also important to consider ‘soft’ ethical strategies that 

use them to contribute to protecting household privacy, potentially enabling 
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households to be more in control of their digital data [8]. One such strategy is 

considering different stakeholders involved or affected by digital data gathering [9]. 

Given the scale of smart meter roll-out processes in countries and worldwide, the 

above risks and operational strategies could be dismissed or subordinated to utilitarian 

market logic, with the responsibility for their implementation and subsequent privacy 

protection of consumers (i.e., households) delegated to third parties, many of whom 

might not have privacy protection as a priority in their agendas. Moreover, and as 

stated before, there is a lack of clarity about such responsibilities. Furthermore, whilst 

smart grids could be conceived as necessary technologies to regulate the conduct of 

individuals in the societies [10], what could be more concerning is that privacy 

intrusion could also generate negative social consequences [11]. Consumers can be 

left powerless or socially isolated to devise strategies to counteract intrusion into their 

privacy, becoming mere means rather than ends [5]. 

1.3 Potential beneficiaries of the research  

The potential beneficiaries of this research involve energy consumers, energy utilities/ 

third-party service providers, industry/smart meter manufacturers, and 

regulators/policy makers.  

1) Energy consumer: The energy consumer is the biggest beneficiary of the 

proposed privacy-preserving smart metering system. Firstly, referring to the 

guidance included in this research, energy consumers can be better aware of the 

potential privacy risks the smart meter brings; secondly, the proposed user-centric 

smart metering system can provide the consumers with enough personal autonomy 

and freedom to control their energy data.  

2) Energy utilities/ third-party service providers: Energy utilities include Energy 

Supplier (ES) and Distribution Network Operator (DNO). ES is ultimately 

responsible for rolling out the smart meters across the U.K. at their own expense. 

Whilst the existing technical solutions require extra energy storage or a high 

computational server, the low-cost technical solution proposed in this research 
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helps ES save the privacy budget and actively engages the ES to participate in the 

smart meter data protection plan. DNO is the operator and management of the 

distribution network; the energy data from the domestic smart meters help the 

DNO increase the visibility of the Low-Voltage (LV) distribution network with 

the high penetration of distributed renewable energy generations. However, the 

access to smart meter data from the DNO is strictly limited by the data access 

framework published by the Department for Business, Energy & Industrial 

Strategy (BEIS) in the U.K. [12], which is the main barrier to the development of 

grid management and operation applications at the distribution level. The DNO 

can benefit from this research by increasing the distribution network's visibility, 

predictability, and controllability with the aggregated smart meter data, while the 

individual smart meter is kept confidential. Third-party service providers represent 

the commercial companies that would like to access the consumers’ energy data 

to provide commercial services, e.g., energy data analytics and load forecasting. 

Typically the value-added services require consumers to submit their energy data 

to a server, which conflicts with BEIS’s data access framework [12]. The third-

party service providers can benefit from this research by designing an edge-cloud 

computing service platform to implement cloud analytics without collecting 

individuals’ data.  

3) Industry/smart meter manufacturers: The industry/smart meter manufacturers 

can develop new designs of the smart meter device to better fit the computation, 

communication, and storage capacity suggested in this thesis.  

4) Regulators/policy makers: Regulators/policy makers may use this research to 

design data regulations and laws aligned with the smart grid need.  

1.4 Problem Statement  

Can we develop a smart metering system design that fulfils reasonable and ethical 

user and system functionality whilst protecting user privacy and ensuring consent? 
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1) How does smart meter data reveal consumers’ private information, and to 

whom? 

2) Who are the adversaries/attackers, and with what purpose? Moreover, how the 

proposed system reduces privacy threats? 

3) How can the proposed smart metering improvements influence standards, 

governments and companies for the roll-out, management and use of smart 

meters? 

4) How are the critical functions realized in the proposed smart metering system? 

1.5 Objectives  

Based on the knowledge gaps discussed in Subsection 1.3.1 and the problems stated 

above, the objectives of the thesis are listed as follows: 

1) Understand the available smart meter technologies, how they work, and the 

different configurations, options and limitations for setting them up and managing 

them by both companies and households. 

2) Develop the adversary/attacker model, which tries to infer personal information 

from the smart meter/ advanced metering infrastructure. 

3) Develop a privacy-preserving smart metering system with various 

configuration/design options, which play a dual role: Fulfil basic functions 

(metering, billing, management of demand for energy in grids) and protect 

households from privacy intrusions whilst enabling them a degree of freedom. 

4) Investigate architectural system options for smart meter data analysis and mining, 

satisfying load forecasting, balancing consumer behaviour and privacy visibility 

and allowing for home solar generation. 

5) Investigate the influence of the proposed scheme on the industrial specifications.  
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1.6 Overview of Methodology  

The methodology overview is summarized in the block diagram shown in Figure 1-2. 

This thesis starts with defining the privacy threat/adversary model by identifying their 

purpose, motivation, and the route to obtain sensitive information. Then based on the 

defined adversary model, GDPR, and compulsory functionalities required by the 

stakeholders, a privacy-functionality trade-off strategy is developed. Following the 

strategy, a multi-channel smart metering system is proposed; the system contains three 

communication channels: a high-frequency aggregation channel, a low-frequency 

Time-of-Use (TOU) billing channel, and a third-party value-added services channel. 

Then the proposed system's privacy boundary (aggregation size and interval 

resolution) is detected by employing a data mining algorithm used by the adversary.  

Then the architectural system options for smart meter data analysis and mining are 

investigated thoroughly. In the turn of the energy suppliers, the consumer's energy 

consumption and bill data will be stored locally and only shares with the energy 

supplier at the end of the reporting period. As the honest-but-curious adversary, the 

third-party service provider is strictly limited to accessing personal information by 

introducing a federated learning cloud platform; only the model parameters rather than 

sensitive information are shared with the third parties. As for DNO, the readings from 

the neighbouring smart meters are aggregated by the physical/informatic aggregator 

to remove the individual identity before transmitting it with the DNO. Then the DNO 

utilizes the aggregated data to increase the predictability (load forecasting), the 

visibility (distribution-level energy disaggregation), and reduce the uncertainty 

(renewable energy detection at grid supply point) of the distribution network.  

 

  



Overview of Methodology 7

 

 

 

  

F
ig

ur
e 

1-
2.

 B
lo

ck
 d

ia
gr

am
 o

f 
th

e 
m

et
ho

do
lo

gy
 o

f 
th

e 
th

es
is

. 

 



8 Introduction

 

1.7 Thesis Structure 

The rest of the thesis is divided into four parts: Part I Background, Part II Privacy, 

Part III Functionality, and Part IV Conclusion, respectively.  

 Part I – Background includes Chapter 1, 2 and 3, which introduces the research 

background of the PhD thesis.  

— Chapter 1 – Introduction introduces the research background, motivation, 

research questions, objective, and methodology of the thesis. 

— Chapter 2 – Literature Review presents a comprehensive literature review 

is presented. The review includes the existing smart meter technologies, the 

privacy and function configurations of the current smart metering system, 

and state-of-the-art research to protect smart meter data. Furthermore, 

relevant data regulation policies and data ethics knowledge is reviewed.  

— Chapter 3 – Smart Meter Data Analytics Methodology introduces the 

theoretical foundations for smart meter data analytics, including machine 

learning, deep learning, and information theory foundations. 

 Part II – Privacy contains Chapter 4 and 5, which illustrate the privacy-preserving 

smart metering system configurations. 

— Chapter 4 – A Privacy-Preserving Multi-Channel Smart Metering System 

proposes a privacy-preserving smart metering system that combines existing 

data aggregation and data down-sampling mechanisms. Moreover, the 

privacy boundary of the smart meter data is detected via an artificial 

intelligence adversary.  

— Chapter 5 – Differentially Private Federated Learning-based Value-Added 

Service Platform develops a value-added service platform based on 

differentially private federated learning to better balance the services' quality 

and ensure users’ privacy.  

 Part III – Functionality demonstrates the essential functionalities for grid 

operation and management for LV distribution network purposes that can be 

realized with the aggregated smart meter data without privacy concerns.  
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— Chapter 6  –  Day-Ahead Distribution-Level Spectral Load Forecasting 

with Aggregated Smart Meter Data proposes a hybrid component 

decomposition and deep neural network day-ahead load forecasting model to 

fully use both the time domain and frequency domain features of the load 

demand.  

— Chapter 7 – A Feeder-Level Solar Energy Decoupling Scheme with 

Aggregated Smart Meter Data introduces an online solar energy decoupling 

scheme to separate the solar energy generated by the roof-top PV systems 

from the netload measured at the feeder's head.  

— Chapter 8 – Multi-Quantile Recurrent Neural Network for Distribution-

Level Probabilistic Energy Disaggregation with Aggregated Smart Meter 

Data presents a feeder level probabilistic energy disaggregation model based 

on a multi-quantile recurrent neural network. The model's target is to 

disaggregate the demand load into Thermostatically Controlled Loads 

(TCLs), Non-Thermostatically Controlled Loads (non-TCLs), and non-

controllable loads.  

 Part IV – Conclusion contains Chapter 9; this part summarizes the key results 

and concludes the research. Future research opportunities and potential technology 

development directions are also discussed. 

1.8 List of Publications  

The following overview lists the published/submitted journal/conference articles 

during the postgraduate study: 

1.8.1 Journal paper 

 Published journal papers: 

[1] Zhang, X.Y., Kuenzel, S., & Watkins, C. (2022). Multi-Quantile Recurrent Neural Network 

for Feeder-Level Probabilistic Energy Disaggregation Considering Roof-Top Solar Energy. 

Engineering Applications of Artificial Intelligence.  https://doi.org/ 10.1016/j.engappai. 

2022.104707  
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[2] Zhang, X.Y., Kuenzel, S., Colombo, N., & Watkins, C. (2022, Early Access). A Hybrid Short-

Term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional 

Long Short-Term Memory Neural Networks. Journal of Modern Power Systems and Clean 

Energy.  

[3] Zhang, X.Y., Watkins, C. , Yin L. and  Kuenzel, S. (2022, Accepted with Minor Correction), 

A Data-Driven Online Solar Energy Disaggregation System from the Grid Supply Point. 

Complex & Intelligent System. 

[4] Zhang, X.Y., Watkins, C., Cheong Took, C., & Kuenzel, S. (2021). Privacy Boundary 

Determination of Smart Meter Data Using an Artificial Intelligence Adversary. International 

Transactions on Electrical Energy Systems. https://doi.org/10.1002/2050-7038.13020   

[5] Zhang, X.Y., Kuenzel, S., Córdoba-Pachón, J-R., & Watkins, C. (2020). Privacy-

Functionality Trade-off: A Privacy-Preserving Multi-Channel Smart Metering System. 

Energies, 13(12), 1-30. [3221]. https://doi.org/10.3390/en13123221   

 Submitted journal papers: 

[6] Zhang, X.Y., Córdoba-Pachón, J.R., Watkins, C, Kuenzel, S. (Second Round Revision) 

Differentially Private Federated Learning for Privacy-Preserving Value-Added Services in 

Advanced Metering Infrastructure. Submitted to IEEE Transactions on Computational 

Social Systems in December 2021. 

[7] Gao, H., Kuenzel, S., Zhang, X.Y. (First Round Revision) A Hybrid ConvLSTM -based 

Anomaly Detection Method for Combating Energy Theft. Submitted to IEEE Transactions 

on Instrumentation and Measurement in April 2022. 

[8] Guo, P., Yuan, Z., Zhang, X.Y., Liu, G., Zhao, Y., Kuenzel, S. (Under Review) Key 

Techniques of Low-Voltage DC Building Distribution and Utilization System and 

Implementation. Submitted to IEEE Transactions on Power Delivery  in May 2022. 

1.8.2 Conference papers 

[9] Zhang, X.Y., Kuenzel, S., & Watkins, C. (2020, September). Feeder-Level Deep Learning-

based Photovoltaic Penetration Estimation Scheme. In 2020 12th IEEE PES Asia-Pacific 

Power and Energy Engineering Conference (APPEEC) (pp. 1-5). IEEE. (Best Paper Award 

First-Grade Prize of the Conference) 

[10] Zhang, X.Y., & Kuenzel, S. (2020, October). Differential Privacy for Deep Learning-based 

Online Energy Disaggregation System. In 2020 IEEE PES Innovative Smart Grid 

Technologies Europe (ISGT-Europe) (pp. 904-908). IEEE. (Participated as the session chair 

of "Sensors, advanced metering, data acquisition" regular session) 
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1.8.3 E-Handbook  

[11] Gao, H., Kuenzel, S., & Zhang, X.Y. (2022). Deep learning for countering energy theft. 

Computer Weekly. https://www.computerweekly.com/ehandbook/Royal-Holloway-Deep-

learning-for-countering-energy-theft 
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Chapter 2 Literature Review 

This chapter presents a wide-ranging literature review of related works in the existing 

smart metering system, state-of-the-art privacy-preserving technologies, and 

corresponding applications of the smart meter data. The chapter begins by describing 

the smart grid technique and advanced metering infrastructure. Then the privacy 

intrusion issues regarding the smart meter data are investigated. Advanced privacy-

preserving techniques that have been applied to protect consumers’ privacy are then 

introduced. Next, the data regulation/laws and data ethics which provide a guideline 

for smart metering system designing, are presented. Finally, advanced applications of 

smart meter data and the privacy issues related to these applications are discussed.  

2.1 Smart Grid and Advanced Metering Infrastructure   

2.1.1 Smart grid 

Smart grids are physical networks that use technologies and equipment to interconnect 

different components through two-way networks that could achieve real-time 

optimizations to deliver electricity more reliably and efficiently. Smart grids contain 

not only electricity interfaces but also communication interfaces. Other stakeholders 

(utility companies) or domains (electricity markets) can be included for analysis and 

management. Future smart grids can enable better operation and control, better 

network planning and maintenance, Advanced Smart Metering Infrastructure (AMI), 

and overall energy efficiency for countries [13]. 

2.1.2 Smart metering equipment technical specifications  

The smart meter is the most important and fundamental device in AMI; there are two 

types of smart meters in Great Britain: the first-generation smart meter, known as 
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Smart Meter Equipment Technical Specifications (SMETS) 1, and SMETS 2, which 

were rolled out since 2018. By the end of 2020, 23.6 million smart meters will have 

been installed in the UK, while 15.7 million are SMETS1 and 6.7 million are SMETS2 

[14]. SMETS 2 has a more advanced communication network which enables the 

consumers to switch energy suppliers without making the smart meter become a 

‘dumb’ meter; a ‘dumb’ meter represents the new energy supplier that cannot operate 

it, and the meter operates like a traditional electricity meter. The sampling frequency 

of SMETS 2 must be transmitted across the Home Area Network (HAN)  at a 

frequency better than 10s, and it is supposed to achieve a frequency better than 5s in 

the future [15]. SMETS 2 include monitoring power outages, connecting/ 

disconnecting the electricity supply, and providing TOU tariffs [15]. In this subsection, 

the advantages of the smart meter are highlighted by comparing it with traditional 

electricity meters, and then the physical components of the new generation SMETS 2 

are introduced. 

2.1.2.1 Comparison among electromechanical electricity 

meters, automatic meter reading devices, and smart meter 

In the past decades, the consumers have witnessed the evolution of electricity meters 

from electromechanical electricity meters before the 1970s to Automatic Meter 

Reading (AMR) devices between 1970 and 2000, then to smart meters nowadays. A 

comparison of these three generations' electricity meters is made in Table 2-1. The 

electromechanical electricity meter is the major electricity meter during the last 

century and can only measure the active energy consumption in kWh. The components 

of this purely mechanical drive device are the driving system, moving system, braking 

system, and registering system [16]. The principle of the electromechanical electricity 

meter is simple, as an aluminium disc rotates at speed proportional to the power disc 

speed, the active energy consumption is computed by counting the revolutions of the 

aluminium disc. Although the structure of the electromechanical electricity meter is 

simple and the cost of the device is cheap, there are several main drawbacks of this 

conventional meter: Firstly, the metal components inside the meter are affected by the 
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environment and temperature variations easily, susceptible to errors occur as a result. 

Secondly, the aluminium disc may rotate fast or slow during nonlinear loads such as 

energy storage systems [17]. Thirdly, this kind of meter requires manually readings, 

which increases the cost. Moreover, electromechanical electricity meters cannot detect 

energy theft in time, resulting in billions of pounds lost yearly [18].   

With the development of electronic techniques such as Microprocessor Units (MPUs) 

and fast Analog-to-Digital Converters (ADCs) in the 1990s, electronic components 

replace most mechanical parts of the electricity meter. AMR utilizes digital 

technology to collect the power consumption data and transmit the data to the utility 

for billing, analysing, or troubleshooting purposes. Normally, an AMR device 

contains a power supply, microcontroller, Real-Time Clock (RTC), Liquid Crystal 

Display (LCD) display, and communication ports [19]. AMR can provide near real-

time reading with high accuracy compared to the electromechanical electricity meter, 

and AMR is little affected by the environment [20]. Another significant advantage of 

the AMR is that no staff from the energy supplier is required to record the energy 

consumption on-site, which saves the expense. However, AMR only enables one-way 

communication, which comes from the meter to the utility, while the utility cannot 

send information to the end-users.  

Since the beginning of 21 century, a new generation of the smart meter has been rolled 

out in North America and Europe; smart meter is an electronic device which is more 

advanced than AMR. The smart meter can collect more electricity parameters, 

including phase voltages, phase currents, frequency, power factor, active power, 

reactive power, apparent power, and power quality measurements. Moreover, a smart 

meter enables two-way communication between consumers and energy suppliers; the 

communication can be wireless or wired (such as Powerline Communication (PLC)). 

Furthermore, the smart meter aims to play the role of a communication hub to provide 

consumer value-added services such as outage management and customer load 

management.  
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Table 2-1. Comparison between the smart meter and traditional electricity meters. 

Feature Electromechanical 

Meter 

Automatic Meter 

Reading (AMR) 

Smart Meter  

Communication No communication Real-time one-way 
communication 

Real-time two-way 
communication 

Accuracy and 

reliability 

Low High Very high 

Energy theft 

detection  

Low  At node level At network level 

Time-of-use tariff Unavailable Unavailable Available  

Additional device No No In-Home Display (IHD) 

Consumer 

participation 

No Low High 

Business opportunity  Monthly billing  Monthly billing 1. TOU billing 
2. Consumer payment 

option 
3. Utility operation 
4. Demand response 
5. Outage management 
6. Information display 

2.1.2.2 Physical components  

The components of a SMETS 2 smart meter include an electricity meter, a power 

supply unit, a micro-controller, an RTC, an In-Home Display (IHD), an LCD, a data 

store module, a load switch, a HAN interface, and a communication hub [20] (see 

Figure 2-1). The detailed function of each component is introduced as follows [20]:  

 A power supply unit: the power supply unit supplies power to other hardware 

components such as the micro-controller and the communication unit in the 

smart meter, this unit normally contains step-down transformers, rectifiers, 

AC-DC converters, DC-DC converters and regulators [20]. 

 An electricity meter: The electricity meter contains voltage, current sensors, 

and an energy measurement unit. The voltage and current sensors collect the 

input signals, while the Energy Measurement Unit (EMU) is responsible for 

signal conditioning, ADC, and computation. The EMU outputs active, 

reactive, and apparent energy consumption.  
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Figure 2-1. Smart meter physical components (Adopted from [20]). 

 An RTC: RTC is an inbuilt block to ensure the smart meter keeps track of the 

real-time and avoids time drifts; RTC also provides essential tariff information 

by dividing the timesteps into tariff slots (time of the day). Referring to Smart 

Metering Equipment Technical Specifications, the error should be within 10 

seconds of the UTC date and time [15].  

 A micro-controller: the micro-controller is the core component of the smart 

meter; the micro-controller performs almost all functions. High measuring 

accuracy and energy efficiency, high degree of parallelism are the basic 

requirements for the micro-controller, as the micro-controller needs to handle 

multiple tasks in parallel, including calculation with the data collected, post-

processing, data formatting, communication with other communication 

devices, displaying electrical parameters, tariff, and bills, etc. [17].  

 An IHD: IHD is a small digital screen which connects the smart meter via 

HAN. IHD shows energy usage in kilowatt-hours (kWh) and bills in pounds 

and pence.  

 An LCD: The LCDs the computed energy consumption for billing purposes.  

 A data store module: The module contains an inbuilt flash memory card to 

record the power consumption details with timestamps. A smart meter can 

typically store around 13 months of half-hourly usage data.  



Smart Grid and Advanced Metering Infrastructure 17

 

 A HAN interface: The HAN can establish a ZigBee SEP v1.2 Smart Metering 

HAN to support the routing of commands, responses, and alerts to and from 

devices and support the cryptographic suite [21]. ZigBee is the communication 

protocol based on IEEE 802.15.4 MAC [22], widely applied in smart meters.   

 A load switch: an Auxiliary Load Control Switch (ALCS) in the smart meter 

can switch a second electrical circuit off and on; the switch pattern can be 

activated by either setting a calendar in the meter, giving the schedule to the 

consumer or receiving the command from the energy suppliers [23].  

 A communication hub: The communication hub is the central 

communication component of the smart meter [24]. It has two functions: 

Firstly, it enables the smart meter and IHD device to communicate with each 

other via HAN; secondly, the communication hub plays the role of a gateway 

to link the HAN with WAN to allow the collected data to be transmitted to the 

energy supplier, the network operator, and the third-party service providers.  

2.1.2.3 Data recording  

Data recording is an important function of the smart meter for both utility and 

consumers. Utilities monitor the status of energy networks and are useful for 

consumers to know the details about their energy use. Under the SMETS 2 standards 

regulated by the Department for Business, Energy & Industrial Strategy (BEIS) in the 

UK [12], although the frequency of data transition is high (greater than 10s), only low-

frequency data is recorded in the storage unit on a long-term basis [25]. The smart 

meter stores four categories: half-hourly data, daily totals consumption data, historical 

TOU tariff, and other totals consumption and cost data (see Table 2-2). Frist of all, all 

data is recorded with the timestamp in UTC date and time format. Half-hourly energy 

consumption data is the highest resolution data stored in the smart meter; 13 months 

of historical half-hourly energy consumption in kWh is stored, and three months of 

data of cumulative active energy imported in the active import register, three months 

of data of cumulative reactive energy imported/ exported in the active import/export 

register. The daily energy consumption data is the second-highest resolution; two 
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years (731 days) of data is stored. The cost data in £ in pairs with the energy 

consumption is also available in the storage module, as shown in Table 2-2.  

Table 2-2. Smart meter data storage requirements under the SMETS 2 standards [15, 25].  

Parameter Duration  

Half-hourly data   
 Active energy consumption 13 months 
 Active energy exported Three months 
 Reactive energy imported Three months 
 Reactive energy exported Three months 

Daily totals consumption Two years 
Other totals consumption (kWh) and cost (£)  

 Daily Current day plus prior eight days 
 Weekly Current week plus prior five weeks 
 Monthly Current month plus prior 13 months 

Time-of-use tariff (£/kWh)  
 Tariff TOU Register Matrix A 1 x 48 matrix 

2.1.3 Advanced smart metering infrastructures 

Within smart grids, AMI systems are integrations of smart meters, communication 

networks, and data management systems (see Figure 2-2) [26, 27]. With advanced 

communication techniques, AMI enables real-time bidirectional communication 

between the suppliers and electricity consumers [28]. Smart meters are the most vital 

components of AMI. As smart energy sensors are installed in consumers’ residences 

(households), smart meters can gather and transmit data, including power 

consumption and electricity/gas bills, on a real-time basis.  

 

Figure 2-2. The block diagram of the current smart metering system (Adopted from [29]). 
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Like most Internet of Things (IoT) systems, the smart metering system contains 

several layers for data acquisition, communication, and computation. Normally, the 

smart metering system is a four-layered architecture shown in Figure 2-3, and the 

architecture contains a physical layer, network layer, middleware layer, and 

application layer.  

Physical Layer
Sma rt Mete r1 23 45 kW h

Sm a rt M ete r

Smart Meter

Network Layer

WIFI Bluetooth 5G

Middleware 

Layer

Data Gathering 

Data Transmission 

Cloud Computing Data Storage
Data Processing 

Application 

Layer
Billing Forecasting Awareness

Demand 
Response

Smart Applications

 
Figure 2-3. The four-layered architecture of the smart metering system (Adopted from [29]). 

The first layer is the physical layer, also called the perception layer; the layer's 

responsibility is to utilize smart sensors (including smart meter and smart plug) to 

collect data from the consumer’s home [30]. The second layer, the network layer, 

enables the communication between the smart meter and the cloud server and 

transmits power consumption to energy suppliers. In the third layer, named the 

middleware layer, the collected data is processed, analysed, and stored here. Finally, 

the essential applications and services are delivered in the application layer, including 

load forecasting, energy awareness, time-of-use billing, demand response and so on 

[31]. 

2.1.3.1 Communication network  

The communication network of AMI is the most critical part of the overall system, 

enabling two-way real-time communication. With the support of the communication 

network, the smart meter plays the role of a communication hub to communicate with 

the energy suppliers, domestic appliances, neighbouring smart meters, and other 

parties. The hierarchical multi-layer communication network contains three 
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communication protocols: Wide Area Network, Local Area Network (LAN)/ 

Neighbourhood Area Network (NAN), and HAN.  

2.1.3.1.1 Home area network 

HAN is a network inside a customer's home that connects a smart meter to an IHD 

and other devices (controllable loads, renewable generators, etc.). The communication 

protocol of the HAN can either be wired (such as PLC) or wireless techniques 

(including Zig-bee, Z-wave, Wi-Fi, etc.) [20]. Since all domestic appliances are inside 

the residential buildings, the HAN requires a short converge range (up to 100 kbps) 

and a low data rate (up to 100 m). the ZigBee at 2.4 GHz is the widest communication 

protocol employed in HAN since ZigBee is a simple, low-cost, low-power, and secure 

wireless communication technology [32]. The HAN is connected to the upper 

communication networks such as LAN or WAN via the smart meter.  

2.1.3.1.2 Local area network 

LAN/NAN is the middleware network between HAN and WAN; the responsibility of 

LAN is to transmit data among neighbouring smart meters or transmit data from many 

smart meters to a data concentrator [33]. Compared to HAN, LAN requires a higher 

data rate (100 kbps–10 Mbps) and a larger coverage distance (up to 10 km). Long-

distance wired/wireless communication techniques such as ZigBee mesh networks, 

WiFi mesh networks, Worldwide Interoperability for Microwave Access (WiMAX), 

Cellular, PLC, and Coaxial Cable are employed to implement the LAN/NAN. As an 

important part of AMI, LAN/NAN ensures the consumption information is 

transmitted between the smart meters and other stakeholders (energy supplier or third-

party service providers); LAN/NAN also support various applications such as remote 

meter reading, detection of unauthorized usage. LAN/NAN is then connected to WAN 

through a backhaul network, where the data from many LAN/NAN is concentrated 

together and transmitted between WAN and LANs. 
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2.1.3.1.3 Wide area network  

The WAN links the smart meters to Data and Communications Company (DCC). 

WAN covers a large geographic area such as a country or a state; it needs to transmit 

a large volume of data at a high frequency to enable the real-time stability control of 

the power system, and the communication technique requires a much higher data rate 

(10 Mbps–1 Gbps) and long coverage distance (up to 100 km) comparing to HAN and 

LAN/NAN. The WAN can be developed with either wired technologies (such as 

broadband power line communication (BPL), fibre optics) or wireless technologies 

(such as Cellular and WiMAX) [17]; satellite communication is also employed as a 

backup in some remote areas [33].  

2.1.3.2 Data and communications company 

As shown in Figure 2-2, DCC is a private central communication sector responsible 

for secure communication between smart meters and authorised users, access control 

and scheduled data retrieval [34]; the DCC is licenced by the UK government and 

under regulation by OFGEM. The DCC collect energy consumers’ data through the 

WAN; the processed data is then sent to energy suppliers and network operators. The 

DCC is also the security entity responsible for the security during data carriage and 

translation, ensuring all process compliance with the GDPR directive. Furthermore, 

the DCC is also responsible for delivering the interoperability, enabling the energy 

consumers to switch the energy suppliers and change the tariff plans easily with the 

forthcoming Central Switching Service (CSS) system [35]. It is noticed that not all 

functions are under the mandate of the DCC; the critical and core services such as 

billing or outage management are mandated services, while non-mandated services 

include analysis of measured energy usage data or automatic tariff comparison 

services, which require the interaction with personal devices such as mobile phones, 

computers [36].  
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2.1.3.3 Stakeholders  

As illustrated in Figure 2-2, stakeholders of the smart metering system can include the 

consumers, energy suppliers, network operators and third parties. With smart meters, 

consumers can obtain near real-time and more accurate power usage data and bills, 

which helps them manage their energy usage.  

2.1.3.3.1 Energy consumer 

Energy consumers in the distribution network include residential energy consumers, 

commercial energy consumers, industrial energy consumers (accounts for 32% of 

energy use), and transportation (27% of energy use) [37]. The residential energy 

consumer contains single-family and multi-family houses, which account for 37% of 

total energy use. Heating, Ventilation and Air Conditioning (HVAC), lighting, and 

water heating are the electric loads that consume the most in residential energy 

consumers. The peak load of the residential energy consumers appears in the afternoon 

and early evening. The commercial consumers include private/commercial 

companies, government facilities, service-providing facilities and equipment [38]; this 

sector accounts for 35% of all energy use. The peak demand of the commercial energy 

sector appears during the operating hours on weekdays, while the energy consumption 

decreases during evenings and weekends. Industrial energy consumers contain 

industrial facilities and equipment for manufacturing, mining, agriculture, and 

construction, this part of energy occupies 27% of the overall energy consumed 

annually [39]. The machine drive is the load which consumes over half of the energy, 

and one characteristic of the industrial load is that the load curve does not have 

significant seasonal trends; the curve will not change throughout the year. This 

research mainly focuses on the residential energy consumer, and the domestic smart 

meter, which collects household-level energy consumption; other categories of smart 

meter and energy consumers are out of the scope of this research.  

Referring to the data access and privacy framework published by BEIS in the U.K 

[12], the energy consumers have considerable flexibility in accessing their power 
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consumption data through IHD or Consumer Access Devices (CAD) via HAN. In 

addition, energy suppliers should provide free of charge data for up to 24 months once 

the energy consumer requests.  

2.1.3.3.2 Distribution network operator  

DNO is responsible for constructing, maintaining, and operating the distribution 

network, ensuring the power is delivered to the end-users.  In the UK, 14 different 

DNO regions are managed by six operators: Electricity North West Limited, Scottish 

and Southern Electricity Networks, Scottish Power SP Energy Networks, UK Power 

Networks, and Western Power Distribution [40]. DNO also benefits from the smart 

meter data with different granularities and aggregation levels. Application such as 

state estimation, Volt and Var Control (VVC) requires access to highly aggregated 

smart meter data. While applications such as electricity theft detection, fault location, 

isolation, and service restoration (FLISR), demand-side management also requires 

household-level smart meter data. 

Although the smart meter data help the DNO improve the distribution system's 

feasibility, cost-effectiveness and efficiency, DNO can also potentially obtain 

individual load profiles. Both OFGEM and DBEIS published strict data access 

framework to regulate the data collected by the DNO to ensure all data access actions 

are subject to compliance with data protection legislation. Moreover, OFGEM, which 

regulates the monopoly companies which run the gas and electricity networks in the 

UK, also published an open letter on DNOs’ privacy plans for access to smart meter 

data in 2016 [41]. This open letter highlighted the importance of the household-level 

smart meter data for better management and efficiently reinforcing the energy 

networks. OFGEM requires DNOs to provide sufficient information about their 

privacy plan to decide whether to approve the assessment. The information includes 

the variable, the format, the purpose (without any commercial use), the period, and 

the target consumers of the smart meter data to be collected. Moreover, the 

quantification of the benefits the collected data brings to the power network, smart 

grid development, and customers should also be provided to OFGEM. OFGEM and 
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DBEIS also suggest data aggregation and anonymising techniques to remove the 

individual features from the collected data.  

2.1.3.3.3 Energy supplier   

ES are price and contract regulators between the DNO and energy consumers; ES buys 

electricity from the wholesale market and then sells it to energy consumers. Moreover, 

ES can provide more flexible and personalized service plans to the energy consumers 

compared to the utility companies, and ES usually sells the energy at a lower rate. The 

UK'S typical ES companies include British Gas, EDF Energy, E.ON, RWE Npower, 

Scottish Power and SSE [42].  

Referring to DBEIS’s data access and privacy framework [12], ES can either access 

energy consumption data with no detail more than daily with the consumer’s consent 

or data that is more detailed than daily once the ES both obtains the consumer’s 

consent and provides detailed information about how the data will be used to the 

consumer. In addition, ES companies are encouraged to develop products and services 

with collected data to improve the consumers' user experience.  

2.1.3.3.4 Third parties 

In the field of AMI, the term ‘third party’ (also named energy service companies or 

value-added service companies in some research) generally refers to no licensed 

parties, including energy services companies and switching sites which provide value-

added services to the consumers. Third parties are not involved in the grid operation 

and management or supplying electricity directly, but these companies want to 

provide additional services by accessing the consumers’ energy data. Sharing smart 

meter data with third parties can promote innovation and competition in the energy 

services market [12].   

DBEIS has strict regulations and limitations on third parties accessing the consumers’ 

energy consumption [12]. Third parties are guided to access personal smart meter data 

via DCC unless the third parties fulfil all privacy safeguards listed by DBEIS: (1) 
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Before sending the request to DCC, third parties must obtain the consent from the 

target consumers, and third parties should also provide detailed information about the 

purpose, interval of the data, duration, etc.  

2.2 Privacy Intrusion Issues 

Currently, smart metering systems could easily suffer from internal [43] and external 

attacks [44] and be subject to privacy intrusion [2]. All privacy intrusion issues related 

to smart meters fall into two categories: 

Category (i) Data sensitivity. Personal energy data cannot be measured by a 

conventional electricity meter. While the traditional electricity meter measures the 

energy consumption with a low resolution (e.g., one month) and can only provide the 

energy consumption information in kWh, the smart meter measures the power 

consumption with a high frequency (ranging from every second to every half hour, 

and usually every 15 minutes [45]), and more parameters are recorded, such as real-

time active/reactive power, voltage, current, TOU tariff, etc. The high granularity data 

provide adversaries with enough information to intrude on personal information.  

Category (ii) Algorithm sensitivity. Advanced algorithms/mechanisms to intrude on 

privacy-sensitive features that could not be extracted from raw data using traditional 

data processing mechanisms. With the implementation of smart meters in smart grids 

to meet the above functions and the increasing development of new services and 

applications by TP based on big data and artificial intelligence (AI) (e.g., Machine 

Learning (ML), Deep Neural Network (DNN), cloud computing), more and more 

sophisticated data could become available [46]. New services to better understand and 

monitor household behaviour include NILM [47], short-term load forecasting, 

distributed data mining, and others [13, 46]. These advanced techniques are a double-

edged sword for consumers. The benefits espoused to consumers described above 

(e.g., managing their energy consumption) and adopting a utilitarian ethic (i.e., 

ensuring the greater, collective good of energy efficiencies in smart grids) must be 

weighed against potential privacy intrusion risks. Privacy intrusion would mean that 
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individual and collective freedom is compromised, given that household behaviour 

would be shaped and constrained by the perceived presence of digital surveillance [8, 

9, 11]. Moreover, referring to the US National Institute of Standards and Technology 

(NIST) guideline NIST IR 7628v2 [48], the above two categories can be divided into 

four aspects as follows:  

2.2.1 Behaviour patterns identification 

Behaviour patterns identification belongs to category i; it aims to identify the 

appliances used. The smart meter and AMI communication network enable the utility 

and TP to access individual energy data continuously [26]. The high granularity data 

can reveal information about specific appliances at certain times and locations inside 

the home. Based on this information, operators can further infer the activities inside 

the house [48]. Potential usage of the appliance information may include the retailers 

would adjust the warranty policy or using the information for advertising and 

marketing purposes.  

2.2.2 Real-time surveillance 

Real-time surveillance means that by regularly accessing energy data via smart 

meters, power system operators/TPs can have an overall picture of the activities inside 

a house and even the entire life cycles of all residents (waking/sleeping pattern, 

number of residents, when people leave their home). This privacy concern belongs to 

category ii; the surveillance relies on simple load monitoring with smart meter/ smart 

sensors or implements advanced techniques such as data mining and machine 

learning/deep learning algorithms [46, 47]. This information could be abused by 

hackers and stolen for an illegal purpose [49].  

2.2.3 Fraud 

Fraud represents the potential risks of modifying personal energy data without 

authority, either to increase/decrease energy consumption or attribute the energy 
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consumption to another house [48]. This risk belongs to category ii; the AMI enables 

more opportunities for adversaries to implement fraud than conventional meters since 

the vulnerabilities of the real-time communication network could be abused.  

2.2.4 Non-grid commercial uses of data 

This privacy risk falls into category ii. TP may use the smart meter data to profit from 

the data; activities include advertising and insurance that are not welcomed by 

consumers [48]. Companies would sell their products to residents according to the 

personal preference information revealed by the energy data. Even sensitive 

information, such as employment information, income, and the number of residents 

[46, 50-52], can be inferred from energy data with machine learning algorithms. 

Adversaries can use this information to estimate the income of the target family.  

2.3 Related Work for Privacy Intrusion Protection 

The state-of-the-art methods dealing with the above smart meter privacy issues can be 

divided into user demand shaping and data manipulation (Figure 2-4). Both these 

techniques reduce privacy loss by decreasing the probability of inferring individual 

appliance signatures from the overall power data [53]. 

Smart Meter Privacy-
preserving Techniques

Data Manipulation:
(1) Data Obfuscation
(2) Data Aggregation
(3) Data Anonymization
(4) Data Down-sampling

Demand Shaping:
(1) SM with RB
(2) SM with RES

 
Figure 2-4. Categories of the privacy-preserving techniques. 
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2.3.1 Demand shaping 

User demand shaping uses external energy storage devices (such as a large 

Rechargeable Battery (RB), Renewable Energy System (RES), or load shifting to 

distort the actual power consumption curves. The RB and RES method can be treated 

as a noise-adding approach at the physical layer, as the original power demand is 

distorted, and the utility cannot infer sensitive information from the smart meter data. 

An RB system contains a smart meter, a battery, and an Energy Management Unit 

(EMU). The EMU controls the battery to implement an optimal Energy Management 

Policy (EMP); with the injection of power from the RB, the mismatching between the 

power supplied by the grid and consumers’ power demand provides a privacy 

guarantee. The works conclude that the larger the battery capacity, the better the 

privacy guaranteed. However, the RB is a finite capacity energy storage device with 

a capacity ranging from 2 kWh to 20 kWh [54]. Therefore, a lower and upper bound 

exists to limit the mechanism's performance. The optimal EMP, such as the Best-

Effort (BE) algorithm [55], water-filling algorithm [56], Q -Learning algorithm [57], 

and Non-Intrusive Load-Levelling (NILL) algorithm [58], is introduced to optimize 

the charging/ discharging process. These algorithms control the battery either hide, 

smooth, or obfuscate the load signature [59]. NILL algorithms are designed to blind 

the NILM [58]. Instead of only one target load, the NILL has two states, a steady-state 

and a recovery state; if the battery capacity cannot enable the load to maintain a steady 

state, the load is switched to the recovery state. A privacy-versus-cost trade-off 

strategy considering the TOU tariff was proposed by Giaconi et al. in 2017 [60]. 

Instead of a constant load target, a piecewise load target referring to the current TOU 

price is generated, the cost of the electricity is minimized, and the consumers can also 

sell extra energy to the grid to reduce the cost further.  

RES utilizes rooftop PV, small wind turbines, and even Electric Vehicle (EVs) [61] 

to replace conventional batteries. To overcome the difficulty of rolling -out expensive 

RES and RB facilities, [62] proposed a multiuser shared RSE strategy that enables 

several users to share one RES and one EMU. The EMU control the RES to allocate 

the energy from the RES to each user. In this case, the system's target is to minimize 
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the overall privacy loss of all users rather than an individual user. EV is another 

scheme to reduce the reliance on the RB [61]. Since the charging period overlaps the 

peak load, it can mask other appliance signatures. However, the EV can only be used 

when the consumers are at home, and the consumers are still under real-time 

surveillance since the adversary would obtain information when the residents leave 

their homes.  

To summarize, in RB/ RES methods, researchers view the identification information 

of the load curve as the variation of the load measurements of two neighbouring 

measure points. The ideal situation for the grid curve is a constant value which will 

not reveal any sensitive features of the demand, and the modified load curve is then 

compared to the constant value; the more similarities between these two curves, the 

better privacy can be guaranteed. To quantify the privacy loss, Mean Squared-Error 

(MSE) [60], Mutual Information (MI), Fisher Information (FI) [55], KL divergence 

[59], and Empirical MI [63] are adopted in related works. However, user demand 

shaping also has drawbacks: Firstly, although RB/RES method can provide a certain 

degree of privacy, the method requires installing extra devices worth thousands of 

pounds [64]. Who needs to afford this cost is a critical issue and the main barrier to 

the implementation. An optimal national privacy solution should be a privacy-by-

design scheme that does not rely on external devices or facilities. Secondly, the RB 

harms the environment, which opposes developing countries' carbon peak and carbon 

neutrality commitments [65]. A more environmental-friendly methods need be 

proposed.  

As the drawbacks of RB/ RES methods are apparent, another demand shaping method 

named load shifting is proposed to replace the RB/ RES techniques. This method hides 

sensitive information by shifting the controllable loads [66]. The loads can be divided 

into uncontrollable loads (e.g., lighting, microvan, kettle) and controllable loads (e.g., 

HVAC systems, EV, dishwasher, washing machine). Consumers can schedule the 

operation time and model the controllable loads to prevent occupancy detection. In 

[67], Combined Heat and Privacy (CHPr) are proposed, and thermal energy storage 

such as an electric water heater is adopted to mask occupancy. Compared with the RB 
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approach, CHPr neither requires expensive devices nor increases electricity cost. 

There are several limitations of the load shifting technique. Firstly, some controllable 

loads have limited operation modes and cannot be interrupted; secondly, there are 

restrictions for the thermal loads to store energy. 

2.3.2 Data manipulation  

Unlike the demand shaping approach, data manipulation aims to modify the smart 

meter data before sending it to the utility. This category belongs to data aggregation, 

obfuscation, down-sampling, and anonymization.  

Data obfuscation, also called data distortion, tries to add noise to the original smart 

meter data to cover the actual power consumption [68-70]. Like the demand shaping 

technique, data obfuscation also reduces privacy loss by distorting the smart meter 

data on the network layer. Noises such as Gaussian noise [68, 71], Laplace noise [68], 

and gamma noise [69]  are added to the original smart meter data to distort the load 

curve. These noise-adding mechanisms follow normal distributions with a mean μ 

equal to zero. Hence the noise would cancel out if enough readings are added up 

together. P. Barbosa et al. [72] conclude that these probability distributions would not 

influence the relationship between the utility and privacy, so all distributions can 

achieve similar performance in protecting privacy. Moreover, several methods are 

proposed to guarantee the billing correctness:  [68] proposes a power consumption 

distribution reconstruction method by adding another Gaussian distribution into the 

data, but the method does not quantify how much noise should be added to recover 

the original curve; [72] sends a filtered profile to the utility rather than masked profile, 

then result shows that the error of the overall power consumption is reduced in this 

way. However, they also find that the error during different periods (peak period, off-

peak period) is significantly different, which provides a new challenge. In summary, 

although the data distortion scheme effectively reduces privacy loss, several problems 

should be discussed in future studies: (1) The TOU tariff is unavailable. Although the 

noise would be zero-mean, the multiplier for TOU pricing is not. Hence the sum of 

TOU bills would be influenced. (2) The noise-adding process should be an inbuilt 
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function of the smart meter, which is unrealistic in practice. (2) Although, from the 

signal processing and information-theoretic viewpoint that a zero-mean noise would 

not influence the result, it is noticed that the power system is operating on a real-time 

basis. The power system operator manages the grid with the real-time data sent from 

the smart meter; even a minor delay or a minor error between the real value and the 

distorted data could result in serious faults, even the collapse of the whole system. (4) 

the attacker can remove the noise, which makes the noise-adding method meaningless.  

Data aggregation reduces the privacy loss by constructing aggregators to collect the 

data from a few smart meters together, so the utility cannot detect the electricity events 

in a single house [71, 73-76]. The data aggregation technique is divided into 

aggregation methods with Trusted Third Parties (TTP) [71] and aggregation methods 

without TTP [73, 76]. J.-M Bohli et al. [71] propose data aggregation with TTP, the 

data aggregator operated by the TTP is responsible for gathering the data from 

neighbouring smart meters and then sending the aggregated data to ES.  At the end of 

every month, the data aggregator also generates the energy consumption of individual 

consumers for billing purposes. However, there are several concerns about involving 

TTP. Above all, a TTP has potential motivation to infer personal information, so the 

TTP itself may bring extra privacy risks to the system. Secondly, with the increasing 

numbers of smart meters being installed, it is unrealistic for the TTP to build enough 

data aggregator to satisfy the demand, and the maintenance and development cost 

would be unaffordable to EP and NO. Thirdly, introducing the data aggregator with 

TTP decrease the reliability of the system, a single point failure would influence the 

normal operation of the overall system.  

[77-80] introduces data aggregation mechanisms without TTP. Instead, the 

aggregation process should be combined with other encryption technologies or 

enforced by law/regulation. Encryption techniques such as Homomorphic Encryption 

(HE) [77, 79], Multi-Party Computation (MPC) [80], and Block Chain [78] have been 

employed in the literature. Both HE and MPC encrypt personal smart meter data 

before sending it to the utility/TP. However, unlike conventional encryption 

techniques, HE and MPC enable TPs to manipulate the data without knowing the 
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detail of it. F. Li et al. [76] and R. Lu et al. [73] independently proposed an aggregation 

method with HE. By encrypting smart meter data, the data aggregator can implement 

aggregation without knowing the details. In this way, there are no concerns that the 

TTP may infer sensitive information without permission. However, the drawbacks of 

data aggregation technology with HE cannot be ignored. Firstly, after aggregating, the 

utility cannot obtain the power usage information of an individual consumer. 

Secondly, HE has very high computation and storage requirements; transmitting 

energy data with HE would cause a high computational overhead. The computation 

time to process the cyphertext is about a million times slower than plaintext operations 

on average [81]. Moreover, considering memory usage, 1 Mb of data results in more 

than 10 Gb of encrypted data [82]. Considering a national AMI that links millions of 

smart meters and requires near real-time communication, HE is currently an 

unacceptable trade-off for utility companies. MPC requires low computing ability but 

involves several servers to deal with the data [83]. In MPC, each server holds a part 

of the input data and cannot infer the whole information. MPC has been successfully 

adopted in smart metering services such as TOU billing. However, complex value-

added services, such as load forecasting and online energy disaggregation, require an 

advanced cloud services to implement these algorithms. So, the availability of MPC 

in these services should be discussed. The privacy boundary of aggregation size is also 

investigated in T.N. Buescher et al.’s work [74]. They investigated the aggregation 

size referring to a privacy metric named ‘privacy game’. Referring to the data-driven 

evaluation, a conclusion is made that even a data aggregator with over 100 houses can 

still reveal private information. But the privacy measure they adopt is abstract and just 

simply measures the difference between the individual load curve and the aggregated 

curve, a more detailed privacy measure should be proposed to reflect whether 

advanced algorithms (such as NILM) can infer personal information from the 

aggregated data. Another possible data aggregation scheme without TTP is relying on 

the regulation/law enforced by the government, the measurements from neighbouring 

smart meters gather at the data aggregator, which is regulated by the government or 

the DCC, then the DNO or ES accesses the aggregated data via the data aggregator 
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for controlling and management purpose. To achieve this target, a hierarchical AMI 

need be developed to include the data aggregators into the smart metering system.  

[68-70] combines data aggregation with noise-adding techniques to enable differential 

privacy of the aggregated data. Differential privacy is employed as a privacy 

guarantee; differential privacy is through adding noise to a largescale dataset; any two 

neighbouring datasets (only one data in these two datasets is different) should be 

indistinguishable [84]. In other aggregation mechanisms, N smart meters are 

aggregated at first, and then a Distributed Laplacian Perturbation Algorithm (DLPA) 

is applied to the aggregated data. By adjusting the parameters � and �, then (�, �)-

differential privacy is achieved (� is the parameter to show the strength of privacy 

guarantee, and the �  is the failure probability, the closer �  and �  to 0, the better 

privacy can guarantee). The security and privacy performance are analysed in [68]; 

two denoising filter attacks, the linear mean filter and the non-local mean filter, are 

employed to evaluate the original. The results support the point that attackers cannot 

infer the original load curve from the distorted one. 

The Data Anonymization mechanism [85-87] reduces privacy loss by replacing the 

real smart meter identification with pseudonyms. C. Efthymiou and G. Kalogridis 

proposed a data anonymization method with a TTP escrow in 2010 [85]. They 

suggested that two IDs are attached to each smart meter, LFID for sending attributable 

low frequency and HFID for sending anonymous high-frequency data, while the 

HFIDs are kept by a TTP, making it unknown to the utility. The low-frequency data 

are used for billing purposes, while the high-frequency information is for network 

management. However, the workload of the TTP is high, and the development costs 

increase since all anonymous IDs are processed here. Moreover, with the introduction 

of the TTP escrow, the privacy risks are not eliminated but just shifted from the utility 

to TTP.  

A down-sampling method is a naive approach that aims to reduce sensitive 

information by reducing the interval resolution of the metered data [49, 87, 88]. 

However, like other methods, demand response and TOU billing functions would be 



34 Literature Review

 

sacrificed. Moreover, value-add services that require high-resolution data are 

unavailable as well. To quantify the privacy loss with different interval data, G. Eibl 

and D. Engel adopt NILM as an adversary to extract personal information. They apply 

an edge detection NILM to smart meter data and examine the performance of 15 

appliances via F-score values and the proportion of appliances. They conclude that 

15-minute interval data already protect most appliances.  

2.3.1 The knowledge gaps  

Existing research points out that there is a strong correlation between the high granular 

electricity data and the activities/behaviours inside the house [13]; by analysing the 

real-time power consumption curve, the adversary can determine the personal 

information such as appliance usage information, presence/absence, and lifecycle 

[14]. Although privacy concerns are raised in the literature, the threat/adversary model 

and the data mining algorithm used by the adversary/threat to infer private information 

are not well defined currently.  

There have been various attempts to provide a strong guarantee to the smart meter 

data, technical solutions in the literature either reshape the actual load curve with 

rechargeable battery [15] and energy storage system [16] or manipulate the data by 

distorting [17], aggregating [18], and down sampling [19]. However, it is argued that 

introducing extra devices will increase the expense of Energy Supplier (ES) and 

manipulating the original data will influence the billing correctness and make 

functions, e.g., Time-of-Use (TOU) tariff, unavailable. Furthermore, almost all 

technical solutions overlook the participation of third-party service providers, who 

would like to access the smart meter data to provide consumer commercial services. 

Such value-added services can introduce new market opportunities and engage the 

innovation of the electricity market [20].  

On the other hand, with the steady increase of the distributed renewable generation 

and electric vehicles, the smart meter data is expected to help the Distribution Network 

Operator (DNO) improve the visibility and reliability of the Low Voltage (LV) 
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network. The Office of Gas and Electricity Markets (OFGEM) [21] and the 

Department for Business, Energy & Industrial Strategy (BEIS) [22] require the DNO 

to access the aggregated smart meter data inside of individual smart meter for privacy 

consideration. However, the existing smart metering system does not build the data 

aggregator to provide such aggregated data. Moreover, how to utilize the aggregated 

data to improve the visibility and reliability of LV network is not well investigated in 

the literature.  

2.4 Data Privacy Law/Regulation  

Current regulation on smart meter data, especially the AI application of the smart 

meter data, is very limited [89]. This is mainly because private companies are 

developing AI-based applications quicker than regulators understand their functioning 

and social implications [90]. In an exploration of documents in the US, the UK and 

the EU, [91] agree that one main concern is creating or strengthening current 

regulatory frameworks, like the GDPR, in light of AI's new challenges. They all had 

different views on how such changes should occur and who is to participate according 

to the guiding values, though recognising the importance of multilateral and inter-

regional discussions.  

The timeline of important data privacy laws/regulations in the EU and US is presented 

in Figure 2-5, referring to the enaction year; these laws are classified into two groups: 

old guard between 1974 and 2000; and new wave, from 2018 to now. Back in 1974, 

US Privacy Act was the earliest data privacy regulation. The purpose of the US 

Privacy Act is to balance the government's needs and the rights of individuals. The 

private information of individuals is protected from unwarranted invasions. The EU’s 

first data protection directive, Directive 95/46/EC, was enacted in 1995 [92]. Directive 

95/46/EC aimed at protecting human rights and freedoms while processing personal 

data. 

Furthermore,  Health Insurance Portability and Accountability Act (HIPAA) [93] and 

Children's Online Privacy Protection Act (COPPA) [94] were enacted by the US in 
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2000, which are designed to protect the health information and children under 12 years 

data, respectively. In May 2018, GDPR took effect and replaced Directive 95/46/EC 

[95]; GDPR proposes more detailed data regulation requirements with a global scope. 

Like GDPR, California Consumer Privacy Act (CCPA) gives consumers more control 

over personal information and restricts how companies collect and use data in 

California [96]. The following will discuss the existing laws and regulations by 

country in detail.  

US Privacy Act
1974

Old Guard

HIPAA
1996

Privacy Rule
COPPA

2000

GDPR
2018

CCPA
2020

Directive 95/46/EC
1995

New Wave

  
Figure 2-5. Data privacy law/regulation timeline (Adopted from [97]). 

2.4.1 Data regulation law in the European Union  

By the end of 2020, the total number of smart meters installed in all European Union 

(EU) Member States will have reached 123 million, increasing the smart meter 

penetration rate from 34% in 2018 to 43% in 2020 [98]. With the steady increase of 

the installation number, whether existing data protection regulations and laws can 

provide excellent protection to smart meter data should be carefully investigated.  

GDPR, a replacement of the previous EU Data Protection Directive 95/46/EC (the 

Directive) [95], became effective on 25 May 2018. As the strictest data protection 

laws, GDPR guarantees EU citizens’ legal rights when data are collected, processed, 

or shared among different parties [99]. One significant change of GDPR is that it 

redefines the meaning of personal data, which is now defined as “any information 

relating to an identified or identifiable natural person”. Moreover,  location data and 

online identifiers which can leave traces are also included in personal data. The data 

protection principles provided by the GDPR are largely based on the Directive, which 
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includes:  (1) The lawfulness, fairness and transparency principle; (2) the Purpose 

limitation principle; (3) the Data minimization principle; (4) Accuracy principle; (5) 

Storage limitation principle; (6) Integrity and confidentiality principle [99].  Referring 

to the description of the GDPR, the power consumption data collected by the smart 

meter fall within the GDPR. The GDPR should regulate data acquisition, storage, 

usage, and analysis activities.  

More specifically, in 2011, European Commission published a report named 

“Essential Regulatory Requirements and Recommendations for Data Handling, Data 

Safety, and Consumer Protection ” [100]. This report provides a fundamental basis for 

regulatory action on the smart grid and smart meters that is to be taken. The report 

proposed recommendations on privacy and data protection of smart grids and smart 

meters, and the recommendations contain four parts: business continuity plans,  

privacy by design and by default, privacy impact assessment, and data retention.  

2.4.2 Data regulation law in the US  

There has been a long history since the US government published its first data privacy 

law. The US government also issued laws for certain information, such as HIPAA for 

health data and COPPA, to protect children’s privacy. However, the large amount of 

data collected by internet companies and the advanced data analytics tools used by 

these companies (such as Google and Facebook) makes the original data privacy law 

insufficient to protect consumers’ privacy. In this context, in 2020, an extremely 

powerful, far-reaching law, CCPA, will be signed into law as a state statute to enhance 

privacy rights and consumer protection for residents of California. Unlike GDPR, 

which regulates data privacy across the EU, CCPA is only applied to natural persons 

who are California residents. The CCPA defines personal information as any 

information that identifies, describes, relates to, or can be associated with a consumer 

[96]. However, unlike GDPR, which covers all for-profit entities and not-for-profit 

organisations, CCPA only covers for-profit entities (‘business’) around the world 

which sell California residents’ personal information. Referring to CCPA, California 

residents have the authority and the right to decide whether to sell their data to third 
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parties and the right to request disclosure and delete of the data already collected 

[101].  

2.5 Smart meter ethics 

As a category of IoT device, the smart metering system keeps gathering the private 

data from billions of houses, revealing the personal information about their energy 

consumption, occupation, lifecycle, inside or outside their home, etc. The great 

amount of information collected and the advanced data analytics algorithms make the 

smart metering system outperforms the development of data protection regulation and 

law [102]. Little research emphasises the ethical and legal implications of utilizing 

smart meters in the power system industry [103]. Hence, the ethical issue of the smart 

meter has become a big problem in society. To solve these issues, an ethical 

framework should be developed to ensure the smart metering system operates morally.  

2.5.1 Consumers’ worries about smart home devices 

‘Home’, from the point of view of consumers, is the last sanctuary to protect their 

privacy. The installation of smart sensors such as smart meters and smart appliances 

is an intrusion into their home, and these devices are not under their control and cannot 

remove as they want. There are two types of consumers who worry about the smart 

meter: 1) they put high expectations in smart meters and get disappointed because of 

the limitation of featured services; 2) they worry about privacy and loss of control of 

their data. The root of consumers’ worries is that they feel they are losing control of 

their data; they neither be given a suitable insight view about their energy consumption 

nor be informed when their data is shared with unauthorised third parties.  

To settle their worries, the priority is to figure out the system's data flow and the 

stakeholders involved. [104] proposed to divide the usage of smart meter data into two 

categories: domestic data flow and remote data flow. Domestic data flow exchange 

data between smart meter, private platform, and in-home display unit. Data is kept 

within the home, and any data processing is typically performed in the meter or the 
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in-home display unit. Domestic data flow enables functions such as real-time power 

consumption and energy awareness. The domestic data flow has a low privacy leakage 

risk since no data leave home. Remote data flow shares data with TP or DNO. 

Although remote data flow can facilitate more sophisticated data analysis, more 

flexible presentation of information to consumers, and potentially a greater reduction 

of demand, the risk of privacy leakage also increases. 

The different granularity of the data can reveal different information about consumers’ 

privacy. Figure 2-6 summarises the information that can be inferred from data of 

increasing resolution. Smart meter data with 1 min interval can detect most appliances, 

while half-hourly data can only infer occupancy information. Most smart meters 

currently being installed worldwide log data hourly, half-hourly or at 15 min intervals 

[104]. This can provide a strong indication of occupancy but has much less potential 

to reveal individual appliance use. Future generations of smart meters may be 

configured to provide much higher resolution. Concerns should be rationalised 

accordingly. 
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Figure 2-6. Representation of information that can be inferred from metering data in function of 

the resolution (Adopted from [104]). 

Different ways to use the data will also result in different levels of privacy leakages, 

as demonstrated in Figure 2-7. In [105], the types of personal data are divided into 

three categories: (1) self-reported data. Data that are reported by consumers 

voluntarily and contain little sensitive information as consumers already filter out 

sensitive information. (2) Digital exhaust. The data is collected by smart meters 
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automatically. (3) Profiling data. This data is evaluated by utilizing advanced 

analytical tools or algorithms on data collected by smart meters, and the profiling data 

could reveal consumers’ behaviours and interests. The privacy/confidentiality risk of 

self-reported data is the lowest, and profiling data is the most sensitive data but also 

has a high value that attracts companies’ attention. The usages of the data are also 

classified into three groups: (1) Improve user experience. Functions such as energy 

awareness provided by smart meters to improve consumers’ satisfaction normally are 

acknowledged by consumers and make them feel it is a fair business for their data. (2) 

Facilitating targeted marketing. Consumers’ data are collected and used for marketing 

or advertising purpose. (3) Sell to third parties. This usage has little relation with 

consumers but is more beneficial to companies. To sum up, the sensitivity is lowest 

when consumers use the smart meter data to improve their satisfaction, while the 

sensitivity increases dramatically when their data is sold to third parties to analyse 

their profiling data. As for the correlation between sensitivity and 

privacy/confidentiality, it is observed that the more sensitivity to data, the more 

privacy/confidentiality needs to be protected. 
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Figure 2-7. Swapping value for data (Adopted from [105]). 
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2.5.2 Ethical design for the smart metering system 

An ethical design for the smart metering system should preserve privacy and provide 

various ethical choices for the consumers to make them willing to enjoy the added 

value the smart metering system brings them [102]. Moreover, all ethical designs 

should be embedded into the hardware and software. In [102], several suggestions for 

ethical design are proposed: 

Privacy by design (PbD): Embedding privacy into the design of the smart meter and 

the smart metering system proactive is the most efficient way to preserve privacy 

[102]. Privacy by design means that the data protection is a default smart meter setting 

without additional add-on sensors or components. Meanwhile, privacy by design 

employs a ‘win-win’ mode in which full functions should be retained while privacy 

and security are guaranteed [106]. Moreover, the smart metering system should be 

open to maintain visibility and transparency.  

Data minimization: The smart metering system should also follow the concept of data 

minimization, which means only the data needed for certain services is retained to 

reduce the gathering of personal data [102, 107]. 

Data anonymization: It is important to remove any information that can show the 

identity of individuals; hence the third party cannot distinguish the user’s identity from 

the collected database [107]. 

Control of data: Consumers should be able to manage and control their data during 

collection and transmission [102].  

Ethical options: The ethical design should enable the consumers to be free of their 

own ethical choices, which contain a different degree of privacy and data protection 

[103].  



42 Literature Review

 

2.5.3 Ethical challenges for smart meter 

However, there are still several ethical challenges to designing an ethical, smart 

metering system, referring to the literature. The challenges can be summarized as 

follow:  

 Ownership Identification [104]: The ownership of the data during data collection 

and transmission is difficult to identify, and it is a big issue when the smart meter 

collects personal information without the consumer’s consent. 

 Privacy borderline [74, 102]: The data collected by the smart meter could either 

be sensitive or insensitive; it is essential to define the borderline/boundary between 

the private and public information; as a result, the consumers can better enjoy the 

services provided by the smart metering system while their private data is 

protected. However, it is always difficult to define the borderline.  

 Life attacks [102]: As a smart meter/ smart appliance is installed inside the home, 

it directly connects all consumer’s environments with the internet. Therefore, the 

smart metring system can directly influence residents' lives by attacking and 

controlling home energy and further damaging the environment and even people’s 

lives.  

2.6 Privacy Design Strategies 

GDPR enforces all organizations/companies that process personal data to legally 

follow the data regulation when collecting, processing, and managing personal data 

[108]. One of the biggest challenges to implementing GDPR is transferring GDPR 

obligations into software requirements and designing GDPR-compliant software. 

However, many software and IT companies do not prepare well for GDPR. PbD is 

one of the methods to solve the problem stated above, and it is a widely adopted 

approach to protect private data; this design philosophy guarantees privacy throughout 

the whole system development lifecycle [109]. A. Cavoukian [110] proposed seven 

foundational principles of PbD in 2009 and can be summarized as follows: 1) 
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Proactive, not reactive: PbD involves anticipating events that affect privacy before 

they occur. 2) Privacy as a default setting: the default setting must be designed to 

provide maximum privacy protection. 3) Privacy Built-in: Privacy must be integral to 

systems, applications, and services. 4) Full functionality: PbD seeks an optimal 

balance for privacy and fully functional solutions. 5) End-to-end security: privacy 

needs to be assured throughout the data lifecycle. 6) Visibility and transparency: 

guarantee privacy can be demonstrated and verified. 7) Respect for users' privacy: 

keeping the user cantered, the rights and freedoms of users must be guaranteed. 

Nevertheless, PbD lacks clear guidelines to transfer specific legal data protection 

requirements into system requirements, which limits the application of PbD. To 

overcome the limitation illustrated above, a privacy design strategy has been 

proposed, and a design strategy describes a fundamental approach to achieve a certain 

design goal. 

Existing work [108] classifies privacy design strategies into two categories: data-

oriented and process-oriented, as shown in Figure 2-8 and Table 2-3. The data-

oriented strategies address minimising the privacy impact of the data; data-oriented 

strategies can be divided into four sub-strategies: Minimise, Sperate, Abstract, and 

Hide [111]. Moreover, Aggregate is also included sometimes [109]. Data 

minimization is the most straightforward and obvious strategy; this strategy reduces 

the privacy risk by excluding, selecting, stripping, or destroying the collection, 

storing, or operation of personal data. The second strategy, Sperate, highlights that 

personal data should be processed in distributed or isolated manner whenever possible 

[108]. Unlike the centralized model, which puts all collected data together, the 

decentralised or distributed system prevents adversaries from gaining enough 

information to infer personal data. The abstract strategy focuses on limiting the level 

of personal data details, and the less detailed a personal data is, the lower the privacy 

risk it has [111]. The last strategy, Hide, addresses confidentiality, unlinkability and 

unobservability of personal data; this strategy protects personal data by restricting, 

obfuscating, dissociating, and mixing the personal data to limit data observability.                  
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Figure 2-8. Block diagram of the privacy design strategies (Adopted from [112]). 

Process-oriented strategies focus on the interaction between the data subject and data 

controller and address privacy while handling personal data. Process-oriented 

strategies contain four sub-strategies: Inform, Control, Enforce, and Demonstrate 

[109]. Inform aims to increase the transparency of processing the personal data, the 

organizations must supply information about the details of the personal details to be 

processed and explain the reason for collecting such data; moreover, both the users 

and society at large should be notified in real-time base to make sure the organizations 

can be monitored. The second strategy, Control, is one of the fundamental and the 

most important privacy design strategies; control allows the users involved to handle 

personal data, users have the right to choose wanted functionalities, and they also have 

the authority to update or even retract their personal information [113]. Concerning 

Enforce, the organisations should take responsibility for creating a privacy policy and 

enforce the policy by using all necessary technical and organisational controls. 

Finally, the strategy Demonstrate aims to record and audit the system logs of 

processing data and report the evidence to the Data Protection Authority (DPA).  
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Table 2-3. Summary of the privacy design strategies (Adopted from [112]). 

Data Oriented Strategies Process Oriented Strategies  

Strategy Description Strategy Description 

Minimise Limit the processing of 
personal data as much as 
possible. 

Inform Keep informed users about the data process 
information. 

Separate Separate the processing 
logically or physically. 

Control Provide data subjects with mechanisms to 
control the processing of their data. 

Abstract Limit the amount of detail of 
personal data. 

Enforce Develop the privacy policy for processing 
data and enforce this. 

Hide Mask personal data to make 
them unobservable. 

Demonstrate Maintain evidence that you process personal 
data in a privacy-friendly way. 

Although the privacy design strategies provide sufficient guidance for the 

organizations to design a GDPR-compliant software and make PbD more concrete, 

there are still limitations to implementing such strategies. Firstly, this strategy only 

focuses on GDPR and is suitable for organizations in the EU; whether the strategy 

complies with data regulations in other countries should be investigated. Secondly, 

since different organizations/companies collect different categories of data (e.g., 

medical organizations collect clinical data of patients, energy suppliers collect 

electricity consumption), this privacy design strategy should be modified in specific 

cases to settle the ethical issues better.  

2.7 Advanced Applications with Smart Meter Data  

In this section, state-of-the-art applications with smart meter data are introduced. The 

applications range from appliance-level, household-level, feeder/substation level, to 

distribution level, as shown in Figure 2-9. The typical appliance-level application is 

Non-Intrusive Load Monitoring (NILM) which requires high-frequency power 

consumption data and can disaggregate the load into individual appliances’ loads. 

Appliance-level applications are the biggest threats to individual privacy as they 

collect personal data and infer individuals’ activities from the collected data. As the 

applications move to higher hierarchical levels such as feeder-level or distribution 
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level, the sensitivity of the smart meter data is decreased as the data is aggregated, and 

the individual information will not be recognized.  
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Figure 2-9. Smart meter data application with different hierarchical levels and interval 

resolutions. 

2.7.1 Appliance signatures and Nonintrusive Load Monitoring 

Appliance signatures indicate the characteristics of specific appliances, and by 

identifying the appliance signatures, it is possible to classify different appliances 

[114]. It is vital to analyse the appliance signatures of household loads and determine 

how smart meters and AMI use them. Due to the massive application of power 

electronic devices, most appliances have obvious characteristics in appliance 

signatures, and Figure 2-10 shows typical current waveforms of household appliances. 

As for purely resistive loads such as kettle, the steady-state current is sinusoidal and 

transient current is almost the same as steady-state current; desktop, which represents 

rectifier loads, has short transient and large peak current (normally several times of 

steady-state current) in the first few cycles, after that, the system maintains steady-

state, and the waveform of steady-state current pulses near voltage peaks; vacuum 

cleaner, which is a typical motor appliance, due to the accelerating period at start time, 

it has specific start-up process and decay in transient due to increasing back EMF of 

motor loads; lastly, the magnetic ballasts in a lamp, which represents inductive loads, 

since the bimetallic switch operates differently every time depending on the initial 
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condition, the transient current envelope is also different every time, and the 

waveform of the steady-state current is sinusoidal and asynchronous with voltage. 

As indicated in [115], appliance signatures are classified into two categories:  steady-

state and transient-state signatures. Steady-state signatures are features extracted from 

the appliances operating at a steady level of power consumption without transition 

from another operation state. The typical characteristics of steady-state signatures 

include:  

(1) Power change: Power change is the most obvious characteristic which can 

provide an insight view to observers about the power consumption of appliances. 

A two-dimensional space of active power � and reactive power � is introduced to 

describe the power change [116]; this space decouples the complex power data 

into two parts and provides a useful graphical interpretation. However, some of 

the specific signatures would overlap and become difficult to detect [114].  

(2) V-I Features: V-I features are adopted to deal with the drawbacks of the two-

dimensional space; it highlights the characteristics by appending additional 

voltage and current features into the information (e.g., the Root-Mean-Squared 

(RMS) values of voltage and current), then the appliance signatures with similar 

power consumption can be clearly distinguished further. 

(3) Harmonics: Higher harmonics in the aggregate current signal can be used to 

distinguish loads with overlapping clusters in the � − � signature space. Most 

harmonics are generated due to the presence of power electronics. Particularly, 

nonlinear appliances such as motors can produce specific harmonic waveforms, 

which can assist the classification further. A three-dimensional space (�, �, and 

Harmonics) of appliances is introduced in [116], which have similar active and 

reactive power. However, by introducing third harmonics, these two appliances 

are distinguished easily.  

Transient-state signatures represent those appliance signatures of consumption 

behaviours of appliances transient from one state to another. Transient-state signatures 

have a close relationship with physical tasks the loads perform, and load monitors 
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recognize the appliance signatures mainly by specific load transient shapes rather than 

steady-state signatures. 

 
Figure 2-10. Typical appliance signatures (Data source: Pecan Street Dataport [117]). 
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Proposed by G. Hart in 1992 [115], NILM techniques extract the power consumption 

of single appliances out of aggregated power data. Liang et al. [118, 119] firstly 

proposed a four-layer load disaggregation framework by analysing load signatures, 

and the framework utilizes multi-features (Active and reactive power, harmonics, 

current waveforms, and et cetera.) to distinguish different electrical appliances. These 

features can be further used as inputs in disaggregation algorithms. A series of 

algorithms have been proposed in the last decades, including Deep Learning [120], 

Hidden Markov Model [121, 122], and Graph Signal Processing [123, 124]. The 

energy disaggregation technology can be further divided into two categories, which 

are household-level and substation-level energy disaggregation. By applying the 

algorithm, the overall power usage data is disaggregated into the real-time power 

usage of individual appliances. Let �(�) represent the power usage of one household 

recorded by the smart meter at time t, and the NILM algorithm can be expressed by 

the following equation: 

�(�) = ∑ ��(�)�� (� = 1,2 ⋯ �)   (2-1) 

where ��(�) is the power consumption of individual appliance i (range from 1 to n) at 

a period �. Moreover, the accuracy of typical NILM algorithms is listed in Table 2-3, 

and the research has already achieved an extremely high accuracy rate, especially 

applying LSTM and Bayes models. Although NILM technologies bring advantages to 

the consumers (energy utilization optimization, energy saving et al.), it is still unclear 

whether the utility of third parties would abuse the data they collected for other 

purposes rather than consumers required (unauthorized big data analysis to individual 

consumption data for advertising purpose et al.). 

Table 2-4. Performance of NILM algorithms.  

Algorithm LSTM GRU CNN KNN 
Accuracy (%) 80-97 [125-127] 80-97 [128, 129] 75-98 [130-132] 70-90 [133, 134] 

2.7.2 Value-added service platform 

Value-added services that utilize fully smart meter data can help the customers better 

predict, manage and save energy [45] and enhance the customers' living experience. 
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Typical value-added services include billing, NILM, load forecasting, load 

management, demand response, customized information services etc. [135, 136].  In 

the IoT era, the AMI and its surrounding appliances and environment construct the 

Internet-of-Energy (IoE) [137]. IoE-based platform, which adopts fog computing, 

cloud computing, and edge computing, has been proposed in the literature.  

A centralized cloud-based value-added service platform is introduced in [138-140]. 

M. Tao et al. [138] develop a multi-layer cloud architectural model which enables 

interaction between service providers and household appliances; the cloud-enabled 

platform solves the heterogeneity issues by employing the ontology method. Lloret et 

al. [139] propose an integrated IoT AMI that can be deployed in smart cities; the 

centralized architecture relies on a cloud server which utilizes big data/machine 

learning technologies. The platform enables multiple value-added services, including 

consumption prediction, incident detection, and customer characterization. In [140], 

A. Meloni and L. Atzori introduce a virtualization middleware to improve the 

capabilities and opportunities of the cloud-based value-added service platform. 

Although cloud computing-based platforms can analyse and process powerfully on 

the cloud, several shortages should be noticed. First, the scalability of the cloud-based 

platform is limited; all smart meters in the smart city communicate with the cloud 

server on a real-time basis; this process generates abundant data to be transmitted, 

analyzed, processed, and stored simultaneously in the cloud. For a city with a large 

number of smart meters, the platform would have a high demand of communication 

bandwidth and cause serve latency which cannot be acceptable for real-time services. 

Secondly, the cloud-based platform relies on the communication channel and the 

Internet; all services will be unavailable once the Internet is disconnected. 

Furthermore, the privacy and security issues raised by the cloud server cannot be 

avoided as well. Detailed power consumption data of the consumers need to be 

uploaded to the cloud to obtain certain services; this information could reveal 

consumers’ private information such as behaviour patterns.  

Fog-computing and edge-computing, as two distributed computing frameworks, are 

technologies that overcome the drawbacks of the cloud computing method; these two 
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approaches enable real-time analytics with little latency. Fog computing introduces an 

intermediate layer between a cloud server and IoT sensors/devices, and the collected 

data is processed within a fog node or IoT gateway, which is close to IoT sensors 

[141]. The first fog computing-based AMI was introduced by Y. Yan and W. Su [142] 

in 2016; a master node is designed to process and store metadata of a group of smart 

meters. However, detailed value-added services are not introduced in this scheme. M. 

Moghaddam [143] and M. Forcan et al. [144] extend the fog-computing scheme, 

respectively. Services including optimal day-ahead energy consumption schedule, 

voltage profile monitoring and power loss estimation are simulated in their proposed 

schemes. The simulation-based study demonstrates that the fog-computing AMI 

scheme can efficiently reduce total simulation time and data being sent to the Cloud.  

Unlike the fog-computing methods, which require extra fog nodes, the edge-

computing AMI scheme process the metadata directly on the smart meter. [145] 

proposes edge analytics-enabled smart home architecture with local deep learning 

/machine learning configured in the home edge gateway. The architecture can provide 

energy efficiency services, including home energy management. [146] presents an 

intelligent edge computing-based energy management for future smart cities. An 

energy edge server is deployed as the gateway to computing energy data in a local 

area network. Expect for the power consumption data collected by the smart meter, 

the edge computing infrastructure's inputs also cover various variables related to the 

buildings, such as temperature and humidity. However, both works require installing 

an extra edge home gateway to enable edge computing, increasing the budget for 

smart meter roll-out. The most relevant work is presented by Matteo Orlando et al. 

[147], an IoT-enabled 3-phase smart meter designed to enable both on-board, on-fog, 

and on-cloud services. Moreover, the self-configuration and auto-update procedures 

help the AMI update its algorithms without affecting the rest systems.  

Although edge-computing-enabled AMI has been discussed in the literature, little 

attention has been paid to the consumers' privacy when providing TPSs to them. 

Methods such as rechargeable batteries for smart meters [57], noise-adding methods 

[72], and data anonymization methods [85] have a different level of privacy guarantee, 
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but these technologies also disable the TPSs as the original smart meter data is 

distorted or masked. A method which can balance the privacy and functionalities is 

desired. As a promising privacy-preserving distributed computing technique, 

federated learning has drawn more and more attention as it allows distributed 

computing while the clients do not share their data to the cloud [148]. FL has been 

applied in power system fields such as solar irradiation forecasting [149], electricity 

consumer characteristic identification [150], and energy management [151]. 

However, these applications are limited to the interactions between retailers/PV 

stations and the server; little work emphasizes customer-level applications. 

To summarise, the following knowledge gaps in existing literature should be filled:  

(1) The flexibility and scalability of value-added services should be taken into 

consideration for the development of the next generation AMI;  

(2) Lacks work to make a trade-off between functionalities and privacy;  

(3) Lacks built-in deep learning algorithms to process time-series data efficiently.  

2.7.3 Short-term load forecasting 

Electric load forecasting can be divided into (1) Short-Term Load Forecasting (STLF), 

few minutes to 24 hours; (2) Long-Term Load Forecasting (LTLF), one to ten years; 

and (3) Medium-Term Load Forecast (MTLF), one month to one year [152]. Among 

all load forecasting methods, STLF Load forecasting is vital for power systems, as it 

can help power system operators make decisions about supply plans, demand-side 

management, generation reserve, and so on [153]. In recent years, the prediction 

performance and reliability of STLF models have improved significantly with the 

development of AI techniques [154]. Modern STLF models can be divided into single 

STLF models and hybrid STLF models. Whilst single STLF models can be divided 

into learning-based models (including regression-based models, deep learning-based 

models, and machine learning-based models). Conventional regression models 

include Linear Regression (LR) [155, 156], Gradient Boosting Regression (GBR) 

[157], ARIMA [158].  
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Deep learning-based methods utilize multiple hidden layers to evaluate the non-linear 

correlations between the inputs and outputs of the model, both Convolutional Neural 

Network (CNN) [159], long short-term memory (LSTM) [160], extreme learning 

machine (ELM) [161] have been employed to the STLF tasks and achieve good 

prediction accuracy. Among all DL models, LSTM and its variant Bidirectional 

LSTM (BLSTM) draw the most attention of researchers for its superior performance 

in processing sequence data. The memory cell enables  Comparing to normal point-

to-point predictions, probabilistic STLF methods predict an area of the future load 

may locate [162, 163], and the probabilistic models can better capture the load 

variation.  

Considering the uncertainty and non-stationary and non-linear properties of load 

demand, conventional single STLF models are inefficient in extracting the fluctuating 

loads. Hybrid STLF models have drawn more and more attention in recent years for 

their high adoption and precise prediction accuracy. Hybrid models usually consist of 

two or more single methods to better extract the features of inputs and increase the 

prediction accuracy. Specifically, hybrid deep learning-based approaches that 

combine the Micro-Clustering (MC) task are introduced in [160, 164-168]. Normally, 

electric load clustering consists of four steps [154]: Pre-processing, cluster and 

centroid, construction of the representative load curves, and assess the clustering 

performance. Whilst traditional MC-based STLF methods [160] cluster the load curve 

over a time span and ignore the variations of different hours, H. Jahangir et al. [164, 

165] proposed an STLF model which combines BLSTM with MC technique 

smoothly, the load demand data for each hour is clustered into several categories by 

implementing either supervised or unsupervised MC methods. A specific BLSTM 

model is trained for each cluster. As a result, the MC-based method can better predict 

these hours with more spikes [165].  

However, these methods discussed above encounter a bottleneck as models only 

utilize time-domain information, while rich information about the load in the 

frequency domain is overlooked. The hybrid methods which combine decomposition 

techniques and DL models can utilize both time-domain and frequency-domain. 
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Decomposition methods include Empirical Mode Decomposition (EMD) [169], 

Variational Mode Decomposition (VMD) [170, 171], seasonal and trend 

decomposition using Loess decomposition (STL decomposition) [172], and Empirical 

Wavelet Transforms (EWT) [173].  EMD-based STLF methods are introduced in 

[169]. As an adaptive non-linear decomposition method, EMD decomposes the 

original signal into a series of Intrinsic Mode Functions (IMFs) using Hilbert–Huang 

transform, and each IMF is an amplitude modulation–frequency modulation (AM-

FM) signal [174]. However, as a purely data-driven method, EMD lacks a 

mathematical definition, so it is difficult to understand the decomposition results; 

secondly, the decomposed signals will diverge at the endpoints and highly sensitive 

to noise [12]. VMD-based STLF methods are presented in [171, 175]. As an 

alternative algorithm to EMD, VMD is a non-recursive, adaptive decomposition 

estimation method to decompose the original signal into several mode functions with 

specific bandwidth in the frequency domain [176]. In [171], S. Kim et al. introduced 

a hybrid STL-VMD-LSTM STLF method to extract both seasonal and frequency 

features of the electric load. K. Semero proposed a hybrid VMD-ANFIS forecasting 

model [175]; the model takes advantage of both mode decomposition and fuzzy logic 

principles. The latest decomposition algorithm, EWT, combines the strength of the 

wavelet’s mathematical definition with the flexibility of EMD [173].  

Although there are a rich of works have been illustrated in the literature, the existing 

STLF models still have some knowledge gaps that can be filled:  

(1) Firstly, the hybrid DL with mode decomposition methods in the literature either 

lack mathematical definition (EMD) or low adaptivity (VMD); a new hybrid 

STLF which takes advantage of both EMD and VMD should be proposed.  

(2) Secondly, electric spikes and other noise would influence the training process and 

the prediction accuracy; a proper denoising technique should be selected to 

process the original data.  
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2.7.4 Solar energy separation at the grid supply point 

Renewable energy generation capacity, such as solar panels and wind turbines, is 

growing rapidly to reduce the emission of carbon dioxide and the costs of energy 

consumers. However, most renewable generation is installed Behind-The-Meter 

(BTM), which means the generated solar energy is invisible to the energy utilities. 

These BTM PV systems have significantly changed the netload's shape (netload in 

this thesis is defined as the customer’s energy consumption minus its solar 

generation), which challenges the network operators to determine adequate operating 

reserves and make precise short-term load forecasting [177]. Hence, a method which 

can separate the PV generation from the netload is essential for the grid operator to 

control the distribution network. Depending on the grid level, the solar energy 

separation methods are divided into customer-level methods, distribution/feeder, and 

transmission level methods. The consumer-level solar energy separation method is 

introduced in [178, 179] as a method similar to the NILM technique; the purpose of 

household-level solar energy separation is to divide the consumer’s PV generation 

from the induvial smart meter data. However, analysing household-level solar energy 

generation will introduce privacy risks to the customers, which is opposite to the target 

of this thesis.  

The distribution/feeder level solar energy separation method estimates the overall PV 

generation in a community or an area without intruding individual’s smart meter. In 

the literature, distribution/feeder level solar energy separation methods can be divided 

into two categories, which are deterministic disaggregation and probabilistic 

disaggregation methods. Existing work mostly focuses on the deterministic 

disaggregation method, which can be further divided into model-based, upscaling, and 

data-driven methods. The model-based method estimates the total solar energy in a 

region via constructing an equivalent PV system [180-185]. Taking grid 

measurements, weather information, and irradiance information as inputs, the 

parameters of the equivalent system are optimized by solving an optimization problem 

formulation. Few regression methods are proposed, including Contextually 

Supervised Source Separation (CSSS) methodology [184] and its extension [185], 
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convex optimization [180, 182], and multiple support vector regression models [183]. 

In addition, ambient temperature is adopted as a correction factor to improve the 

model accuracy in some works [182, 185]. In [183], K. Li et al. proposed an Ensemble 

model by considering sub-models under different weather conditions; the capacity of 

the PV systems is also estimated automatically. 

To sum up, the model-based method requires knowledge of the PV module model 

(angle of solar radiation, series resistance, etc.); lacking vital information would lead 

to a large error between ground truth and estimation. Hence the flexibility of the 

model-based method is limited. Moreover, the mathematical equations have normally 

highly non-linear and chaotic characteristics, which is computationally intensive.  

Upscaling method [186-189] selects a small number of representing PV systems as 

the reference to estimate the overall PV generation of the whole area.  In [186, 187], 

a method that combines a data dimension reduction procedure and a mapping function 

(linear regression, Kalman filter) is proposed.  Moreover, a hybrid method that 

combines upscaling with satellite-derived is proposed in [188, 189]. Next-generation 

high-resolution satellites produce high accurate irradiance estimates that can improve 

performance. However, upscaling methods require measurements from a small group 

of PV systems in the target area, and this information is not always available for 

rooftop PV. 

To overcome the shortages of approaches mentioned above, the data-driven method 

utilizes high-resolution data from a variety of data resources that correlate to solar 

energy to estimate solar energy [186, 187, 189-192]. The power data comes from 

micro-phasor measurement units (�PMUs), supervisory control, and SCADA ,and 

smart meters. While meteorological data comes from National Centres for 

Environmental Information (NCEI) (US) [193], Climatological Observers Link 

(COL) (UK) [194], and satellite data from The National Solar Radiation Database 

(NSRDB) (US) [195], or RE Data Explorer (Central Asia) [196]. F. Bu et al. [190] 

proposed a game-theoretic approach, a closed-loop game-theoretic approach is used 

to search the optimal composite exemplars from a candidate library, and a semi-
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supervised source separator is employed for disaggregation. In [191], Y. Wang et al. 

proposed a hybrid method that combines model-based and data-driven load/PV 

forecasting techniques. The PV generation and demand load are decoupled at first, 

and each component is forecasted individually via a neural network and Gradient 

Boosting Regression Tree (GBRT). Moreover, a Multi-Layer Perceptron (MLP) 

neural network is raised in [192], and measurement data from various sources are fed 

into the network to implement the disaggregation. The results show that the hybrid 

model achieves better performance than models that only utilize one data source.  

Probabilistic solar energy separation/forecasting methods are developed based on the 

conventional data-driven approaches introduced above. Compared to deterministic 

disaggregation methods, as mentioned above, the probabilistic disaggregation method 

provides more instructive information, such as the quantification of the uncertainty. 

The network operators can benefit from the probabilistic results by considering the 

uncertainties to determine necessary reserve deployment and improve the operation 

efficiency. Probabilistic methods have been employed in solar energy forecasting with 

great success before, and models such as quantile regression [197], Gaussian process 

[198], ensemble learning [199], and Bayesian deep learning [200] are introduced in 

the literature. Few works focus on probabilistic PV separation as there are more 

uncertainties to disaggregating the PV generations from the netload, as both the PV 

capacity and historical PV generation data are unknown to the researchers. The 

authors in [201] introduce a probabilistic PV estimation method to estimate the PV 

capacity given time-series historical load and irradiance data while considering the 

uncertainty in solar irradiance and the measured netload. Empirical probability density 

functions are used to determine the uncertainty, while the Monte-Carlo method is used 

to simulate the customer load and generated solar energy, and a quantile analysis 

approach is utilized in the final step to estimate the PV capacity. Moreover, 

considering the netload data is stored in several communities/energy suppliers, 

sharing/collecting data will introduce privacy risk. a new approach which combines 

probabilistic solar energy disaggregation methods with FL is proposed by J. Lin et. al 

[202] and X. Zhang et. al [203] in 2021 to protect the privacy of the consumers/entities 
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during the data analytics and data sharing, FL is a privacy-preserving edge-computing 

approach which does not need personal share data to the central cloud.  

To sum up, method-based methods have a strong mathematical explanation of the PV 

systems but lacking adaptation and flexibility are strictly limited. While upscaling is 

suitable for large-scale PV systems, data-driven methods heavily rely on data 

resources and do not have strong mathematical definitions. From the literature, the 

followings knowledge gaps should be filled in this thesis: 

(1) In the literature, most methods are supervised learning approaches, while in most 

cases, ground truth PV generation data is unenviable for training the model. Hence, 

a hybrid solar energy separation method which employs either an unsupervised 

learning model or a supervised learning model should be proposed to increase the 

flexibility of the application in practice. 

(2) A part of research in the literature still requires the acquisition of the data from the 

individual smart meters, which brings additional privacy risks to the consumers. 

Hence, the proposed method should avoid accessing an individual’s energy 

consumption or accessing the aggregated data from the aggregators.  

(3) Some methods in the literature introduce complex mathematical and physical 

models, significantly increasing the computation complexity; the proposed 

method should require lower computation capacity.   

(4) The solar energy separation method should have high adaptivity to be applied to 

the feeders with different PV penetration rates.  

(5) The transferability of the solar separation method must be investigated to find the 

possibility of transferring the pre-trained model to other areas. 

2.7.5 Feeder-level energy disaggregation 

Feeder-level energy disaggregation technology Artificial Intelligence (AI) based 

feeder-level energy disaggregation approaches are introduced in [186, 187, 204-211]; 

the objective of this method is to decouple the feeder-level net demand into load 
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components. The above approaches can be further divided into model-based and 

measurement-based methods.  

The model-based method is presented in [209-211], which combines the ZIP load 

model with artificial neural network algorithms. Synthetic data is built based on the 

ZIP/exponential load model, and then Monte Carlo simulation is used to generate 

synthetic training and validation data. By changing the weights of load components 

and voltage, a few active power and reactive power measurements are obtained, which 

are used for model training/validation. Moreover, a two-layer feedforward shallow 

neural network is built to estimate the portion of each load category from the total load 

demand measured at the substation level [210]. A multi-modal LSTM is introduced in 

[209] to identify the time-varying ZIP load and Induction Motor (IM) model 

parameters. The algorithm's accuracy is increased by considering different modalities 

of the input data. The advantage of this method is that the dataset can be easily 

constructed, referring to the ZIP/ exponential load model. The limitation of this 

approach is that the dataset used in the case study is synthetic, and the trained model 

cannot be used in a real-world case.  

Unlike the model-based method that uses a synthetic dataset, the measurement-based 

approach utilizes real-world smart meter measurements. Ledva et al. [205] proposed 

an online learning method to separate air conditioners' demand (AC demand) from the 

demand load. Household-level smart meter measurements provided by the Pecan 

Street Dataport [117] are aggregated to build a feeder-level load. Then an online 

learning algorithm, Dynamic Fixed Share (DFS), is adopted to perform energy 

disaggregation by considering measurements from both substation and weather 

stations. Based on [205], an improved algorithm that combines model-based method 

and measurement-based method is presented in [206]. Substation, feeder, and smart 

meter measurements (active power, reactive power, complex voltage, and complex 

current) are utilized together to enhance the algorithm's flexibility. The online learning 

algorithm, Dynamic Mirror Descent (DMD), keeps iterating for measurement- and 

model-based updates. The difficulty of the measurement-based approach exists in the 

difficulty of obtaining data to train the model.  
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Researchers further work on increasing the visibility of Behind-The-Meter (BTM) 

solar energy by decoupling the solar energy from the net load [204, 208]. Unlike 

traditional demand load, solar energy generation is highly related to solar irradiance 

data and meteorological data. In [208], a regional NILM algorithm is proposed to 

disaggregate solar energy and Electric Vehicles (EVs) loads from the substation 

demand. The data used for the case study combines three data sources (substation 

demand dataset, solar energy dataset, and EV dataset), where each component is 

separated individually using their proposed three-stage disaggregation framework. 

The substation demand is the first forecast via EMD; the solar energy is estimated by 

matching the linear correlation between the solar irradiance and the PV outputs. 

Finally, the EVs load is estimated via the Limited Activation Matching Pursuit 

(LAMP) method. [204] views the energy disaggregation as a partially labelled 

dictionary learning problem. By training the offline model with historical datasets 

with partial labels, the system can efficiently separate three load categories, including 

solar energy. However, in practical application, the situation is more complex than the 

case study they implemented. There are more than three categories of load aggregated 

at the same time. Other solar energy disaggregation methods include linear regression, 

Kalman filter [186, 187], Gradient Boosting Regression Tree (GBRT) [191], Multi-

Layer Perceptron (MLP) neural network [192], Gaussian Mixture Modelling (GMM) 

[212]. Nonetheless, these approaches only focus on separating solar energy, and other 

load components remain unseparated from their research. 

Another research area that correlates to the proposed method is the probabilistic 

estimation task. Probabilistic estimation was used in power systems and energy 

discipline with great success, e.g. Load forecasting [213-217], locational marginal 

prices forecasting [218], Probabilistic Real-Time Thermal Rating (RTTR) forecasting 

[219, 220], and wind forecasting tasks [221]. Probabilistic estimation utilizes a variety 

of approaches such as Quantile Regression (QR), Quantile GBRT (Q-GBRT), 

Regression Neural Network (QRNN) [222], Probabilistic Intuitionistic Fuzzy Time 

Series Forecasting (PIFTSF) [223] methods to estimate the results in the forms of 

quantiles Prediction Intervals (PIs), etc. As a typical uncertainty quantification 
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approach, PIs set the upper and the lower bounds to quantify the level of uncertainty, 

and the corresponding PI nominal confidence (PINC) is provided as well (for instance, 

PINC equals 95% with 0.975 as the upper bound and 0.025 as lower bound). 

Most relevant to this work, J. Ponoćko and J. V. Milanović [224] present an ANN-

based energy disaggregation method; this method combines the advantages of model-

based and measurement-based methods introduced above. Instead of synthetic 

training data, this method utilizes aggregated smart meter data with detailed load 

composition information. The simulation results show their method can disaggregate 

the netload into controllable and uncontrollable loads with high accuracy. Although 

this cutting-edge work provides a more practical scheme, several improvements can 

still be made based on their work: Firstly, as a point prediction model, ANN has 

limited learning ability to process sequence data, and RNN models could have better 

model performance. Secondly, it has been proven that weather and calendar features 

can boost prediction accuracy [225]. Hence the prediction model should access more 

external databases. Moreover, the increasing penetration of renewable energy changes 

the load shape. Hence these distributed generations should also be taken into 

consideration. 

In the literature for feeder-level energy disaggregation, some knowledge gaps should 

be filled and can be concluded as follows. 

1) In the literature, only grid measurements (e.g., active/ reactive power, voltage) are 

utilized as model inputs. However, load demand is influenced by other variables 

such as meteorological and calendar data. Hence, a model which considers all 

relevant variables should be proposed. 

2) Although both machine learning and deep learning algorithms are introduced in 

the literature, the uncertainty of energy disaggregation is not discussed.  

3) The transferability of the energy disaggregation technique is not investigated; it is 

vital to validate whether the proposed method can be used in different areas.  



62 Literature Review

 

2.7.6 Comparison among three applications 

A comparison of the three applications discussed above is presented in Table 2-5. 

These applications have some similarities, as they all utilize electricity load demand 

data to solve problems. The purpose of NILM and feeder-level energy disaggregation 

aims to separate the load into sub-components on a real-time base to increase the 

visibility of the load. The difference between these two techniques is the hierarchical 

level; while NILM focuses on a single house or building, the feeder-level energy 

disaggregation tries to understand the load compositions of a wholly residential area. 

Hence, the feeder-level energy disaggregation can achieve similar results while it does 

not invade personal data. As for STLF, the target of STLF is to forecast the overall 

demand load in the short future rather than the current timestep. The purpose of STLF 

is to increase the predictability, and the load components are unknown to the power 

system operator. 

Table 2-5. Comparison between three problems. 

 Feeder-level Energy 

Disaggregation 

House-level Energy Disaggregation 

(Nonintrusive Load Monitoring) 

Feeder-level Load 

Forecasting 

Input Netload at the grid 
supply point 

Power consumption of a single house Historical demand 

Output Portion of appliance Load compositions Future demand load 
Aggregation 

Level 

A residential area Single house or building A residential area 

Horizon Real-time Real-time Future 
Privacy Issue No Yes No 

2.8 Chapter Summary 

In this chapter, a comprehensive literature review is presented. The review focuses on 

six aspects that strongly correlate with the research topics. The infrastructure of smart 

grids and advanced smart metering systems was initially introduced. Then the privacy 

intrusion issues of smart meters are classified into four categories: behaviour patterns 

identification, real-time surveillance, fraud, and non-grid commercial uses of data. 

Investigation state-of-the-art privacy enhancement techniques are implemented in 

Section 2.3, and existing methods are divided into two main groups: user demand 
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shaping and data manipulation; both the advantages and disadvantages of each method 

are fully discussed. 

Moreover, the latest data regulation policies to regulate smart meter data in Europe 

are researched, and the correlation between the GDPR and smart meter data is 

emphasised. Furthermore, the ethical issues raised by smart meters and artificial 

intelligence algorithms are highlighted in the review, and a ‘soft’ ethical strategy is 

proposed to settle raised ethical issues in the following chapters. Finally, the advanced 

applications with smart meter data are listed. To sum up, this chapter provides rich 

background research and contributes to the rest of the thesis.   
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Chapter 3 Smart Meter Data Analytics 

Methodology  

This chapter introduces the machine learning/deep learning and data analytics 

methodologies adopted in this thesis. With the rapid development of the new 

generation, smart metering systems which enable cloud computing and real-time 

communication, how to analyse and utilize the data ethically collected by the smart 

meter is the problem to be emphasized. Moreover, new challenges and difficulties: 

high data dimensionality, large data volume, and high data acquisition/ transmission 

speed [226], need to be overcome when researchers monitor or analysis the smart grid. 

Hence, the Artificial Intelligence (AI)-based data analytics method is an important 

approach to understanding the characteristics of the smart meter and further allocates 

significant features associated with the customers' privacy. Energy suppliers, retailers, 

distributed system operators, and service providers rely on data analytics to support 

various services and functionalities [227]. Artificial intelligence has been widely 

employed in power system analytics such as load analysis (including load profiling 

[228], energy theft detection [229]), load forecasting [216], load management 

(consumer characterization [230], demand response implementation [231, 232]).  

The rest of this chapter will introduce feature engineering and pre-processing, which 

help the machine learning algorithms select the most relevant variables to make a 

precise prediction and transform raw data into an understandable format for the 

machine learning/ deep learning models. Then the fundamental theory of typical 

machine learning/ deep learning algorithms is demonstrated. Finally, the information 

theory is introduced to pave the way for measuring privacy leakage in the following 

chapters.  
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3.1 The Importance of Smart Meter Data Analytics and 

The Challenges in The Era of Big Data 

As introduced in Chapter 2, the smart grid is a revolution of both Information And 

Communication Technologies (ICTs)  and physical facilities. On the one hand, ICT 

equipment such as advanced metering infrastructure enables two-way communication 

of high granular data between the customers and the energy suppliers; on the other 

hand, the smart grid also enables two-way power flow with the introduction of 

distributed renewable generation (such as solar energy, wind turbine. The complex 

infrastructure and the big data collected by the advanced smart sensors brings great 

potential value for optimizing power system and provide various business 

opportunities for energy and internet companies.  

However, the redundant data also significantly pressures the existing power analytics 

system and data storage facilities.  The big data challenges in the smart grid can be 

summarized as the four V’s referring to [233]: volume, velocity, variety, and value. 

Volume indicates the large volume of consumer data collected by millions of smart 

meters in near real-time. The overall volume of 100 million smart meters with a 

sampling frequency of 15 min reaches 2920 TB every year [226], which Velocity 

means the big data in the smart grid must be processed at a very high speed to ensure 

real-time management and operations to guarantee the supply-demand balance as well 

as quick recovery from the system failures. Variety represents various categories of 

smart grid big data available for use. In the past, only the power consumption data in 

kW collected by the conventional electricity meter was utilized. 

Nevertheless, in the smart grid, not only rich power system information (active power, 

reactive power, voltage, current, etc. [234]) is measured, but a large amount of external 

data such as meteorological information and geographic information is also integrated 

into the smart grid big data [226]. The value represents big data analytics's huge value 

to the power system industries. Analysing the big data help power system operators 

with power generation, transmission, delivery, fault diagnosis, etc. Moreover, the 
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advanced data analytics approaches also create new business models to provide 

multiple value-added services to the customers [233].  

Another challenge of the smart grid in the era of big data is privacy and security [45]. 

As introduced in Chapter 2, the privacy issues raised by the smart meter data are the 

main barrier to data analytics; malicious attackers may also use data mining and 

artificial intelligence methods to infer sensitive information from the smart meters 

[235, 236]. Analysing the smart meter data in an ethical and privacy-preserving 

manner is vital for the smart metering system design in the rest of this thesis.  

3.2 Smart Meter Feature Engineering and Data Pre-

Processing 

Most models are based on the hypothesis that the dataset to be trained is clean and 

noise-free; any disturbance in the data would influence the performance of the models. 

However, problems such as missing values, outliers, noise, duplication, and 

inconsistency cannot be avoided during the collection process by the smart meter 

[237]. Hence, data pre-processing is the essential and primary step before feeding the 

data to machine learning/ deep learning models, and it aims to prepare a good quality, 

reliable and suitable data source for further mining algorithms [238]. In addition, the 

original dataset may contain too many features, while only a small part of these 

features is correlated to the output. In other words, these irrelevant and redundant 

features increase the data dimensionality and decrease the computation speed of the 

algorithms significantly. Feature engineering tries to remove these redundant features 

as much as possible to improve the computation efficiency [239].  

3.2.1 Data cleaning 

Good data quality will lead to better model performance. However, there are many 

missing values, wrong labels, and duplicates during the data collection. Hence, data 

cleaning is one of the most important preprocessing steps to add/ remove incorrect, 
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duplicate, or missing data. Normally, the data cleaning process is divided into four 

steps (see Figure 3-1):   

(1) De-duplicate/remove irrelevant observations. Duplicates always happen during 

data collection when the data manager merges the datasets from different places 

and users. Moreover, a dataset may contain hundreds or thousands of different 

features, while most features are irrelevant to the objective. Hence, removing the 

duplicates and irrelevant observations will make the data analytics more efficient.  

(2) Fix structural errors. Structure errors are these typos or inconsistent capitalization 

which occur during the data transferring and measuring. These errors could result 

in mislabelled categories and must be fixed.  

(3) Filter outliers. If some values inside a dataset are not fitted within the dataset and 

are irrelevant to other measurements, these could be outliers measured by 

mistakes. Once the researchers have enough reasons, these outliers can be 

removed legitimately.  

(4) Handle missing data. Most machine learning algorithms cannot operate with 

missing values, simply ignoring these missing values will make the dataset lose a 

large amount of information. There are different approaches to dealing with 

missing categorical data and missing numeric data. The best method for missing 

categorical data is to have a new class called “missing” so that machine learning 

will be informed which data is missing automatically, and it will find the 

correlations among all missing values; as for missing numeric data, the flag and 

fill method are adopted to flag these missing values with indicators and make the 

algorithm estimate the best value for the missing observations.  

Remove duplicate / 
irrelevant 

observations

Fix structural 
errors Filter outliers Handle missing 

data
 

Figure 3-1. Data cleaning process. 
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3.2.2 Categorical feature encoding 

Data are divided into numerical and categorical data: continuous and discrete data are 

generally numeric as the categories of the data are infinite (such as active power, 

voltage, current, and temperature); categorical data is non-numeric and can be 

classified into several groups (for instance zip codes, weather conditions, etc.). In 

feature engineering, the categorical data must be encoded before sending it to machine 

learning models, most machine learning models can only recognize numbers, and the 

algorithms cannot operate normally with non-numeric data. Two standard categorical 

feature encoding methods: label encoding, and one-hot encoding, are introduced as 

follows. 

3.2.2.1 Label encoding 

Label encoding is the simplest method, and it simply converts each category to a 

certain number (e.g., 0, 1, 2) [240]. However, the number sequence is a huge issue for 

label encoding, and the machine learning model could give the category with a larger 

number higher precedence over those with lower numbers. As a result, the model will 

assign more weights to the category with a larger number.  

3.2.2.2 One-hot encoding 

One-hot encoding is a binary style of categorizing method that avoids algorithm 

misinterpretation [240]. In one-hot encoding, each category value is converted to a 

new column, and then value one is assigned to these columns when this category 

presents in the current row, or value 0 is assigned when this category is absent. In 

short, one-hot encoding generates a binary vector with a length equal to the number 

of categories. However, one-hot encoding produces extremely high-dimensional 

vector representations, resulting in significant issues in computation memory and 

computability.  
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3.2.2.3 Feature scaling 

In machine learning or deep learning algorithms, the input data contains multiple 

independent features on very different scales [241]. Without a proper scaling method, 

the features with a large scale will impact the output of the model greater than others. 

Meanwhile, the machine learning algorithms will not perform well under such 

conditions. Hence, it is vital to pre-process the input data to normalize the range of 

these different features [242]. Feature scaling is a technique to normalize the range of 

different data features during the pre-processing data period. Two of the most common 

feature scaling methods are max-min normalization and standardization.  

3.2.2.4 Max-min normalization 

Max-min normalisation (max-min scaling) is a normalization method that rescales and 

shifts the input data to values between 0 and 1 [243]. The equation of max-min 

normalisation is shown in Equation (3-1): 

�� !"#$�%&' = ()*+,  (()
*./(())*+, (()     (3-1) 

where max (x) and min (x) represent the maximum and minimum values of the dataset. 

3.2.2.5 Standardization  

Unlike max-min normalisation limit the values into a specific range, standardization 

makes the new values of each feature have zero mean and unit variance: 

�0 = ()1
2       (3-2) 

where � is the mean value, and 3 is the standard deviation of the feature vector.  

3.2.3 Feature selection 

As stated in the previous section, most of the features in a dataset are redundant and 

irrelevant to the output values, and feature selection is the method to remove these 
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redundant features as much as possible while the important information is not lost 

meanwhile [239]. There are many benefits to implementing feature selection in 

machine learning algorithms: Firstly, the model is simplified to reduce the server's 

computation overhead and storage capacity; secondly, less computation time is 

required. This advantage is significant when the training data size is large; thirdly, the 

curse of dimensionality problem is avoided. When there are too many features, 

dimensionality increases, and the space volume increases, making the available data 

sparse. In such a high dimensional space, the data for training grows exponentially to 

achieve good prediction results [244]. All features can be classified into three classes: 

relevant features, irrelevant features, and redundant features. Relevant features 

indicate these features which significantly impact the output and cannot be replaced 

by others. Irrelevant features represent the features that do not influence the output. 

Redundant features are the features that other existing features can replace.  

A feature selection approaches contain two components, a selection algorithm to 

generate candidate subsets and an evaluation algorithm to score the generated subsets. 

Typical feature selection methods include the filter, wrapper, and hybrid methods 

[245]. The filter method ranks the variables referring to the relevant scores and uses a 

threshold to filter out those variables below the threshold, regardless of the model's 

algorithm. The relevance of the features to the output is measured by ranking methods 

such as Kullback-Leibler divergence (K-L divergence), mutual information (MI), 

correlation analysis, and Fisher’s score. Whereas the wrapper method will first 

generate the subset of features, then the model is trained with the subset; by 

adding/subtracting features and training the model, the best features to achieve the 

highest accuracy are obtained. The hybrid method combines the filter method and 

wrapper method, which takes care of the machine training iterative process while 

maintaining the computation cost to be minimum. Followings are some typical 

ranking methods used in feature engineering. 
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3.2.3.1 Ranking method 

3.2.3.1.1 Kullback-Leibler divergence 

K-L Divergence is an information-theoretic quantity to assess the similarity between 

two distributions, and it has diverse applications such as applied statistics, fluid 

mechanics, neuroscience, and machine learning. The K-L Divergence is defined as: 

4(�||�) = 6 78
(9:;

(9<= (�)>�? @A(()
@B(() ��     (3-3) 

where 78(�) and 7C(�) represent the probability density functions (pdfs) of � and �. 

The larger value 4(�||�) is, the better privacy has been protected. 

3.2.3.1.2 Mutual information  

MI D(E�; G�) measures the dependence between two random variable sequences E� 

and G�  [246]. In other words, MI can explain the reduction of the original load 

sequence E� given knowledge of the modified sequence G�: 

D(E�; G�) = H(E�) − H(E�|G�)       

                                      = H(E�) + H(G�) − H(E� , G�)   

 (3-4) 

 ≈ − �
� >�?�(G�) − �

� >�?�(E�) + �
� >�?�(E� , G�)   

where H(E�) and H(G�) are the marginal entropies, which measure the uncertainty 

about the random variable; H(E�|G�) is the conditional entropies, and (E� , G�) is the 

joint entropy of H(E�)  and H(G�) . This thesis adopts a variant MI named 

Normalized Mutual Information (NMI) to show the normalized results between 0 and 

1 (0 represents no mutual information, 1 represents perfect correlation).  
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3.2.3.1.3 Correlation analysis 

The Pearson correlation coefficient K  is used to measure whether two continuous 

variables are linearly associated. The value of K ranges from -1 to 1 (a positive value 

indicates positive correlation, while a negative value indicates negative correlation); 

the larger K, the stronger the correlation between two variables. The expression of the 

Pearson correlation coefficient is shown in (3-5): 

ρ = ∑ ((M)(̅)(OM)OP)=MQR
S∑ ((M)(̅)T ∑ (OM)OP)T=MQR=MQR

     (3-5) 

where n is the sample size, �U is appliance power consumption at time t and VU power 

consumption generated by the adversary;  �̅, VP is the mean value of �U and VU. 

3.3 Machine Learning Foundations 

AI is a branch of science that develops intelligent computers, systems, or machines to 

handle tasks that a human should do before [247]. As AI is a broad definition in 

multiple disciplines such as computer science, psychology, philosophy, and 

linguistics, a narrow definition should be provided in the field of computer algorithms. 

Machine learning is the core and fundamental concept of AI, which enables machines 

to have the ability to learn without being explicitly programmed [248]. As a part of 

AI, the machine learning algorithm enables machines to perform tasks by gaining 

experience from past data without programming explicitly [241]. Machine learning 

can be used for complex tasks for traditional algorithms such as spam filter, image 

classification, natural language processing, time series forecasting, etc. Different 

machine learning algorithms can be classified into supervised, unsupervised, semi-

supervised, and reinforcement learning, referring to the supervision methods when 

these models are trained.  However, the disadvantages of traditional machine learning 

algorithms are also obvious (see Figure 3-2): Firstly, traditional machine learning 

algorithms require extracting features manually, failed to select the right features 

would reduce the prediction performance; secondly, the structure of many traditional 
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machine learning algorithms are simple (such as ordinary least squares regression, 

linear regression), the accuracy of these models decreases significantly when the 

models deal with a large amount of data. Moreover, conventional machine learning 

algorithms require long computation time and considerable computation power in 

many cases, which limits the application in more complex tasks.  

  

(a)      (b) 

Figure 3-2. (a) Relations among artificial intelligence, machine learning, and deep learning (Adopted 

from [249]); (b) Difference between deep learning and machine learning (Adopted from [250]). 

3.3.1 Supervised learning 

Supervised learning is the Machine Learning task that trains a model from labelled 

data containing training examples. Moreover, each input-output pair of training 

examples contains an input vector and the desired solution to the input (labels) [251]. 

The purpose of the supervised learning algorithm is to learn the inferred function that 

can best map the inputs and the outputs of the training examples, and the function can 

be used for mapping new examples [252]. Referring to different tasks, supervised 

learning can be further divided into classification and regression tasks. The target of 

the classification task is to classify the examples into different categories (face 

classification, spam filter etc.), while the regression task aims to predict a target 

numeric value given input (load forecasting, energy disaggregation, et cetera). Some 

important supervised learning algorithms include k-Nearest Neighbours (KNN), 

decision trees and random forests [243].  
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3.3.1.1 K-nearest neighbours 

KNN is one of the simplest machine learning algorithms that can be used for 

classification and regression tasks, and it is a category of lazy learning algorithms that 

assign an object to the most frequently occurring class amongst its nearest neighbours. 

K represents the number of data points to be considered in this classification. The 

distance between every two points is measured by a distance measure function such 

as Euclidean Distance, Manhattan Distance and Minkowski Distance. Assume two 

tuples, E� = (��� , �W� , ⋯ , �X� ), and E� = (�X�, �XW, ⋯ , �XY), then the formulas of the three 

distance function can be expressed as follow: 

Euclidean Distance:  

4�Z�[\E�, E]^ = S∑  YX`� \EX� − EX
]^W

     (3-6) 

Manhattan Distance: 

4�Z�a#�\E�, E]^ = ∑  YX`� bEX� − EX
]b      (3-7) 

Minkowski Distance: 

4�Z�a��\E� , E]^ = cd \bEX� − EX
]b^e  Y

X`�
f

�/e
   (3-8) 

3.3.1.2 Decision tree and random forests 

A random forest is an ensemble of decision trees, and the model is trained via bagging 

generally [253]. As the fundamental component of the random forest, a decision tree 

is a tree-like model that can be used to present decisions and decision-making visually 

(see Figure 3-3) [254]. It contains two types of nodes: root nodes located at the top of 

the tree and child nodes at each branch. Each node represents a condition, and the 

examples are divided into groups referring to the conditions (child nodes). Finally, a 

Gini impurity is adopted to measure the impurity of each node. The function of Gini 

impurity can be expressed as follow: 
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h� = 1 − ∑ ��,XW�X`�       (3-9) 

where ��,X  is the portion of examples that belongs to category k among all training 

examples in the �th node. 

The cost function for classification: 

i(j, �X) = "klmM
" h$&@U + "n<opM

" h!�qrU    (3-10) 

where h$&@U/!�qrU  shows the Gini impurity of the left/right branch, and s$&@U/!�qrU 

reparents the number of examples in the left/right branch.  

X≤0.320
MSE=0.102
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Value=0.562

X≤0.150
MSE=0.096

Samples=120
Value=0.785

X≤0.652
MSE=0.067

Samples=180
Value=0.354

MSE=0.019
Samples=40
Value=0.934

MSE=0.014
Samples=80
Value=0.635

MSE=0.017
Samples=110
Value=0.223

MSE=0.023
Samples=70
Value=0.543

True False

True False True False

 
Figure 3-3. Example of the regression decision tree. 

The cost function for regression: 

i(j, �X) = "klmM
" tuv$&@U + "n<opM

" tuv!�qrU    (3-11) 

where  

tuv� '& = ∑ \Vw� '& − V�^�∈� '&      (3-12) 

Vw� '& = �
"=yzl

∑ V��∈� '&       (3-13) 

When it comes to the random forest is a kind of ensemble learning method which 

consists of many decision trees, and the random forest is trained through bagging. It 



76 Smart Meter Data Analytics Methodology

 

makes predictions by taking a few trees' averages or mean output [255]. The accuracy 

of the prediction increases with the increase of the trees. Random forest solves the 

overfitting problem of the decision tree to achieve better prediction accuracy than the 

decision tree. 

3.3.1.3 Gradient boosting regression tree 

The Boosting algorithm is an ensemble learning algorithm that produces a stronger 

learner from a series of weak prediction models [256]. Among all boosting methods, 

Gradient Boosting Regression Tree (GBRT) is the most popular algorithm that is 

employed in multiple tasks.  Normally, the GBRT algorithm contains three elements: 

a differentiable loss function for optimization, a squared error is adopted as the loss 

function for regression task; a weak prediction model to make a prediction, and the 

decision tree is used as a weak model in Gradient Boosting; and an additive model 

that can add all weak models together and minimize the losses [257], detailed steps of 

GBRT is presented in Algorithm  3-1.  

Algorithm  3-1: Gradient Boosting Regression Tree (GBRT) algorithm 

Input: Dataset (�, V)�`�Y , where � the input features and V the target, {(�) the prediction model, loss 

function \V, {(�)^ = �
W (V − {(�))W, learning rate | (0 < | < 1), Iteration number M. 

Output:   {a(�). 
1) Initialization. Set the {~(�) = ��?s��

�
∑ (V� , �)��`� ; 

2) For m =1 to M: 
a. Compute pseudo-residuals 

 ��" = − ���\O< ,�((<)^
��((<) �

�(()`�9�R(() = V� − {(��)  

for � = 1,2 ⋯ �; 
b. Fit a weak learner (regression tree in this case) to the ��" values (training model with 

data �(��, ��")��`�� , and create terminal regions �]" for � = 1,2 ⋯ i"; 
c. Compute �]" = ��?s��

�
∑ (V� , {")�(�) + �)(<∈�<�  

d. Update {"(�) = {")�(�) + | ∑ �]"�9]`� . 

Light Gradient Boosted Machine, or LightGBM for short, is a variant of a 

conventional gradient boosting algorithm [258]. Based on the gradient boosting 

decision tree algorithm, LightGBM has two improvements, gradient-based one-side 

sampling and exclusive feature bundling, to deal with large instances and features. 

These improvements dramatically speed up the training time and improve prediction 

accuracy in parallel.  
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3.3.2 Unsupervised learning 

In contrast to supervised learning, unsupervised learning algorithms learn patterns 

from unlabelled data. Instead, the system must discover the patterns by itself [259]. 

Typical unsupervised learning algorithms include clustering, anomaly detection and 

dimensionality reduction.  

3.3.3 Semi-supervised learning  

Labelled training examples are usually difficult to obtain, and researchers often need 

to handle datasets with a large amount of unlabelled data. The semi-supervised 

learning algorithm is developed to deal with partially labelled data, and many semi-

supervised algorithms employ a combination of supervised and unsupervised learning 

methods. The semi-supervised method will first classify the unlabelled data using 

unsupervised clustering methods, and then a supervised Machine Learning model is 

used to fine-tune the model. 

Most of the tasks to be solved in this thesis are supervised learning, especially 

regression supervised learning, while unsupervised/semi-supervised learning 

algorithms are adopted to improve the model's performance. 

3.3.4 Performance metrics for machine learning algorithms 

Performance metrics evaluate the performance of machine learning models, and 

different performance metrics are employed depending on whether a classification 

task or a regression task. In machine learning and data science, ground truth is 

employed to represent the real value of output, while prediction means the predicted 

value generated by the machine learning models.  

3.3.4.1 Performance metrics for regression models 

To assess the performance of the regressor, the following four performance metrics 

are used in most cases: Mean Absolute Error (MAE), Normalized MAE (nMAE), 
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Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), 

Normalized RMSE (nRMSE), and �W . As for metrics MAE, MAPE, RMSE, and 

nRMSE, a smaller value indicates a better prediction performance. The detailed 

formulas are as follows: 

(1) MAE:  

t�v = ∑  �<QR |O<)Ow<|
Y       (3-14) 

(2) nMAE: 

�t�v = ∑  �<QR |O<)Ow<|
Y�P       (3-15) 

(3) MAPE: 

t��v = ∑  �<QR |(O<)Ow<)/O<|
Y × 100%    (3-16) 

(4) RMSE: 

�tuv = S\∑  �<QR [O<)Ow<]T^
Y      (3-17) 

(5) nRMSE: 

��tuv = �a�[
OP       (3-18) 

(6) �W: 

�W = 1 − �����
����� = 1 − ∑  < (O<)Ow<)T

∑  < (O<)OP)T     (3-19) 

where V� is the ground truth value, Vw� is the predicted value, VP is the mean value of the 

data points,  uu�[�  is the sum squared regression error and uu���  is the sum squared 

total error. The value of �W is between 0 and 1, while 1 means a perfect prediction as 

the predicted values are the same as the ground truth values.  

3.3.4.2 Performance metrics for classification models 

Evaluating a classifier is more complicated than a regressor; the common method is 

analysing the confusion matrix [243], as shown in Table 3-1. There are four 

combinations of the confusion matrix: TP represents True Positive, indicates the 
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number of positive examples classified accurately; FP means False Positive, indicates 

the number of actual negative examples classified as positive; FN represents False 

Negative, shows the number of actual positive examples classified as negative; TN 

means True Negative which shows the number of negative examples classified 

accurately [260]. Based on the confusion matrix, more concise metrics are developed 

to reveal more information about the prediction result: Accuracy, Recall, Precision, 

F-measure, and the receiver operating characteristic (ROC) curve.  

Table 3-1. Confusion Matrix. 

 Actual Positive Actual Negative 
Predicted Positive True Positive (TP) False Positive (FP) 
Predicted Negative False Negative (FN) True Negative (TN) 

(1) Accuracy. Accuracy represents the ratio of correctly classified instances to the 

total number of instances; it tests the classifier's efficiency. The equation for 

accuracy is: 

�������V = �8��Y
�8��Y��8��Y     (3-20) 

However, there are two drawbacks to Accuracy. Firstly, this metric may be 

misleading in the unbalanced dataset; secondly, the false predicted values are not 

used.  

(2) Recall. Also named sensitivity, or the true positive rate, is the ratio of positive 

instances correctly detected by the classifier. The equation for Recall is: 

����>> = �8
�8��Y      (3-21) 

(3) Precision. Precision is the correctly predicted positive cases made by the 

classifier. The equation for Precision is: 

�����Z��� = �8
�8��8      (3-22) 

(4) F-measure. F-Measure is a metric which combines Recall and Precision and is 

widely used in prediction. Furthermore, it states the equilibrium between Precision 

and Recall: 

{ − s��Z��� = W×�& #$$×8!& �¡� �
�& #$$�8!& �¡� �     (3-23) 



80 Smart Meter Data Analytics Methodology

 

The value of the F-measure is between 0 and 1, while a high F-measure score 
reparents a good classification performance.  

3.3.5 Remarks 

Based on the descriptions in the above sections about supervised learning, 

unsupervised learning, and semi-supervised learning, a comparison of these three 

machine learning algorithms is summarized in Table 3-2. From this table, the 

distinctive characteristic of the supervised learning method is that the training dataset 

should be well-labelled; hence the simple-structure model improves its performance 

by gaining experience from previous data. Since the model is well-trained with a large 

amount of data, the accuracy of supervised learning is normally the highest among the 

three methods. Unsupervised learning does not require labelling the training data and 

enables the model to find all kinds of unknown patterns in data by itself so that the 

unsupervised learning method can handle a large amount of data in real time. 

However, the result evaluated by the model cannot be verified due to a lack of 

transparency. The semi-supervised learning method only labels a small part of the 

data, and the small amount of training data can significantly improve inaccuracy. The 

choice of a specific machine learning method depends on the availability of labelled 

data and the exact problem to be solved.  

Table 3-2. Comparison among supervised learning, unsupervised learning, and semi-supervised 

learning. 

 Supervised Learning Unsupervised Learning Semi-supervised 

Learning 

Type of 

Problem 

Regression and Classification Clustering and Association  Reward-based 

Input Data Labelled data Unlabelled data Partially labelled data 

Process Create a target function to map 
the input and output variables 

Only input data is used for 
creating a model 

Combine two process 
methods 

Computational 

Complexity 

Simpler Computational complex Depending on specific 
algorithms 

Accuracy  Higher Lesser Lesser 

Example 

Algorithms 

Linear Regression, Decision 
Tree, K-Nearest Neighbours 

K-means clustering, Principal 
Component Analysis 

Self-Training,  Semi-
supervised Support 
Vector Machine 
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3.4 Deep Learning Foundation  

Deep learning is an important subset of machine learning, and it employs a layered 

structure machine learning algorithm named Artificial Neural Network (ANN) [261]. 

Typical Deep Learning structures include Deep Neural Networks (DNN), Deep Belief 

Networks (DBN) [262], Graph Neural Networks (GNN) [263], et cetera. A typical 

ANN has an input layer, an output layer, and several hidden layers. Furthermore, the 

components inside an ANN contain neurons, weights, biases, transfer functions, and 

activation functions. A DNN represents a complex ANN with many hidden layers; the 

complex structure of the DNN enables it to learn the complex non-linear relationships 

between inputs and outputs. Depending on applications, DNNs can be further divided 

into Multi-Layer Perceptron (MLP) [264], CNN [265], and Recurrent Neural Network 

(RNN). 

3.4.1 The basic structure of an artificial neural network 

The biological neurons inspire the design of ANN, and a biological neuron is a 

particular cell in animal brains to transmits information by generating short electrical 

impulses. Although the single neuron behaves, high computation ability can be 

performed with the network combined by billions of biological neurons [266]. As the 

elementary units in an ANN, an artificial neuron is the mathematical model of the 

biological neuron [267]; an artificial neuron receives one or more binary inputs and 

processes a binary output (or activation). Like a biological neural network, an ANN 

is constructed by connecting many artificial neurons to transmit information from the 

input to the output. The basic structure of an artificial neuron is shown in Figure 3-4, 

and an artificial neuron contains inputs, weights, bias, and activation function. Inputs 

��, �W, ⋯ , �" are the real values a neuron receives from database or previous neurons. 

And each input �� has a corresponding weight ¢�, expressing the importance of the 

respective input to the output. Bias £ is a constant term that adjusts the output along 

with the weighted sum of the inputs to the neuron. As shown in Equations (3-22) and 

(3-23), normally, an artificial neuron receives multiple inputs from other neurons, and 
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each input is multiplied by its associated weight, then the transfer function adds them 

up and passes the sum to an activation function 7 to obtain the output of the neuron.  

V�� = �� ⋅ ¢� + �W ⋅ ¢W + �¥ ⋅ ¢¥ … �" ⋅ ¢" + £ = ∑ �� ∙ ¢� + £"�   (3-24) 

V ¨U = 7(V��)      (3-25) 

 
Figure 3-4. The structure of a simple artificial neural network (Adopted from [268]). 

Although the structure of a single artificial neuron is simple, a complex ANN is 

obtained when combining millions of artificial neurons. Figure 3-5 shows the simplest 

ANN, and the ANN model contains one input layer, one output layer, and three hidden 

layers. The input layer is the leftmost layer of an ANN, and the neurons in the input 

layer are called input neurons. This layer receives initial data from the external 

database and brings the data to the subsequent layers to further processing. In contrast, 

the output layer is the rightmost layer that outputs the computation result of the ANN, 

and normally the output layer contains a single neuron for the regression tasks and 

several neurons for the classification tasks. These layers between the input layer and 

the output layer are the hidden layers, the inputs and outputs of these hidden layers 

are unknown to the researchers, and the purpose of the hidden layer is to perform 

nonlinear transformations of the inputs to the ANN. When an ANN contains a stack 

of hidden layers, this ANN is called a deep neural network (DNN). Training an ANN 

is divided into two steps: forward propagation and backpropagation [241]. 
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Figure 3-5. The structure of  Multi-Layer Perceptron. 

3.4.1.1.1 Forward propagation 

The input layer obtains the input � and propagates the information through hidden 

layers, and produces output V. The output of neurons in layer > is: 

�($��) = 7(©($)�($) + £($))     (3-26) 

where 7 is the activation function of the lth layer, and © and £ are the weight matrix 

and bias of the lth layer. A loss function is adopted to measure the error between the 

ground truth (actual) output and the output generated by the model. Normally, a mean 

square error (MSE) is used as a loss function: 

i(©, £; �, V) = �
W ªℎ¬,(�) − VªW

     (3-27) 

where ℎ¬,(�) is the activation of the last layer.  

3.4.1.1.2 Backpropagation 

After the network’s output error is computed, a backpropagation is used to update the 

model parameters generated in forwarding propagation. The backpropagation 

algorithm aims to compute the gradient descent of the network error computed in 

Equation (3-27) concerning each model parameter [241], and then the model 



84 Smart Meter Data Analytics Methodology

 

parameters (weights and biases) are tweaked to reduce the prediction error. The 

weights and bias of >th layer are updated by using a gradient descent method: 

©($) = ©($) − ® ��(¬,)
�¬(k)     (3-28) 

£($) = £($) − ® ��(¬,)
�(k)      (3-29) 

where ®  is the learning rate. The model parameters are updated by repeating the 

forward propagation and backpropagation process until the cost function minimises.  

3.4.2 Hyperparameters  

As the structure of a DNN is complex, there are many hyperparameters to tune. 

Typical hyperparameters include activation functions, regularization, loss function, 

and optimization. The following will introduce the most common hyperparameters 

and hyperparameter-tuning approaches. 

3.4.2.1 Activation functions 

In DNN, activation functions are always added to the network to provide nonlinear 

properties, and these activation functions can help the DNN learn complex mapping 

functions rather than simple linear regression. Activation functions adopted in this 

thesis are introduced in Figure 3-6. 

1) Linear function. The linear function is the simplest activation function; the 

formula is: 

7(�) = �� + �     (3-30) 

The equation shows that the activation is proportional to the input, and the 

function's gradient is constant and equal to � . However, since the gradient is 

independent of the input, the updating factors of biases and weights during the 

backpropagation process will be equal. As a result, the error cannot be minimized 

during the training process, and the neural network model cannot extract features 

from the training data. 
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Figure 3-6. Linear, TanH, Sigmoid, ReLU activation functions. 

2) Rectified linear unit (ReLU): ReLU function is a typical activation function. The 

mathematical equation of ReLU is V = max (0, �). ReLU is linear for positive 

values and 0 for all negative values.  

3) Sigmoid: As a non-linear activation function, the output of the Sigmoid activation 

function is non-lear, and the value is between 0 and 1. Moreover, the Sigmoid 

curve is a smooth “S” shape curve and is differentiable continuously at any point. 

These characteristics help neural networks extract non-linear correlations between 

inputs and outputs efficiently. The equation for the Sigmoid activation function is: 

7(�) = W
��&�;       (3-31) 

4) TanH. TanH activation function is similar to the Sigmoid function as introduced 

above. Nevertheless, different from ReLU, TanH is a symmetric curve around the 

origin. The function is expressed as: 

7(�) = tanh (�) = W
��&�T; − 1    (3-32) 
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The value of the TanH function is between -1 and 1. When looking at the gradient, 

the gradient of TanH is much steeper than Sigmoid. This property prevents the 

gradients move in a certain direction and makes TanH well-adopted in 

applications rather than Sigmoid. 

3.4.2.2 Regularization 

Overfitting is one of the most serious problems when training deep neural networks: 

the model performs well with the training data but poorly with new data. The method 

to reduce the test error is called regularization.  

3.4.2.2.1 µ¶ and µ· regularization 

Both µ¶ and µ· Regularization added a parameter norm penalty ¸(¹) to the objective 

function i  to limit the capacity of neural network models [241]. These kinds of 

regularizations can be summarized as parameter norm penalties and can be expressed 

as: 

iº(¹; �, V) = i(¹; �, V) + ®¸(¹)     (3-33) 

where ¹ is the model parameter, ® is the penalty weight. µ· Regularization is also 

called Ridge Regression or Tikhonov regularization [269]. ¸(¹) of µ· Regularization 

is equal to ¸(¹) = �
W ‖¢‖WW . Hence, the regularized objective function iº that only 

considers ¢ as parameter is defined as: 

iº(¢; �, V) = i(¢; �, V) + ¼
W ¢�¢    (3-34) 

The gradient of the regularized objective function iº is: 

∇¾iº(¢; �, V) = ®¢ + ∇¾i(¢; �, V)    (3-35) 

Furthermore, the weights can be updated as follows: 

¢ ← (1 − À®)¢ − À∇¾i(¢; �, V)    (3-36) 
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It is observed that after µ·  Regularization, a new weight decay term, shrinks the 

weights by a constant factor at each training step. Hence, the function of the µ· 

Regularization is to constrain a neural network’s weights.  

In term of µ¶ Regularization, the parameter norm penalty term ¸(¹) is ¸(¹) = ‖¢‖�. 

Hence the regularized objective function iº is: 

iº(¢; �, V) = i(¢; �, V) + ®‖¢‖�    (3-37) 

The gradient of the regularized objective function iº is: 

∇¾iº(¢; �, V) = ®Z�?�(¢) + ∇¾i(¢; �, V)   (3-38) 

where Z�?�(¢)  is the sign of ¢  applied elementwise. The function of µ¶ 

Regularization is very different from µ· Regularization does not contribute to each 

weight but the gradient of the objective function instead. µ¶ Regularization uses a 

Z�?�(¢) function to output binary weights from 0 to 1 to decrease the feature number 

in a large dimension dataset.  

3.4.2.2.2 Dropout  

Dropout is another regularization approach that is different from other regularization 

methods mentioned above. The core idea of the dropout is the dropout probability �: 

it means that each neuron inside the neural network (output neurons are excluded) has 

� probability of being ignored during each training step [270]. The outputs of these 

neurons dropped in this training step equal to 0.  

3.4.2.3 Loss function 

The loss function also called the objective function, measures the error between the 

predicted and actual values. For different tasks, different loss functions are selected. 

As for regression tasks, Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Mean Squared Logarithmic Error (MSLE), and Huber Loss are usually used. For 

classification tasks, Binary Cross-Entropy Loss, Categorical Cross-Entropy Loss, 
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Hinge Loss, and Kullback-Leibler Divergence Loss (K-L Loss) are adopted as the loss 

functions.  

3.4.2.4 Optimization  

The optimizer determines how the network will be updated based on the loss function. 

It implements a specific variant of stochastic gradient descent (SGD). A comparison 

of the performance of different optimization algorithms is presented in Figure 3-7; 

Adam and RMSProp have the fastest convergence speed and good convergence 

quality, while Adagrad has a fast convergence speed but pool convergence quality, 

and SGD has the slowest convergency speed but the best convergence quality. 

 
Figure 3-7. Comparison of the performance of different optimization algorithms [271]. 

3.4.2.4.1 Stochastic gradient descent  

Recall Equations (3-28) and (3-29), which show the gradient descent process; it is 

concluded that gradient descent is an algorithm to find the optimal solution that 

minimizes the objective function. However, the main disadvantage of the traditional 

gradient descent algorithm is that it is inefficient and wastes a large amount of time as 

it should utilize all training datasets to calculate the gradient descent at each training 
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step. SGD only selects an instance of data from the training data and then calculates 

the gradient descent of the selected instance. The most significant advantage of SGD 

is that the computation time of each iteration will not increase with the increase of the 

training dataset size. Hence, the converging speed of SGD is considerably faster than 

the traditional gradient descent method. 

3.4.2.4.2 Gradient descent with momentum  

Momentum optimization obtains the inspiration of physics that a ball that rolls down 

a slope will pick up momentum quickly. However, traditional gradient descent and 

SGD algorithms will go down the slope with very small and fixed steps, taking a long 

time to reach the bottom. Furthermore, these optimizations do not consider previous 

gradients. A variable named v which represents the velocity, indicates the speed and 

direction of the parameters moving across the parameter space. In momentum 

optimization, it considers previous gradients. It will accumulate an exponentially 

decaying moving average of past gradients and continue moving in their direction 

[241]. Moreover, a parameter Á  which ranges from 0 to 1 represents exponential 

decay: 

Â ← ÁÂ − À∇Ãi(¹)     (3-39) 

The above equation contains two parts, the first term is the gradient retained from 

previous training, and the second is the same as the standard SGD algorithm. The 

movement of the gradient can be decomposed into two components along ¢� and ¢W 

direction (see Figure 3-8), while ¢W is aligned with the ideal path, and ¢� is the vector 

that is orthogonal to ¢� . When past gradients are accumulated, their components, 

along ¢� are cancelled out while their components, along ¢W are added up. So, in 

other words, the past gradients are used for acceleration. Moreover, the larger Á 

related to À, the more effect previous gradients have on the current direction.  Finally, 

the parameters are updated with Â: 

¹ ← ¹ + Â      (3-40) 
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Figure 3-8. Comparison of the path taken by gradient descent and ideal path (Adopted from [272]). 

3.4.2.4.3 RMSProp 

RMSProp, which refers to Root Mean Square Propagation, is an optimization 

algorithm that can correct the gradient descent direction to reach the global optimum 

faster. The technology RMSProp utilizes, called adaptive learning rate, enables each 

parameter to obtain a different learning rate. RMSProp introduces an exponentially 

decaying average term that accumulates the most recent gradients: 

� ← K� + (1 − K)∇Ãi(¹)) ⊙ ∇Ãi(¹)   (3-41) 

The exponentially decaying average term will increase steadily as training steps 

increase. As a result, the original learning rate À is decreasing over time:  

¹ ← ¹ − Å
√!�Ç ⊙ ∇Ãi(¹)     (3-42) 

In this equation, � is a smoothing term to avoid division by zero.  

3.4.2.4.4 Adam optimization  

Adam represents Adaptive Moment Estimation; this optimization algorithm combines 

momentum optimization and adaptive learning rates discussed above. Equations (3-

43) and (3-44) are two decay terms similar to Momentum and RMSProp. (3-45) and 

(3-46) help boost Z and  � at the beginning of the training. Finally, the parameters are 

updated by Equation (3-47). 
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Update biased first-moment estimate: 

Z ← K�Z + (1 − K�)∇Ãi(¹)     (3-43) 

Update biased second moment estimate: 

� ← KW� + (1 − KW)∇Ãi(¹) ⊙ ∇Ãi(¹)   (3-44) 

Correct bias in the first moment: 

Ẑ ← ¡
�)ÉRM

       (3-45) 

Correct bias in the second moment: 

�̂ ← !
�)ÉTM

       (3-46) 

Compute update: 

¹ ← ¹ − À ¡̂
√!̂�Ç      (3-47) 

3.4.3 Important neural network models 

3.4.3.1 Convolutional neural network 

CNN is a kind of Deep Learning model that replaces the traditional fully connected 

layer with convolutional layers in at least one of all layers [241]; it is normally applied 

in image recognition and image classification. The biological neurons inspire the 

development of CNN in the visual cortex [273]. These neurons have receptive fields 

that enable them to react to specific patterns [243]. These small patterns then are 

reconstructed in the brain to present more complex patterns to recognize large images. 

As shown in Figure 3-9, the simplest CNN model contains an input layer, a 

convolutional layer, a pooling layer, a fully connected layer, and an output layer.  
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Input Layer

Convolutional 
Layer

Pooling Layer

Fully-Connected 
Layer

Output Layer

 
Figure 3-9. The structure of the convolutional neural network (Adopted from [265]). 

To better understand the concept of CNN, it is compulsory to understand the 

convolution operation. Given the original function �, the convolution operation aims 

to obtain a new function which is the weighted average or smoothed estimation of �. 

And a weighting function ¢(�) is sliding over time and multiplies with the original 

function: 

Z(�) = 6 �(�)¢(� − �)��     (3-48) 

3.4.3.1.1 Convolutional layer 

A convolutional layer is the core block of CNN models, and it is the first hidden layer 

that links with the input layer to extract different features from the input data. 

Normally, the input data of the CNN model is 4D tensors of shape (samples, input 

height, input width, input channels) or (samples, input channels, input height, input 

width). In contrast to the MLP, a convolutional layer processes data only for its 

receptive fields [274]. The first convolutional layer can learn small local patterns such 

as edges, colours, and gradient orientation, and the next convolutional layer can 

assemble these low-level features into larger-level features such as eyes, noses, and 

ears.  After the data passes each convolutional layer, the original data is abstracted to 

a feature map with the shape of  (samples, feature map height, feature map width, and 

several filters). It is noticed that the index of the channel in a feature map stands for 

the number of filters [265]. Record the convolution operation function in (3-48); in a 

CNN, function � is referred to as inputs, the weighting function ¢ is referred to as the 
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filter (kernel), and Z is referred as the feature map. A 2D CNN example is shown in 

Figure 3-10; in this example, the filter size is (2×2); during the operation, the filter is 

sliding over the inputs, and the dot product is taken between the filter and the part of 

the inputs that are corresponding to the filter. Finally, a feature map will show the 

inputs' detailed features, including corners, edges, et cetera. Other parameters in a 

convolutional layer include Padding, Stride. Padding is adding layers of zeros to the 

inputs to avoid the pixels in the corner that cannot be used (border effect problem). 

Moreover, the step of the movement of the filter is called stride, and the stride can 

change the shape of the feature map. 

a b

d e

c

f

g h i
× 

w x

y z =
aw+bx+
dy+ez

bw+cx+
ey+fz

dw+ex+
gy+hz

ew+fx+
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Inputs
Filter

Feature Map

 
Figure 3-10. An example of 2-D convolution. 

3.4.3.1.2 Pooling layer 

A pooling layer is always stacked after the convolutional layer. The pooling layer's 

purpose is to reduce the dimensions of the feature maps to reduce the computational 

load and the memory usage [243]. Similar to the convolutional layer, neurons in a 

pooling layer connect a part of neurons located in the receptive field in the previous 

layer. Moreover, the padding type and the stride should also be defined like the 

convolutional layer. Normally, two typical pooling layers are adopted: the max-

pooling layer and the average pooling layer [275].  

3.4.3.2 Recurrent neural network  

A Recurrent Neural Network (RNN) is a special DNN that contains loops to enable 

the network to predict future events by using previous experiences [276]; see Figure 
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3-11 (a). Similar to the structure of traditional feedforward DNN, the only difference 

between RNN and DNN is that RNN has a connection that points backward [243] 

(Figure 3-11 (b)). By unrolling the recurrent neuron, it is found that at any time step 

�, the neuron receives inputs at � �(U) and outputs at previous time step � − 1, V(U)�) 
(Figure 3-11 (c)). Hence, each recurrent neuron has two sets of weights:©(  for �(U), 
and ©O  for V(U)�), and the output of the recurrent neuron is: 

V(U) = Ê(©(��(U) + ©O�V(U)�) + £)    (3-49) 

Hidden LayersInput Layer Output Layer

Recurrent Network

∑ ∑ ∑ ∑ 

x

y

x(t-2) x(t-1) x(t)

......

(a) (b) (c)

y(t-2) y(t-1) y(t)

 
Figure 3-11. (a) The structure of a recurrent neural network; (b) A recurrent neuron; (c) unrolled 

recurrent neurons through time (Adopted from [277]). 

However, the traditional recurrent neural network has two serve issues: gradient 

vanishing and exploding problems and limited short-term memory problems [243]. 

The flow of the backpropagation starts from the output layer to the input layer, and 

the error gradient is propagated along the direction. However, the gradients will turn 

smaller and smaller as the backpropagation process moves to lower layers, and the 

weights of these lower layers remain unchanged. As a result, the iteration will never 

converge to an optimal point. This problem is the so-called gradient vanishing 

problem. 

In contrast, the gradient sometimes grows bigger and bigger, which results in great 

weight updating, and the neural network diverges; this is exploding problem. Another 

problem is that conventional RNN contains a very limited short-term memory. This 

issue is caused due to long-term information being easily lost when travelling through 

all cells before arriving at the present cell. To solve these two problems mentioned 
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above, two novel RNN structures, Long Short-Term Memory (LSTM) [278] and 

Gated Recurrent Units (GRU) [279] networks, are introduced in the literature.  

3.4.3.2.1 Long short-term memory and gated recurrent unit 

neural network 

A recurrent Neural Network (RNN) is a special DNN that contains a hidden state to 

enable the network to predict future events using previous experiences. However, 

gradient vanishing and exploding problems [280] and limited short-term memory 

problems [165] limit the development of RNN for a long time. Unlike conventional 

RNN designed from short-term memory and the naive RNN has a poor performance 

for long sequences (Vanishing Gradient), LSTM and GRU can retain long-term and 

short-term information without much loss by introducing a memory cell. Moreover, 

LSTM and GRU have gates to help the memory cell regulate past information. 

In GRU, the cell state is equal to the output at time step �, GRU has only two gates, a 

reset gate ËÌ, and an update gate ÍÌ [279] (shown in Figure 3-12 (b)). The reset gate is 

responsible for determining the combination of current inputs ÎÌ with previous cell 

state ÏÌ)¶, it has a sigmoid function to regulate the output value between 0 and 1, and 

the gate can identify how relevant the information from previous steps ÏÌ)¶. Update 

gate ÍÌ, which is like forget gate in LSTM, is developed to decide whether update cell 

state or not. The expressions for the above two gates are: 

ÍÌ = 3(ÐÍ ∙ [ÏÌ)¶, ÎÌ])     (3-50) 

ËÌ = 3(ÐË ∙ [ÏÌ)¶, ÎÌ])     (3-51) 

where 3 stands for sigmoidal activation; ⊙ represents element-wise multiplication.  

ÐÍ, ÐË  are the weight matrices. With the information from ËÌ , ÏÌ)¶  and ÎÌ , the 

candidate value from the current state ÏÑÌ is calculated. Finally, the current cell state is 

determined by ÏÌ)¶ and ÏÑÌ to remind the previous state or update to a new value: 
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ÏÑÌ = Ê(Ð ∙ [ËÌ ⊙ ÏÌ)¶, ÎÌ]     (3-52) 

ÏÌ = (1 − ÍÌ) ⊙ ÏÌ)¶ + ÍÌ ⊙ ÏÑÌ    (3-53) 

where Ê represents tanh activation. 

The LSTM model was firstly proposed in 1997 [27]. As shown in Figure 3-12 (a), in 

LSTM, the hidden state in traditional RNN is replaced by the memory cell ÒÌ ∈ ℜr×� 

(h denotes the number of hidden units) and three gates, i.e., the input gate ÔU ∈
(0,1)ℎ×� , the forget gate ÕÌ ∈ (0,1)r×� , and the output gate ÖÌ ∈ (0,1)r×� . The 

output of the previous time step ÏÌ)¶ ∈ (−1,1)r×�  and the input sequence of the 

current time step ×Ì are adopted as the input of the gates. The sigmoid activation 

function 3 controls these gates (⋅): the information is reserved when the activation 

output is close to 1, and the information is eliminated when the activation output 

approaches 0. As for the memory cell ÒÌ, a candidate memory cell ÒÑÌ ∈ (−1,1)r×� is 

computed at first. The only difference between ÒÑÌ and the gates are that ÒÑÌ utilizes a 

Tanh activation function ���ℎ( ⋅) ranging from -1 to 1. Finally, the memory cell ÒÌ is 

generated by combining ÒÑÌ  and ÔÌ  the previous memory cell ÒÌ)¶  with ÔÌ  and ÕÌ , 

where ÔÌ  decides how much data from ÒÑÌ  is useful, and ÕÌ  decides how much 

information from the old memory cell is retained. The detailed formulas are presented 

as follows: 

ÔÌ = 3(ÐÎØ×Ì + ÐÏØÏÌ)¶ + ÙØ)     (3-54) 

ÕÌ = 3\ÐÎÚ×Ì + ÐÏÚÏÌ)¶ + ÙÚ^     (3-55) 

ÖÌ = 3(ÐÎÛ×Ì + ÐÏÛÏÌ)¶ + ÙÛ)     (3-56) 

ÒÑÌ = ���ℎ(ÐÎÜ×Ì + ÐÏÜÏÌ)¶ + ÙÜ)    (3-57) 

ÒÌ = ÕÌ ⊙ ÒÌ)¶ + ÔÌ ⊙ ÒÑÌ      (3-58) 

ÏÌ = ÖÌ ⊙ ���ℎ (ÒÌ)       (3-59) 
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where ×Ì ∈ ℜÝ×�,⊙ represents element-wise multiplication; ÐÎØ, ÐÎÚ, ÐÎÛ, ÐÎÜ ∈
ℜr×Ý  (Þ is the number of examples) ; ÐÏØ, ÐÏÚ, ÐÏÛ, ÐÏÜ ∈ ℜr×r  are the weight 

matrices; and ÙØ, ÙÚ, ÙÛ, ÙÜ ∈ ℜℎ×� are the bias parameters. 

 

(a) LSTM-RNN 

 

(b) GRU-RNN. 

Figure 3-12. The structure of (a) LSTM-RNN; (b) GRU-RNN. 

3.4.3.2.2 Bidirectional long-short term memory   

The main disadvantage of the conventional LSTM model is that it can only utilize the 

information from the past. A BLSTM was proposed in 1997 [28] to overcome this 

drawback. As shown in Figure 3-13, unlike the unidirectional LSTM, BLSTM can 

utilize both previous and future information with two separate LSTM layers, i.e., a 

forward LSTM layer that passes information from the past to the future a backward 



98 Smart Meter Data Analytics Methodology

 

LSTM layer that passes information from the future to past. As the data collected by 

the smart meter is sequence data in the time domain, the BLSTM model is especially 

suitable for processing such data for the following reasons. Firstly, the amount of input 

a BLSTM model can reach is larger than the standard LSTM model, and the rich 

information gives BLSTM a much higher data representation capability [29]. 

Secondly, the BLSTM models do not follow the recursive procedure, and this 

characteristic enables these models to make predictions on stochastic and intermittent 

data with high accuracy. 

In a BLSTM structure, given a minibatch input ×0Ì ∈ ℛÝ×' (d is the sequence size of 

each example), the forward and backward hidden states at time step �, i.e., àááá⃗ Ì ∈ ℜÝ×r 

and à⃖áááU ∈ ℜÝ×r can be expressed as: 

àááá⃗ Ì = Ê(×′ÌÐÎÏ
(Ú) + àááá⃗ Ì)¶ÐÏÏ

(Ú) + ÙÏ
(Ú))   (3-60) 

à⃖áááU = Ê(×′ÌÐÎÏ
(Ù) + à⃖áááÌ�¶ÐÏÏ

(Ù) + ÙÏ
(Ù))   (3-61) 

where ÐÎÏ
(Ú), ÐÎÏ

(Ù) ∈ ℜ'×r , ÐÏÏ
(Ú), ÐÏÏ

(Ù) ∈ ℜr×r  represent the weights of the model; 

and ÙÏ
(Ú), ÙÏ

(Ù) ∈ ℜÝ×r are the biases of the model. Then, by integrating the forward 

and backward hidden states, the hidden state is obtained as àÌ ∈ ℜÝ×Wr. Finally, HU 

is fed to the output layer to compute the output of the BLSTM block ÖÌ ∈ ℜÝ×e (q is 

the number of outputs): 

àÌ = �àÌáááá⃗ �  àÌá⃖ááá���
      (3-62) 

ÖÌ = àÌÐÏä + Ùä      (3-63) 

where ÐÏä ∈ ℜWr×e  is the weight; and Ùä ∈ ℜÝ×e  is the bias of the output layer. 
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Figure 3-13. The structure of Bidirectional LSTM. 

3.5 Chapter Summary 

This chapter presents a comprehensive overview of data analytics and data mining 

methods for smart meter data. Foundation knowledge includes machine learning, deep 

learning, information theory, and data pre-processing are introduced in detail. 

Machine learning is divided into supervised machine learning and unsupervised 

machine learning algorithms, depending on training. Meanwhile, deep learning 

includes MLP, CNN, RNN, and RNN can be further divided into LSTM, GRU, and 

BLSTM, respectively. Machine learning and deep learning are important tools for the 

decision-making models to be constructed in the following chapters, while 

information theory quantifies the privacy loss of the smart meter data. In summary, 

the rich information provided in this chapter paves the way for building complex 

models in the next chapters.  
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Chapter 4 A Privacy-Preserving Multi-

Channel Smart Metering System  

4.1 Introduction  

4.1.1 Motivation 

AMI, or smart metering system, is the backbone of the modern smart grid. AMI is an 

integrated system that combines electricity equipment, a communication network, 

renewable generation, and the energy management centre to enable two-way 

information flow between the consumers and the utility [281]. Apart from basic billing 

and energy consumption information, the AMI also enables remote consumption 

control, TOU pricing, load forecasting, energy theft detection, etc. [282].  

In AMI, smart meters are edge sensors inside the consumers’ houses, monitoring the 

energy consumed inside the consumer’s house. However, the large volume of high 

granular power consumption data collected by the smart meter brings new challenges 

to consumers’ privacy. Several recent research works [86, 235, 283] and government 

reports [284, 285] have highlighted that the existing smart meter roll-out plans are 

against legal frameworks regarding privacy and data protection, such as GDPR [108]. 

One reason is that the highly granular data contains sensitive personal information, 

and the residents’ behaviours and activities can be inferred from the smart meter data 

by implementing data mining algorithms. As a result, the rollout plans of several 

countries, such as Germany and the Netherlands, have been deferred due to privacy 

concerns [286, 287]. Hence, new technical solutions are desired to alleviate the 

privacy concern and better conduct the smart meter roll-out plan.  

As a utility-centric system, the current smart metering system only has a single 

channel to transmit the energy consumption data, which at times causes the 
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consumers’ personal information, which is disclosed to the energy utility in the 

process, to be larger than required. Referring to the literature presented in Chapter 2, 

relevant technical solutions include rechargeable battery [288], renewable energy 

storage system [57], noise-adding [289], homomorphic encryption [79], data 

anonymization [85], data aggregation [80], and data downsampling [290]. These 

approaches are discussed based on the following dimensions: 

 Integrity. The correctness and accuracy of the metadata must be guaranteed [45]. 

 Computational complexity. Considering the large scale of the smart metering 

system, the technical solution requires high computational complexity and would 

cause serious computation overhead. 

 Privacy-by-design. The privacy should be an integrated part of the smart metering 

system without any external device/hardware [110]. Moreover, a technical 

solution with an external device would increase the costs of the energy supplier or 

the consumers.  

 Latency. The technical solution should have no/little latency for real-time grid 

operation and management purposes.  

 Environmentally friendly. The technical solution should not harm the 

environment or increase CO2 emissions.  

Rechargeable battery [288] employs a rechargeable battery to mask the original load 

curve by the charging/ discharging process; the power consumption curve detected by 

the adversary is a flattened curve, so the personal activities are hidden. However, this 

solution is not a privacy-by-design solution, and the consumers must purchase the 

rechargeable battery/ energy storage system (which costs thousands of pounds [71]) 

only for privacy purposes; who should undertake the cost is a tough question to 

answer. Moreover, rechargeable battery has an environmental downside. It would 

pollute the environment, which is against one of the original purposes of rolling out 

the smart meter: meeting the carbon-neutral target from the Paris Agreement [291] 

and the EU Energy Efficiency Directives [292]. 
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Noise-adding [289] obfuscates the original metadata by adding noise, e.g., Gaussian 

Noise, Laplace Noise, so the data inferred by the adversary has been distorted. 

Although the noise cancels out if enough readings are added together or after a long 

period, this method also introduces latency into the control loop. Grid operation and 

management functions such as demand response and state estimation, which require 

no latency, would be influenced. Furthermore, the attacker/adversary may denoise the 

distorted data once he/she knows the specific noise-adding method employed by the 

smart meter.  

Data anonymization [80] aims to hide privacy by replacing the real smart meter 

identification with pseudonyms. However, several researchers [45, 54] have pointed 

out that attackers can still infer a consumer’s location by linking other databases, such 

as the record of blackout events.  

Data aggregation [80] builds some aggregators to aggregate the neighbouring smart 

meter records and then sends the overall data to the energy utility. The typical 

aggregation approach introduces a Trust Third Party (TTP) to operate these data 

aggregators, while TTP could be a potential honest-but-curious adversary who could 

also cause information disclosure [45]. Moreover, involving TTP in the smart 

metering system could increase the cost and reduce the system's reliability. To better 

regulate the data aggregator, new laws and regulations are desired to enforce the 

operation of the data aggregators.  

Data down sampling [290] reduces the sensitivity of the personal data by 

downsampling the interval resolution of the power consumption data. Referring to 

[104], data resolution is the main factor determining information disclosure. Most 

appliances can be detected from smart meter data at one minute, while only occupancy 

information can be inferred with half-hourly data. Although low-resolution data 

reduces the sensitivity, this method disables functions that require high-frequency 

measurement, e.g., Time-of-Use Tariff, grid operation and management, and demand 

response.  
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Homomorphic encryption [79] is a cryptographic technique that enables linear 

operations, e.g., addition and manipulation of the encrypted smart meter data; 

homomorphic encryption is combined with other technical solutions such as data 

aggregation to ensure confidentiality of the data during the transition. However, 

homomorphic encryption is computationally intensive, requiring large storage space 

and a server with high computation ability. The existing homomorphic encryption-

based solution is only simulated on a small-scale smart metering system in the virtual 

environment, and it still has a long way to go for a large-scale application in practice.  

By analysing the existing methods, the knowledge gaps and the limitations of the 

existing privacy-preserving solutions are summarized as follows: 

1) Existing methods only transmit a single interval resolution data, while the data 

granularity required by different stakeholders varies a lot.  

2) Some solutions require installing extra hardware device or high computational 

algorithm/encryption, which increases the cost and have a downside to the 

environment. Hence, the stakeholders involved are not sufficiently engaged in the 

smart metering system as they cannot see long-term benefits.  

3) Whilst many solutions provide a strong privacy guarantee, the basic functionalities 

such as TOU tariff, grid management, and value-added services are sacrificed. 

4.1.2 Objective of the chapter 

The objective of this chapter can be summarised as follows: 

1) Define the threat/model which could invade the consumer’s privacy. 

2) Investigate the critical functions provided by the smart metering system and define 

the minimum required data to achieve the corresponding functions. 

3) Develop a privacy-preserving smart metering system that satisfies both privacy 

requirements and functionalities.  

4) Quantify the aggregation size's privacy boundary and the metadata's interval 

resolution.  
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4.1.3 Scope of the research 

To better develop a privacy-preserving smart metering system from a power system 

discipline scope, the scope of this research is identified as follows: 

1) The smart meter in this thesis is assumed to be the certified device that would 

record the energy consumption honestly following the protocols. Since if an 

adversary can control the smart meter, the adversary would bypass any data 

protection technologies. Moreover, the smart meter is assumed to be temper 

evident to guarantee the correctness of the reading. In addition, the smart meter is 

also assumed to have the capacity to store and secure the long-term keys for the 

smart meter and protect its privacy [293]. In practice, there could be malicious 

clients such as the energy theft, which would try to temper the meter reading to 

steal electricity from the energy utilities. Such malicious clients are out of the 

scope of this thesis and will be investigated in future work. 

2) This research only focuses on power system parameters recorded by the smart 

meter, e.g., active power, reactive power, cumulative energy consumption, 

voltage, bills, and TOU tariff, while other personal information such as service 

contract, bank account, phone number, the email account is out of the scope.  

3) The entities involved in this research are limited to residential consumers, energy 

suppliers, distribution network operators, and third-party service providers; other 

entities such as industrial consumers, commercial consumers, and government are 

out of the scope.  

4) Detailed cyber-attack scenarios on the smart grid and the smart meter are out of 

the scope of this research.  

4.1.4 Contribution 

In this chapter, a privacy-preserving smart metering system is developed based on the 

approaches from [76, 85, 88] to the combined use of existing data aggregation and 

data down-sampling techniques to design a privacy-preserving smart metering system. 

The system follows an operational and ethically driven trade-off strategy and model, 
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which could increase the functionalities of current smart metering devices in smart 

grids whilst ensuring that digital privacy intrusion is minimised and protected if not 

appropriately governed. In addition, the system provides three different 

communication channels for data collection to enable diverse data granularity 

transmission to other stakeholders, with each channel also providing required 

functionalities (time-of-use billing, grid operation and management, and value-added 

services). The contributions of this chapter include: 

1) The trust and the adversary/attack models are developed to determine the potential 

privacy risks in the existing smart metering system. 

2) A privacy-preserving smart metering system which enables three communication 

channels to transmit different granular data is designed.  

3) A data mining algorithm utilized by the adversary is designed to evaluate the 

privacy boundary of the smart meter data. 

4.1.5 Structure of the chapter 

The chapter is organized as follows: In Section 4.1, the main contributions of this 

chapter are proposed: a trade-off strategy is discussed with a proposed new smart 

metering system model to support it. Section 4.2 develops the trust model and the 

threat/adversary model. The privacy functionality trade-off strategy is demonstrated 

in Section 4.3. Furthermore, in Section 4.4, a multi-channel smart metering system is 

designed, referring to the trade-off strategy. In Section 4.4, the privacy boundary is 

detected via the data mining algorithms. The privacy risk of the proposed system is 

evaluated in Section 4.6. The chapter summary is drawn in the last section of the 

chapter.  

4.2 Threat/Adversary Model 

This section starts with identifying the notion of privacy employed in this thesis, then 

based on the privacy definition, categories of the threat/adversary, the purpose and 
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target of the threat model, as well as the data mining algorithms that the adversary 

may use is introduced.  

4.2.1 Notion of privacy 

Unlike the Internet or traditional communication network, the smart grid is a cyber-

physical-social system that involves a heterogeneous power system structure, multiple 

stakeholders, and many endpoints [45]. Hence, the notions of privacy must be 

introduced at the beginning better to analyse the privacy risks in the existing system. 

There are three significant distinctive definitions of privacy in turns of smart meter 

and smart metering system: ethical privacy, statistical privacy, and cryptographic 

privacy. 

4.2.1.1 Ethical privacy 

Ethical privacy is a privacy definition from an ethical aspect, which is a foundation of 

human rights in society. One of the famous formulations proposed by S. Warren and 

L. Brandeis in 1890 describes privacy as ‘the right to be let alone [294]’. This 

definition proposed that everyone has his/her area of activity without constraint, 

coercion, and even surveillance. An individual has freedom of choice to decide the 

data to be shared and the freedom to decline any unauthorised access to smart meter 

data, the individual also needs to know the purpose of data collection, and he/she can 

reject inappropriate use of data. More specific to the field of the smart grid, four 

dimensions of privacy is summarized by the National Institute of Standards and 

Technology (NIST) from U. S. Department of Commerce [284], which include the 

privacy of personal information, privacy of the person, privacy of personal behaviour, 

the privacy of personal communications, detailed definition of each dimension is 

listed as below: 

1) Privacy of personal information: This definition is the broadest researched 

dimension, and it is under the protection of the GDPR. Personal information 

indicates all information related to an individual that can reveal the consumer’s 
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physiological, physical, economic, cultural, or social identity. Privacy of personal 

information gives the consumer the right to control where, how, when, to what, 

and to whom to share his/her personal information, and the consumer should also 

be given authority to access, modify, and correct the information that has been 

shared, the safety of the information should also be ensured [295].   

2) Privacy of the person: Privacy of the person is the right to maintain the integrity 

of an individual, which includes physical requirements, health problems, and 

required medical devices.  

3) Privacy of personal behaviour: This dimension indicates the right to keep the 

individual’s behaviour from being shared with others; the personal behaviour 

contains the individual’s activities and choices.  

4) Privacy of personal communications: This point highlights that the individual 

should have the right to communicate with others without being monitored [295].  

As a utility-centric system, the existing smart metering system does not provide 

consumers with enough personal autonomy and freedom. In the current smart 

metering system, the consumers passively share their data without options to decide 

what granularity of data to be transmitted and whether they would like to share the 

data with the energy utility. Moreover, current data protection laws/regulations such 

as GDPR mainly cover the first dimension-privacy of personal information, while 

other points are also important to guarantee privacy. Hence, all four dimensions of 

ethical privacy should be considered to construct a user-centric system.  

4.2.1.2 Statistical privacy 

Statistical privacy indicates that a dataset will not reveal an individual’s private 

information. Differential Privacy (DP) is the widest adopted statistical privacy notion 

proposed by C. Dwork in 2006 [296]. Given a database that contains the information 

from many participants, the main idea of DP is that if the effect of a single substitution 

is small enough, then the output of an enquiry from the database will not contain an 

individual’s personal information. Referring to Smart Metering Implementation 

Programme: Review of the Data Access and Privacy Framework published by DBEIS 
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in 2018 [12], the electricity consumption data which is modified via aggregation or 

anonymisation securely will no longer be personal data since the modified data has no 

connection to a single domestic property. Referring to the definition of statistical 

privacy, private data and public data can be defined as below: 

1) Private information: the individual smart meter data or the data can still be 

identified as a single domestic property after data processing.  

2) Public information: the energy consumption data processed by temporal/spatial 

aggregation, anonymisation or other methods to disconnect the link with 

individual property. After data processing, data mining algorithms cannot detect 

an individual’s personal information. 

4.2.1.3 Cryptographic privacy 

Cryptographic technology does not solve the privacy problem directly, but it is an 

extremely helpful tool to guarantee the privacy of information and confidentiality 

during data transition and storage in an open environment [297]. Cryptographic 

privacy means no information leakage – the information that is revealed by an 

algorithm is limited to the information that can be inferred from this algorithm. The 

adversary learns nothing about which consumer is communicating with each other 

even after many rounds of communication [45]. In contrast, the privacy-preserving 

system guaranteed by differential privacy allows quantifiable metadata leakage after 

many communication rounds [298].  

4.2.2 Trust model 

Before identifying the threat/adversary model of the smart metering system, the trust 

model needs to be defined first. Normally in a privacy-aware system, the trusted 

parties in the system do not require further privacy protection. In contrast, untrusted 

parties could either be malicious (perform any algorithm for stealing, corrupting, and 

modifying data [299]) or honest but curious (they will follow the communication 

protocol honestly, but they would keep all information received from other parties and 
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try to infer individual measurements [300]). The smart metering system builds trusting 

relationships between the energy consumer and stakeholders (ES, DNO). A trusted 

energy consumer means that the energy consumer can provide correct energy 

consumption and bills data without tampering with the reading and record of the smart 

meter, while a trusted entity means the entity can access the consumer’s energy 

consumption data authorized by the consumer for legitimate purposes. In the modern 

smart metering system, the smart meter is considered fully trusted since a Trusted 

Platform Module (TPM) is embedded to verify the correctness of reading and bills; 

the energy consumer and stakeholders, including ES and DNO, are also trusted 

entities, while TP is an honest-but-curious stakeholder.  

Although ES and DNO are trusted entities, the amount and granularity of the collected 

sensitive data are strictly regulated by data regulation laws such as GDPR (2018) 

[301], Data Protection Act in the U.K. (2018) [302] and previous EU Data Protection 

Directives (1995) [303]. In GDPR, the data minimisation principle requires that 

organizations cannot collect more information than they need, and the originations are 

also required to identify the minimum amount of personal information (interval, 

period) that can fulfil their purpose [301]. Data Protection Act also highlights that the 

organizations who want to access personal data must obey strict regulations named 

‘data protection principles’ [302]. ‘Data protection principles’ require the 

organizations to use the personal data for specified, explicit purposes, and the 

collected data is limited to only what is necessary [302]. More specific to the smart 

metering system, the data access and privacy framework published by BEIS requires 

DNO to provide a detailed report to state the format, the purpose, the period, and the 

target consumers of the smart meter data before DNO is approved to access smart 

meter data [12]. Moreover, OFGEM [41] requires DNO to aggregate the smart meter 

data to remove the individual identity from the dataset. Hence, even though ES and 

DNO are trusted entities, collecting the whole fine-granular data without a sufficient 

and careful justification is also a privacy invasion that infringes these 

regulations/principles [304]. 
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4.2.3 Threat/adversary model 

In this subsection, the threat/adversary models å which have the potential to invade 

consumers’ privacy are identified. The following introduces the adversary's purposes 

and internal and external adversaries who want to infer personal information. 

4.2.3.1 Purpose/target of the adversary 

Figure 4-1 shows a household electricity consumption profile with an interval 

resolution of 15 min, which is the regular sampling frequency of the smart meter. 

From the figure, high-resolution energy consumption data collected by the smart 

meter can reveal detailed electricity activities by implementing data mining 

algorithms such as NILM. Based on the smart meter data and NILM algorithm, the 

following information is obtained by the adversary: 

1) Appliance usage information: The operation status of the household appliances, 

such as air conditioner, dishwasher, kettle, wash machine, and refrigerator. 

2) Presence/absence: Indicate whether the resident is present at the house or away 

for a holiday. When the resident is away, most electronic appliances are turned 

off, and few activities are detected (it should be noticed that the refrigerator will 

keep turn-on/turn-off automatically; hence non-refrigerator events are used to 

determine presence/absence). 

3) Event/ behaviours: Events in the house, such as breakfast, lunch, dinner, party, 

shower, and playing video games.   

4) Sleep cycle: Detect the time when the resident goes to sleep and s/he wakes up.  

Although NILM algorithms have many beneficial applications, such as increasing the 

energy awareness of the consumers and helping the operator implement demand 

response, the NILM algorithms can also be utilized by the potential adversaries to 

reveal individual lifecycles, which increase potential surveillance possibilities posing 

physical, financial, and reputational risks [284]. The potential purposes for the 

adversaries to collect the smart meter data can be summarized into four categories: 



112 A Privacy-Preserving Multi-Channel Smart Metering System

 

commercial purpose, illegal purpose, legal purpose, and family members' usage (See 

Table 4-1). 

 
Figure 4-1. Example of household load profile, with detailed appliance usages (Data source: Pecan 

Street Dataport [117]). 

4.2.3.1.1 Commercial purpose 

Private/commercial companies are the main beneficiaries of the smart meter data, and 

these companies have strong motivation to extract appliance usage information for 

directed advertisements [305]. It is even possible for commercial companies to 

identify the specific brand of the electronic appliance used by the consumer by 

implementing the NILM algorithm. Based on this detailed appliance information 

inside the consumer’s house, these commercial companies may send customers 

targeted advertisements for the electronic appliances that need to be 

replaced/repaired/upgraded [104]. In addition, the insurance companies can adjust the 

credit rating for the consumers who have bad electricity usage habits, e.g., the 

consumer who always levels the heater/stove on when he is away from home; as a 

result, this consumer has a higher possibility to suffer from fire hazard than those 

people who will always turn off all appliance before leaving home. Although the 

commercial companies can profit from the high granularity of smart meter data, the 

consumer may have strong disapproval and resistance to such unauthorized actions 

since their in-home activities are exposed, and their privacy is invaded [305].  
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4.2.3.1.2 Illegal purpose 

The smart meter data inferred by the adversaries will also be abused for illegal 

purposes, as stated in Table 4-1. Burglar/thief can find the occasion that the house is 

empty by analysing the energy consumption curve. When only a refrigerator event is 

detected in the house for a period, the burglar/thief can confirm that no resident is 

inside the property [305]. As a result, the burglar/thief can determine their targets and 

break into the empty houses. Moreover, the stalkers may tap into an intermediate AMI 

node to monitor their victims’ activities and behaviours inside the house.  

4.2.3.1.3 Legal purpose 

The government and legal organizations such as police officers also want to access 

the smart meter record for many purposes. One typical case is the police can detect 

drug production, illegal bitcoin production, and energy theft, the energy consumption 

for such activities is much higher than the normal consumers, e.g., producing drugs 

requires indoor growing systems which are equipped with fans and high lighting 

intensities lights, sometimes operate 24 hours a day [306]; the mining of the bitcoin 

also requires a large amount of electricity to run high-power computers [307] 

continually. In 2007, the Austin Police Department in the U.S. was authorized to 

access power consumption records without a search warrant [305]. Furthermore, the 

smart meter data can be adopted as evidence to verify the defendant’s claims, e.g., 

whether the defendant stayed in the home at that time as he/she claimed.  

4.2.3.1.4 Used by family members/ co-inhabitants 

The family member/ landlord also has the potential motivation to monitor other 

members inside the property by analysing the electricity activities inside the room. 

For instance, the parents may be curious about what their children are doing inside 

their room, and the children could be punished once there are found playing video 

games or watching TV [308]. In addition, the landlord can use the smart meter data to 

double-check whether a certain electronic appliance is used properly. Such 
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surveillances seriously invade an individual’s privacy or personal behaviour, as the 

individual has the right to be let alone, and both the children and the tenant try to keep 

their activities confidential [294].  

Table 4-1. Summary of the purpose of the adversaries in the smart metering system. 
Type of Usage Purpose  

Commercial purpose [104] 

1. Advertising to the target consumers, e.g.  Promoting electronic 
appliances by identifying the broken appliances that need to 
be renewed/repaired/updated inside the consumer’s house. 

2. Insurance level adjustment, e.g., reducing the insurance level 
of the consumers who always leave the heater/stove on when 
they are away from home. 

Illegal purpose [305] 
1. Burglar/theft to detect whether a house is occupied. 
2. Stalkers monitor the lifecycle/behaviour patterns of their 

victims. 

Legal purpose [306, 309] 

1. The police detect illegal activities inside the property, e.g., 
drug production. 

2. Verifying the defendant’s claims, e.g., that he/she was ‘at 
home all day’. 

Family members/ co-inhabitants 
[305] 

1. Family members monitor the activities of other members 
inside their room, e.g., parents check whether their children 
are studying or playing computer games. 

2. Ensure the children have not locked inside the home alone. 
3. The landlord monitors his/her tenant to investigate whether an 

appliance is overused (e.g., dishwasher). 

4.2.3.2 Internal adversary 

The adversary model is shown in Figure 4-2, which contains both internal adversaries 

and external adversaries. Internal adversaries/attackers indicate the threat/adversary 

inside the smart metering system. Whilst TPs in the smart metering system, which 

reparents non-licence third-party service provider/commercial companies, are 

considered the honest-but-curious adversaries, honest-but-curious/semi-honest 

adversary is widely used in smart grid/ smart meter privacy problems in the literature 

[76, 300, 310]. The definition of honest-but-curious/semi-honest adversary is shown 

below: 

Definition 1 (Honest-But-Curious Adversary) [300]. The honest-but-curious 

adversary represents a legitimate protocol member who will not deviate from the 

defined protocol but will attempt to study as much information as possible from 

received messages. 
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The honest-but-curious adversaries will follow the communication protocol honestly 

without malicious actions and cannot obtain more information than they receive 

(honest). However, they would keep all information received from other parties and 

try to infer individual measurements (curious). In other words, all parties work 

properly to maintain the system's operation while maximising the chance of acquiring 

individual’ privacy.     

4.2.3.3 External adversary 

The smart grid and the smart metering system highly rely on the wireless 

communication network, while the wireless communication channel is vulnerable to 

cyber-attacks from the external adversary as the channel is naturally a broadcast 

transmission medium [311]. External adversary indicates the adversary, which is not 

any stakeholder/sector inside the smart metering system.  

A typical external adversary of the smart meter is an eavesdropper. The 

communication techniques used in the smart metering system, such as ZigBee, 

WiMax, WiFi and PLC, are vulnerable to cyberattacks that could lead to 

eavesdropping [312]. The malicious eavesdropper may eavesdrop on the 

communication channel between the smart meter and the energy utilities to obtain the 

energy consumption data recorded by the smart meter. Referring to [311], five 

potential communication channels can eavesdrop:  

1) The consequence of the smart meter and the cellular tower is that some meter 

reading data is disclosed.  

2) The consequence of the smart meter and the third parties is that some meter 

reading data is disclosed. 

3) Between the cellular tower and the utility, a considerable amount of meter reading 

data is disclosed. 

4) The consequence of the utility and the third parties is that most meter reading data 

is disclosed. 
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Figure 4-2. Adversary/attacker model in the smart metering system. 

It should be highlighted that the resolution of the data eavesdropped on the 

communication is a standard/policy rate (15 min for the current system). Moreover, 

the overhead feeder between the houses and the distribution transformer is exposed to 

the public, and the adversary also can install sensors on the feeder to eavesdrop on the 

houses under the feeder.  

Whilst the information obtained by the eavesdropper can either be plaintext or 

ciphertext. When the data is not encrypted before transmitting, the information 

obtained by the eavesdropper is plaintext which is easy to obtain the smart meter data 

without extra traffic analysis. When the smart meter data is encrypted or pre-processed 

before transmitting, the malicious eavesdropper can still find valuable information by 

monitoring a large amount of data since some words/characters remain the same after 

being encrypted [311]. Based on the discussion above, all adversaries are summarized 

in Table 4-2.  
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Table 4-2. Summary of threat/adversary. 
Type of 

Adversary 

Threat Scenario Result Threat 

Likelihood 

Consequence 

Internal 
Adversary 

Semi-honest TP infer personal 
information   

The majority of meter data 
shared with TP is disclosed 

Likely Catastrophic 

External 
Adversary 

Eavesdrop communication 
between SM and cellular station 

Some meter reading data is 
disclosed 

Likely Moderate 
Eavesdrop communication 
between SM and TP 

Eavesdrop communication 
between cellular station and utility A considerable amount of  

meter reading data is disclosed 
Likely Serious 

Eavesdrop communication 
between TP and utility 

Majority of meter reading  
data is disclosed 
 

 
Likely 

 
Catastrophic 

Plug its meter into the feeder 
between SM and transformer The aggregated meter reading 

under the feeder is disclosed  
Likely Minor 

4.3 Privacy-Functionality Trade-Off Strategy  

This section develops a privacy-functionality trade-off strategy based on the threat 

model introduced above, the existing private data regulation policy in the UK and EU 

and the compulsory functionalities. 

4.3.1 Requirement For the Proposed Smart Metering System 

As the privacy notions introduced above, the proposed smart metering system should 

satisfy both ethical privacy, statistical privacy, and cryptographic privacy. First, from 

an ethical aspect, the proposed system should be shifted from a utility-centric to a 

user-centric system, giving the consumer personal autonomy and freedom from undue 

surveillance. The consumer has a flexible choice in deciding whether they would like 

to share the data with other parties. The energy utilities and third parties are granted 

limited trust to achieve this target, and the energy consumers are given full control 

over their personal information. Detailed requirements for the proposed smart 

metering system are listed below: 

1) Obtain the correct meter reading and bills from the smart meter. 

2) The smart metering system to be designed should better fit the GDPR, which only 

collects the minimum data for required functions. 
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3) The system should be a privacy-by-design, not rely on external devices and 

hardware. 

4) Prevent internal adversary access to individual data. 

5) Prevent the smart meter reading be eavesdropped on by the external adversary. 

6) Enables critical functions required by the stakeholders, especially TOU tariff, 

value-added service, and grid operation and management. 

4.3.2 Compulsory functions 

As required by GDPR, The European Commission identifies the 13 main functions of 

a smart meter and classifies them into five categories [313]. The most significant 

functions listed in [45] are billing correctness, grid operation and management, and 

additional consumer services. In addition, an emerging function is that of the TOU 

tariff. The interval resolution and categories of data for these critical functions are 

listed in Table 4-4 below.  

4.3.2.1 Billing and Time-of-Use tariff 

The smart meter's most vital function is providing accurate consumer billing. Any data 

protection method which influences the accuracy and the correctness of the billing is 

useless. The current sample interval of the smart meter is 15 minutes, but consumers 

do not need such high-frequency billings; monthly billing is enough [45]. The TOU 

tariff determines the electricity price during different periods. Consumers benefit from 

the TOU tariff by shifting their electricity usage habits to enjoy a cheaper bill, while 

the energy suppliers can also reduce the power plant capacity as a result [13]. 

Moreover, the TOU tariff can also increase the demand-side flexibility and contribute 

to increasing the penetration of renewable energy, so TOU is becoming the 

mainstream method for billing in the UK. With the installation of the smart meter, the 

TOU moves closer to the real-time pricing tariff, allowing it to represent the actual 

conditions [314] better. Introducing the TOU tariff increases the electricity price in 

peak periods and lowers it in off-peak periods.  
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4.3.2.2 Grid operation and management 

In the past, the distribution network was not well monitored due to the limitation of 

communication and the metering infrastructure. Recently, distribution-level grid 

monitoring and management have attracted more attention due to the deep penetration 

of distributed renewable energy and the uncertainty caused by the electrical loads. The 

smart meter contributes to the smart grid by improving the efficiency and stability of 

the whole power system. The real-time two-way communication networks provided 

by the smart metering system can measure, analyse, and control the energy 

consumption data and further support the smart grid in implementing demand 

response services and power system estimation. For grid operators, the measurement 

of every individual household smart meter is not compulsory. Instead, they have more 

interest in regional aggregated data, such as measurement at the feeder or distribution 

level [73]. Such regional aggregated data can be used for feeder/distribution-level 

applications such as load forecasting, distributed renewable generation detection, and 

energy components analysis.  

 Load forecasting: day-ahead load forecasting increases the predictivity of the 

distribution network. Electricity data with an interval between 15 minutes to 1 

hour is required to make precise forecasting [315].  

 Renewable generation detection: Existing distribution network is highly 

penetrated with renewable generation such as rooftop solar panels. Such 

renewable generation is highly fluctuating and difficult to predict generally, which 

introduces uncertainty in monitoring the distribution network. Hence, detecting 

these renewable energies will decrease the uncertainty of the network. In the 

literature [212, 316, 317], electricity data with intervals of 5-15 minutes is required 

to estimate solar energy generation.  

 Energy components analysis: Analysing the load components under the 

feeder/distribution network can increase the visibility of the network and help the 

DNO better understand the real-time condition of the power system. From related 
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work [204, 318], feeder-level data with 1-30 minutes is used to train the machine 

learning models. 

4.3.2.3 Value-added services 

Consumers can order additional services provided by third-party service providers. 

The additional consumer services could be awareness (e.g., sending a warning for 

exceeding power) or scheduling and control (scheduling for controllable appliances, 

peak shaving) [319]. Demand-side response and NILM have received the most 

attention. Demand-side response [45, 320, 321] optimizes the strength of the grid and 

enhances the power quality by utilizing power plants, distributed generators, loads and 

energy storage. In demand response, consumers can also participate in the response 

process by accepting the bids provided by grid operators. Turning off appliances such 

as air conditioners and heaters would shed the load during peak time. NILM is a 

technique to disaggregate consumers’ power consumption curve into individual 

appliance usage. The consumer can understand how electricity is consumed and better 

manage their home appliances to save energy and reduce carbon dioxide emissions 

[47]. Typically, value-added services require consumers to submit their energy data 

to a server; the server would use a pre-trained model to evaluate the data and send the 

results back to consumers. The difficulty exists in how to share personal data with TP 

while guaranteeing privacy at the same time. In [45], two privacy-preserving value-

added schemes are proposed. The naive scheme down-samples the original data into 

multiple interval resolution data, referring to the requirement of different services. 

Then the different resolution data are sent to different TPs with a key [88]. The second 

solution enables services on consumers’ devices (personal computers, mobile phones) 

via a HAN. However, TPs have the risk of revealing their models/algorithms.  

4.3.2.4 Summary of data required by each function 

Based on the discussion above, the data required to achieve billing, TOU tariff, grid 

management & operation, and value-added services are introduced in Table 4-3. For 

billing purposes, the frequent transmission of the power consumption data would put 
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consumers under the monitoring of the utility. For grid operation and management, 

although the utility requires high interval resolution data, it is unnecessary to access 

every individual’s power consumption; aggregated data of an area (feeder or 

distribution network) is desirable. Most additional services provided by TP only 

require a specific part of the power consumption data (a certain period, a specific 

appliance power consumption, etc.), and these services are optional depending on the 

consumers’ choices. Hence, in the proposed strategy, all TPs must obey the data 

minimization principle (explained below) and only collect the minimum data required 

with consumers’ consent to complete the service. 

Table 4-3. Summary of data granularity of different functionalities. 
Functionalities Sampling Frequency Required Data Required 

Billing 
Low (weekly or monthly 
cumulative energy consumption) 

Usage of every single household smart meter 

Grid Operation and 
Management 

High (between 5 min -1 hour for 
load forecasting and profiling)  

Active/Reactive power, Voltage, Current, etc.  

Value-Added Services Depending on specific services Depending on specific services 

TOU tariff High (15 min–1 hour) 
The TOU price from the electricity market and 
the energy consumption duration of this period 

4.3.3 Operation strategy 

Given the scale of smart meter roll-out processes in countries and worldwide, the 

above risks and operational strategies could be dismissed or subordinated to utilitarian 

market logic, with the responsibility for their implementation and subsequent privacy 

protection of consumers (i.e., households) delegated to third parties, many of whom 

might not have privacy protection as a priority in their agendas. Moreover, and as 

stated before, there is a lack of clarity about such responsibilities. Furthermore, whilst 

smart grids could be conceived as necessary technologies to regulate the conduct of 

individuals in the societies [10], what could be more concerning is that privacy 

intrusion could also generate negative social consequences [11]. Consumers can be 

left powerless or socially isolated to devise strategies to counteract intrusion into their 

privacy, becoming mere means rather than ends [5]. 
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It might be possible, however, for stakeholders to exert their creativity even in the face 

of privacy intrusion and existing regulations (i.e., GDPR directive) [5, 8, 322]. The 

creativity would help households comply with digital technologies established for 

them [322] whilst socially protecting or enhancing their sense of authentic household 

‘hood’ [6]. To meet this, a trade-off strategy is proposed that attends to both the 

operational and ethical concerns for smart meters and smart grids raised in this 

chapter, and it utilizes a hybrid and soft strategy which combines the privacy design 

strategy (as introduced in 2.6) and privacy-functionality trade-off strategy. The hybrid 

strategy can be summarized as follow:  

(1) Adopt data-oriented strategies (Minimise, Separate, Abstract, and Hide). The 

designed system only collects minimal personal data for specific functionalities 

(Minimise). In addition, the proposed system should enable a distributed 

framework; hence, consumers can utilize or store their data on their personal 

devices (Separate). Moreover, rather than sharing or transmitting high-resolution 

data with companies, only an abstract version of the data is shared to avoid 

revealing details of personal information (Abstract). Furthermore, end-to-end 

encryption technology should be utilized to guarantee privacy/confidentiality 

(Hide) better. 

(2) Adopt process-oriented strategies (Inform and Control). Consumers should be 

informed what kind of smart meter data is collected and how their data is processed 

on a real-time base (Inform). Most importantly, the consumers should also have 

the right to choose the personal data to be collected, and they also have the right 

to select wanted functionalities (Control).  

(3) Seek an optimal balance between privacy and functionalities. Privacy must not 

come at the expense of functionality; the proposed system should ensure all 

compulsory functionalities and seeks an optimal balance between privacy and 

functionalities.    

(4) Maximize the retention of original facilities. The economic benefit of the smart 

meter is the common interest of both energy suppliers and consumers, and the 
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privacy-preserving scheme should not be costly (due to the installation of 

additional devices or sensors such as an energy storage system).  

4.4 Multi-Channel Smart Metering System  

4.4.1 The preliminaries 

The hardware complexity of the smart meter in the proposed system remains the same 

as the existing smart meter. The smart meter has basic storage and computation ability 

to save power consumption and calculate the bills. Assume the area involves a smart 

meter group æç = �ut�, utW, ⋯ ut�, ⋯ utY�(� ∈ [1, �] . The smart meter can 

measure power consumption with interval T (normally 15 minutes), marked as ��a<. 

The smart meter data are encrypted to prevent consumers from modifying the power 

consumption data. There is no backdoor when the smart meter is manufactured, so 

manufacturers or energy suppliers cannot illegally access the smart meter data, and 

the DCC monitors all data transmission between consumers and the utility.  

4.4.2 Overall system 

Based on the trade-off strategy illustrated in Section 4.3, the proposed multi-channel 

smart metering system is shown in Figure 4-3. The system components are consumers, 

DCC, ES, DNO, TP, and the Aggregator. Moreover, in contrast to conventional smart 

metering systems that can only transmit a single temporal resolution trace, this novel 

scheme contains three communication channels supporting multi-temporal resolution 

data. These three channels are: 

 A high-frequency aggregated data channel transmits high-frequency aggregated 

data measured at the distribution level substation.  

 A TOU billing channel to send dynamic TOU price information to smart meters 

and bills to the ES monthly.  

 A value-added service channel to transmit selected data to support value-added 

services provided by TP.  
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The smart meter in the scheme plays the role of the assistant processor rather than the 

information sender and receiver; it has the basic computation ability to calculate 

billing inside the house rather than sending individual power consumption near real-

time. The detail of each channel is illustrated as follows. 

Energy Consumer Stakeholders

Energy 

Suppliers

Network 

Operators

Third 

Parties

Time-of-Use Price （Interval  30mins）

...

...

Aggregator

Billing details (£) (Interval 1 month)

ToU Billing Channel Value-Added Service Channel
High- Frequency 

Aggregation Channel

Management & Operation Commend

 
Figure 4-3. Multi-channel smart metering system. 

4.4.3 High-frequency aggregation channel 

Referring to the data access regulation published by OFGEM [41] and BEIS [12], the 

smart meter data used by the DNOs should be pre-processed (such as data aggregation 

or data anonymization) to remove the individual features from the dataset; the 

processed data which disconnects the correlations with individual identify will no 

longer be regarded as private information. In addition, the maximum sampling 

frequency of the smart meter is limited to 10s, referring to the BEIS specification [25]. 

However, the increasing penetration rate of renewable energy generation, electric 

vehicles, and energy storage systems requires a meter reading at a much higher rate in 

the future to manage better and control the distribution network [54]. To resolve the 

contradiction between privacy and DNO’s requirement, a high-frequency aggregation 

channel is designed to enable grid operation and management functionality required 

by the DNO without collecting individual data directly. Instead of transmitting 

individual energy consumption data, this channel transmits the aggregated power 
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consumption data to the DCC. The aggregated smart meter data enables the DNO 

better monitor the condition of the LV distribution network; significant improvements 

in LV grid management and operation are supposed to be achieved given such high 

granular data, which include: 

 Increase the visibility of the load components and renewable energy generations. 

 Fast response to the faults ensures energy supply to the consumers. 

 Optimize the design and planning to accommodate new connections better. 

Denote ® as the total number of smart meters under the data aggregator. At each 

timestep �, the active power of the data aggregator 7è
#qq(�) are calculated: 

7è
#qq(�) = ∑ ��a<(t); � =¼�`� 1,2, ⋯ , é    (4-1) 

A comparison of power consumption of a single house and aggregated power 

consumption is presented in Figure 4-4. As shown in the figure, with the increasing 

aggregation level, the power consumption curve becomes smoother, and the details of 

individual appliance signatures become difficult to extract. Considering the physical 

structure of the distribution network and the two-way communication, two 

aggregation schemes are proposed in this research: the physical aggregation approach 

and the informatic aggregation approach. To better illustrate the proposed schemes, 

two concepts need to be introduced at first, which are information flow and power 

flow: 

 Information flow: The information flow shows how the information is exchanged 

between entities through communication channels.  

 Power flow: The power flow indicates the flow of electric power in an 

interconnected power system. The transmission line or feeder links different 

energy entities such as generators, transformers, and energy consumers.   

As a Cyber-Physical system, the smart grid contains information and the power flow. 

The physical aggregation scheme aims to capture the aggregated data by installing 

meter devices on electricity equipment such as the feeder and the transformer, while 
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the informatic aggregation scheme aims to aggregate the smart meter data via adding 

the digital signal transmitted from the smart meters. 

 

Figure 4-4. Single house power consumption versus different aggregation sizes of power 
consumption.  

4.4.3.1 Physical aggregation approach 

The main idea of the physical aggregation approach is to employ smart meters/sensors 

installed at different distribution network locations to obtain the multi-level 

aggregated measurements (LV distribution level and feeder level). DNOs have 

installed Supervisory Control and Data Acquisition (SCADA) and Phasor 

Measurement Unit (PMU) to monitor the operating conditions of the High Voltage 

(HV) and the Medium Voltage (MV)1 network. However, such SCADA systems are 

not yet implemented in LV distribution networks [323]. Although recent research 

shows that domestic smart meter data can support the DNO by increasing the visibility 

and reliability of the LV network [324], several limitations restrict the acquisition of 

domestic smart meter data: (1) Referring to the BEIS technical specification [12], the 

maximum interval resolution of the domestic smart meter is limited to 10 s, which 

cannot be used to detect transient faults in the distribution network and track the 

 
1 Referring to ANSI C84.1-1989 and IEE 141-1993 standard, voltages range between 50 V and 11kV volts are LV, 120, 220, 
230 volts are the most common LV values used in the domestic, commercial, and industrial applications; voltages range between 
1 kV and 100 kV are classified as MV; and voltages lower than 345 kV but higher than 100 kV are HV. 
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intermittent distributed renewable generations. (2) Referring to the data access 

regulation of OFGEM [41] and BEIS [12], the DNO cannot access the individual’s 

smart meter data directly without any pre-processing methods for privacy 

consideration. Hence, a feeder-level smart meter at the LV distribution network 

between the MV/LV transformer and the domestic smart meter is proposed to fill the 

knowledge gap in the existing smart metering system.  

4.4.3.1.1 Advanced sensor and meter at distribution/feeder level 

The term smart meter is a broad definition beyond the meaning of the domestic smart 

meter. There are multi-levels of smart measurement and data acquisition devices in 

the smart grid and the smart metering system, from the transmission network to the 

distribution network. This subsection introduces a hierarchical metering structure at 

the distribution level. The metering structure contains Distribution SCADA 

(DSCADA), Smart Feeder Meter (SFM), and a domestic smart meter. 

1) SFM: Similar to a domestic smart meter, SFM is an advanced metering device 

that enables two-way communication and real-time access to the electricity 

parameters. The difference between SFM and a domestic smart meter is that the 

SFM is installed at the distribution feeder's head, and SFM can measure the 

network electrical parameters, e.g., active and reactive power of the demand load, 

the power factor, RMS values of line and phase voltages, line and phase currents. 

SFM has a higher sampling frequency without the regulation of BEIS (In [206], 

and SFM with an interval resolution of 1 minute is employed to obtain network 

measurements).  

2) Distribution SCADA (DSCADA):  DSCADA is the SCADA system used for 

monitoring and controlling the distribution network (voltage level below 35 kV), 

it enables the interface with the data from SFMs, and the DSCADA can monitor 

the entire distribution system with reliable and secured operations [325].  
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4.4.3.1.2 Flexible multi-level physical aggregation scheme 

Based on the three different levels of smart metering/ sensing devices: domestic smart 

meter, SFM, and DSCADA, a hierarchical physical aggregation scheme is proposed, 

see Figure 4-5 (a).  Whilst the domestic smart meter only collects elasticity 

consumption from a single house, the SFM measures the electricity parameters of a 

distribution feeder, combining several residential houses. As for DSCADA, it collects 

the measurements from all SFM to monitor the overall distribution network. Referring 

to Figure 4-5 (b), a DSCADA system is installed at MV/LV transformer, multi-level 

SFMs are installed on the distribution feeders, and the aggregation size depends on 

the number of houses under the feeder. By drawing from a set of flexibly aggregated 

measurements, the DNO can operate and manage the distribution network without 

accessing domestic smart meters, using this hierarchical metering infrastructure.    

Domestic Smart 

Meter

Smart Feeder 

Meter
DSCADA

 
(a) Hierarchical metering infrastructure to enable physical aggregation. 
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(b) Topology of a distribution network. 

Figure 4-5. A low-voltage distribution network topology and a flexible multi-level physical 
aggregation scheme.  

Table 4-4 presents 24 typical standard feeder models developed by GridLAB-D’s 

feeder taxonomy [326]. The capacity of the feeder models ranges from 948 kW to 
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17021 kW, which indicates light rural areas to moderate urban areas. The approximate 

house number under each feeder model is estimated by fitting house-level power 

consumption data from Dataport [327]. From the table, it is observed that in a light 

rural area, only 205 houses are supplied by the feeder, while a feeder in a moderate 

urban area, more than 3600 houses are linked with the feeder.  

The advantage of the physical aggregation scheme can be concluded as follows:  

1) The feeder-level smart sensors/meters are not under the regulation of BEIS 

specification; hence, a higher sampling frequency can be adopted to improve the 

future distribution network's stability and reliability and enable the DNO to 

manage the distributed renewable energy better. 

2) The feeder-level smart sensors/meters measure the aggregated parameters of a 

regional area (a street or a block) without invading personal energy consumption 

data, so privacy is guaranteed. 

Table 4-4. Summary of prototypical feeders [326]. 

Feeder Model kV kW Approximate Houses 

Number Under the Feeder 

Description 

R1-12.47-1 12.5 7152 1552 Moderate suburban  

R1-12.47-2 12.47 2836 615 Moderate suburban  

R1-12.47-3 12.47 1362 295 Small urban centre 

R1-12.47-4 12.47 5334 1157 Heavy suburban 

R1-25.00-1 24.9 2105 457 Light rural 

R2-12.47-1 12.47 6046 1311 Light urban 

R2-12.47-2 12.47 6098 952 Moderate suburban 

R2-12.47-3 12.47 1411 344 Light suburban 

R2-25.00-1 24.9 17021 3692 Moderate urban 

R2-35.00-1 34.5 8893 1929 Light rural 

R3-12.47-1 12.47 8417 1826 Heavy urban 

R3-12.47-2 12.47 4322 937 Moderate urban 

R3-12.47-3 12.47 7880 1230 Heavy suburban 

R4-12.47-1 13.8 5530 1199 Heavy urban  

R4-12.47-2 12.5 2218 481 Light suburban  

R4-25.00-1 24.9 948 205 Light rural 

R5-12.47-1 13.8 9430 2045 Heavy suburban  

R5-12.47-2 12.47 4500 976 Moderate suburban  

R5-12.47-3 13.8 9200 1996 Moderate rural 

R5-12.47-4 12.47 7700 1670 Moderate suburban  

R5-12.47-5 12.47 8700 1887 Moderate suburban  

R5-25.00-1 22.9 12050 2613 Heavy suburban  

R5-35.00-1 34.5 11800 2560 Moderate suburban  

GC-12.47-1 12.47 5200 1127 Single large commercial 
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4.4.3.2 Informatic aggregation approach 

Another aggregation method named the informatic aggregation approach (see Figure 

4-6), which constructs a data aggregator �hh to collect ® neighbouring smart meter 

readings (��aR(t), ��aT(t),…, ��aê(t)) via LAN, �hh sums up the readings from all 

meter and only send the aggregated reading 7è
#qq(�) to the energy utility referring to 

Equation (4-1). The aggregated reading is then transmitted to the energy utility and 

DCC via WAN, and the data aggregator is operated by a trusted entity such as DNO 

to avoid additional information leakage. The advantage of the informatic aggregation 

scheme is that the aggregation size can be controlled more flexible than the physical 

aggregation scheme, and the aggregation process is not limited to the geographic 

position of the smart meters. 

...

Aggregator

SM1(t)

SM2(t)

SM3(t)

SMn(t)
Network 

Operators

7è
�?? (�) 

 

Figure 4-6. Informatic aggregation scheme via Local Area Network.  

4.4.4 Time-of-use billing channel 

The accuracy and trustworthiness of the consumption profile and the bills is the most 

critical target of the smart metering system. Although the smart meter can gather real-

time power parameters, only the active energy consumption (measured in kilowatt-

hour (kWh)) during a period is needed for billing purposes. The proposed TOU 

channel enables the dynamic TOU tariff and guarantees the correctness of the bills. 

The real-time power consumption data in this channel will not be sent to the ES 



Multi-Channel Smart Metering System 131

 

directly. Instead, the TOU price is sent to the smart meter from the ES, and the active 

energy consumption is stored in pairs with the corresponding TOU price locally. At 

the end of each reporting period, the cumulative active energy consumption and the 

bills are generated from the stored data. The detailed TOU billing process is 

demonstrated as follows.  

Step 1: Initialization. Denote 4 as the reporting period (days), � as the index of days, 

� as the total number of tariff price record points per day,  � as the index of record 

points per day.  

Step 2: Data generation and storage. The ES sends the tariff price π to the smart 

meter � times a day; the smart meter receives the tariff and generates a vector of tariff 

price π' in day �: ìí = îï',�, ï',W, ⋯ , ï',Yð , ï',� represents the tariff price in the 

interval � . Moreover, a corresponding vector of the energy consumption v'  is 

generated based on the measurement: ñí = îv',�, v',W, ⋯ , v',Yð. The smart meter 

stores ìí with ñí in pairs every day. At the end of each reporting period 4, the energy 

consumption matrix ñ and tariff matrix ò are generated: 

ñ =
⎣⎢
⎢⎢
⎡ v�,� v�,WvW,� vW,W ⋯ v�,Y)� v�,YvW,Y)� vW,Y⋮ ⋱ ⋮vø)�,� vø)�,Wvø,� vø,W ⋯ vø)�,Y)� vø)�,Yvø,Y)� vø,Y ⎦⎥

⎥⎥
⎤
   (4-2) 

ò =
⎣⎢
⎢⎢
⎡ ï�,� ï�,WïW,� ïW,W ⋯ ï�,Y)� ï�,YïW,Y)� ïW,Y⋮ ⋱ ⋮ïø)�,� ïø)�,Wïø,� ïø,W ⋯ ïø)�,Y)� ïø)�,Yïø,Y)� ïø,Y ⎦⎥

⎥⎥
⎤
   (4-3) 

Step 2: Billing calculation. Referring to matrix ñ and ò, The total bills in £ üU U#$  
and the total energy consumption vU U#$  (j© ∙ ℎ) during 4 are computed as: 

vU U#$ = vU U#$ + v" ¡U_!& &�U_þ#$¨&      (4-4) 

üU U#$ = üU U#$ + ï" ¡U_!& &�U_þ#$¨&v" ¡U_!& &�U_þ#$¨&   (4-5) 
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Instead of sending detailed ñ and ò, only  vU U#$ and üU U#$  is sent to ES, the ES then 

assigns a bill to the consumers.  

Step 3. Re-initialization. After each reporting period, energy consumption and tariff 

price records are eliminated. 

The storage capacity required: Suppose � = 15 s�����, 4 = 30 ��VZ, and the data 

is recorded in the format of �u�, the data parameters recorded include the energy 

consumption, corresponding tariff price, and the date and the UNIX timestamp. The 

storage capacity required per day is 2.03 KB, and the total storage capacity required 

for one reporting period is 60.9 KB. Referring to the DBEIS specification, the storage 

capacity of the existing smart meter already satisfies the storage requirement.  

4.4.5 Value-added service channel 

As defined in the threat/adversary model in Section 4.2, the third party is the honest-

but-curious adversary motivated to detect personal information from the shared data. 

Referring to the European Commission [328], the value-added service should be 

optional; the use and collection of data and by who needs to be specified as well as 

the specific purpose and where the data will be stored should be strictly identified. In 

the proposed smart metering system, a value-added service channel is designed as an 

optional choice for the consumers; two schemes localized platform and the federated 

learning-based cloud platform, are introduced in Chapter 5. The main idea of the 

channel is to prevent personal information from being shared with third parties via 

WAN, and the local model is trained inside the house to support data analysis locally.  

4.5 Privacy Boundary of the Proposed System 

The information flow diagram of the proposed smart metering system is shown in 

Figure 4-7. After mitigations implemented in Section 4.4, the external adversary still 

can eavesdrop on the communication of each channel. The information can be inferred 

from the high-frequency aggregation channel, and the TOU billing channel is 
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aggregated by reading 7è
#qq(�), the cumulative energy consumption vU U#$ and bills 

üU U#$ . This section will investigate whether the adversary still infers sensitive 

information from the proposed system and to what extent the sensitive information 

can be hidden.  

Although BEIS [12] states that the smart meter data after aggregation no longer 

belongs to personal information, recent works, however, have demonstrated that 

DNOs can infer individual household consumption data from feeder-level data, even 

though DNOs do not have permission to access individual smart meter data [74]. 

Moreover, although in the TOU billing channel, only the active energy consumption 

during the period is reported, recent research indicates that a short reporting period 

can also reveal personal information [329]. Based on the discussion above, two 

characteristics of the smart meter data are investigated: aggregation size α and interval 

resolution σ. A NILM-based data mining algorithm used by the adversary model is 

developed to demonstrate the adversarial process, and a three-level privacy boundary 

(real-time surveillance, presence/absence detection, complete protection) is presented.  

 
Figure 4-7. Information flow of the proposed system. 

4.5.1 Data mining algorithm used by the adversary  

After obtaining the smart meter data, the adversary å  will try to infer private 

information such as detailed electricity activities of the individuals. By identifying all 

working electronic appliances inside the consumer’s house, the consumer’s privacy is 
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exposed to å . NILM algorithm, as introduced in Chapter 2, is the potential data 

mining algorithm used by å to infer personal information from the smart meter data. 

NILM algorithm enables å to disaggregate the household power consumption curve 

into a series of appliance usage profiles, and å can further extract behaviour patterns 

of the individual of these appliance profiles [47]. The detailed disaggregation process 

of NILM is introduced as follows. 

The power consumption recorded by the smart meter at the time slice is denoted as 

� ∈ �:= �1,2, ⋯ , é�  as ��a,U . ��a,U  can be decomposed into individual appliance 

signals via the NILM algorithm: 

��a,U = ∑ G�,��1      (� ∈ �1,2 ⋯ ��, � ∈ �:= �1,2, ⋯ , é�)   (4-6) 

where G�,U is the power consumption of electrical appliance � (range from 1 to �) at 

time slice �.  Denoting the appliance profile sequence matrix as GY×�: 

GY×� = �G�,� ⋯ G�,�⋮ ⋱ ⋮
GY,� ⋯ GY,�

�     (4-7) 

In this chapter, a 1D CNN-LSTM NILM algorithm is employed as the data mining 

algorithm used by the adversary. Based on Equation (4-7), the deep neural network is 

constructed as below, and detailed hyperparameters settings can be found in Table 

4-5.  

Table 4-5. Data mining model settings. 

Hyperparameters  Value Description  

Learning rate À 0.05 The steps to minimise error. 
Optimiser Adam  
Number of LSTM/GRU 
layers 

4  

LSTM/GRU units per RNN 
layer 

512  

Number of 1D CNN layers 1 Extracting features from time-series data 
kernel size of 1D CNN layer 5 The sliding window size of the 1D CNN 
Batch size B 128 The number of training examples utilised in one iteration. 
Activation function for 
hidden layers  

ReLU 7�&�� = max [0, z].  
Activation function for the 
output layer 

ReLU Positive Output. 

Epoch number 100 One cycle through the entire training dataset. 
Loss function MSE Minimise the error between ground truth and prediction 
Dropout 0.5 Reduce overfitting 
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The performance of NILM on a single house and original interval resolution achieves 

83% accuracy on average [330], which convinces that the adversary has high 

computation ability in detecting behaviour patterns. The aggregation size ® as well as 

down-sampling resolution 3  are increasing steadily until the appliance usage 

information is not detected by NILM. 

4.5.2 Implementation 

4.5.2.1 Dataset construction  

The data adopted in this chapter are The Reference Energy Disaggregation Data Set 

(REDD) [331] and Pecan Street Dataport (Dataport) [117], see Table 4-6. Both two 

datasets contain appliance-level and house-level power consumption data. Hence, the 

load profiles and appliance signatures can be obtained from the datasets. Nine typical 

household appliances are selected for this research, which is: air conditioner (AC), 

microwave oven (MO), electric vehicle (EV), water heater (WH), dishwasher (DW), 

dryer (DRY), stove (STO), furnace (FUR), refrigerator (REF). Three variables related 

to the appliance, the power rating, minimum duration, and power threshold, are 

described in Table 4-7. The power threshold in the table represents the minimum power 

to operate the appliance. The threshold is the minimum power to start the device; when 

the power is larger than the power threshold, the appliance is regarded as “on”. 

Minimum duration represents the minimum operating hours of a particular appliance 

throughout the day. Furthermore, the rated power is the highest power input allowed 

through a particular device. 

Table 4-6. Dataset description. 

Dataset Interval Resolution NUM. of Houses  NUM. of Submeters Duration 

Dataport[117] 1 min ≫ 1000 75 4 years 

REDD[331] 3 s 6 20 30 days 

Aggregation Size Dataset: Referring to Section 4.4.3 and (4-1), Houses inside an 

aggregation group are picked randomly from two datasets to make up the new dataset. 

Then the new dataset is split into training/testing datasets (90% for training and 10% 

for testing). The input data of the model is the aggregated power consumption 7è#qq(�), 
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and the output of the model is the power consumption of a particular appliance G�,U in 

house �. 
Table 4-7. The property of appliances [117, 332, 333]. 

Appliance Rating (kW) Threshold (kW) Min Drn (h)  Adversary Acc. (%) 

Microwave Oven (MO) 1.5 0.30 0.025 0.77 
Stove (STO) 1.2 0.24 2 0.89 
Air Condition (AC) 2.0 0.40 12  0.85 
Furnace (FUR) 1.0 0.20 8  0.91 
Electric Vehicle (EV) 3.0 0.50 4  1.00 
Refrigerator (REF) 
Water Heater (WH) 
Dryer (DRY) 
Dishwasher (DW) 

0.055 
3.5 
2.1 
1.2 

0.01 
1.00 
0.7 
0.15 

24  
2.5  
1  
2  

0.94 
0.75 
0.76 
0.90 

Interval Resolution Dataset: The new dataset is generated by reducing the interval 

resolution to σ, and then the new dataset is divided into training/testing datasets; both 

the input (household power consumption) and the output (appliance consumption) are 

from the same house �. 

4.5.2.2 Privacy metrics for appliance detection  

Once the adversary model is designed, the adversary's performance should be 

evaluated and quantified. In this section, two performance metrics that assess the 

performance of DNNs are introduced. 

4.5.2.2.1 F-measure (F1 score) 

F-measure is a performance measurement for classification adopted in NILM works 

and privacy measures [334, 335]; see Equation (3-22) in Chapter 3. Usually, when the 

F - measure is smaller than 0.5, the classifier is inadequate. 

4.5.2.2.2 Correlation analysis 

The Pearson correlation coefficient K  is used to measure whether two continuous 

variables are linearly associated. The value of K ranges from -1 to 1 (a positive value 

indicates positive correlation, while a negative value indicates negative correlation); 



Privacy Boundary of the Proposed System 137

 

the larger K, the stronger the correlation between two variables. The expression of the 

Pearson correlation coefficient is shown in Equation (4-8): 

ρ = ∑ ((M)(̅)(OM)OP)=MQR
S∑ ((M)(̅)T ∑ (OM)OP)T=MQR=MQR

     (4-8) 

where n is the sample size, �U is appliance power consumption at time t and VU power 

consumption generated by the adversary;  �̅,  VP is the mean value of �U  and VU . A 

benchmark is presented for the following analysing process; see Table 4-8. An 

appliance is measurable when two metrics, F-measure and ρ, are lower than 0.2. 

Table 4-8.  Benchmarks of privacy metrics in appliance detection. 

Performance  F-measure  Pearson correlation coefficient (ρ) 
Poor privacy protection 0.5-1 0.5-1 
Fine privacy  0.2-0.49 0.2-0.49 
Good privacy 0.01-0.19 0.01-0.19 
Perfect privacy <0.01 <0.01 

4.5.3 Results and discussion 

This section quantifies the privacy boundary influenced by aggregation size α and 

interval resolution σ. Two case studies are designed for each parameter; the 

detectability of appliances and algorithms sensitivity in two privacy-preserving 

schemes are thoroughly investigated. A discussion based on the results is also 

presented to demonstrate the proposed three-level privacy benchmarks.  

4.5.3.1 Privacy boundary level based on electrical events 

Household appliances can be divided into three categories, loads depending on the 

characteristics and operating duration of the loads [336]. Detailed classifications are 

described as follows: 

(1) Continuous load: A continuous load means that the device consumes energy 

throughout the day, such as the refrigerator and freezer, and the computer and 

printer in “standby” mode. Since residents’ activities do not influence the 

continuous loads, these loads contain little sensitive information.  



138 A Privacy-Preserving Multi-Channel Smart Metering System

 

(2) Intermittent load: These appliances are not always on, but they are active 

enough to be recorded by the lowest hourly smart meters, such as air-

conditioners, electric vehicles, furnaces, and water heaters. 

(3) Active load: Power use appliances in an active house, such as Microwave 

oven, dishwasher, stove, and dryer.  

Based on the load categories introduced above, three-level privacy boundaries are 

defined: 

Level I (Real-Time Surveillance): All loads, including continuous loads, intermittent 

loads, and active loads, are detected by NILM. The adversary knows the entire life 

cycle of all residents (sleeping pattern, number of residents, when people leave their 

homes, etc.). Private information of residents is at high risk at this level. 

Level II (Presence/Absence Detection): Both continuous and intermittent loads are 

detected by NILM. Under this privacy level, the adversary knows whether residents 

are inside/outside the house, but the adversary cannot monitor all electrical activities 

inside a house. 

Level III (Complete Protection): No event is detected by the adversary, or only 

continuous loads are detected by NILM. Under this level of protection, the adversary 

cannot infer any sensitive information from given data. 

4.5.3.2 Privacy boundary of aggregation size  

Recall 7è
#qq(�)  function in Equation (4-1), the aggregation size α is an essential 

variable that influences the statistical privacy. The purpose of NILM is to detect 

appliance usage; the precision of detection is evaluated when α is increasing steadily.  

4.5.3.2.1 Detectability of appliances from aggregated data  

å has high accuracy in appliance detection in a single house, raising privacy issues 

related to the smart meter. Recall the threshold identified in Table 4-7; an appliance 

is defined as detectable when the F-measure and ρ are both higher than 0.2. This case 
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study investigates nine typical appliances introduced in Table 4-7. These appliances 

represent continuous load (REF), intermittent load (AC, EV, WH, FUR), and activate 

load (MO, DW, STO, DRY), respectively. A 1D CNN-LSTM model with four LSTM 

layers is adopted as 7å(�). It achieves high efficiency in detecting appliances in a 

single house sees Table 4-7. By steadily increasing α from 1 to 100, the number of 

smart meters inside an aggregator is enlarged.  

Figure 4-8 presents a heat map to show the performance of NILM in appliance detection 

given different α. As expected, the detectability of NILM is high with a small 

aggregation size (® < 5). By continuously increasing ®, both F-score and ρ decrease 

consequently, which means the appliance detectability is also reduced. Appliances 

such as EV, DW, and WH turn undetectable when ®  reaches 10. Most of these 

appliances operate during peak time, and load components under the aggregation 

scheme are extremely complex during this duration, so the inference process of NILM 

is easily blocked. As ® reaches 20, MO, STO, DRY, and REF turn undetectable. It 

should be noted that Heating, Ventilation, and Air Conditioning (HVAC) devices such 

as AC and FUR remind detectable even ® = 40. The large ® is that HVAC devices 

have a long operational duration (8-12 hours per day) and high-power rating (1-2 kW). 

To blind NILM for these HVAC devices, a minimum number of 50 houses are 

required. Figure 4-8 takes MO, DW, REF, and AC as examples to compare 

information inferred by å and the ground truth data under the aggregation scheme 

with ® = 1, 2, 5, 50, respectively.  

 
Figure 4-8. Heatmap of the performance of the NILM on appliances with different aggregation sizes 

(a) Pearson correlation coefficient (b) F-measure. 
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Since different appliances have different characteristic properties (Rating, Threshold, 

Minimum Duration), the performance of NILM on different appliances varies greatly. 

Based on the results shown in Figure 4-8, a correlation analysis is implemented 

between appliance characteristic properties and adversary detectability (shown in 

Table 4-9), and it is observed that the three characteristics almost show equal 

correlation with the adversary detectability (0.44 for Rating, 0.50 for Threshold, and 

0.53 for Minimum Duration). To summarize, appliances with high ratings, high 

threshold, and long duration (such as AC, FUR, DRY) require larger α to blind NILM.  

Table 4-9. Correlation between appliance characteristic properties and the detectability. 

 Rating  Threshold  Minimum Duration   

α 0.44 0.50 0.53 
σ 0.34 0.26 0.74 

 

 
Figure 4-9. Examples of information inferred from the NILM and ground truth data in the 

aggregation scheme. 

4.5.3.2.2 Sensitivity of algorithms of the aggregated data 

Rather than the CNN-LSTM algorithm adopted in previous sections, the adversary 

can also adopt different deep learning-based NILM algorithms. This case study 
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discusses the sensitivity of algorithms in an aggregation scheme. Apart from the 

proposed algorithm, three state-of-the-art NILM algorithms are proposed, GRU [337, 

338], CNN [131, 339], and the k-nearest neighbours (KNN) [340, 341] NILM 

algorithms are studied as well, referring to previous works. In Figure 4-10, each bar 

represents the average values of F-measure/ρ of all appliances with a particular 

algorithm. It can be found that all algorithms have desirable detectability on a single 

house (F-measure>0.77, and ρ>0.78), and CNN-LSTM has the best performance 

among all algorithms, followed by the GRU, while CNN and KNN have similar 

performance. The machine learning algorithm, KNN, is the most sensitive to the 

parameter α, as KNN-based NILM turns blind when α>10 while other three NILM 

models can still infer private information with high accuracy at this level. Moreover, 

CNN-LSTM and GRU have similar characteristics throughout the whole simulation, 

both CNN-LSTM-based NILM and GRU-based NILM lose general detectability 

when α>30 (it should be noticed that the general detectability only represents average 

privacy metrics of all appliances, some specific appliances are still detectable). To 

sum up, the proposed aggregation scheme for all algorithms discussed in this section, 

as the detectability of four is efficient algorithms drops to near zero at high aggregation 

size (α>40).  

 
Figure 4-10. Comparison of different adversary algorithms in the aggregation scheme (a) Pearson 

correlation coefficient (b) F-measure. 

4.5.3.3 Identifying the boundary of interval resolution  

The privacy boundary of another critical parameter, interval resolution σ, is discussed 

in this section. Same as Subsection 4.5.3.2, two case studies are implemented to 

investigate the appliance detectability and algorithm sensitivity. The original interval 



142 A Privacy-Preserving Multi-Channel Smart Metering System

 

resolution of the dataset � is 3 s; it should be noted that the sampling rate of the data 

in the current smart metering system is 15 minutes, and data with 3s is only available 

in experimental datasets.  

4.5.3.3.1 Detectability of appliances from down-sampled data  

In this subsection, the detectability of NILM on appliances regarding different σ is 

discussed. From the heatmap shown in Figure 4-11, all appliances are high detectable 

when σ<5 min except for MO. Appliances such as MO have a very high rating (1.5 

kW), but the operation duration is short (0.025 hours). Hence when interval resolution 

increases, MO becomes challenging to be detected. As shown in Table 4-9, appliance 

detectability in the data down-sampling scheme correlates with a minimum duration 

(0.72) and is followed by Rating (0.34). Appliances with long operation duration 

require a significant σ value to hide sensitive information. For instance, AC requires 

at least one-hour interval resolution to blind NILM, and σ>5 h is required by EV. As 

for continuous load such as REF, which operates all day, σ should be larger than ten 

h. To summarise, σ>10 h is required to provide complete privacy. Figure 4-12 takes 

MO, DW, and REF as examples to compare information inferred by NILM and the 

ground truth data under a data down-sampling scheme with 3 = 3 Z, 5 s��, 0.5 ℎ, 2 ℎ, 

respectively.  

 

Figure 4-11. Performance of the NILM on appliances with different interval resolutions (a) Pearson 
correlation coefficient (b) F-measure. 
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Figure 4-12. Examples of information inferred by NILM given different interval data. 

4.5.3.3.2 Sensitivity of algorithms of the down-sampled data  

Four adversaries with different algorithms (CNN-LSTM, GRU, CNN, KNN) are 

introduced to determine the algorithms' sensitivity in a data down-sampling scheme. 

As shown in Figure 4-13, the increase of σ weakens the detectability of all four 

adversaries significantly. It is essential to point out that all adversaries still maintain 

high inference ability when σ ranges from 15 to 30 min, while the sample frequencies 

of most smart meters in the UK are in this scope. A benchmark of σ=10  h is a safe 

threshold for the privacy-preserving model against the data mining algorithm used by 

the adversary.  

 
Figure 4-13. Performance of the NILM on appliance under different interval resolution (a) Pearson 

correlation coefficient (b) F-measure. 
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4.5.3.4 The combined effect of interval resolution and 

aggregation size 

This section demonstrates the combined effect of two parameters, α, and σ, on the 

adversary computing ability. The aggregation size α and interval resolution σ are 

changed synchronously, and the dynamic variation of two privacy metrics, F-measure 

and ρ, is observed. The simulation results are presented in Figure 4-14, which uses 3D 

models to show dynamic changes. From the figure, it can be found that the 

detectability recedes rapidly, and both F-measure and ρ drop to zero given ® � 10 

and 3 � 30 s��.   

 

(a) 

 
(b) 

Figure 4-14. 3D model of the privacy performance of the adversary with two parameters. 
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4.5.3.5 Determined privacy boundary   

Based on simulation results and quantification of appliance detectability obtained in 

previous sections, three-level privacy boundaries are concluded in Table 4-10. When  
® < 20  or 3 < 5 ℎ, consumers are under privacy level I, which represents consumers 

under real-time surveillance at this level. By detecting appliance signatures of active 

loads (MO, DW, STO, and DRY), NILM can know detailed behaviour patterns of 

residents inside the house. When 20 ≤ ® < 40 or 5 ℎ ≤ 3 < 8 ℎ, the consumers are 

under privacy level II, å can infer presence/absence information from intermittent 

loads (AC, EV, WH, FUR) but cannot understand complex behaviours inside the 

house. Finally, when 40 ≤ ® or 8ℎ ≤ 3, the consumers are under privacy level III; at 

this level, consumers are protected entirely and free of privacy concerns. In addition, 

when the Co-effects of two parameters are considered, the detectability of NILM 

drops dramatically compared to a single parameter; when 10 ≤ ® and 30s�� ≤ 3, 

privacy level III is already achieved.  

Table 4-10. Quantification of three-level privacy boundaries. 

Privacy 

level 

Appliance to 

detect   

Quantification (Single 

parameter)  

Quantification (Co-effects of two 

parameters) 

Level I 
MO, DW, STO, 
DRY  

® < 20 �� 3 < 5ℎ ® < 2 ��� 3 < 5s�� 

Level II AC, EV, WH, FUR 20 ≤ ® < 40 �� 5ℎ ≤ 3 < 8ℎ 2 ≤ ® < 10 ��� 5s�� ≤ 3 < 30s�� 
Level III All appliances 40 ≤ ® �� 8ℎ ≤ 3 10 ≤ ® ��� 30s�� ≤ 3 

4.6 Privacy Risk Analysis 

As introduced in the threat/adversary model in Section 4.2, both the internal and 

external adversary could infer sensitive information from the original smart metering 

system. In the proposed system, the following information is shared: 

 The cumulative energy consumption vU U#$ and bills üU U#$  during the reporting 

period, 4 is sent to the ES. 

 The aggregated smart meter data 7è
#qq(�) from the aggregator to the DNO. 
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Referring to the privacy boundary evaluated in Section 4.5, the NILM data mining 

algorithm is blinded when aggregation size ®  reaches 40 houses, and the interval 

resolution exceeds eight-hour. Considering a multi-channel smart metering system 

with aggregation size α � 40  houses and reporting period D � 8h, the following 

conclusion can be made: 

1) An internal employee in ES and DNO cannot obtain personal data as 15-minute 

household smart meter data is never shared with ES and DNO. 

2) The third-party service provider, the honest-but-curious adversary, cannot access 

the individual meter readings due to the access control (which will be 

demonstrated in detail in Chapter 5). 

3) The external adversary who eavesdrops on the communication channel cannot 

infer personal data or sensitive information related to individuals, as the data 

mining algorithm they employ is blinded to the aggregated and down sampled 

data, as demonstrated in Section 4.5.  

Based on the statement above, the privacy risk introduced by the threat/adversary is 

eliminated/reduced in the proposed multi-channel smart metering system. 

4.7 Chapter Summary 

This chapter presents a multi-channel smart metering scheme to prevent privacy risks 

raised by the smart meter. This chapter starts with identifying the threats/adversaries 

who bring privacy risks to the smart metering system. Then based on the defined 

threats/adversaries, GDPR, and the minimal data required by different entities, a smart 

metering system which can transmit different granularity data via three 

communication channels are developed. Based on the proposed system, 

functionalities include TOU billing, distribution network operation, and third-party 

value-added services. Moreover, a NILM-based data mining algorithm is introduced 

to quantify the privacy boundary (aggregation size and interval resolution) of the 

smart meter data transmitted in the proposed system. Finally, by comparing the 

privacy risks of the existing/proposed smart metering system, the conclusion is 



Chapter Summary 147

 

reached that the proposed system can reduce the information leakage the 

threats/adversaries raised.  
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Chapter 5 Differentially Private Federated 

Learning-based Value-Added Service Platform 

5.1 Introduction 

5.1.1 Motivation and background 

In the last chapter, a multi-channel smart metering system is introduced, enabling 

three communication channels between the consumers and other stakeholders (energy 

suppliers, distribution network operation, and third parties). Among all channels, the 

low-frequency TOU billing channel and high-frequency aggregation channel are the 

most vital channels to support compulsory functionalities, including TOU billing and 

grid operation and management, while the third-party communication channel is an 

optional choice to provide various value-added services to the consumers. Such 

services can introduce new market opportunities and engage the innovation of the 

electricity market [304], and smart meter crates opportunities to innovate in B2C and 

G2C projects (B2C – Business to Consumer, G2C – Government to Consumer) [342]. 

Various value-added services are available to consumers, including demand response, 

NILM, energy awareness and load forecasting. The software companies may also try 

to link their smart speakers (Echo [343], Google Home [344]) to the consumer’s smart 

meter to help the consumers improve their energy awareness [342]. These value-added 

services to the consumers are based on characteristics of a household’s energy 

consumption, while different services may require metering data with different 

resolutions.  

For traditional value-added services in AMI, the power consumption data collected by 

smart meters are uploaded to a centralized server. The server can use the data to train 

machine learning/deep learning models, and then the trained model can make 
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predictions. However, these centralized value-added services and the data collected 

by the smart meter are subject to privacy concerns. As introduced in Chapter 4, the 

TP service provider is a potential internal adversary that would follow the protocol 

but try to harvest consumer data since it can have great commercial value [105]. 

Secondly, most value-added services require consumers to send detailed power 

consumption profiles of their houses or specific appliances with timestamps. Attacks 

such as NILM attacks [235, 345] can extract detailed behaviour patterns of consumers 

by disaggregating power consumption into detailed appliance usages. Thirdly, 

referring to data privacy legislation such as the European Commission’s GDPR [301], 

data collected by the smart meter belongs to personal data, and the collection or 

storage of such information is strictly limited by the data minimization principle 

consent principle [346]. Moreover, the European Commission also suggested that 

value-added services should have separate communication channels where the type of 

data to be collected and stored should be specified [328]. 

The increasing popularity of smart meters has been accompanied by little attention 

being paid to these and other privacy issues on value-added services. Although several 

privacy-preserving methods could be used in different parts of AMIs, such as 

employing rechargeable batteries for smart meters [57], noise-adding methods [72], 

and data anonymization methods [85], there is still a need to target data collection by 

value-added services. Federated learning (FL) is a suitable technique to satisfy all 

suggestions proposed in [45]; this decentralized machine learning scheme enables 

clients to train local models without sharing private data with the server. Moreover, 

DP provides a stronger privacy guarantee when the cloud server collects model 

parameters from the clients [148]. 

5.1.2 Knowledge gap and limitation of existing work 

Existing AMI mostly focuses on billing and monitoring services [135], and the smart 

meter only passively measures consumers' overall power consumption. In the next 

generation AMI, rather than a sensor, the smart meter plays the role of an edge device 

and the gateway of the smart home [347]; the smart meter is expected to implement 
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data analytics, prediction, and energy management with low communication latency. 

Moreover, the AMI need a private separate value-added service platform which can 

integrate third-party software and provide multiple value-added services [147].   

In [45], M. Asghar et al. provided several suggestions and outlooks for future privacy-

preserving value-added services. These suggestions can be concluded as follows: (1) 

implement value-added services on customers’ private computing platforms (such as 

mobile phones and personal computers). (2) Develop new privacy-preserving 

distributed machine learning algorithms to provide better privacy guarantees to 

consumers. 

In the literature for privacy-preserving in AMI, some developments are missing that 

can be concluded as follows.  

1) Although some works discuss privacy-preserving value-added services, a hybrid 

platform that enables various services still needs to be redesigned to follow the 

GDPR strictly.  

2) The existing smart metering system can only share 15-minute interval meter data 

with TP due to BEIS specifications, and only half-hourly data is stored. However, 

value-added services may require multi-resolution data, with data with intervals 

higher than 15 and 30 minutes.  

3) Lack of work combines state-of-the-art privacy-preserving techniques (such as 

differential privacy and federated learning) with advanced deep learning methods 

(such as the attention-based deep neural networks). 

5.1.3 Objective 

The value-added service platform proposed in this chapter should satisfy the following 

requirements: 
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 As an honest-but-curious adversary, TP should follow the protocol to provide 

high-quality services to the consumers, while TP cannot access the individual’s 

meter reading directly. 

 The proposed platform should enable multi-resolution smart meters for various 

value-added services. 

 The proposed platform should have an interface to receive information from other 

databases, e.g., metrological information from the weather station and solar 

irradiance information from the satellite.  

5.1.4 Novelties and contributions of the chapter  

Based on the knowledge gaps discussed above, the significant novelties can be 

summarized as follows. 

1) A proposed privacy-preserving AMI TPS platform based on differential private 

federated learning (DPFL) scheme. The platform can provide multiple services to 

consumers without sharing their data (e.g., load demand data) to cloud servers and 

other parties. 

2) An Attention Bidirectional Long Short-Term Memory (ATT-BLSTM) algorithm, 

one of the newest RNN models, is utilized as the local/central model to train the 

data and make predictions. 

3) K-means clustering is used to cluster the clients into the normal and malicious 

clients using the local model weights only.  

5.1.5 Structure of the chapter  

The remainder of the chapter is organized as follows: Section 5.2 describes the 

preliminary knowledge and techniques used in this chapter, including differentially 

private federated learning and attention-based bidirectional long short-term memory. 

Section 5.3 illustrates the proposed value-added services platform and the training 

process of both the local and global models. In Section 5.4, the performance of the 

proposed model is evaluated, and several variables that influence the model accuracy 
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are fully investigated. The last section concludes the chapter and discusses future 

works.  

5.2 The Preliminaries 

This section introduces preliminaries of the proposed value-added service platform, 

including attention-based bidirectional long short-term memory recurrent neural 

network, differential privacy, and federated learning.  

5.2.1 Attention-Based Bidirectional Long Short-Term Memory 

Recurrent Neural Network 

Uncertainty, nonstationary, nonlinearity and long-term dependence are the time-series 

demand load data characteristics. RNNs are utilized to process the data to some extent. 

However, one of the drawbacks of RNNs is the long-range dependency problem [348], 

the capability of RNNs to process long sequence data is inefficient, and even long 

short-term memory (LSTM) turns forgetful in special cases. The attention mechanism 

is a probability weighting mechanism that was first proposed in 2014 [349]. ATT-

BLSTM architecture improves its accuracy by assigning the probability weights to 

each previous hidden state to find the most informative for the output at the current 

time step [350] (Figure 5-1). Hence, the utilization of the attention mechanism can 

improve the output of the bidirectional LSTM (BLSTM) and better solve the long-

term memory problem [350]. ATT-BLSTM model consists of two parts: the 

conventional BLSTM and an attention layer, see Figure 5-1. In a BLSTM structure, 

given a minibatch input ×U ∈ ℜ�×'  (�  is the number of examples, and �  is the 

sequence size of each example), the forward hidden state ÏUáááá⃗ ∈ ℜ�×r and backward 

hidden state ÏUá⃖ááá ∈ ℜ�×r (ℎ denotes the number of hidden units) at time step � can be 

expressed as (5-1) and (5-2): 

ÏUáááá⃗ = Ê(×UÐ(r
(@) + Ïáá⃗ U)�Ðrr

(@) + Ùr
(@))    (5-1) 
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ÏUá⃖ááá = Ê(×UÐ(r
() + Ï⃖ááU)�Ðrr

() + Ùr
())   (5-2) 

where Ð(r
(@), Ð(r

() ∈ ℜ'×r  and Ðrr
(@), Ðrr

() ∈ ℜr×r  represent the weights of the 

model, and Ùr
(@) and Ùr

() ∈ ℜ�×r are the biases of the model. Then, by integrating the 

forward and backward hidden states, the hidden state is obtained as ÏU ∈ ℜ�×Wr . 

Finally, HU  is fed to the output layer to compute the output Ö� ∈ ℜ�×e  (� is the 

number of outputs): 

Ï� = �ÏUáááá⃗ ; ÏUá⃖ááá��
       (5-3) 

Ö� = ÏUÐre + Ùe       (5-4) 

where ©re ∈ ℜWr×e  is the weight and £e ∈ ℜ�×e  is the bias of the output layer. As 

for the attention layer, denoting the current hidden state as ÏU and the previous hidden 

state as Ï�  (1 ≤ � < �). Referring to the definition in [349], a context vector �U  is 

computed, which is the weighted sum of all hidden states: 

ÜÌ = ∑ ®U,�U)��`� ÏØ      (5-5) 

where ®U,� is the weight for the hidden state ÏØ at timestep �. An attention matrix ®U,� 
is obtained by adopting the softmax function, as shown in (5-6) and (5-7): 

�Ì = [®U,�, ®U,W, … , ®U,(U)�)]      (5-6) 

®U,� = �/� (&M,<)
∑ �/� (&M, )� QR

       (5-7) 

In the above equations, �U,� represents the score (or energy) of a feedforward neural 

network (denoted as function �), and the purpose of �U,� is to capture the influence of 

the previous hidden state Ï�  on the current hidden state ÏU . Three � functions are 

introduced in [351]: location-based attention function (location), general attention 

function (general), and concatenation-based attention function (concat) [349]. 

Detailed functions are illustrated below: 
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�U,� = �\�U,X^ = ! Ð&"Ï� + £& �������
ÏU"Ð&Ï� h�����> #&" tanh(Ð&[ÏU; Ï�]) ������

    (5-8) 

where #&  is the parameter to be learned by the neural network. Referring to the 

experiment implemented by [352], attention-based BLSTM achieves excellent 

performance in processing power consumption data as its characteristic in allocating 

the importance to the overall power consumption data points that correspond to the 

state changes of appliances. As a result, the model can better extract relevant features 

from the collected data. 
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Figure 5-1. Structure of attention-based bidirectional LSTM. 

5.2.2 Differential Privacy 

Differential privacy is a technology proposed by C. Dwork in 2006 to protect an 

individual’s identification information by adding random noise over the original 

aggregated data so that every individual has little effect on the result [84, 353, 354]. 

In this case, the adversary cannot distinguish the change of the aggregated data 

with/without one individual data point. Several noise addition mechanisms are 

available in the literature [354], including the Laplace, exponential, and Gaussian 
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mechanisms. The privacy level, � , is guaranteed via the above noise addition 

mechanism, and the lower � is, the higher the privacy level that can be achieved. 

Definition 1. ℜ is a random function that transforms input Á  to a random output 

ℜ(Á). 

Definition 2. �(Á, Á0), which is the distance between two neighbouring datasets, 

represents the minimum number of individual samples required to shift dataset Á to 

Á0. 

Definition 3. For a random function 7, the global sensitivity, u@ , is the maximum 

difference between the outputs of two neighbouring datasets Á and Á0 . u@  also 

determines the overall noise to be added into the DP mechanism. 

$7 = max'(%,%&)`�‖7(Á) −7(Á0)‖     (5-9) 

Definition 4. The Gaussian privacy mechanism denoted ℜ is defined as f plus the 

noise term '. 

ℜ(Á) ≜ 7(Á) +'(0,$7W3W)     (5-10) 

where ' is the Gaussian distribution with mean 0 and standard deviation u@W3W.  

The scale 3 is computed as 

3 = S2ln *�.W+
Ç ,ΔW/�       (5-11) 

Definition 5. A randomized function ℜ satisfies ( � , � ) privacy ℙℝ  for any two 

neighbouring datasets Á and Á0: 

ℙℝ[ℜ(Á) ∈ �] ≤ �0ℙℝ[ℜ(Á0) ∈ �] + �    (5-12) 

where � denotes all possible outcomes in range ℜ, and � is the possibility that the 

differential privacy is broken. In this work, 10)+ is selected as �. 
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The following composition theorem computes the overall privacy cost throughout the 

learning process: 

Theorem 1. (Composition Theorem) If f is (��, δ1)-differential privacy and g is (��, 

δ2)-differential privacy, then 

7(4), ?(4) is (�� + �W, �� + �W)-Differential Privacy  (5-13) 

With the composition theorem, the overall privacy cost is calculated by accumulating 

the privacy cost at each training step. Hence, the overall privacy cost after é steps is: 

�U U#$ = é�; �U U#$ = é�      (5-14) 

5.2.3 Federated Learning with Differential Privacy 

Federated learning is a decentralized machine learning algorithm that shifts the 

learning process from the centralized cloud server to decentralized clients [148]. An 

FL model contains 1 ∈ '∗clients indexed by j and one cloud server denoted as u. 

The target of the FL algorithm is to minimize a local objective function that can be 

expressed as: 

s��¾∈ℝz   �
" ∑  "�`� 7�(¢)      (5-15) 

For client j ∈ 1, a local model will be trained with their private data on an edge 

device (such as a smartphone or laptop): 

∀j, ¢U��X ← ¢U − Þ∇ℒ(¢U)     (5-16) 

The parameters of the local model ¢U��X  for a client are then sent to u, the parameters 

of all local models are aggregated, and a data-weighted average over all parameters is 

performed to update the global model ¢U��: 

¢U�� ← ∑  5X`�
� 
� ¢U��X       (5-17) 
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where �X is the number of samples of client j, and � is the number of samples of all 

clients. Then, the new global model is broadcast to clients, and clients will retrain the 

local model with their data. The above steps will be repeated until convergence. 

Although federated learning models avoid sharing private data with a cloud server or 

third parties, privacy is still a significant concern. By continuously sharing the 

parameters of local models, the adversary can still infer some sensitive information 

from the parameters [355]. DPFL provides a strong privacy guarantee and 

simultaneously reduces communication costs [356]. Hence, a DPFL algorithm is 

adopted in this work to provide a stronger privacy guarantee to the system. The DPFL 

adopted in this work is based on the randomized Gaussian mechanism introduced in 

[357]. Denoting the global model at timestep � as ¢U; the model is optimized by the 

local model of client j , and the optimized parameters are denoted as ¢X . The 

mismatch between ¢U and ¢X  is client j’s update and can be expressed as: 

△ ¢  X = ¢X − ¢U      (5-18) 

To reduce the sensitivity of △¢  X  with a considerable value, a scaling function is 

applied to △ ¢  X to ensure that the second norm ‖△ ¢  X‖W is limited by sensitivity u. 

Hence, the scaled version of the updates is obtained as: 

△ ¢7 X =△ ¢ X/s�� *1, 8 � ,     (5-19) 

where 9X = ‖△ ¢  X‖W and u is the median of norms of clients’ updates and can be 

expressed as: 

u = s������9X�      (5-20) 

By adding random Gaussian noise scaled to u, '(0, uW ⋅ 3W) into the sum of all scaled 

updates from 1 clients ∑  5X`� △ ¢7 X, the Gaussian mechanism approximating the sum 

of updates is obtained. The new global model ¢U�� is computed by adding the original 

global model with averaged approximation: 

¢U�� ← ¢U + �5 *∑  5X`� △ ¢7 X +'(0, uW ⋅ 3W),   (5-21) 
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5.3 Value-added service platform   

This section introduces a privacy-preserving value-added service framework in AMI 

based on differential private federated learning. To simplify the system, the following 

assumptions are employed for the rest of the chapter: (1) the sampling frequency, 

computation ability, and types of data of all smart meters are the same; (2) latency and 

communication delay are neglected, and (3) all clients upload the parameters at the 

same pace.  

There are two methods to enable edge computation on a smart meter, which are the 

Trusted Platform Module (TPM) introduced by [358] and a private platform (such as 

a mobile phone and computer). As for TPM, an extra computation module should be 

plugged into the smart meter to enable edge computation. The TPM can store 

cryptographic keys, and for performing cryptographic primitives using the keys, so 

the smart meter with a TPM is considered fully trusted [45]. The capacity of TPM is 

listed in Table 5-1. The microcontroller for TPM introduced in [145] is a Raspberry 

Pi 3, and this is a tiny and cheap (10 pounds per chip [359]) device which contains 

Central Processing Units (CPUs), Graphics Processing Units (GPUs) to support 

machine learning software such as TensorFlow and TensorFlow Lite. The advantage 

of TPM is that it reduces the possibility of being prone to viruses and malware as TPM 

disconnects from the Internet. Moreover, the power of TPM is supplied by the power 

unit of the smart meter; hence it is unlikely to lose connectivity due to the battery 

power. The limitation of TPM is that the method requires an extra module on the smart 

meter, which will increase the cost.  

Another approach is using the high-computational personal device to perform the edge 

computation and train the local model. The smartphone and computer have been 

employed as edge devices for federated learning applications [360]. Examples of the 

hardware specification of the personal devices are listed in Table 5-1. It should be 

noticed that the disconnection of a small group of edge devices will not influence the 

performance of the federated learning model, as the global model is still being updated 
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with the rest of edge devices since the smartphone or personal computers are prone to 

viruses and malware, which would introduce potential security risks. Hence, the 

following security requirements are provided to guarantee mobile security. 

1) The third-party APP should be restricted READ-ONLY access to the smart meter 

record, and the accessed data cannot be stored in the memory.  

2) Consumers are required to install antivirus software to look for suspicious 

behaviours.  

3) Strong and up-to-date cryptographic protocols must be employed to guarantee the 

confidentiality of the data transmitted between the client app and the backend 

server. 

4) Block all the interaction from other mobile applications. 

5) A firewall, intrusion detection system and recovery system are required to be set 

up to ensure the security of the backend server from cybersecurity attacks. 

Table 5-1.  Examples of hardware specifications for edge computing. 

Edge Device Product  GPU CPU Software Support 

TPM [145] Raspberry Pi 3 VideoCore VC6 
Quad Core 1.2GHz Broadcom 
BCM2837 64bit CPU 

TensorFlow and 
TensorFlow Lite 

Smartphone  iPhone 13 
4‑core GPU 
16‑core Neural 
Engine 

A15 Bionic chip iOS 13 

Computer 
[360] 

NVIDIA Jetson 
TX2 

NVIDIA Pascal 
Dual Denver 2 64-bit + quad ARM 
A57 

TensorFlow and Caffe 

There are two value-added service platforms developed in this section, which are a 

localized service platform (benchmark model) and a federated learning-based 

platform; detailed description of the two models is presented as follows. 

5.3.1 Benchmark model - Localized service platform 

The localized platform follows the data minimization principle, preventing personal 

data from “leaving” consumers’ houses. Rather than sending personal data to the 

server of TPs, TPs send algorithms and models to TPM. The consumer then enquires 

from the local model to obtain wanted services. As shown in Figure 5-2, the process 

of the additional third-party service channel consists of the following steps, and all 

steps can be divided into two categories depending on the network (WAN or HAN): 
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Operations via WAN: 

1) Data Loading: The training data is loaded from the public electricity database. 

The data is pre-processed (data cleaning, encoding, and feature scaling) before 

feeding into the global model. 

2) Model Training: The global model is trained with the training data.  

3) Model Broadcasting: After the global model is trained, the global model 

parameters are broadcasted to consumers.  

Operations via HAN: 

4) Local Model Generation: TPM downloads the global model parameters via 

WIFI and generates a local model with given parameters. 

5) Private Data Transmission: The smart meter communicates with TPM and 

reports the power consumption data.  

6) Query Process: The consumer can send a query to TPM, one the platform 

receives the query, it will evaluate the local model with private electricity data to 

compute the outputs of the query. Then a detailed report is sent to the consumer 

via IHD. 

The data flow in Figure 5-2 shows that the consumer’s electricity data are shared 

inside HAN and are never sent to the utility, but the services are enabled. The enabled 

services include NILM, STLF, and demand response.  

However, the localized scheme also has several drawbacks that cannot be overlooked:  

 By sending algorithms/model parameters to consumers, the model’s parameters 

and training dataset would be stolen by users, while these models and datasets are 

confidential.  

 Moreover, it is difficult to implement a privacy-preserving algorithm in complex 

models such as machine learning/deep learning-based services. Furthermore, the 

global model cannot be updated frequently to personalise to different customers.  
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Based on the limitations discussed above, A federated learning-based platform is 

developed. 

 
Figure 5-2. Privacy-preserving third-party service channel. 

5.3.2 Federated learning service platform   

The overall system is demonstrated in the flowchart shown in Figure 5-3. The clients 

in this framework are the consumers who install smart meters at home; they use IoT 

devices such as smartphones and personal computers to train local models and 

communicate with the cloud server. The proposed framework contains six procedures 

that can be concluded as follows: 
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Figure 5-3. Overall differential private federated third-party service scheme. 
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 Procedure 1. Global model initialization. Initially, the global model at the TP 

cloud server is initialized by allocating random values to its parameters. Then, the 

model parameters are downloaded by clients and broadcast to local models. 

 Procedure 2. Local model training. After receiving the parameters from the 

cloud server, the local model is updated in the IoT device; then, the IoT device 

will train the new model with private data locally. 

 Procedure 3. Local model parameters upload. After the training process, the 

parameters of all local models are uploaded to the cloud server. 

 Procedure 4. Aggregation with differential privacy. An aggregator is 

responsible for secure aggregation once it receives a response from the required 

number of clients. It aggregates the data with a random mechanism to maintain 

client-level differential privacy. After the aggregation of each round, the collected 

local model parameters are discarded. 

 Procedure 5. Global model update. The global model is updated with the output 

of the aggregator. 

 Procedure 6. Model broadcast. Parameters of the new global model are 

broadcast to all local models that run on IoT devices. 

5.3.3 Local Deep Neural Network Model 

As shown in Figure 5-4, the structure of the local neural network consists of seven 

layers: 

 The input layer: The power consumption data collected by the smart meter are 

fed into the model. 

 Two BLSTM layers: BLSTM is adopted to extract high-level representation from 

the input data. Although more BLSTM layers enable the model to better extract 

nonlinear features from the input sequences, too many BLSTM layers will cause 

overfitting problems, and the training time is also highly extended. Considering 

the above issues, two BLSTM layers are easier to implement with high efficiency. 
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 An attention layer: As introduced in Section 5.2.1, the attention layer utilizes the 

attention mechanism to rank the importance of the previous hidden states and 

selects the most informative hidden state to predict the output values. 

 A concatenated layer: As the optional layer, the function of the concatenated 

layer is to load data from external databases related to evaluating the desired value-

added service. External databases include meteorological, calendar, and electricity 

market databases. 

 A fully connected layer: The fully connected layer links the recurrent layers with 

the output layer. The layer's purpose is to fully extract the nonlinear correlation 

between all input variables and outputs. 

 The output layer: For classification tasks, the probability of each category is 

generated as the output; for regression tasks (such as load forecasting or NILM), 

the output layer generates the prediction value at the current timestep. 

Optional layer
 

Figure 5-4. Structure of local neural network model. 

5.3.4 Cloud Server 

The central cloud server is responsible for secure aggregation and central model 

updates. Once the server receives the uploaded local models from all clients in each 
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communication round, it will implement a secure aggregation with differential 

privacy. As introduced in Section 5.2.3, random Gaussian noise is added to the sum 

of the clipped updates. Then, the aggregated updates are utilized to update the global 

model on the server. See Algorithm 5-1. 

5.4 Case study and discussion  

In this section, the accuracy and efficiency of the proposed Clustered-DPFL 

Attention-BLSTM TPS framework are validated by using the scheme for a typical 

TPS residential STLF task. The proposed scheme and the traditional centralized 

framework are tested with real-world datasets. Moreover, the impacts of exogenous 

Algorithm  5-1: Differential Private Federated Learning-based Value-Added Service. communication round �; the maximum 
communication round é; the maximum pre-train communication round é;;  ü is the mini-batch size; � is the fraction of clients; 
� is the target differential privacy; 3 is the Gaussian Mechanism parameter; � represents the probability that �-DP is broken, 
and � is the threshold for �. 
1: Procedure DPFL(1, ¢U) 
2:       initialize the global model ¢~                                          ⊳ initialize weights of the global model on the server 
3:       initialize Accountant (�,1)                                             ⊳ initialize the privacy accountant on the server 
4:       while � < � do 

5:               � ← Accountant (�,�)                                           ⊳ accumulate the privacy loss  
6:               if � � � then return ¢U                                          ⊳ return the model when the privacy threshold reached  
7:               for client j in �1 do 

8:                      △ ¢ U�� X , 9X ← ClientUpdate(j, ¢U)                 ⊳ the client k’s update and norm update on the local model  
9:                u = s������9X�                                                  ⊳ compute the median norms of clients’ updates as sensitivity 

10:                ¢U�� ← ¢U + �
" =∑  5X`� △ ¢U��X /s�� *1, 8 � , + '(0, uW ⋅ 3W)>  ⊳ update the global model  

11:       return ¢U�� 
12: Procedure ClientUpdate(j, ¢U)                                                                        ⊳ perform on client j  
13:      ¢ ← ¢U  
14:      while � < �"#( do 
15:            for £ ∈ B do  
16:                     ¢ ← ¢ − Þ∇ℒ(¢U)                                                                         ⊳ mini-batch gradient descent 
17:             △ ¢ U��  = ¢X − ¢U                                                                                 ⊳ client j’s local model update 
18:             9 = ‖△ ¢ U��  ‖W                                                                                     ⊳ second norm update 
19:      return △ ¢ U��  , 9  
20: Procedure  K-MeansClustering (E,△ ¢) 
21:      random place centroids ��,�W across △ ¢ 
22:      repeat 
23:             for � in 1 do 

24:                    ��] = ?1 if � = argmin]  ∥∥△ ¢� − �]∥∥W
0 otherwise 

                        ⊳ find the nearest cluster � for model � 
25:             for � in 2 do 

26:                    �] = ∑  5�`� ��]                                                           ⊳ assign the data points to clusters 

27:                    �] = �
��

∑  5�`� ��] △ ¢�                                               ⊳ assign the average of points to cluster � 

28:      until Convergence  
29:      return ��, �W                                                                 ⊳ assign the regular clients to �� and the malicious clients to �W 
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meteorological and calendar features are also investigated. Finally, the privacy 

performance, as well as the communication cost, is studied as well.  

5.4.1 Data description  

In this chapter, a real-world dataset from Pecan Street Dataport [327] was used to 

evaluate the forecasting performance. The dataset contained over 1200 houses and 

was collected in Austin, Texas, the United States (N 30° 15', W 97° 43') between  

January 1st and December 31st, 2018. Both household and appliance power 

consumption in each house was recorded with sampling frequencies of 1 min and 15 

min, respectively. This work selected 15 min interval smart meter data from 50 houses 

as the simulation dataset. The dataset was split into training data (1st January 2018 to 

30th September 2018) and testing data (1st October 2018 to 31st December 2018). The 

training data were split into 36-week data, and one-week data were adopted for each 

communication round. When the communication round reaches 36, it will start 

dragging data from the first week again at the next communication round until it 

reaches the threshold of δ. Moreover, meteorological data resources from the same 

location (Austin, Texas, US) are used; the data is provided by National Centres for 

Environmental Information (NCEI) [193]. 

5.4.2 Implementation  

5.4.2.1 Simulation environment  

The case study is implemented on a workstation with a Core i7-7700HQ CPU, 

NVIDIA GTX 1060 GPU (8 cores), and 8GB RAM. The DPFL ATT-BLSTM is 

operated on Python 3.6 with Pytorch [361], and the privacy loss is computed via the 

Tensorflow-Privacy library [362].  

5.4.2.2 Evaluation metrics 

The performance of the scheme is evaluated with Normalized Mean Absolute Error 

(nMAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error 
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(RMSE). The smaller value of MAE, MAPE, and RMSE, the better performance the 

model provides.   

5.4.2.3 Benchmark model 

Several benchmark models are designed better to demonstrate the accuracy and 

robustness of the proposed method. Firstly, the proposed model is compared with 

three different service frameworks, such as centralized framework, localized 

framework, as well as FL framework, without adding noise during the aggregation 

process: 

(1) Conventional centralized ATT-BLSTM model (denote as Centralized model). In 

the Centralized model, the DNN algorithm only runs on the cloud server, and the 

server will collect the power consumption data from all connected smart meters. 

The collected data is then used for training the centralized DNN model. Finally, 

the server will send the trained model back to the consumers.  

(2) FL ATT-BLSTM model without DP (denote as FL model). The structure of the 

FL model is precisely the same as the proposed DPFL model; the only difference 

is that no noise is added during the aggregation process.  

(3) Localized ATT-BLSTM model (denote as Localized model). The smart meter can 

only train the DNN model with minimal data in the Localized model.  

Then three benchmark models under the DPFL framework utilizing different DNN 

algorithms (MLP, LSTM, BLSTM) are selected. By comparing the proposed model 

with the models listed below, the efficiency of ATT-BLSTM can be validated. 

(4) DPFL model utilizes LSTM as a training algorithm (denote as DPFL-LSTM 

model). 

(5) DPFL model utilizes BLSTM as a training algorithm (denote as DPFL-BLSTM 

model). 

(6) DPFL model utilizes MLP as a training algorithm (denoted as DPFL-MLP model). 
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5.4.3 Hyperparameters configuration 

The hyperparameters of the pre-training model and the proposed Clustered-DPFL 

Attention-BLSTM model are summarized in Table 5-2. The pre-training model is a 

shallow MLP with only one dense layer. The layer contains 16 cells, and the activation 

function of the dense layer is the Rectified Linear Unit (ReLU), which enables the 

model to learn nonlinear correlations better. The optimizer is SGD with the learning 

rate 1 × 10)¥. 

Figure 5-4 and Table 5-2 show that the DPFL ATT-BLSTM model contains two 

BLSTM layers, with 128 and 256 cells, respectively. Followed by an attention layer 

with a size of 28 and one dense layer with 128 cells. The activation function of hidden 

layers is ReLU, and the optimizer is Adam with the learning rate 1 × 10)C. As the 

STLF task is a regression task, the output layer size is one. Moreover, dropout and L2 

regularization are used to avoid overfitting problems. 0.3 and 0.2 are selected as the 

dropout rates of the BLSTM layer and the dense layer, respectively. And 1 × 10)¥ is 

selected as the weight decay value.  

Table 5-2. Hyperparameter configuration. 

Pre-training model 

Hyperparameter Value/range 
Layers 1 Fully connected layer with 16 cells 
Batch size 32 
Activation function ReLU 
Epochs 3 
Optimizer SGD 
Learning rate 1e-3 
Dropout rate 0.3 
Differential privacy federated learning model 

Hyperparameter Value/range  
Lookback 4 
Optimizer Adam 
Loss MSE 
Activation function ReLU 
Layers 2 BLSTM layers with 128 and 256 cells, respectively;  1  
Epochs for each client in every 
communication round 

5 

Privacy budget � 1, 2, 4, 6, 8, 10, 12 
� 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8 
The GM parameter σ 1.12 
Number of batches per client B 128 
Dropout rate  0.5 
Weight decay  1e-3 
Attention size 28 
Learning rate  1e-4 
Total clients 5, 10, 50 
Percentage of clients selected each round � 30% 
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5.4.4 Computation complexity  

Computation complexity is evaluated in terms of the overall runtime of the service. 

To quantify the computation complexity, the following variables are defined: 

 �ℎ�Z� I: Implement the proposed DPFL model. 

 �ℎ�Z� II: Respond to the clients’ query with the updated local model.  

 é$  #$ (�): Time for clients to train local model at communication round �. 

 é#qq (�): Time for the central server to aggregate the local model parameters with 

differential privacy at communication round �. 

 é̈ ;$ #' (�): Time for the clients to upload the local models to the �th cluster server 

at communication round �. 

 é! #' #¡U (�): Time for the central server to broadcast the global model to the 

clients at communication round �. 

 éq$ #$ (�) : Time for the central server to update the global model at 

communication round �. 

 ée¨!&O: Time for the local server responses to the consumer’s query.  

In Phase I, also known as the federated learning period, all cluster servers are assumed 

to operate in parallel, so the runtime of the proposed model with client j  in a 

communication round � can be estimated by the following equation:  

é;r#¡&DD (�) = é$  #$ (�) + é̈ ;$ #' (�) + é#qq (�) + é! #' #¡U (�) + éq$ #$ (�)(5-22) 

Then the total time cost during Phase I is calculated as: 

é;r#¡&DD,U U#$ = ∑ é;r#¡&DD (�)éU`�       (5-23) 

Finally, the overall computation complexity of the proposed model is evaluated by  

éU U#$ = é;r#¡&D,U U#$ + é;r#¡&DD,U U#$ 
                 = ∑ é;r#¡&DD (�)éU`� + ée¨!&O               (5-24) 
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5.4.5 Communication cost 

During each communication round, the central server should communicate with its 

clients in the following steps: � percentage of overall clients 1 are selected as the 

training targets on each communication round. Hence there are a total number of �1 

clients who need to upload their local models to the central server. Hence, after é 

communication rounds,  �1é communication sessions are needed to complete the 

whole training process.  

5.4.6 Comparison of the proposed model with centralized and 

localized models 

After filtering out the malicious clients, the federated model operates among all 

regular clients. In the first case study, the proposed DPFL scheme is compared with 

the conventional Centralized scheme, Localized scheme, and the normal FL scheme. 

To control the variable, all schemes utilize ATT-BLSTM as the DNN algorithm. The 

forecasting results are concluded in Table 5-3. Figure 5-5 plot the predicting load 

curves by the four schemes and the ground truth curve (solid blue line) in three 

consumers’ houses. Considering the forecasting accuracy, the centralized scheme has 

the best performance, as the centralized scheme can access all consumers’ data 

without any constraints. Accessing a more significant amount of the data will help the 

central model better learn the characteristics of the loads among all houses and avoid 

the overfitting problems, which will decrease the accuracy significantly. However, the 

centralized scheme suffers from significant privacy risks as all consumers must send 

their demand data continuously. The regular FL scheme almost achieves equal 

accuracy as the centralized scheme, especially when client number 1 increases. From 

Table 5-3, when 1 = 50, the nRMSE of the values forecasted by the FL scheme 

reaches 6.67%, which is only 2.33% less than the Centralized scheme. This simulation 

result confirms that the FL can achieve a similar forecasting performance as the 

Centralized scheme without sharing the real-measured data to the cloud server. In 
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other words, the FL scheme can satisfy the functionality requirement without 

scarifying individuals’ privacy. 

 
Figure 5-5. Short-term load forecasting results of three houses predicted by proposed differential 

private federated learning scheme and three conventional schemes (ε=8, δ=10−5). 

The Localized scheme disconnects communication with the cloud server, and all 

computation processes are completed within the smart meter and personal devices. 

From the predicted curve shown in Figure 5-5, the Localized scheme failed to predict 

the demand load in most situations. Also, the high nRMSE and nMAE errors presented 

in Table 5-3 convince the conclusion that the Localized scheme does not reach a 

balance between privacy and accuracy. 
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Table 5-3. Load forecasting performances of the proposed and benchmark models. 

Model E  K MAPE (%) nMAE (%) nRMSE (%) C.R. C.C. CP.C (s) 

DPFL-MLP 
 

1 
5 221.40 32.99 35.25 1 1 0.71 
10 99.60 26.52 28.97 1 3 0.69 
50 76.51 16.51 20.38 1 15 0.73 

4 
5 78.67 25.16 26.16 6 6 13.50 
10 70.82 9.06 11.59 3 9 10.93 
50 70.41 7.68 10.99 3 45 41.33 

8 
5 162.87 20.32 21.64 36 25 80.72 
10 69.58 8.08 10.85 15 45 88.04 
50 63.68 8.32 10.50 18 221 332.70 

DPFL-LSTM 
 

1 
5 257.20 29.51 31.87 1 1 1.45 
10 146.04 15.08 19.39 1 3 1.56 
50 75.12 10.63 13.06 1 15 1.47 

4 
5 94.83 14.14 17.41 6 6 30.17 
10 71.55 7.40 10.65 3 9 24.06 
50 71.43 11.61 13.30 3 45 94.08 

8 
5 73.88 15.65 21.91 36 35 307.18 
10 68.31 7.57 10.97 15 45 345.70 
50 62.43 7.24 9.94 18 221 1422.23 

DPFL-BLSTM 
 

1 
5 176.51 21.41 24.60 1 1 2.10 
10 152.10 12.13 17.11 1 3 2.26 
50 102.31 11.54 16.72 1 15 2.26 

4 
5 79.17 15.46 16.49 6 6 45.89 
10 72.92 14.64 15.67 3 9 35.63 
50 70.98 9.72 12.13 3 45 150.98 

8 
5 69.67 17.21 18.73 36 35 693.44 
10 65.95 10.01 11.68 15 45 718.48 
50 61.37 6.16 9.30 18 221 3159.73 

DPFL ATT-BLSTM  

1 
5 323.89 16.27 20.44 1 1 3.29 
10 400.23 19.89 23.09 1 3 3.29 
50 376.45 29.65 41.20 1 15 4.98 

4 
5 51.21 20.73 21.44 7 6 95.39 
10 40.38 7.13 10.53 3 6 42.81 
50 36.35 5.68 8.07 3 45 172.61 

8 
5 29.06 4.49 8.04 36 35 307.22 
10 24.67 4.36 7.52 15 45 339.93 
50 14.44 4.32 6.92 18 221 1526.36 

FL ATT-BLSTM ── 
5 19.62 4.19 7.45 50 50 441.57 
10 17.20 3.76 6.70 50 147 1151.88 
50 12.59 3.70 6.67 50 735 4631.15 

Centralised ATT-BLSTM ── ── 10.34 2.87 4.34 ── ── 434.83 
Localised ATT-BLSTM ── ── 68.73 10.01 10.69 ── ── 29.21 

C.R.: Communication round;  C.C.: Communication cost; CP.C: Computation cost. 

The DPFL scheme, the privacy-enhanced version of the normal FL scheme, can 

predict performance merely worse than the two schemes mentioned above. This is due 

to the privacy constraints set by DP. The privacy level of the DPFL scheme can be 

adjusted flexibly by setting the two DP parameters, the privacy budget ε and the 

probability of information being leaked δ. Typically, smaller ε means a smaller 

distance between the two neighbouring databases when sending a query. Hence the 

adversary has difficulty distinguishing these two databases by observing the query 
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output. Hence, a smaller ε provides better privacy but less accuracy simultaneously. 

From the results shown in Table 5-3, when ε=8 and δ=10)+The DPFL scheme's 

performance is 3.75% and 12.31% worse than the FL scheme from the perspective of 

nRMSE and MAPE. Although the accuracy of the DPFL scheme stays below non-

differentially private schemes, it is significantly better than the Localized scheme, 

which only trains the model with its data.  

5.4.7 Comparison of the proposed model with other federated 

learning algorithms  

In the first case study, the proposed DPFL ATT-BLSTM model is compared with 

DPFL models that utilize different DNN algorithms (benchmark models (4)-(5)). The 

forecasting results of all models are shown in Table 5-3, nMAE, nRMSE, and MAPE 

are used to measure the accuracy of the prediction results, and the communication 

cost, as well as computation cost, are recorded. The privacy budget � range from 1 to  

8, and the client number 1 range from 5 to 50. To visualize the performance of the 

proposed scheme and benchmark models, 30-minute forecasting results of random 

five houses are presented in Figure 5-6 (under the condition ε=8, δ=10)+). In each 

communication round, only 30% of clients (e.g., 15 clients when 1 = 50) are selected 

to participate in the training process. Unlike feeder-level load forecasting, which has 

a regular peak load every day, household-level load forecasting is more challenging 

as the load profile on different days varies a lot. From the figure, DPFL-ATT-BLSTM 

performs best among all algorithms, and it is observed that the load curve predicted 

by the proposed DPFL-ATT-BLSTM model (solid red curve) tracks the ground truth 

load curve (solid blue curve) in most cases, both the peak part and the off-peak part 

are predicted with high accuracy. Considering the evaluation metrics, the proposed 

model has the lowest MAPE, nRMSE, and nMAE values in the same comparison 

group. Referring to the results shown in Table 5-3, when ε=8 and δ=10)+, the nRMSE 

and nMAE value of the proposed model reduces by 31.95% and 11.22% compared to 

the DPFL-BLSTM.  
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Meanwhile, DPFL-MLP (light green solid curve) has the worst performance in most 

cases. Without the memory cell, it has very limited predictability in forecasting time-

series data. From Figure 5-6, DPFL-MLP neither tracks the peak nor the off-peak load. 

However, this method also has an advantage: the computation cost is the least among 

all algorithms. When the computation ability of the edge devices is limited, this 

method could be the priority choice. DPFL-LSTM (solid orange curve) and DPFL-

BLSTM (solid pink curve) models have similar prediction performances, while the 

DPFL-BLSTM model is slightly better. When ε=8 and δ=10)+, the nRMSE values of 

DPFL-LSTM and DPFL-BLSTM are 9.94% and 10.17%, respectively.  

 
Figure 5-6. Short-term load forecasting results of five houses predicted by four differential private 

federated learning models (ε=8, δ=10−5). 

These results demonstrate that the ATT-BLSTM is more efficient in processing time-

series data, especially if the data is nonstationary and nonlinear. The ATT-BLSTM’s 
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superior predicting performance can be summarized as follows: (1) The bidirectional 

structure enables the model to extract features from both forward and backward 

directions; (2) The attention mechanism helps the model find the essential hidden state 

of the current output.  

5.4.8 Influence of client number  

Another vital parameter that influences the performance of the proposed DPFL 

scheme is the client number 1. Table 5-3 presents the model performance for 1 ∈
[5, 10, 50]. the privacy metrics, CRs, CC, and CPC for each case are also recorded. 

Referring to [363], The choice of DP parameter � is influenced by 1 and should obeys 

the following constrain: 

� ≪ �5      (5-25) 

This condition avoids protecting most consumers’ privacy by revealing a few 

consumers’ [363]. According to this requirement, the threshold of � , �  is set as 

1 × 10)+. From the Table 5-3, it is found that under the DPFL scheme, more clients 

achieve higher model accuracy: When 1 = 5, the prediction error is considerable 

high, and when 1 increases to 50, the accuracy of the model almost reaches the same 

accuracy as non-DP schemes. This is because more clients will reduce the additive 

noise's standard deviation during the secure aggregation process. Based on the above 

simulation results, the conclusion is that more clients can efficiently reduce the 

accuracy cost under the same privacy budget. 

5.4.9  Influence of privacy budget  

In the DPFL scheme, the most important parameters to make the trade-off between 

privacy and accuracy are the two DP parameters �  and � . Recall Algorithm 5-1, 

during the secure aggregation process in each communication round, given � and GM 

parameter σ; the central server accountant evaluates δ [357]. The central server will 
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continue the communication rounds until δ reaches the threshold �, then the whole 

training process will be stopped, and the server sends the well-trained model to all 

clients. As defined before, � is selected as 1 × 10)+. In this case study, the influence 

of different values of � (7 values are chosen ranging from 1 to 12) on the model 

performance is investigated.  

From Figure 5-7 (b), the DPFL-ATT-BLSTM scheme with small � (1, 2, 4) reaches 

the threshold � quickly within just a few communication rounds. However, the model 

accuracy is undesirable as nRMSE maintains a higher level than the Localized 

scheme, the benchmark model with the worst performance. At this privacy level, 

although consumers' privacy is protected perfectly, the functionality is ultimately 

sacrificed. In contrast, when � is large enough (such as 10 or 12 in this case), it takes 

more communication rounds until σ reaches the threshold. More communication 

rounds allow the central model gets fully trained with frequent updates of its model 

parameters. 

Consequently, the model accuracy increases as � become larger. However,  large � 

allows less similarity of the outputs from different clients, and the adversary can 

distinguish different clients more effortless, and the model provides less privacy 

consequently. Hence, from the model accuracy results shown in Figure 5-7 (a), when 

� between 6 and 8, the proposed scheme can efficiently make accurate load forecasting 

and provide a good level of privacy protection at the same time.  

 
(a) 
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δ=10-5 

 
(b) 

Figure 5-7. (a) model performance of the differential private federated learning scheme with different 
levels of privacy budget; (b) accumulation of total δ with increasing communication rounds under 

different privacy budgets.  

5.4.10  Privacy and data ethics analysis  

The privacy performance of the proposed scheme is discussed in the following 

aspects: 

 The proposed method satisfies (�, � ) -DP. In each communication round, the 

central server aggregates the client models by adding random noise to hide clients’ 

contributions during training. The overall privacy cost is accumulated with the 

moment accountant method [364] given certain �, σ and m. Once � approaches the 

threshold � (a special client’s contribution to the output is too high) , the training 

process will stop immediately. Hence, it is proved that the system satisfies 

(�, �)  − 4�. 

 The proposed method guarantees data privacy/confidentiality. Referring to the 

adversary model defined in Chapter 4, TP is the honest-but-curious adversary in 

the smart metering system. Traditional value-added service platform requires the 

consumer to upload detailed high-resolution profiling data to the central server 

operated by a third party, which is the worst privacy invasion case. In contrast, the 

proposed model is constructed based on the FL framework, the individual power 

consumption data measured by the smart meter, which contains sensitive 
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information that never leaves the consumer’s house. Hence, the service framework 

enhances data privacy/confidentiality for individual data items and strictly follows 

the data minimalization principle stated in the GDPR [301]. Moreover, the 

framework makes a trade-off between services and privacy/confidentiality, 

allowing consumers to select desirable TPSs without privacy concerns.   

5.5 Chapter Summary 

In this chapter, a novel privacy-preserving value-added service platform by 

considering both privacy and functionality requirements is proposed and validated. 

The platform is constructed based on the DPFL framework and utilizes a state-of-the-

art ATT-BLSTM algorithm to train the local models. Moreover, the proposed system 

is based on the concept of global (�, �)-DP to balance the trade-off between privacy 

loss and model performance. In the case study of household-level STLF, the proposed 

scheme is evaluated with six benchmark models. After simulation, it is validated that 

the proposed system achieves prediction accuracy with low computation cost, and the 

privacy loss can be controlled flexibility by adjusting the privacy budget. 
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Chapter 6 Day-Ahead Distribution-Level 

Spectral Load Forecasting with Aggregated 

Smart Meter Data 

6.1 Introduction 

6.1.1 Motivation 

The distribution-level Short-Term Load Forecasting (STLF) is a fundamental and 

important functionality for distribution-level grid management and monitoring. A 

reliable STLF is critical input information for Demand-Side Management (DSM), 

state estimation, maintenance scheduling, voltage support, etc. [365]. Moreover, 

providing precise and rapid prediction of future demands is the foundation of hourly-

based applications such as electricity market-clearing mechanisms and regulation bids 

[366]. However, unlike the HV transmission network, the STLF for the distribution 

network is more challenging due to the high uncertainty of the low-capacity load, the 

diversity of users’ characteristics, and the deep penetration of renewable energy [315]. 

Compared to the well-developed load forecasting at the HV network level, the 

distribution-level load forecasting method is still the technique at the exploratory 

stage. The aggregated smart meter data generated in the proposed smart metering 

system provides good data resources at the demand side to better forecast the demands 

at distribution level.  

Conventional load forecasting techniques, such as Linear Regression (LR) and Auto-

Regressive Integrated Moving Average (ARIMA), try to extract features in the time 

domain. Since various load components with different frequencies are contained in 

the load curve, the load demand is highly nonlinear and non-stationary. These 

characteristics of the original load demand make the prediction accuracy of 
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conventional models less accurate. In addition, AI-based load forecasting methods, 

especially RNN, have achieved desirable accuracy in recent years [159, 162]. RNN 

models have memory units that can learn current input features and information from 

the past. This characteristic is highly suitable for forecasting tasks.  Although RNN 

can map nonlinear features like conventional approaches, it cannot learn frequency-

domain information. Hence, a hybrid STLF method that can extract both time-domain 

and frequency-domain features with high adaptivity should be proposed. 

6.1.2 Knowledge gaps 

Although, as illustrated, there is a wealth of work available in the literature, the 

existing STLF models still have some knowledge gaps that can be filled.  

 Although STLF has been fully investigated in transmission networks and 

household-level, distribution-level STLF is a relatively weak segment in current 

power systems.  

 Electric spikes and other noises would influence the training process and the 

prediction accuracy, so a proper denoising technique should be selected to process 

the original data. 

 The hybrid deep learning with Variational Mode Decomposition (VMD) and 

Empirical Mode Decomposition (EMD) in the literature either lacks mathematical 

definition or low adaptivity, respectively, so a new hybrid STLF takes advantage 

of both EMD and VMD should be proposed.  

6.1.3 Contribution 

This chapter proposes a novel hybrid distribution-level Denoising (DN)-EWT-

BLSTM-Bayesian Hyperparameter Optimization (BHO) STLF algorithm, which 

combines mode decomposition with BLSTM to better extract the time-domain and 

frequency-domain features of the electric load. The contributions of this work are 

detailed as follows. 
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1) A hybrid STLF model that combines the EWT component decomposition with a 

BLSTM deep neural network is proposed to make multi-step predictions. 

2) A wavelet-based denoising technique is proposed to eliminate the electric spikes. 

3) A BHO method is proposed to find optimal hyperparameters with fast speed and 

adjust hyperparameters to different sub-layers. 

6.1.4 Organization of the chapter 

The remaining chapter is organised as follows: The DN-EWT-LSTM-BHO load 

forecasting algorithm is demonstrated in Section 6.2. In Section 6.3, four case studies 

are implemented, which compare the proposed load forecasting algorithm and other 

methods and evaluate the parameters that achieve the best performance. The 

conclusion and final discussion are provided in the last section. 

6.2 Proposed Load Forecasting Algorithm 

This section introduces the overall prediction system and the corresponding 

methodologies. The distribution network level electricity load data is obtained from 

the physical/informatic aggregator introduced in Chapter 4.  

6.2.1 Overall forecasting model 

As presented in Figure 6-1, the proposed method is divided into five steps and 

described as follows. 

Step A: the first step is data pre-processing and denoising. The original electric load 

is input to the STLF model, and data cleaning is applied to the original dataset to 

populate the missing features. Then, a max-min scaling function is applied to the 

original dataset to limit the range of data between 0 and 1. Finally, a Discrete Wavelet 

Transform (DWT) based denoising algorithm is applied to the data to remove the 

noise. 



182 Day-Ahead Distribution-Level Spectral Load Forecasting with Aggregated 

Smart Meter Data

 

σ

xt

ht-

1

ot

ct-1

tanh

σ tanh σ

×ft it

×

ct× +

ht

��̃  

σ

xt+1

ht+1

ot+1

tanh

σ tanh σ

×ft+1 it+1

×

ct+

1× +

ht+1

ht

σ

xt-1

ot-1

tanh

σ tanh σ

×ft-1 it-1

×

× +

ht-

1

ht-

2

ct-2

.

.

.

.

.

.

.

.

.

Sliding Window Direction

1
st
 window

2nd window

3rd window

N
th

 window

B. Moving Slide Window

+

D. LSTM Model Training

A. Data Pre-Processing and Denoising 

Long Short-Term Memory

E. Forecasting Result Reconstruction

Original Load 

Curve

Data 

Cleaning

Feature 

Scaling

DWT Data

Denoising

Input Load Curve f(t) and 

Number of Sub-layers N

Obtain the spectrum using 

FFT

Search the local maxima of 

the spectrum

Detect the boundaries and 

segment the spectrum

Implement EWT to obtain 

N sub-components

C. Empirical Wavelet Transforms 

7(�) = H7ℰ(0, �) ⋆ Ê1(�) + d  
�

�=1
H7ℰ(�, �) ⋆ K� (�) 

Bayesian Hyperparameter Optimization

 

Figure 6-1. Overall process of the proposed spectral load forecasting model. 

Step B: a sliding window is introduced to enable the proposed model to make real-

time forecasts. The length of the sliding window is denoted as ©, which is ©chosen 

as one week in this work. At the beginning of the training, the first © data is included 

in the window, and the model then predicts the load at © + � , where �  is the 

forecasting step. Then, the sliding window will move smoothly and repeat the training 

process. 

Step C: the denoised electric load is decomposed into �  sub-layers via the EWT 

decomposition algorithm, as indicated in Figure 6-1 (C); an example with nine sub-

layers is presented to show the decomposed components from the original load curve.  

Step D: then � BLSTM prediction models are constructed, and each BLSTM neural 

network model is trained for one sub-layer while the BHO method is employed to find 

the optimal hyperparameters. 
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Step E: In the final step, the prediction results for all sub-layers are reconstructed to 

present the final load forecasting results. Repeat Steps A-D until reaching the end of 

the testing dataset.  

6.2.2 Data description 

The dataset employed in this chapter includes distribution-level electricity data, which 

is constructed by combining household-level smart meter data and weather and 

temporal data.  

6.2.2.1 Distribution-level electricity data 

In this chapter, the distribution network level data is obtained from the 

physical/informatic aggregator, and individual household-level smart meter data from 

Pecan Street Dataport (Dataport) [117] are added up to match the capacity of the 

feeder model. The geographical location of the elasticity data is � 30◦15’59.9976’’, 

W 7◦43’59.9880’’ (Austin, Texas, US), The feeder models used for this research are 

selected from standard feeder models provided by GridLAB-D [326], detailed 

description of the feeder models are introduced in Table 4-4 in Chapter 4. In this work, 

a total number of 976 houses are aggregated to match the R5-12.47-2 feeder model, 

indicating a moderate suburban area (demand capacity is 4500 kW). To reach the 

defined aggregation size, household smart meter data is picked up randomly from the 

Dataport dataset, an example of the demand load is shown in Figure 6-2. 

 

Figure 6-2. Active power of the distribution-level electricity data. 
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6.2.2.2 Weather and temporal information 

The corresponding weather and temporal information at the same location (� 

30◦15’59.9976’’, W 7◦43’59.9880) are obtained from the National Solar Radiation 

Database (NSRDB) [195]. An example of the dataset is shown in Table 6-1 and Figure 

6-3, and weather parameters include Dew point (℃), Temperature (℃), Pressure (Pa), 

and Relative Humidity (%RH). As for temporal information, four variables are 

introduced which are: Holiday (1 for holiday days and 0 for non-holiday days), Hour 

of the Day (HOD) (index range from 0 to 23), Day of the Week (DOW) (index range 

from 0 to 6), and Month of the Year (MOY) (index ranges from 1 to 12). As 

categorical variables, DOY, HOD, DOW, and MOY should be pre-processed by one-

hot encoding.  

Table 6-1 shows the weather and temporal dataset [195]. 
Timestamp Holida

y 

HO

D 

DO

W 

MO

Y 

Dew. Point 

(℃) 

Temperature 

(℃) 

Pressure 

(Pa) 

Relative 

Humidity 

(%RH)  

01/01/2014 

00:00 

1 0 3 1 -1.25931 1.801934814 1001.035 80.1306 

01/01/2014 

01:00 

1 1 3 1 -1.25199 1.385064697 1000.496 82.60188 

01/01/2014 

02:00 

1 2 3 1 -1.25886 1.022241211 999.9987 84.73964 

01/01/2014 

03:00 

1 3 3 1 -1.26002 0.723382568 999.3622 86.57533 

01/01/2014 

04:00 

1 4 3 1 -1.23658 0.513696289 998.8751 88.04627 

01/01/2014 

05:00 

1 5 3 1 -1.19007 0.407220459 998.4365 89.02894 

01/01/2014 

06:00 

1 6 3 1 -1.09016 0.479547119 998.138 89.215 

01/01/2014 

07:00 

1 7 3 1 -0.80314 1.532342529 998.006 84.46244 

 
(a) Temperature. 
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(b) Pressure. 

 
(c) Humidity. 

 
(d) Dew Point. 

Figure 6-3. Visualization of the Weather variables. 

6.2.3 Data denoising with wavelets 

The original load data contain a significant amount of noise generated from various 

sources, such as the electric spikes of electric appliances and intermittent penetration 

of distributed generators. In addition, the measurement devices such as smart meters, 

DSCADA, and �PMU also produce electronic noise. The high-frequency noise in the 

measured feeder load demand is a severe issue that influences the performance of load 

prediction. DWT could effectively analyze the non-stationary signals and reduce the 

high-frequency noise [367].  

The theory of the DWT-based denoising technical is to decompose the original data 

into the high-frequency and low-frequency components, and a suitable threshold of 

the high-frequency components is determined for denoising purposes. Finally, the 

signal is reconstructed again. Sampling the original data 7∗(�) with frequency 7¡#";$&  



186 Day-Ahead Distribution-Level Spectral Load Forecasting with Aggregated 

Smart Meter Data

 

to obtain the discrete signal 7∗(s) , s = 1,2 … , t. The purpose of the signal 

denoising is to remove noise and find the best estimation of the underlying signal 

7(s): 

7∗(s) = 7(s) + 3� �¡&À" , s = 1,2, … , t    (6-1) 

where À" is the white Gaussian noise; and 3� �¡&  shows the noise intensity, and t is 

the total sample number of the discrete form of the signal. A two-level DWT wavelet 

decomposition process is shown in Figure 6-4. From the figure, the signal can be 

decomposed into two coefficients: approximation coefficients (a) and the detailed 

coefficients (d). At the first level, 7∗(s) is decomposed into �� and ��, and �� is then 

decomposed into �W and �W further.  

LPF

HPF
d1

a1
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↓2

d2↓2
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Low-Pass Filter
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�L�  Softened Approximation Coefficients

 
Figure 6-4. Block diagram of signal denoising with wavelets. 

The denoising approach includes three steps: signal decomposition, denoising, and 

reconstruction. The decomposition level S = 2 in this thesis. 

Step 1: decomposition. The original load demand, the noisy signal, is decomposed 

via the DWT, as shown in Figure 6-4. The original signal is passed through a series of 

High-Pass Filters (HPFs) and Low-Pass Filters (LPFs). The � th level detailed 

coefficients ��(j) are given via an HPF and the �th level approximation coefficients 

��(j) are given via an LPF. The decomposition functions of the �th level are the 

following: 

��(j) = ∑ 7∗(s)Oq(2s − j)"      (6-2) 
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��(j) = ∑ 7∗(s)Or(2s − j)"     (6-3) 

where Or  and Oq  are the functions of HPF and LPF, respectively, and j  is the 

translation factor. 

Step 2: denoising. It is essential to determine a suitable threshold Thr for data 

denoising, and a thresholding function K�(�) is required. Thresholding can be divided 

into hard and soft thresholding. For hard thresholding, the values that exceed the 

threshold would be set to 0. The magnitude of coefficients greater than the threshold 

for soft thresholding is softened. The noise level �"#' is first estimated from the detail 

coefficients by median absolute deviation, as follows: 

�mad = median�'<�
~.QRC+      (6-4) 

éℎ� = �madS>�( t)     (6-5) 

After the threshold Thr is determined, the soft thresholding function is applied to 

reduce the magnitude of the coefficient, which is defined as: 

K�(�) = T� − éℎ�     if � ≥ éℎ�
� + éℎ�     if � ≤ −éℎ�
0     if |�| ≤ éℎ�

    (6-6) 

Step 3: reconstruction. The coefficients after the soft thresholding are reconstructed 

via Inverse Discrete Wavelet Transform (IDWT). In Figure 6-1, Step 1 compares the 

original load demand curve and the denoised demand curve. It is observed that the 

noise and spikes from the original data are successfully cleared. 

6.2.4 Empirical Wavelet Transforms (EWT) 

After the data is denoised via DWT, the denoised data 7(�) is decomposed into � sub-

layers via EWT. In [368], EWT aims to extract multiple sub-layers by constructing 

adaptive wavelets. The EWT decomposition process is performed in the following 

steps. In EWT decomposition, the number of sub-layers � is defined at the beginning. 



188 Day-Ahead Distribution-Level Spectral Load Forecasting with Aggregated 

Smart Meter Data

 

Step 1: apply Fast Fourier Transform (FFT) to the denoised data 7(�) to obtain the 

frequency spectrum {(V). 

Step 2: search the {(V) to find � local maxima W = �X���`�,W…,Y and corresponding 

frequencies Y = �V���`�,W…,Y  by using the magnitude threshold ®  and frequency 

distance thresholds � .  ®  is set as 3% of the fundamental magnitude to detect the 

significant frequencies, and � is set as 8 Hz to avoid overestimation [369]. 

Step 3: segment the frequency spectrum [0, 7¡#";$& /2]  into �  segments, and the 

boundaries ¸� is the centra line between two neighbouring local maxima (see Figure 

6-5), which can be calculated as: 

¸� = Z=�Z=[R
W       (6-7) 

 
Figure 6-5. Segmenting Fourier spectrum into N contiguous segments (Adopted from [370]). 

Step 4: build � wavelet filters, including one low-pass filter and � − 1 band-pass 

filters based on the defined boundaries. The scaling and wavelet functions are defined 

in (6-8) and (6-9), respectively. 

Ê\�(V) =
⎩⎪⎨
⎪⎧ 1,  if|V| ≤ (1 − �)V�

��Z bcW Á = �
W�Z=

(|V| − (1 − �)V�)>d ,
if(1 − �)V� ≤ |V| ≤ (1 + �)V�0,otherwise

   (6-8) 
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K\�(V) =

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1,if(1 + �)V� ≤ |V| ≤ (1 − �)V���

��Z bcW Á = �
W�Z=[R

(|V| − (1 − �)V���)>d ,
if(1 − �)V��� ≤ |V| ≤ (1 + �)V���
Z�� bcW Á = �

W�Z=
(|V| − (1 − �)V�)>d ,

 if(1 − �)V� ≤ |V| ≤ (1 + �)V�0,otherwise
  (6-9) 

where the arbitrary function Á and the ratio � are defined as : 

Á(�) = T 0  if � ≤ 0
 and Á(�) + Á(1 − �) = 1∀� ∈ [0,1]

1  if � ≥ 1
   (6-10) 

� < s���  *Z=[R)Z=Z=[R�Z=,     (6-11) 

Step 5: perform scaling and wavelet functions shown in (6-12) and (6-13) to extract 

the approximate and detailed coefficients. 

H@ℰ(0, �) = ⟨7, Ê�⟩ = 6 7(�)Ê�(� − �)PPPPPPPPPPPP�� = *7i(V)Ê\�(V)PPPPPPPP,∨  (6-12) 

H@ℰ(�, �) = ⟨7,K�⟩ = 6 7(�)K�(� − �)PPPPPPPPPPPPP�� = *7i(V)K\�(V)PPPPPPPP,∨  (6-13) 

where ⟨ ⟩ stands for the inner product ∧ and ∨ indicates the Fourier transform and its 

inverse, Ê�(� − �)PPPPPPPPPPPP and K�(� − �)PPPPPPPPPPPPP are the conjugate complex numbers of Ê�(� − �) 

and K�(� − �), respectively.  

Step 6: compute the sub-band signals. The approximation sub-band signal 7~(�) and 

the �th detail sub-band signal 7�(�) can be computed by (6-14) and (6-15). 

7~(�) = H@0(0, �) ⋆ Ê�(�)     (6-14) 

7�(�) = H@0(�, �) ⋆ K�(�)     (6-15) 

where ⋆ denotes the convolution operation. 
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The EWT reconstruction, also called Inverse Empirical Wavelet Transform (IEWT), 

is used to reconstruct the sub-layers to 7(�) .  7(�)  can be reconstructed via the 

reconstruction function as follows: 

7(�) = 7~(�) + ∑  Y�`� 7�(�)
= H@0(0, �) ⋆ Ê�(�) + ∑  Y�`� H@0(�, �) ⋆ K�(�)
= \H@0l (0,V)Ê\�(V) + ∑  Y�`� H@0l (�,V)K\�(V)^∨

  (6-16) 

6.2.5 Bayesian hyperparameter optimization 

Training and optimizing a deep learning model are complex process that involves a 

great number of hyperparameters and regularization terms. Hyperparameter 

optimization is essential for training neural networks as it aims to find the 

hyperparameters that return the best accuracy or performance given a dataset. 

However, the hyperparameter tuning process is normally a ‘black box’ function, 

which requires the examiners to keep querying the model and obtain feedback on 

model performance. The hyperparameter optimisation problem for a ‘lack box’ 

function h(�) can be formalized as: 

�a = arg s��(∈m  h(�)     (6-17) 

where �a is the optimal hyperparameter set, and E is the candidate set. The target of 

the function is to find �a  which can minimize h(�) . Grid search is the most 

fundamental hyperparameter tuning method [371], where space is defined for each 

hyperparameter at first, and then the algorithm exhaustively searches this space 

sequentially and trains a model for every possible combination of hyperparameter 

values. The drawback of the grid search method is that the number of training models 

increase exponentially when hyperparameters increase. 

Compared to the above methods, a novel BHO was proposed in 2011 [372]. Instead 

of searching the hyperparameter space blindly, BHO creates a prior distribution 

model, and then the model is optimized with the given information to fit the actual 
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distribution better. Furthermore, it can use the results from the previous iteration to 

decide the next candidate value of the hyperparameter. Hence, the BHO is much more 

efficient and less time-consuming as it selects the optimal hyperparameter in an 

informed manner and better utilizes the past information. 

The central methodology of the BHO method is to construct a surrogate probability 

model to select hyperparameters to minimize the original objective function. 

Providing a sample domain n, the true objective function h(�) to be optimized is 

approximated with a surrogate function ℳ. ℳ  is initialized with a small data group 

from n, and an acquisition function p is adopted to choose the next point to query. A 

variety of surrogate functions ℳ is introduced in [373], including Gaussian Processes 

(GPs), random forests, and Tree-Structured Parzen Estimators (TPEs) [33]. In this 

work, GP is employed as the surrogate function. The GP is a stochastic process that 

collects random variables in the time or space domain, such that each linear finite-

dimensional restriction is a joint Gaussian distribution [374]. A GP is restricted by a 

mean �(�) and a covariance function j(�, �0), while �(�) is assumed to be zero in 

most situations, and j(�, �0) determines the smoothness of h(�). j(�, � ′) is regarded 

as the kernel of GP and needs to be symmetric, continuous, and positive, and the 

square exponential function is employed as the kernel in most cases: 

j(�, � ′) = > ⋅ ��� c− ª()( ′ªT
W2T f     (6-18) 

where l and 3 are the positive parameters.  

As for p , it determines the next point to query by selecting the most promising 

candidate. Normally, three acquisition functions are widely used, which are the 

Maximum Probability of Improvement (MPI) [375], Expected Improvement (EI) 

[376], and Upper Confidence Bound (UCB) [377]. The disadvantage of MPI is that it 

only chooses the points with high confidence to query. Hence there is little 

improvement in the model. EI overcomes the limitation of MPI by maximizing the 

expected improvement over the current best. In such a way, if the new value performs 

much better, the model improves a lot; if the new value performs much worse, the 
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model maintains the same. In this work, EI is chosen as n. The formula of EI is 

expressed as: 

����[q(�; ��� , V��, ¹) = 3(�; ���, V��, ¹) *�(�)r\�(�)^,+ +�(�(�); 0,1)(6-19) 

�(�) = @((best))1((;�(=,O=�,Ã)
2((;�(=,O=�,Ã)      (6-20) 

where �&¡U is the best value at the current stage; ¹ is the parameters of the GP model; 

��  and V�  are the available samples; r(∙)  denotes the cumulative distribution 

function of the standard normal; �(�; �� , V� , ¹) denotes the predictive mean function; 

3(�; �� , V� , ¹) denotes the predictive variance function. The detailed BHO process is 

illustrated in Algorithm 6-1. 

Figure 6-6 and Algorithm  6-1 illustrate the Bayesian optimization procedure over 

three iteration; the black dash line indicates the objective function, which is unknown 

to the examiners. The upper blue shaded curve is the confidence interval generated by 

a probabilistic estimation model of the objective function. Furthermore, the lower 

green shaded curve represents the acquisition function. A high value of the acquisition 

function means high prediction uncertainty (exploration) and high objective 

(exploitation) [378]. The location of the peak point of the acquisition function will be 

selected as the new point to query in the objective function. With the increasing 

observation points, the posterior distribution improves, and the posterior uncertainty 

decreases.  

Algorithm  6-1: Bayesian hyperparameter optimization with Gaussian Process.   

1: For t=1,2,… 

2:          Find the new �U�� by maximizing acquisition function p: 

3:                                       �U�� = ��? maxm p(�|tU) 

4:          Query the objective function to obtain VU�� = 7(�U) + �U . 
5:          Argument the data tU�� = �tU , (�U , VU)�. 
6:          Update the Gaussian Process model. 
7: End for.  
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Figure 6-6. Illustration of the Bayesian optimization procedure over three iterations (Adopted from 
[378]). 

6.3 Experimental Setup 

6.3.1 Open access software platform and package 

Various open access packages and libraries based on Python 3.7 and TensorFlow 2 

are adopted to implement the proposed simulation case study. PyWavelets [379], 

PyEMD [380], ewtpy [381], and vmdpy [381] are used for implementing DWT, EMD, 

EWT, and VMD, respectively. A Bayesian hyperparameter optimization package, 

Hyperopt [382], is used for hyperparameter tuning. 

6.3.2 Performance metrics 

To assess the performance of the proposed predictor, the following four performance 

metrics are adopted: MAE, MAPE, RMSE, and �W . The detailed formulas are 

introduced in Equations (3-14) - (3-17) in Chapter 3. 
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6.4 Results and Discussion 

To evaluate the proposed load forecasting model, the ND-dataset, as mentioned 

earlier, and EWD-dataset are tested. Three case studies are designed in this section, 

i.e., the influence of several sub-layers �  on the forecasting performance, the 

computation time of BHO and relevant hyperparameter tuning methods, and a 

comparison between the proposed model and relevant works. 

6.4.1 Case study I: Impact of the number of sublayers N 

Referring to the EWT decomposition technique introduced in Section 6.2, the original 

time-varying load demand is decomposed into N sub-layers by the EWT, which is 

defined as u� − uY  in this study. The number of N has a significant impact on the final 

forecasting performance. In this study, the range of � increases from 5 to 13. Both the 

ND-dataset and the EWD-dataset are used in the comparison experiment. The 

performance of the proposed model with different numbers of � is summarized in 

Table 6-2 and Figure 6-7. From these tables, it is observed that the MAE, MAPE, and 

RMSE are relatively large when � is too tiny (near 5) or too large (near 13) (see Figure 

6-7). Among all � values, the dominant value is � = 10, followed by � = 9, where 

the RMSE values are 101.089 kW and 102.900 kW, respectively.  

 
Figure 6-7. MAPEs of the proposed model with different sub-layer numbers. 
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Table 6-2. Day-ahead prediction performance of the proposed model with different sublayer numbers. 
N MAE (kW) MAPE (%) RMSE (kW) R2 

5 146.721 5.959 202.909 0.725 
6 121.614 4.965 159.892 0.837 
7 93.622 3.878 124.382 0.928 
8 90.313 3.762 116.665 0.936 
9 80.222 3.416 102.900 0.954 
10 79.948 3.398 101.089 0.956 

11 83.153 3.517 106.233 0.947 
12 84.610 3.604 105.636 0.949 
13 100.364 4.318 122.169 0.931 

Once the optimal number of the decomposition layers is determined, the denoised load 

demand data is decomposed by EWT to obtain the sub-components. Then, � LSTM 

predictors are trained simultaneously to predict each sub-component. The predictions 

for decomposed sublayers given the validation set are shown in Figure 6-8. The load 

demand is decomposed into �  sub-layers by the EWT, which provides the best 

performance of the selected datasets (� = 10). Sub-layers (u� − u¥) capture the low-

frequency oscillation of the baseline, and the curves of these sub-layers vary smoothly 

and change steadily. The predicted curves of these four layers achieve higher accuracy 

from the prediction results. While the Sub-layers (uv − u�~) capture high-frequency 

components which have a high fluctuation range and include most noise, and most 

prediction errors come from the prediction for these components.  

6.4.2 Case study II: Impact of weather information 

In this case study, the model with weather information input is compared with the 

model without weather information. As introduced in Section 6.2.2, relevant weather 

variables are employed as the input variables of the proposed STLF model. A 

comparison is made among STLF without external information, STLF with weather 

information, and STLF with both weather and temporal information, see Table 6-3. 

From the table, it is observed that the model without external information achieves the 

lowest prediction accuracy. When the weather information, e.g., temperature, 

humidity, and the dew point, is added as input variables, the prediction accuracy 

improves RMSE by 6.34%, MAE by 7.94%, and MAPE by 7.89%, respectively. 

Whilst the introduction of the temporal information, e.g., DOY, HOD, DOW, and 

MOY, the prediction performance improves further, which demonstrates that the 

relevant variables can enhance the prediction accuracy. 
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Figure 6-8. Validation for each sublayer in the validation set. 

Table 6-3. Comparison of methods with/without weather information. 

Method MAE (kW) MAPE (%) RMSE (kW) R2 

Model + Weather 
Information 

73.602 3.130 94.676 0.962 

Model + Weather 

Information + Temporal 

Information  

70.666 3.004 91.084 0.966 

Model without External 
Information 

79.948 3.398 101.089 0.956 

6.4.3 Case study III: Comparison of BHO with grid searching and 

the random search 

In this case study, the proposed BHO method is compared with two hyperparameter 

tuning approaches, i.e., grid search and random search. As the naive hyperparameter 

tuning approach, grid search simply searches the whole hyperparameter space, defined 
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in Table 6-4. Another tuning method, i.e., random search [47], tunes the 

hyperparameters by randomly selecting the combinations of possible parameters. As 

the proposed hybrid STLF method trains �  BLSTM sub-models in parallel, the 

optimal hyperparameters should be evaluated for all sub-models. Moreover, the sub-

layer number is selected as the optimal value evaluated in Case study I. This work's 

hyperparameters include learning rate, dropout rate, cell type, number of hidden 

layers, epochs, etc.  

Table 6-4. Hyperparameter tuning range. 

Hyperparameter Range 

Learning rate 10)+ ~ 10)� 
Dropout rate 0.3 ~ 0.7 
Cell type GRU, LSTM 
Number of hidden layers 1 ~ 5 
Batch size 32, 64, 128, 256, 512, 1024 
Optimizer Adam, Nadam, RMSprop, Adagrad 
Loss MSE, MAPE, MAE, Huber 
Activation function ReLU, Sigmoid, Tanh 
Epochs 20, 50, 100, 150, 200 

Both the prediction accuracy and training time are compared in Table 6-5. From the 

tables, it is found that although the traditional grid search method achieves almost 

equal prediction accuracy as BHO, it is time-consuming; the disadvantage of the grid 

search method would be more obvious when the hyperparameter space is large or the 

structure of the neural network is complex. As for the random search method, it costs 

the shortest time, but the prediction accuracy decreases as well. The proposed BHO 

method takes advantage of both grid search and random search, giving second-optimal 

results with a much faster computation speed than the grid search method. 

Table 6-5. Results of different hyperparameter optimization methods. 

Method MAE (kW) MAPE (%) RMSE (kW) R2 Time  

Grid Search 74.563 3.245 95.213 0.962 63h32min 
Random Search 85.672 3.641 104.726 0.957 12h24min 
BHO 70.666 3.004 91.084 0.966 13h12min 

6.4.4 Case study IV: Comparison of the performance of the 

proposed method with other algorithms 

In this case study, the one-step forecasting performance of the proposed method is 

compared with relevant forecasting approaches. A detailed description of the models 

adopted in this study is listed below: ① 1D CNN-LSTM STLF model; ② 1D CNN-
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GRU STLF model; ③. EMD-LSTM STLF model; ④ VMD-LSTM STLF model; ⑤ 

ND-EWT-BLSTM-BHO STLF model (proposed model). 

For models ① and ②, the original time-varying load demand is adopted as the input 

of neural network models. While for models ③, ④, and ⑤, the original load demand 

data are decomposed via EMD/VMD/EWT, respectively, and then the neural network 

is trained for each sub-layer. 

Table 6-6 shows the performance of five models considering the performance metrics, 

i.e., MAE, MAPE, RMSE, and �W , of the predicted load demand given the 

distribution-level dataset. As shown in the table, the proposed ND-EWT-LSTM-BHO 

outperforms other models. Moreover, the spectral load forecasting methods, including 

ND-EWT-LSTM-BHO, EMD-LSTM, and VMD-LSTM, have better prediction 

accuracy than conventional deep learning methods, including 1D CNN-LSTM and 1D 

CNN-GRU. 1D CNN-LSTM and 1D CNN-GRU models have the worst estimation 

performance with the highest MAE, MAPE, and RMSE in all experiment groups. The 

prediction performance of VMD-LSTM and EMD-LSTM are similar, just below the 

proposed method. Figure 6-9 compares the predicted values with the testing set using 

the proposed and benchmark models. The results predicted by the proposed model are 

the closest to the ground truth measurements. Moreover, the results estimated by the 

CNN-LSTM/CNN-GRU model are farthest from the ground truth curve, showing that 

CNN-LSTM and CNN-GRU perform worst among all algorithms. 

 
(a) Load forecasting result. 
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(b) Forecasting error.  

Figure 6-9. Day-ahead forecasting results on distribution-level load. (a) Load demand profiles. (b) 
Load demand forecasting error.  

Figure 6-10 shows the scatter plot of different forecasting models' ground truth and 

forecasting values. The scatter plot shows the correlation relationship between the two 

variables. The higher the �W  value, the stronger the correlation between the 

predictions and ground truth, representing better accuracy achieved by the forecasting 

model. For the proposed model, the scatter about the line is relatively small, and most 

points are on the regression line, with only several data values far from other data 

values. For other spectral methods, the �W of VMD-LSTM and EMD-LSTM models 

also show a strong correlation with the ground truth curve, with �W values over 0.70. 

CNN-GRU shows the worst correlation from the scatter plot, with �W values of 0.429.  

Table 6-6. Prediction performance of the proposed model and related works (ND-dataset). 
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Method MAE (kW) MAPE (%) RMSE (kW) R2 
1D CNN-LSTM  189.822 8.564 267.284 0.487 
1D CNN-GRU  205.014 9.270 284.339 0.429 
VMD-LSTM  122.899 5.010 171.473 0.803 
EMD-LSTM 150.303 6.286 196.932 0.709 
Proposed Method 70.666 3.004 91.084 0.966 
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Figure 6-10. High-density scatter plot of ground truth and prediction values of day-ahead load 
forecasting models. 

6.4.5 Discussion  

In this subsection, four case studies are presented. The main findings are summarized 

as follows. 

1) The first case study investigates the influence of the sub-layer number N on the 

prediction performance. Referring to the simulation, it is observed that when N 

equals 10, the proposed load forecasting model achieves the highest accuracy. 

When N is too small, the high-frequency components cannot be captured 

completely, and a large N will introduce the complexity of the forecasting model, 

which requires higher computation capacity and longer computation time to train 

the model.  

2) Case study II demonstrates that the forecasting model with external weather and 

temporal information achieves higher prediction accuracy than the naive model. 

This is due to the consumer’s electricity usage being highly related to these 

variables.  

3) Case study III examines the BHO hyperparameter tuning approach by comparing 

it which traditional grid search and random search methods. The results show that 

the BHO approach takes the advantage of the high accuracy of the grid search 

method and the rapid speed of the random search method.  

4) In the last case study, the optimized model is compared with other forecasting 

models, i.e., 1D CNN-LSTM, 1D CNN-GRU, VMD-LSTM, and EMD-LSTM. 
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The results show that the proposed model improves RMSE by 28.01%, MAE by 

34.11%, and MAPE by 28.92% for the distribution-level dataset, respectively. 

6.4.6 Contribution to privacy   

Existing household-level and distribution-level STLF methods require close 

monitoring of the electricity usage from individual households via the smart meters, 

which violates privacy (as introduced in Chapter 4). The proposed distribution STLF 

method only uses the aggregated electricity data from the physical/informatic 

aggregator to make the prediction. As a result, the distribution network is well 

predicted without inferring an individual’s personal information. 

6.5 Chapter Summary 

Accurate day-ahead load forecasting is extremely important for demand-side 

management and power planning. In this chapter, a hybrid load forecasting model ND-

EWT-BLSTM-BHO is proposed by extracting both time-domain and frequency-

domain information to reduce the uncertainty of load forecasting. The model considers 

the wavelet-based denoising algorithm, EWT component decomposition technique, 

BLSTM algorithm, and BHO algorithm. The proposed model first filters noise such 

as electric spikes from the measured load demand data. Then, an EWT algorithm is 

adopted to decompose the data into � sub-layers to extract time and frequency domain 

features. � LSTM neural network models are trained for all sub-layers as the next 

step. 

Additionally, a BHO algorithm tunes the hyperparameters to find the best 

combinations that achieve the best performance. Finally, the prediction results for all 

sub-layers are reconstructed and present the result of the load forecasting. The 

distribution load demand data, aggregated from the household-level smart meter 

readings, are used for the simulation. In this chapter, four case studies are 

demonstrated. The conclusion is that the proposed model performs better than existing 

component decomposition models. 
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Chapter 7 A Feeder-Level Solar Energy 

Decoupling Scheme with Aggregated Smart 

Meter Data  

7.1 Introduction 

7.1.1 Motivation 

Detecting the distributed renewable generation under the feeder/distribution network 

is another significant function required by the DNO. In recent years, the deep 

penetration of distributed renewable generation, especially rooftop solar energy, has 

brought new challenges for the DNO to monitor the distribution network. Although 

high PV penetration reduces greenhouse gas emissions and leads to an 

environmentally friendly world, it also significantly changes the existing power 

system structure. It is vital to increase the visibility of these renewable energy 

generations to manage the power system better. Among all installed solar panels, 

small-scale or rooftop PV occupies nearly 50% of the overall capacity. Unlike the 

large-scale PV stations measured individually, most rooftop PV is behind the meter, 

which means that the power generated by PV cannot be recorded by the smart 

residential meter. A lack of visibility would limit demand-side management, including 

scheduling the short-term operations implemented by grid operators. The 

conventional method requires installing an electricity meter beside the solar panel of 

each house, which requires extra measurement devices and communication channels. 

These devices largely increase budgets and invade personal privacy [383]. Moreover, 

the ownership of these devices also raises conflicts among stakeholders. With the 

aggregated smart meter data provided by the proposed smart metering system, it is 
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possible to construct the distribution network and the feeder model and decouple the 

overall PV generation under this network. The mathematical model of the problem to 

be solved in this chapter is introduced as follows.   

7.1.2 Problem statement 

The feeder system is shown in Figure 7-1. The feeder connects a few houses and 

unmonitored rooftop PV systems. The power utility has the authority to access the 

real-time grid measurement of a feeder/substation (active power �Y&U(�), reactive 

power �Y&U(�) etc.). The components of the feeder include the total demand load of 

all residences served by the feeder, �� #'; and the power generated by the rooftop PVs 

in this area, �8x: 

�Y&U(�) = �� #'(�) − �8x(�)     (7-1) 

…… 

…… Substation

Feeder
Grid 

Measurements
P,Q,V,I

Total Load Power  

Total PV Power

 

Figure 7-1. Power system with a PV system installed along the feeder. 

The target of the proposed system is to decouple �Y&U(�) into �� #'(�) and �8x(�), as 

shown in Figure 7-2. It is observed that the penetration of solar energy distorts the 

original demand load curve, making it difficult to recover the original demand load 

from the masked netload. 

 

Figure 7-2. Example of time series �8x(�), �Y&U(�), �� #' (�) under different weather conditions (Data 
source: Pecan Street Dataport [117]). 
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7.1.3 Chapter contributions  

This chapter proposes a solar energy disaggregation system that enables both online 

and offline modes to overcome the drawbacks of existing approaches. Instead of 

installing measurement devices at each house, the proposed method only utilizes 

measurements from one smart installed in the feeder or substation to estimate the solar 

energy generation in the entire area. Other relevant variables, such as meteorological, 

irradiance, and temporal data, are also collected as the inputs of the disaggregation 

system. The main novelties of this chapter are as follows: 

1) A CNN-BLSTM-based solar energy disaggregation system that enables online 

and offline modes is established. Instead of installing an electricity meter for each 

rooftop PV, the proposed system can decouple the PV generation and real demand 

load of a geographical area by installing only a feeder/substation-level smart meter or 

SCADA system. 

2) A case study demonstrates that the proposed disaggregation system achieves 

high accuracy under different solar energy penetration rates and feeder models. 

3) A transductive transfer learning approach that utilizes synthetic data to 

evaluate real-time generation at other substations or feeders is established. 

7.1.4 Organization of the chapter 

The remaining chapter is organized as follows: The datasets and feature extraction are 

introduced in Section 7.2. In section 7.3, three solar energy decoupling methods are 

proposed. The case studies are presented in Section 7.4. The conclusion and final 

discussion are drawn in the last section. 
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7.2 Data description 

7.2.1 Feeder-level measurement  

In this chapter, feeder models R1-12.47-4, R2-25.00-1, R4-25.00-1provided by 

GridLAB-D are employed as the model for the case study [326], see Table 7-1. The 

feeder types are classified depending on the residential description, ranging from light 

rural to moderate urban (with apparent power from 948 kW to 17021 kW). The feeder 

level measurement is available from physical aggregation equipment such as 

DSCADA, smart feeder meter, or the informatic aggregator, as introduced in Chapter 

4. In this chapter, active power �q!�' , reactive power �q!�'  are chosen as the grid 

measurement variables. The duration of peak PV generation (10 am to 3 pm) and peak 

load is different (7 am to 10 am and 5 pm to 10 pm). 

Table 7-1. Summary of prototypical feeders used in the chapter [326]. 

Feeder Rated voltage/kV Rated power/kW Description 
R1-12.47-4 12.47 5334 Heavy suburban 
R2-25.00-1 24.9 17021 Moderate urban 
R4-25.00-1 24.9 948 Light rural 

7.2.2 Load and PV dataset  

The consumer-level smart meter data is employed to construct the feeder model. In 

this chapter, two datasets are used for model training and testing, which are Dataport 

and System Advisor Model (SAM) simulation data: 

Dataset 1 (Dataport). Dataport [117] is the dataset to train the proposed model. The 

household-level measurements are added together to construct a synthetic feeder 

model. In this chapter, Dataport dataset with an interval of 15 minutes is employed; 

75 houses are aggregated to build a feeder with a capacity of 100 kW during Jan 2018 

and Dec 2018 in Austin, Texas, US. The PV penetration rate of the feeder is controlled 

by limiting the percentages of houses with PV installed.  

Dataset 2 (SAM simulation data). For areas where historical PV outputs are not 

available, a synthetic data generation approach introduced in [191] can generate 
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training data. SAM [384] is a techno-economic software developed by The National 

Renewable Energy Laboratory (NREL). The software can simulate the distribution 

network by integrating the renewable energy system given the geographical location 

(longitude and latitude) and historical weather dataset. The approach can generate the 

netload of the distribution network with detailed PV and combines the synthetic PV 

outputs with historical demand load data to simulate the feeder with solar energy 

penetrated. 

In this chapter, both the supervised/unsupervised learning models for solar decoupling 

are constructed. As introduced in Sections 3.3.1 and 3.3.2, for the unsupervised 

learning method, the model does not have to be pre-trained with training data; only 

the testing dataset is needed. Moreover, only the netload measured by the smart feeder 

meter/DSCADA or the aggregated data from the aggregator is required, while the PV 

generation is not required. As for the supervised learning method, such as GBRT and 

deep learning models, the netload (input vector) and PV generation (label) under the 

feeder are required at the training stage. For supervised learning methods, the dataset 

is split into a training dataset (90%) and a testing dataset (10%).  

7.2.3 Meteorological dataset  

The 1-hourly meteorological dataset comes from National Centres for Environmental 

Information (NCEI) (US) [193], given that specific locations and durations are 

adopted. The variables include temperature T, humidity y, weather conditions (e.g., 

sunny, rainy, snowy, and cloudy) ©, cloud cover rate 4, surface albedo, pressure, 

wind speed, etc. Figure 7-3 compares the average PV output under different weather 

conditions. It is observed that the output power reaches a maximum during clear days, 

and less power is produced during bad weather conditions such as rainy and snowy 

conditions. Hence, the weather condition is also a vital variable in this case. 
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  (a)              (b) 

Figure 7-3.  (a) PV output under different weather conditions; (b) probability density distributions 
under different weather conditions (Data source: Pecan Street Dataport [117]). 

7.2.4 Satellite-driven irradiance dataset 

The 1-hourly irradiance measurements at the same location are obtained from the 

National Climatic Data Center (NCDC) [385]. The satellite-driven data include GHI, 

DNI, DHI, latitude, longitude, etc. 

GHI: The total amount of shortwave radiation received from above by a surface 

horizontal to the ground. 

hHD =  4�D��Z(¹) +  4HD     (7-2)  

DNI: Amount of solar radiation received per unit area by a surface always held 

perpendicular (or normal) to the rays that come in a straight line from the sun's 

direction at its current position in the sky. 

DHI: The amount of radiation received per unit area by a surface (not subject to any 

shade or shadow) that does not arrive on a direct path from the sun but has been 

scattered by molecules and particles in the atmosphere and comes equally from all 

directions. 

Figure 7-4 shows the heatmap of GHI and PV output throughout the year. From the 

figure, it is found that the PV output is strongly correlated to the GHI value. The 

duration of the peak values of GHI/PV output almost overlaps. 
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Figure 7-4. Heatmap of (a) GHI/(b) PV output throughout the entire year (Data source: NCDC [385]). 

7.2.5 Temporal-related features 

The temporal variables include the number of hours in a day H, the month of the year 

t, and the quarter of the year �. Examples of average PV outputs and probability 

density distributions during different months are presented in Figure 7-5. It is observed 

that both the month and the quarter of the year influence PV output. Normally, the 

maximum output throughout the year appears between June and August. 
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Figure 7-5. (a) Bar chart of PV outputs in different months (b) probability density distributions during 
different months (Data source: Pecan Street Dataport [117]). 
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7.2.6 Data Preparation 

The data collected from various resources should be processed before sending it to the 

solar energy decoupling model. The data preparation process includes cleaning, 

synchronization, and one-hot encoding.  

1) Data cleaning: The purpose of data cleaning is to generate clean and structured 

data. As introduced in section 3.2.1, the original data contains high-frequency 

noise, missing values, wrong labels, and duplicates. The load data is filtered by a 

two-level DWT denoising filter proposed in Section 6.2.3 in Chapter 6, and the 

neighbouring values fill the missing values. 

2) Data Synchronization: It should be noticed that the different datasets measured 

with various sampling rates (15 minutes for the load, 1 hour for weather and 

irradiance data), so the data from all datasets should be synchronized. In this work, 

all data is aligned using the timestamps from each source and resamples the data 

interval to 15 minutes.  

3) One-hot encoding: Before feeding the data to the DNN model, all categorical 

variables should be converted to numerical forms via one-hot encoding. A new 

binary variable represents the original variable [240, 243]. In this work, the 

categorical variable matrix ÒÌ contains: 

ÒÌ = [©U  , HU  , tU, �U]      (7-3) 

By implementing one-hot encoding, the variables are transformed to: 

ÒÌÖ = 7�(ÒÌ)       (7-4) 

where 7�  is the one-hot encoding function, and ÒÌÖ  is the one-hot encoding 

matrix. Hence, the overall input matrix D is shown as follows: 

zÌ = [{Ì, ÒÌÖ]       (7-5) 

{Ì = [�q!�',U , �q!�',U, éU ,yU  , 4U, hHDU , 4�DU, 4HDU]  (7-6) 

where {Ì is the numerical variable. 
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7.3 Behind-the-meter solar energy detection – three 

methods 

In this work, three solar energy detection algorithms are proposed: an unsupervised 

Upscaling Method (UM), supervised Gradients Boosting Regression Tree (GBRT)- 

based algorithms and the deep learning method.  

7.3.1 Method I: Unsupervised upscaling method 

As shown in Figure 7-6 (a), the PV generation highly correlates with the ambient 

temperature é and solar irradiance. More solar energy is generated given larger hHD 

and higher é. Moreover, Figure 7-6 (b) plots the PV generation and GHI in one week 

together. The figure shows that the shape of the PV generation curve is highly 

overlapping with the curve of hHD  in the same area. The unsupervised learning 

approach utilizes real-time GHI measurement and historical feeder measurements 

only to estimate the PV outputs.  

 

Figure 7-6. (a) The 3D plot of the combined effect of temperature and GHI on PV output (b) 
Comparison of PV output and GHI; (c) Comparison of net load and demand load. 
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7.3.1.1 Estimate PV capacity by edge detection  

The PV capacity � under the feeder is first estimated via an edge detection method. 

Assuming the load demand under the feeder keeps stable, given historical feeder 

demand before PVs installed �¾�Ur ¨U 8x,U  and feeder demand after PVs installed 

�¾�Ur 8x,U, the mismatching between  �¾�Ur ¨U 8x,U and �¾�Ur 8x,U can be calculated by 

(7-7): 

v����U = �¾�Ur ¨U 8x,U − �¾�Ur 8x,U    (7-7) 

The PV capacity �  is equal to the maximum of v���� throughout the whole year 

approximately: 

� ≈ s�� (v����U)      (7-8) 

7.3.1.2 Estimate PV output  

The PV output is estimated via normalized GHI and PV capacity �: 

�8x,U = � ∙ hHDU       (7-9) 

The unsupervised method is easy to implement, does not require the model to be 

trained, and only a few measurements are needed. This method is highly suitable for 

areas that lack smart meters. However, this method does not consider other relevant 

variables, such as temperature, and cloud cover rate, so the model cannot provide an 

exact estimation.  

7.3.2 Method II: Supervised Gradient Boosting Regression Tree-

based method 

The supervised GBRT -based solar energy detection algorithm requires training 

machine learning models ahead. GHI and feeder demand measurements are adopted 

as input features.  
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The GBRT algorithm's core components are a machine learning algorithm that 

produces a prediction model from a series of weak prediction models [256]. Usually, 

the GBRT algorithm contains three elements: a differentiable loss function for 

optimization, a squared error is adopted as the loss function for regression task; a weak 

prediction model to make a prediction, and a decision tree is used as the weak model 

in GBRT; and an additive model that can add all weak models together and minimize 

the losses, see Algorithm 3-1 in Chapter 3.  

7.3.3 Method III: Deep learning model 

Apart from the unsupervised/supervised machine learning models introduced above, 

high computational ability deep learning models are also developed, detailed 

introduction of the deep learning-based solar energy decoupling model is developed 

as follows. 

The proposed model is assumed to have the authority to access the aggregated data 

from the physical/informatic aggregator. In addition, the model can also obtain 

measurements from weather stations and satellites. The system's target is to separate 

the net load into the demand load and PV generation. The proposed system enables 

two operating modes: offline training and online learning, as shown in Figure 7-7. The 

model is trained with historical data at first, and the online mode can provide PV 

disaggregation on a real-time basis. 

1) Offline training mode: A supervised learning method, the model, should be pre-

trained with historical netload and PV generation data offline. Since the historical PV 

generation data is not always available for the energy utility, there are several 

approaches to obtain such label training data: (1) Utilize the public dataset at the 

research location, such as Dataport [117] for the distribution network in Texas, US. 

Such a public dataset is anonymized and under the permission of consumers. (2) 

Utilize software simulation software to generate synthetic netload and PV generation 

data. (3) Utilize the transfer learning method as introduced in Section 7.4.4. (4) Select 
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a small group of volunteers under the distribution network, and the energy utility 

collects the smart meter data and the PV generations inside the volunteers’ houses 

under their permission. Since the trials are already under the volunteers' consent, such 

trials will not cause privacy issues.  

1) Online Mode: The online mode part of the system consists of three components: 

real-time measurement, a cloud server, and power utility. In the online mode, the PV 

disaggregation system can access real-time measurements from distribution feeders 

and weather stations/satellite systems. The grid measurements include active power, 

reactive power, voltage, current, etc. The weather-related measurements include 

temperature, humidity, cloud cover, etc. After data are gathered from the 

sensors/stations, the data are fed into the core part of the system, the cloud platform, 

which implements deep learning algorithms (introduced in the next subsection) to 

decouple the original net load into PV generation and the real demand load. 

Conventional BLSTM cannot support online learning due to the delay problem. This 

is because, during the online mode, it is assumed that the length of the input sequence 

is unknown, and it is impossible to learn the input sequence from both forward and 

backward directions. Hence, an online BLSTM algorithm originally used for online 

speech recognition is adopted [386]. A sliding window moves over the real-time input 

sequence, and then the BLSTM is implemented for each sliding window. In this case, 

the model can learn bidirectionally, and the time delay is reduced to é¾ . The é¾ 

sliding window moves at time step é¡. Therefore, the original online sequence can be 

split into a few chunks, and the �th window is: 

|� = [}��~��, }��~�W, … , }��~���]    (7-10) 

and a maximum number of é¾/é¡ windows overlap at time stamp �. The final output 

at time stamp � is evaluated by averaging the output of overlapping windows at �. 

Note that the online system results in a delay of é¾ since the system should lookup 

timestamp é¾ − 1 in the future to determine the output at time stamp �. 
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Figure 7-7. Online/Offline PV energy disaggregation framework. 

1D CNN-BLSTM combines a BLSTM RNN with a one-dimensional CNN and 

provides a deeper learning ability for regression tasks with time-series data [243].  1D 

CNN model is efficient in extracting the important features from the 1D time-series 

data and can filter out the noise of the input data. However, the 1D CNN model only 

focuses on the local trend and has limited ability to adapt to long temporal 

dependencies [387]. In contrast, the LSTM model performs better in tracking long-

term dependencies from the input sequence, but the ability to extract local features is 

limited. Hence, a model that combines the 1D CNN model and LSTM model is 

expected to take advantage of these two deep learning techniques and achieve higher 

prediction accuracy [388]. The structure of the 1D CNN-BLSTM network utilized in 

this work is presented in Figure 7-8; the network contains six layers, which are one 

input layer, one 1D CNN layer, one max-pooling layer, one BLSTM layer, one fully 

connected layer, and one output layer:  

1. Input Layer: The network's input is the multivariate dataset which contains the 

features from four datasets, as illustrated in Figure 7-7. 



Behind-the-meter solar energy detection – three methods 215

 

2. 1D Convolutional Layer: The input layer is followed by two 1D convolutional 

layers with 64 and 32 filters, respectively. The kennel size of the first 1D 

convolutional layer is 5 with strides=1, and the padding type is set as "causal"; the 

kennel size of the second 1D convolutional layer is 3 with strides=1 and the 

padding type is set as "causal". In addition, each convolutional layer is linked with 

a 1D max-pooling layer. The function of the max-pooling is to calculate the 

maximum value in each patch of each feature map. In this model,  a 1D max-

pooling layer with kernel size two and stride one was constructed. 

3. BLSTM Layer: Two BLSTM layers with 256 units are stacked to enable the long-

term temporal dependencies on the feature extracted by the convolutional layer. 

Each BLSTM layer contains two LSTM layers of opposite directions to the same 

output. This structure enables the output layer to learn both forward and backward 

information.  

4. Flatten Layer: After BLSTM layers, a flatten layer is employed to flatten the 

3×512 matrix into a vector with a size of 1536. The flatten layer is normally used 

in the transition from LSTM or convolutional layer to make the multi-dimensional 

input one-dimensional.  

5. Fully Connected Layer: The flatten layer is then connected with two fully 

connected layers with 64 and 16 nodes, respectively. Two dropout layers with 

rates 0.2 and 0.1 are stacked after each fully connected layer to avoid overfitting 

problems during the training process.  

6. Output Layer: The final fully connected layer is connected to the output layer 

with two nodes which estimate the PV generation and the demand load, 

respectively. 
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Figure 7-8. The structure of the proposed 1D CNN-BLSTM network. 

The model complexity (O) is determined by computing the parameters of each layer. 

Referring to [389], for the 1D CNN layer, the computation complexity for each sample 

is computed by Eqn. (7-11): 

�(14 ���) = �\∑  5�X`� ( ,X × D ,X + 1) × { ,X^   (7-11) 

where 1  is the number of the convolutional layers, { ,X indicates the number of filters 

in the j th layer,  ,X  is the kernel length, and D ,X  denotes the number of input 

channels. As for the BiLSTM layer, the computation complexity is: 

�(uét) = �(∑  5�X`� 2 × 4 × *\D�,X + 1^ × t�,X + t�,XW,)  (7-12) 

where 1� is the number of the BiLSTM layers, D�,X is the number of input channels, 

t�,X denotes the number of LSTM units. In turns of the FC layer, the computation 

complexity is computed as: 

�({�) = �(� ((����,X + 5�
X`� 1) × � ¨U�,X))    (7-13) 
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where 1� is the number of FC layers, ����,X  is the number of the input neurons, and 

� ¨U�,X  denotes the number of the input neurons. Hence, the overall computation 

complexity of the 1D CNN-BLSTM model is: 

� = �(14 ���) + �(uét) + �({�)        

= �\∑  5�X`� ( ,X × D ,X + 1) × { ,X^ + � c∑  5�X`� 2 × 4× *\D�,X + 1^ × t�,X + t�,X W,f +
�(� ((����,X + 5�

X`� 1) × � ¨U �,X))      (7-14) 

In this work, 1�  equals to 2, 1� is chosen as 1, and 1� is 2. Based on the computation 

complexity in Eqn. (7-14), the model parameters of the proposed 1D CNN-BLSTM 

model are summarized in Table 7-2; both the type of hyperparameter, shape, and 

number of parameters are concluded. The total parameters of the proposed model are 

2,285,906, and 12.5 MB (32-bit floats) is required to store all parameters. The DNO 

will implement the solar energy disaggregation, which utilizes Energy Management 

Systems (EMS) to operate the proposed solar energy disaggregation model [390]. 

EMS is equipped with a high computational machine that enables various machine 

learning/deep learning-based applications.  

Table 7-2. Model parameters of the proposed 1D CNN-BLSTM model. 

Layer Hyperparameters Setting Output Shape Num. of Parameters 

Conv1D_1 filters=64, kernel size=5, strides=1, padding="causal" 5, 64 13504 

MaxPooling1D_1 pool size=2, strides=1, padding="valid" 4, 64 0 

Conv1D_2 filters=32, kernel size=3, strides=1, padding="causal" 4, 32 6176 

MaxPooling1D_2 pool size=2, strides=1, padding="valid" 3, 32 0 

BiLSTM_1 256, return sequences=True 3, 512 591872 

BiLSTM_2 256, return sequences=True 3, 512 1574912 

Flatten - 1536 0 

Dense_1 64, activation="relu" 64 98368   

Dropout_1 0.2 64 0 

Dense_2 16, activation="relu" 16 1040 

Dropout_2 0.1 16 0 

Dense_3 2, activation="sigmoid" 2 34 

Total params: 2,285,906; Trainable params: 2,285,906; Memory size: 12.5 MB. 



218 A Feeder-Level Solar Energy Decoupling Scheme with Aggregated Smart 

Meter Data

 

7.4 Results and Discussion 

In this section, three case studies are simulated with the previous two datasets. Both 

the unsupervised learning model, supervised machine learning model, and supervised 

deep learning models are evaluated. Furthermore, a transfer learning approach is 

proposed to assess the transferability of the proposed solar decoupling method.  

7.4.1 Performance Evaluation 

7.4.1.1 Software& hardware 

The simulation and computations are conducted on a Dell laptop equipped with a Core 

i7–7700HQ CPU, an NVIDIA GTX 1060 GPU, and 8 GB RAM. The deep learning 

algorithm runs on Python 3.6, and the TensorFlow framework is adopted to train the 

DNN model. 

7.4.1.2 Experimental setup 

In this section, three case studies are used to investigate how the penetration rate and 

hyperparameters influence the performance of the proposed disaggregation 

algorithms. Moreover, data transferability is studied to investigate whether a model 

can be trained with a synthetic dataset.  

7.4.1.3 Evaluation criteria 

To evaluate the performance of proposed disaggregation algorithms, three evaluation 

metrics are adopted, which are RMSE, nRMSE, and R2. 
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7.4.2 Case study I: Comparison between supervised and 

unsupervised machine learning methods 

The case study evaluates both the performance of supervised and unsupervised solar 

energy separation methods. Given the net load measured at the feeder side, the solar 

energy separator aims to estimate the PV generation in real-time. Figure 7-9 presents 

a comprehensive analysis of the two algorithms. The estimating curves evaluated by 

two models and the ground truth PV generation are shown in Figure 7-9 (c). The actual 

value is shown in light blue shading, while the solid red curve and the solid orange 

curve represent the estimating results from GBRT and UM models, respectively. From 

the figure, the values estimated by the GBRT method track the ground truth values 

with high accuracy, while the UM method cannot estimate the peak values generated 

by the PV. The estimation evaluation metrics of the two methods are shown in the 

radar chart (Figure 7-9 (a)) and Table 7-3, and the best metrics are highlighted with 

grey shading. It is observed that the GBRT method is superior to UM method in all 

metrics. The nRMSE values of UM and GBRT are12.41% and 4.68%, while the 

RMSE values of UM and GBRT methods are 1.54 MW and 0.58 MW, respectively.  

Moreover, the nMAE values of UM and GBRT methods are 6.44% and 2.55%. 

Meanwhile, the correlation metrics,  R2 and ρ, provide a more detailed view than the 

GBRT method is much better than UM method. Figure 7-9 (b) utilizes a scatter plot 

to visualize the correlation of estimated values with the ground truth values. R2 and ρ 

of the GBRT method reach 96% and 95%, which means the estimating is highly 

correlated with the actual values, while R2 and ρ of UM are only 73% and 54%. 

Although the GBRT method has superior performance, it requires pretraining the 

model before adopting it to real-time applications. Meanwhile, UM has lower 

accuracy but high flexibility.  
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Figure 7-9. (a) Radar chart of performance metrics to two PV separation algorithms; (b) Scatter plot 

of estimated PV power versus ground truth PV energy for unsupervised upscaling and gradient 
boosting methods, with the Pearson correlation. (b) Comparison of solar energy estimated by the PV 

separator and ground truth value. 

 

Table 7-3.  Performance of unsupervised/supervised solar energy decoupling methods. 

Algorithms nRMSE (%) RMSE (MW) nMAE (%) R2 ρ 

Unsupervised Algorithm 12.41 1.54 6.44 0.73 0.54 
GBRT Algorithm 4.68 0.58 2.55 0.96 0.95 

7.4.3 Case study II: Performance of deep learning models under 

different PV penetration rates 

In this case study, the proposed 1D CNN-BLSTM solar energy disaggregation model 

is compared to state-of-the-art solar energy disaggregation models. Three feeder 

models (the light rural feeder model with P7� =948 kW, heavy suburban feeder model 

with P7� =5335 kW, and the moderate urban feeder model with P7� =17021 kW) with 

different PV penetration rates (5%, 10%, 20%, 30%, 40%, 50%) described in Table 

7-1 are studied. Regarding the net load, the PV penetration rate is defined as the 

percentage of PV output compared to the peak demand load: 
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�� ���������� (®) = 8&#X 8x � #';&#X '&"#�' $ #'    (7-15) 

The accuracies and the required computation time of the estimated solar energy by 

different models are shown in Tables 7-4 to 7-6. In the table, all models can be divided 

into three groups: model-based method, upscaling method, and data-driven methods. 

Whist data-driven methods are further classified into machine learning-based and 

deep learning-based models. The tables show the superiority of the deep learning-

based models over other models in terms of estimation error and accuracy. In contrast, 

the deep learning models require much longer computation time and larger memory 

space. From Tables 7-4 to 7-6, the model-based model, which constructs the 

mathematical models referring to the configuration of PV panels and meteorological 

variables, shows a lower accuracy among all models. In addition, the machine learning 

methods, including KNN regression, SVM regression, RF regression, and GBRT, 

achieve better estimation results than model-based and upscaling methods. However, 

conventional machine learning models cannot capture high-dimensional nonlinear 

patterns from the input netload, which limits the accuracy of the models. When 

comparing the five deep learning-based models, the naive model, MLP, performs the 

worst in all cases; this result is due to the MLP model cannot capture the long-term 

temporal dependencies.  

In contrast, the memory cells inside the LSTM/GRU models make the models 

computationally more efficient. Furthermore, the 1D CNN model achieves similar 

accuracy as the LSTM/GRU models, and the 1D convolutional layers help the model 

extract the complex pattern from the 1D time-series data. The proposed 1D CNN-

BLSTM takes advantage of the LSTM and 1D CNN models to extract the local pattern 

and capture the long-term dependencies simultaneously. From Tables 7-4 to 7-6, it is 

observed that the proposed 1D CNN-BLSTM performs the best among all models for 

all cases. For instance, the 1D CNN-BLSTM improves the MAE and nRMSE of PV 

estimation by 55.89% and 53.74% compared to the conventional model-based model 

when α=5% and P7� =948 kW.  
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Table 7-4. Disaggregation performance under different penetration rates (light rural feeder model). 

α 

(%) 
Metrics 

Data-Driven Method 

Machine Learning Models Deep Learning Models 

SVM+PCA KNN+PCA RF+PCA GBRT CNN GRU LSTM MLP 
CNN-

BiLSTM 

5 

R2 0.73 0.64 0.78 0.77 0.78 0.79 0.83 0.74 0.80 

MAE (kW) 4.16 3.42 2.56 3.02 3.30 2.30 1.79 2.92 1.64 

nRMSE (%) 0.65 0.75 0.58 0.60 0.54 0.50 0.37 0.57 0.35 

RMSE (kW) 6.19 7.20 5.56 5.75 5.20 4.77 3.58 5.40 3.36 

Computation 

Time (s) 
14.77 35.16 60.30 21.91 45.61 305.21 310.81 51.90 155.20 

10 

R2 0.73 0.63 0.80 0.78 0.80 0.82 0.83 0.77 0.87 

MAE (kW) 8.44 6.95 4.95 5.97 6.62 4.25 4.92 5.66 2.96 

nRMSE (%) 1.30 1.53 1.11 1.19 1.21 0.78 1.00 1.12 0.68 

RMSE (kW) 12.38 14.55 10.58 11.29 11.52 7.44 9.52 10.70 6.51 

Computation 

Time (s) 
14.26 29.23 60.83 23.25 44.77 311.45 312.24 52.34 158.12 

20 

R2 0.74 0.63 0.82 0.79 0.80 0.80 0.85 0.79 0.89 

MAE (kW) 16.65 13.25 9.14 11.06 11.89 7.49 5.47 10.73 6.01 

nRMSE (%) 2.51 2.97 2.08 2.24 2.37 1.77 1.17 2.32 1.23 

RMSE (kW) 23.85 28.15 19.74 21.25 22.54 16.86 11.15 21.46 11.71 

Computation 

Time (s) 
14.65 30.17 61.67 25.47 48.47 346.71 356.93 51.12 230.85 

30 

R2 0.74 0.64 0.82 0.79 0.81 0.79 0.80 0.80 0.93 

MAE (kW) 23.92 19.44 13.52 16.30 18.81 13.52 17.25 17.63 7.66 

nRMSE (%) 3.70 4.38 3.11 3.36 3.41 2.73 2.86 3.13 1.48 

RMSE (kW) 35.16 41.53 29.51 31.87 32.35 25.92 27.19 29.70 14.08 

Computation 

Time (s) 
15.03 28.85 62.16 22.46 44.22 322.07 341.02 20.35 208.47 

40 

R2 0.75 0.66 0.82 0.80 0.80 0.85 0.90 0.72 0.94 

MAE (kW) 30.18 25.16 17.40 20.86 24.82 13.70 11.26 21.78 10.43 

nRMSE (%) 4.81 5.69 4.07 4.35 4.58 2.84 2.38 3.87 2.25 

RMSE (kW) 45.60 53.98 38.60 41.28 43.48 26.92 22.57 36.69 21.41 

Computation 

Time (s) 
13.92 29.08 65.49 22.31 46.85 355.34 364.12 29.28 370.45 

50 

R2 0.79 0.68 0.82 0.80 0.83 0.88 0.87 0.79 0.96 

MAE (kW) 33.02 29.66 22.00 26.13 26.37 14.82 15.93 22.91 11.55 

nRMSE (%) 5.51 6.77 5.16 5.34 4.60 2.98 3.17 4.14 2.38 

RMSE (kW) 52.31 64.24 48.95 50.66 43.65 28.28 30.13 39.25 22.58 

Computation 

Time (s) 
13.95 28.84 62.38 21.84 44.77 325.63 344.22 22.51 312.73 
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Table 7-5. Disaggregation performance under different penetration rates (heavy suburban feeder 
model). 

α 

(%) 
Metrics 

Data-Driven Method 

Machine Learning Models Deep Learning Models 

SVM+PCA KNN+PCA RF+PCA GBRT CNN GRU LSTM MLP 
CNN-

BiLSTM 

5 

R2 0.73 0.63 0.78 0.77 0.72 0.79 0.78 0.81 0.90 

MAE (kW) 22.77 18.90 14.25 16.51 20.08 14.12 14.78 12.56 10.04 

nRMSE (%) 0.63 0.74 0.57 0.58 0.69 0.45 0.46 0.43 0.37 

RMSE (kW) 33.84 39.67 30.57 31.13 37.06 24.02 24.71 23.38 19.06 

Computation 

Time (s) 
16.71 29.22 61.38 21.66 42.62 302.31 351.67 48.15 236.00 

10 

R2 0.73 0.63 0.80 0.78 0.80 0.82 0.81 0.75 0.89 

MAE (kW) 44.83 36.61 27.03 31.99 30.22 18.66 20.39 27.80 16.61 

nRMSE (%) 1.23 1.44 1.07 1.12 1.03 0.73 0.74 0.96 0.59 

RMSE (kW) 65.90 76.92 57.18 59.99 55.43 39.18 39.71 51.57 31.66 

Computation 

Time (s) 
15.40 29.47 61.92 22.06 39.35 345.72 311.36 44.60 411.04 

20 

R2 0.74 0.63 0.81 0.79 0.80 0.81 0.82 0.83 0.93 

MAE (kW) 93.00 74.10 51.39 61.80 65.23 46.22 44.84 51.64 33.36 

nRMSE (%) 2.50 2.95 2.08 2.23 2.33 1.73 1.30 1.35 1.19 

RMSE (kW) 133.61 157.59 111.21 119.41 124.81 92.50 68.24 106.62 63.56 

Computation 

Time (s) 
14.76 28.89 65.37 21.74 39.42 335.67 343.93 18.84 347.82 

30 

R2 0.74 0.64 0.82 0.79 0.76 0.87 0.83 0.71 0.93 

MAE (kW) 134.89 108.64 74.50 91.26 124.34 58.19 56.23 97.92 39.90 

nRMSE (%) 3.70 4.36 3.06 3.33 3.77 2.16 2.26 3.20 1.48 

RMSE (kW) 197.56 232.79 163.62 177.86 201.15 115.36 120.88 171.16 79.30 

Computation 

Time (s) 
14.82 29.00 69.26 22.13 36.73 354.08 340.42 24.17 255.37 

40 

R2 0.75 0.66 0.83 0.79 0.80 0.87 0.81 0.80 0.94 

MAE (kW) 171.16 138.03 97.04 117.86 139.97 64.85 80.77 112.46 52.34 

nRMSE (%) 4.81 5.57 4.00 4.35 4.15 2.49 3.16 3.43 1.83 

RMSE (kW) 256.84 297.65 213.66 232.40 221.59 133.18 169.00 183.22 97.78 

Computation 

Time (s) 
14.96 29.00 72.90 22.03 31.74 353.76 387.92 19.35 336.98 

 R2 0.78 0.69 0.82 0.81 0.83 0.91 0.91 0.85 0.94 

 MAE (kW) 188.26 164.32 122.20 145.93 136.30 73.97 80.05 115.39 61.71 

50 nRMSE (%) 5.60 6.70 5.16 5.29 4.41 2.65 2.76 3.68 2.26 

 RMSE (kW) 298.93 357.81 275.58 282.69 235.64 141.46 147.46 196.47 121.05 

 
Computation 

Time (s) 
13.65 29.98 67.27 22.55 39.21 301.14 322.76 33.96 218.20 

 

 

 

 

 



224 A Feeder-Level Solar Energy Decoupling Scheme with Aggregated Smart 

Meter Data

 

Table 7-6. Disaggregation performance under different penetration rates (moderate urban feeder 
model). 

α 

(%) 
Metrics 

Data-Driven Method 

Machine Learning Models Deep Learning Models 

SVM+PCA KNN+PCA RF+PCA GBRT CNN GRU LSTM MLP 
CNN-

BiLSTM 

5 

R2 0.74 0.64 0.79 0.77 0.84 0.81 0.82 0.79 0.85 

MAE (kW) 70.97 59.11 44.03 51.81 48.19 54.91 40.82 49.59 28.66 

nRMSE (%) 0.61 0.72 0.55 0.57 0.48 0.62 0.50 0.53 0.35 

RMSE (kW) 105.50 123.81 94.47 98.09 83.12 106.64 86.04 91.50 60.14 

Computation 

Time (s) 
15.02 29.71 66.97 20.93 31.77 345.92 342.34 42.82 472.88 

10 

R2 0.74 0.63 0.80 0.79 0.80 0.84 0.83 0.81 0.87 

MAE (kW) 146.00 119.08 86.21 101.49 91.28 73.51 78.06 82.82 53.23 

nRMSE (%) 1.24 1.47 1.08 1.12 0.94 0.84 0.78 0.93 0.64 

RMSE (kW) 212.49 250.47 184.76 191.07 160.93 143.24 133.93 158.36 110.40 

Computation 

Time (s) 
14.94 30.38 66.08 20.73 38.89 352.83 353.12 38.92 453.87 

20 

R2 0.73 0.63 0.81 0.80 0.82 0.85 0.85 0.77 0.91 

MAE (kW) 292.52 234.46 165.10 188.69 199.87 112.84 126.06 200.29 93.31 

nRMSE (%) 2.47 2.92 2.09 2.23 1.95 1.38 1.64 2.13 1.06 

RMSE (kW) 421.47 497.10 357.16 369.37 333.24 235.87 279.75 362.55 180.54 

Computation 

Time (s) 
15.44 29.32 66.35 20.66 33.02 311.54 305.87 28.56 423.15 

30 

R2 0.62 0.65 0.72 0.75 0.77 0.89 0.84 0.81 0.91 

MAE (kW) 608.44 318.15 300.33 301.41 355.59 151.28 204.67 262.56 185.27 

nRMSE (%) 4.20 4.03 3.57 3.36 3.43 1.75 2.35 2.56 2.07 

RMSE (kW) 715.83 686.94 608.93 572.57 584.89 297.88 400.96 436.43 353.71 

Computation 

Time (s) 
8.42 29.49 65.68 20.85 36.55 311.24 300.25 26.69 229.55 

40 

R2 0.75 0.66 0.82 0.79 0.80 0.89 0.89 0.81 0.93 

MAE (kW) 546.49 442.87 315.37 380.10 409.03 187.40 193.35 344.51 211.77 

nRMSE (%) 4.82 5.60 4.06 4.34 3.85 2.32 2.33 3.46 2.35 

RMSE (kW) 820.51 954.17 692.74 740.37 656.03 395.13 397.88 589.87 400.27 

Computation 

Time (s) 
14.54 29.15 62.21 20.81 34.25 341.59 334.24 36.25 251.96 

50 

R2 0.79 0.69 0.82 0.81 0.82 0.84 0.86 0.82 0.94 

MAE (kW) 589.91 527.93 388.02 461.86 500.72 331.88 330.04 373.61 284.39 

nRMSE (%) 5.53 6.73 5.12 5.28 4.81 3.64 3.76 3.84 2.90 

RMSE (kW) 941.40 1146.06 872.95 899.08 819.51 621.09 641.25 654.14 493.71 

Computation 

Time (s) 
14.11 29.19 66.18 22.35 36.80 309.23 322.76 24.78 431.34 

The estimation results of the PV generation and the demand load are visualized in 

Figures 7-10 and 7-11, and these two figures show the cases of �P� =948 kW, α=20% 

and �P� =17021 kW and α=5% cases, respectively. In addition, the results estimated 

by GBRT, LSTM, and MLP are shown in the same figure to compare to the proposed 

1D CNN-BLSTM model. The original net load curve is presented in the top plot of 
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Figure 7-10. Compared to the net load without PV systems, a dramatic drop is 

observed between 8:00 am and 5:00 pm, a typical characteristic of identifying PV 

generation. The middle plot shows the estimations of the PV outputs performed by the 

four algorithms, and the bottom plot shows the decoupled demand load curve. The 

figure shows that although the PV outputs inferred by all algorithms closely match the 

ground truth curve, the proposed CNN-BLSTM presents the best estimation. In this 

case, the RW for CNN-BLSTM is approximately 0.89, and the nRMSE is 1.23%. In 

turns of Figure 7-11, a case with a low PV penetration rate (5%), the figure shows that 

although the benchmark models (GBRT, LSTM and MLP) can estimate the PV 

generation with high accuracy during the time with abundant sunlight, e.g., sunny 

days, the accuracy is reduced in bad weather conditions such as rainy and cloudy days. 

However, the proposed model can make a great estimation in almost all-weather 

conditions, demonstrating the improvement of the proposed model compared to the 

existing works.  

1e2

1e2

1e2

GBRT  

 
Figure 7-10. Decoupling performance for the feeder with �P� =948 kW and α=20%. 
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Figure 7-11. Decoupling performance for the feeder with �P� =17021 kW and α=5%. 

Several estimation examples under different weather conditions are presented in 

Figure 7-12. Three weather conditions: clear sky, overcast, and rain. Three typical 

days are given for each weather condition category. The figure shows that all four 

algorithms track the ground truth curve very well on clear sky days. While on rainy 

and overcast days, since the sun is covered intermittently, these algorithms cannot 

always catch up with the actual PV outputs. Poor performance is observed in the MLP 

algorithm, as a huge error is detected between the actual and estimated curves. When 

it turns to the proposed CNN-BLSTM, which is the solid orange line in Figure 7-12, 

it can precisely track the ground truth PV outputs even during rain and overcast days.  

7.4.4 Case study III: Transductive transfer learning 

The training and testing data from the previous case study is used consistently from 

the same dataset. However, it is difficult to obtain labelled data at the target location. 

A transductive transfer learning approach is proposed to overcome the limitation, 

which forms a major hurdle for real word industrial applications. The definition of 

transfer learning is defined as follows:  
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GBRT   
 

Figure 7-12. Examples of the estimation results of four disaggregation algorithms under different 
weather conditions (sunny, rainy, cloudy). 

Definition 1 (Transfer Learning) [391]. Providing a source domain t¡  and learning 

task �¡, a target domain t�  and learning task ��,  the purpose of transfer learning is 

to help improve the performance of the target function ℱ�  in t�  using the knowledge 

in t¡   and  �¡, where t¡ � t�, or �¡ � ��. 

While in a transductive transfer learning task, a source learning task �¡ and target 

learning task ��  are the same (to implement decoupling task), but the domains of 

source and target may be different (�¡ is a synthetic dataset, and �� is real-time data 

in this case) [392]. In this work, the transductive transfer learning framework can be 

split into four steps (see Figure 7-13):  

 
Figure 7-13. Block diagram of the transfer learning process. 
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Step 1 – Synthetic Database Generation: Using local conditions (such as load 

capacity,  geographical information, the portion of PV tilt angles, meteorological data, 

etc. ), simulation software is adopted to generate synthetic solar energy and demand 

load datasets. Hence, the dataset is labelled and can be used for supervised learning. 

Step 2 – Data Analysis: As introduced in Section 7.2, the generated dataset is pre-

processed to provide normalized, featured extracted data. 

Step 3 – Model Generation: With processed data, the CNN-BLSTM neural network 

model is trained, and the model parameters are stored in a cloud server.  

Step 4 – Transfer Learning: The unlabelled real-time data from the target area is then 

sent to the trained model, while the cloud server decouples the net load into solar 

energy and demand load. In the simulation, two cases are studied to investigate the 

proposed transfer learning method in Austin, Texas, and New York, detailed 

description of the cases is shown in Table 7-7. SAM simulation software [384] is 

adopted to generate a synthetic residential solar energy dataset referring to relevant 

information. The data provided by Dataport is adopted as real-time measurements.  

Table 7-7. Relevant information about the target area. 

Case Location Year Load Capacity(kW) Penetration Rate (%) Optimal Tilt Angle(°) 

1 Austin 2018 948 20 28 
2 New York 2019 17021 5 34 

The performance of the disaggregation system in transfer learning is presented in 

Table 7-8 and Figure 7-14. The CNN-BLSTM model is pre-trained via the synthetic 

dataset and then applied to the aggregated real-measured demand load. In Case 1, 

where the target area is selected in Austin, Texas, the transfer learning almost 

researches the equal performance in Case study 1; as for Case 2, where the target area 

is selected in New York, the performance is slightly worse than the model which is 

trained via real-measured dataset. This is because there is a minor geographical 

information error between the location of the synthetic data and real-measured sites. 

The two cases show that the proposed transfer learning method is easy to implement 

anywhere else, and a desirable accuracy can be achieved. 
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However, there are limitations of the proposed solar energy separation method: 

Firstly, the penetration rate of rooftop PV is extremely low in many developing 

countries such as India, China, and Africa, so the proposed method is only suitable for 

the countries with deep PV penetration rate.  

Table 7-8. The performance of the disaggregation system in transfer learning. 

CASES R2 MAE (kW) nRMSE2 (%) RMSE (kW) 

1 0.96 5.03 5.14 9.74 
2 0.79 72.19 3.70 125.94 

1e2

1e2

1e2

 
Figure 7-14. The performance of the transfer learning in Austin, Texas, US. 

7.5 Privacy Analysis 

In this section, the privacy risk of the proposed solar energy decoupling system is 

analysed by comparing it with the existing method. As shown in Figure 7-15, in the 

existing smart metering system, the DNO need to access the PV meters inside the 

houses to estimate the PV generation in a certain area by accessing the readings from 

all PV meters. Such an approach not only introduces privacy risks but also increases 

the cost. Detailed risks and disadvantages can be summarized as follows: 

1) The direct access to individual consumption/generation data for grid operation 

purposes contradicts the data access policy of OFGEM [41] and BEIS [12]. 
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Referring to the data access policy, the individual data should be aggregated or 

anonymized before transmitting to the DNO. 

2) By sharing the PV generation information with the DNO, external adversaries can 

obtain the information that may eavesdrop on the communication between the PV 

meter and the DNO. 

…… 
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(a) Information flow of the Existing PV generation decoupling scheme. 
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(b) Information flow of the proposed PV generation decoupling scheme. 

Figure 7-15. Information flow of existing/proposed PV generation decoupling scheme. 

In turns of the proposed solar energy decoupling scheme, only the aggregated smart 

meter provided by the aggregator, designed in Chapter 4, is shared with the DNO, and 

the DNO has no authority to access the individual meter readings, and no extra PV 

meter is required. In such case: 
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1) Given the aggregated data and the external information, the proposed model 

decouples the overall PV generation from the aggregated demand. The proposed 

scheme strictly follows the data access regulation made by OFGEM [41] and BEIS 

[12]; both the input and output of the proposed model are aggregated data without 

accessing any individual information.  

2) The external adversary does not have the opportunity to obtain the individual 

consumption/generation data as such information has never been shared.  

Based on the analysis above, the privacy risk in the current PV energy decoupling 

scheme is reduced.  

7.6 Chapter Summary 

This chapter develops a deep learning-based solar energy disaggregation system to 

decouple the solar energy generated by rooftop PV systems and the real demand load 

from the net load measured by a feeder-level smart meter. The system collects various 

information from different resources, including AMI data, meteorological data, 

satellite-driven irradiance, and temporal information. A 1D CNN bidirectional LSTM 

algorithm is developed to estimate the solar energy generated in the target area. 

Compared to the benchmark algorithms (model-based method, upscaling model, 

machine learning-based models and deep learning-based methods), the precision and 

effectiveness of the proposed method are verified via several case studies. The 

influence of the PV penetration rate and feeder load capacity on the proposed system 

are fully investigated. The results show that the proposed method can decouple solar 

energy with a low error, even at a low penetration rate (5%). Moreover, the method is 

robust since it can be adapted to different feeder models, and the model can be trained 

via a synthetic dataset and still achieves desirable performance in real-world 

measurement. These characteristics enable the proposed system to be widely adopted 

and implement practically.  
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Chapter 8 Multi-Quantile Recurrent Neural 

Network for Distribution-Level Probabilistic 

Energy Disaggregation with Aggregated Smart 

Meter Data 

8.1 Introduction  

8.1.1 Motivation 

Demand Response (DR) plays a critical role in the future smart grid, and it has 

flexibility in controlling and managing end-use consumers’ power consumption 

patterns. As a result, peak demands are reduced, and the mismatch between generation 

and demand is minimized. In incentive-based DR schemes, the utility would control 

specific controllable loads directly during a certain period for load shaping. So, 

understanding the portion of controllable loads is vital for the utility to design DR 

strategies. 

Loads can be divided into critical loads and controllable loads [393]. Meanwhile, 

controllable loads can be divided into Thermostatically Controlled Loads (TCLs) and 

non-thermostatically controlled loads (non-TCLs). TCLs (e.g., Heating, Ventilation 

And Air Conditioning (HVAC), Air Conditioner (AC), heat pumps, furnaces, and 

refrigerators) occupy 30-40% of the overall demand load [394],  and TCLs are widely 

adopted in DR for their thermal inertia capability. Recent research shows that by 

optimizing the operation of HVAC systems, 45% of energy would be saved [395]. 

Moreover, EVs have high flexibility in scheduling the charging/discharging slot, 

benefiting DR by shaving the peak load. In addition, the high penetration of renewable 
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energy (e.g., solar energy) masks the ground truth demand load. However, most DR 

frameworks are planned for pure load demand, the invisibility of the actual load 

demand raised by the renewable energy influences the efficiency of the existing DR 

schemes. Hence, it is essential to increase the visibility of the load components by 

disaggregating the net load measured at feeder/substation into renewable energy 

generation, TCLs, and non-TCLs.  

Accurate models of power system loads are vital for the simulation and prediction of 

the dynamic status of electric power systems. Having accurate models of the loads 

that can reliably reflect the underlying phenomena of the physical loads is important 

for designing automatic control systems and optimising their configuration. More 

importantly, the dynamic properties of power system loads significantly impact 

system stability.  

The purposes of implementing feeder-level energy disaggregation are listed as 

follows: 

(1) Real-time substation-level energy disaggregation can help the power system 

operators and demand-side managers to improve the system reliability, economic 

efficiency, and environmental impact. 

(2) Help the utility better understand the overall real-time performance of the power 

system. 

(3) Deal with the stability problems raised by the integration of renewable energy. 

(4) Better understand the voltage distortion problems caused by the nonlinear loads, 

such as lighting, motors, electronic devices, etc. 

(5) Reduce unnecessary investment in smart meters to be installed behind the 

individual solar panel and reduce the privacy issues raised by the smart meter. 

Moreover, A system operator can estimate the real-time balancing reserve requirement 

by estimating the production of distributed generation resources.  A utility can better 

plan demand response actions by knowing the weather forecast and the real-time 

portion of weather-dependent loads (e.g., air conditioners, heaters, dehumidifiers). A 

demand response provider can (1) Optimize capacity bids into ancillary services 
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markets using its estimate of the real-time, aggregate, demand-responsive load.  (2) 

Use its estimate of the real-time, aggregate, demand-responsive loads as a feedback 

signal in load coordination algorithms [205]. 

8.1.2 Knowledge gaps in the existing work   

The knowledge gaps in the existing work can be summarized as follow: 

1) Existing feeder-level energy disaggregation requires the DNO analysis to access 

an individual’s meter and use the NILM data mining algorithm to infer detailed 

appliance information, which introduces privacy risks to the energy consumers. 

2) The correlation between the feeder-level demand load and external variables 

(weather variables, temporal variables) is not investigated thoroughly.  

3) The Traditional DNN model can only make point prediction, while the Prediction 

Intervals made by the probabilistic model has much practical significance.  

8.1.3 Chapter contribution   

With the benefit of the proposed smart metering system, the regional aggregated data 

is available to the DNO. Hence, the chapter will investigate how to obtain load 

components under the feeder with only aggregated data. In this chapter, a feeder-level 

probabilistic energy disaggregation scheme is proposed. Detailed novelties of this 

work are listed as follows: 

(1) The scheme utilizes a Multi-Quantile Long Short-Term Memory Neural Network 

(MQ-LSTM) to disaggregate various components (TCLs, Non-TCLs, PV 

generations, and other loads).  

(2) A transfer learning model is introduced to transfer the energy disaggregation 

model trained with a public dataset to a local dataset. The transferability solves 

the issue of the data shortage. 
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8.1.4 Chapter structure    

The rest of the chapter is organized as follows: The preliminaries, including the 

problem statement, and data preparation, are introduced in Section 8.2. The energy 

disaggregation methodology is demonstrated in Section 8.3. In Section 8.4, three case 

studies, which compare the proposed load forecasting algorithm and other methods, 

and the transferability of the model, are implemented. The conclusion and final 

discussion are drawn in the last section. 

8.2 The Preliminaries  

8.2.1 Problem statement 

The target of this chapter is to disaggregate the overall feeder-level load demand into 

four components, which are: TCLs, non-TCLs, renewable generation, and Other 

Loads (OL) in both real-time and offline mode (See Figure 8-1 (a)). Figure 8-1 (b) 

presents the percentages of different loads under the feeder demand, referring to [327]. 

Among all loads, AC load and furnace load account for around 45% of the overall use 

in the US, as indicated in Figure 8-1. AC and furnace load also play a vital role in the 

DR programmes as these loads, as these loads can resist frequent and short 

interferences without reducing the end-use performance significantly. Moreover, EV 

load increases dramatically as the global EV market size has grown to 4093 thousand 

units in 2021 [396]; estimating the EV load will help power system operators better 

understand the change in demand load patterns. Furthermore, most household PVs are 

BTM and cannot be detected by the electricity meters, while these BTM renewable 

energy generations reshape the demand load shapes and cause some serious stability 

problems, such as the California electricity crisis [397]. Hence, separating the PV 

generations will increase the visibility and forecasting of the power system. Based on 

the analysis above, AC, furnace, EV loads, and PV generation are selected as the cases 

to be studied in this work, while AC and furnace loads are TCLs, and EVs are non-

TCL loads rooftop PVs are renewable energy generation. Assuming the feeder-level 
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net load is measured as ���U
@&&'&!, the problem can be expressed as the following 

formula: 

���U
@&&'&! = L������� + G��� + �U     (8-1(a)) 

= U��� + U� �)��� + U�� + hU8x + �U   (8-1(b)) 
= U�� + U���Y + U[x + U��0 + hU8x + �U   (8-1(c)) 

where U
@&&'&!  is the total demand load, U���  is the TCLs demand, U� �)���  is the 

non-TCLs demand, U��  is OL demand, hU8x  is the PV generation, U��  is the AC 

demand, U���Y is the furnace demand, U[x  is the EVs demand, and �U is the random 

noise.  

8.2.2 Comparison among similar problems 

Three similar problems in this chapter should be distinct: feeder-level energy 

disaggregation, load forecasting and house-level NILM. Household-level NILM is a 

technique for obtaining individuals’ appliance consumption from overall household-

level power consumption without installing intrusive sensors, such as a smart plug or 

smart sensors. Since most appliances have unique load curve or voltage curve 

characteristics, it is easy to separate every appliance from the overall load with 

algorithms such as HMM, RNN, and KNN. Nevertheless, when the situation comes 

to feeder level or distribution level, the load curve is highly aggregated and contains 

200 to 4000 houses, referring to the standard feeder models provided by GridLAB-D 

[326]; the characteristic of the single appliance is difficult to be detected with power 

measurements only. Meanwhile, load forecasting technology aims to predict demand 

load with both long-term and short-term horizons, given historical demand load data.    
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(a) 

 

(b) 

Figure 8-1. (a) Load components under substation/feeder; (b) Portion of loads under the feeder 
demand (Data source: Pecan Street Dataport [327]). 

8.2.3 Input variables and data analysis  

Input variables of the energy disaggregation system are classified into four categories: 

feeder, meteorological, time, and solar irradiance, as shown in Table 8-1. Meanwhile, 

all input variables can be divided into two categories, which are numerical variables 

and categorical variables. Numerical variables represent the values that can be 

measured and placed logically. By contrast, categorical variables take values that are 

names or tags, and the number of potential values is often limited to a fixed series. 

These categorical variables cannot be recognized by DNN models and must be 

converted into a numerical form. The conversion method adopted in this work is one-

hot encoding. Instead of providing a single integer only, one-hot encoding provides a 

Air Conditioner

Furnace

Electric Vehicle Dishwasher
DryerRefrigerator

Other Loads
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set of binary variables. A detailed description of the input variables is presented as 

follows:  

8.2.3.1 Feeder-level Demand and Appliance Load Data 

The feeder models used for this research are selected from standard feeder models 

provided by GridLAB-D [326]. To construct the feeder-level demand load data, 

individual household-level smart meter data from Dataport [117] are added to match 

the feeder model's capacity. Dataport is the world’s largest residential energy dataset, 

and it contains more than 700 houses; and each house measures around 20 electrical 

appliances in Texas, US. Hence, Dataport not only measures household electricity 

consumption but also provides detailed appliance usage data. Such dataset 

enbaMoreover, the interval resolution of the smart meter data is 15 minutes. 

Household-level smart meter data from Dataport was randomly drawn with 

replacement and added together until the total residential signal’s mean R2-25.00-1 

feeder model, resulting in 3 691 total houses aggregated data reaching 17021 kW. To 

construct the dataset for load components (AC, furnace, and EV) at the same feeder 

level, the demand for each household’s AC, furnace and EV is summed up, 

respectively. The furnace, referred to as a heater or boiler in British English, is a major 

component of a central heating system. Normally, the fuel source of the furnace is 

natural gas; the furnace heats air and distributes heat to the entire building [398].  It is 

noticed that the furnace in the Texas area not only plays the role of a heating system 

to provide heat during winter but is also used to circulate cooled air during other 

seasons. The data is split into a training dataset (1st January 2018 to 1st August 2018), 

a validation dataset (2nd August 2018 to 15th September), and a testing dataset (16th 

September to 31st December 2018), respectively. The aggregated demand load is the 

model's input, while the aggregated appliance load is the output of the deep learning 

model. 
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8.2.3.2 Meteorological Measurement 

The demand load and PV generation strongly correlate with meteorological data, so it 

is vital to include meteorological measurements into the input variables. In this 

chapter, meteorological data resources from the geographical point N 30° 15' 

59.9976'', W 97° 43' 59.9880'' are used; NCEI [193] provides public access to the US’s 

national historical weather data and information. Numerical variables, ambient 

temperature �, humidity àç, pressure �, wind speed Ðæ, cloud cover Ò are chosen 

from the NCEI dataset. For ambient temperature, 673 variables are generated, 

spanning the last week and current temperature measurements: 

� = [�Ì,�Ì)¶, ⋯�Ì)��¶,�Ì)��·]    (8-2) 

Table 8-1. Input variables of the energy disaggregation model. 

Feature type Description Mark 
Feeder measurement    
 Feeder active power 

flow  
One week (672) lagging values and current values U)QRW, U)QR� , ⋯ U)� , U  

Meteorological 

measurement 

  

 Past temperature 
values 

One week (672) lagging values and current values éU)QRW, éU)QR�, ⋯ éU)� , éU 

 Humidity Humidity in current time step  Ht 
 Wind speed Wind speed in current time step  ©u 
 Pressure Pressure in current time step � 
 Weather description 10 binary values for each weather condition  ©4� , ©4W ⋯ ©4�~ 
 Cloud cover Cloud cover rate in current time step � 
Calendar information   
 Day type  2 binary values for each type of day 

(weekday/weekend) 
4� , 4W 

 Holiday 4 binary values for a normal day or 
current/previous/after day is a holiday 

� , W , ¥ , C 

 Season 4 binary values for each season in one year u� , uW , u¥ , uC 
 Month 12 binary values for each month in one year t� , tW ⋯ t�W 
 Hour 24 binary values for each hour in one day H�, HW , ⋯ HWC 
Solar irradiance for PV 

separation 

  

 GHI GHI in current time step  hHD 
 DNI DNI in current time step 4�D 
 DHI DHI in current time step 4HD 
 Latitude Latitude of the PV site �� 
 Longitude Longitude of the PV site ��? 
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Figure 8-2 shows the correlation between � and different loads at the feeder level. The 

figure shows that TCLs are highly influenced by temperature and relevant weather 

variables (e.g., humidity, wind speed). AC has a positive correlation with temperature; 

as � increases, the power consumption of AC raises as well. Since the furnace has a 

dual role (heating and circulating) in this research, when é < 13℃, the correlation 

between � and furnace demand load is negative, and when é � 18℃, the correlation 

turns positive. Meanwhile, � has little influence on the non-TCL demand (such as EV) 

as the curve is flat throughout different temperature periods.    

 
Figure 8-2 shows the correlation between temperature and different loads (Data source: Pecan Street 

Dataport [327]). 

The heatmap in Figure 8-3 shows the Pearson Correlation (ρ) of loads and different 

meteorological variables (temperature, pressure, humidity, and wind speed); a higher 

value of ρ represents a stronger correlation between two variables. From the figure, it 

is observed that these meteorological variables impact AC, furnace loads, and PV 

generations, while they have little influence on the EV load, as the EV load is related 

to user’s behaviour patterns rather than weather conditions. Moreover, the temperature 

has the strongest correlation with all loads except EV. Pressure, humidity, and wind 

speed also influence AC, furnace, and PV to different degrees. Finally, categorical 

meteorological data and weather description ©4 also have an extraordinary impact 

on the demand load. Ten different weather conditions are described in the NCEI 
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dataset, which are: Mist, Clouds, Snow, Clear, Rain, Drizzle, Haze, Thunderstorm, 

Fog, and Dust. 

 
Figure 8-3. Pearson Correlation of loads and meteorological variables (Data source: Pecan Street 

Dataport [327]). 

8.2.3.2.1 Calendar Data and Holiday Information  

Calendar data and holiday information is other vital factor influencing consumers’ 

behaviours and the electricity events that happen inside their houses. As shown in 

Table 8-1, time information variables include: 

 Type of the Day. Day types include weekdays, weekends, and holidays. Including 

the day types enables the disaggregation model to be sensitive to the week's 

variation. In Austin, Texas, 14 days are marked as a holiday in 2018, referring to 

[399]. Considering the influence of holiday on residents would span before or after 

the holiday, the day before and after the holiday is also viewed as new variables. 

Hence, four binary variables are used to represent a holiday. Figure 8-4 compares 

typical load profiles during weekday, weekend, and holiday.  The peak loads of 

overall demand load, TCLs, and EV are higher than other types, while the peak of 

loads during weekends is clipped. A dramatic reduction of all demands is observed 

during holidays, especially for furnace and AC loads. This is due to some residents 

leaving their houses to travel elsewhere rather than stay home. 
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Figure 8-4. Net/appliance load profiles under different day types. 

 Season æ. Seasonal variation (Spring, Summer, Autumn, and Winter) is also a 

critical factor influencing the demands, and consumers prefer different electricity 

appliances during different seasons. For instance, AC is typically used during 

summer cooling, and the heating system is preferred in winter for heating purposes. 

In this work, four binary variables u�, uW, u¥, uC are used to represent the season, 

e.g., [0,0,0,1] represents spring. Figure 8-5 uses the Stats-Violin plot to show the 

distributions of the load demand of different load components in four seasons. The 

figure shows that the power consumption of AC load in summer and autumn is 

much larger than in spring or winter. As for the furnace plays a dual role as a 

heating system and air circulation device, the demand for the furnace is high in 

both summer and winter. The distribution of EVs does not show any difference 

among various seasons, which shows that the EV charging/discharging activities 

are not influenced by seasons. Finally, solar energy generation significantly 

influences the season as the PVs generate more power during summer and autumn. 
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Figure 8-5. Stats-Violin plot of appliance load profiles under seasons. 

 The Hour of the day à and the month of the year ç. Twenty-four binary 

variables and 12 binary variables are used to represent hour and month, 

respectively.  

8.3 Energy Disaggregation Scheme 

8.3.1 System overview 

The framework of the proposed multi-quantile RNN energy disaggregation system 

contains two modes, online mode and offline mode, shown in the block diagram of 

Figure 8-6. In offline mode, the energy disaggregation model is trained with a 

historical dataset, and offline analysis is also implemented for grid planning and 

arrangement purpose. The real-time net load measurement is disaggregated in online 

mode into individual load components.  
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8.3.1.1 Offline training with a public dataset 

The offline mode has two functions: (1) training the DNN model and uploading the 

trained model parameters to the cloud server; (2) analysing the load components of 

historical feeder demand. Typically, the power utility or third parties such as software 

companies should operate the offline mode to help the utility build the energy 

disaggregation models.  

Step 1: Historical data loading. Historical data is loaded from the historical database. 

The database contains historical meteorological measurements, historical 

calendar/holiday data, historical solar irradiance data, and historical smart meter data. 

The historical smart meter data contains both household-level and appliance-level 

power consumption data, so the smart meter data can be aggregated to generate feeder-

level demand load. Since the historical appliance-level smart meter data is not always 

available for the energy utility, there are several approaches to obtain such label 

training data: (1) Utilize the public dataset at the research location, such as Dataport 

[117] for the distribution network in Texas, US. Such a public dataset is anonymized 

and under the permission of consumers. (2) Utilize software simulation software to 

generate synthetic netload and detailed appliance-level smart meter data. (3) Utilize 

the transfer learning method as introduced in Section 8.5.3. (4) Select a small group 

of volunteers under the distribution network, and the energy utility collects the smart 

meter data and the appliance usage information inside the volunteers’ houses under 

their permission. Since the trials are already under the volunteers' consent, such trials 

will not cause privacy issues.  

Step 2:Training the PV separation model.  The PV separation model is trained via 

the process introduced in Chapter 7. 

Step 3: Training load disaggregation model. Like Step 2 mentioned above, Step 3 

trains the offline model to implement demand load disaggregation. However, there are 

two different points between the two steps. Firstly, the input variables and outputs of 
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the models are different. Compared to the PV separation model, the load 

disaggregation model does not require solar irradiance data. 

In contrast, holiday information is added to the inputs as such special events highly 

influence manual activities. Secondly, instead of taking PV generation as output, the 

load disaggregation model takes the portions of each load component as outputs. 

Furthermore, the trained model and model parameters are uploaded to the cloud server 

for online estimation purposes.     

 
Figure 8-6. Online/Offline PV energy disaggregation framework.  

8.3.1.2 Online Mode 

In online mode, the power utility would like to use the online server to analyse the 

load components on a real-time basis. The models trained in offline mode are 

uploaded to the online server, so the utility can implement online computing without 

training the models simultaneously. 

Step 1: Real-time measurements collection. The utility receives the real-time feeder 

demand measurement from the feeder-level smart meter or the DSCADA system. 

Meanwhile, the utility can also access the real-time meteorological measurement the 

local weather station provides. The real-time calendar data are generated by the system 

or online server such as Google Calendar [400]. Moreover, holiday data are provided 
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by the local government. All real-time measurements are synchronized and pre-

processed (normalization for numerical variables and one-hot encoding for categorical 

variables) before feeding into the online server. In addition, the noise in the feeder 

measurement and communication would influence the performance of the 

disaggregation server. Hence, a data denoising method is adopted to filter out noise. 

A detailed description of the denoising method is introduced in the following section. 

Primarily, real-time satellite solar irradiance data provided by NCDC [21] is also 

obtained to separate solar energy components. All real-time data is also saved into a 

historical database to frequently update offline models. 

Step 2: Real-time PV generation separation. Before disaggregating the feeder 

demand into individual load components, the PV generation components are separated 

from the net load as the negative loads would impact the detection of other positive 

loads. The online PV separating process is introduced in 7.3.3.  

Step 3: Real-time demand load disaggregation. The estimated demand load of the 

PV separator is then fed into an online energy disaggregation server along with real-

time meteorological measurements and calendar/holiday information. Obtaining the 

DNN model and model parameters from the offline mode, the online load 

disaggregation server then disaggregates the estimated demand load into three 

components: TCLs, Non-TCLs, and OLs.  

8.3.2 Domestic loads disaggregation at feeder-level  

The demand load U
@&&'&!  estimated by the solar energy separator introduced in 

Chapter 7 is then used as input variables of the energy disaggregation model. The 

purpose of the model is to separate the demand load L�������  into TCLs (AC and 

furnace), Non-TCLs (EV) and OL, as illustrated in : 

U
@&&'&! = U��� + U� �)��� + U��      (8-3) 
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In this work, one-week historical load demand ��  with interval 15 min is generated as 

the input variables of the energy disaggregation model: 

�� = �U
@&&'&! , U)�

@&&'&! , ⋯ , U)QR�
@&&'&! , U)QRW

@&&'&!�   (8-4) 

The core component of the energy disaggregation model is the multi-quantile long 

short-term memory (MQ-LSTM). The detailed description of the MQ-LSTM 

algorithm is introduced as follows. 

8.3.2.1.1 Multi-Quantile Long Short-Term Memory (MQ-LSTM) 

MQ-LSTM is a technology built on traditional LSTM, and it enables the LSTM neural 

network to make probabilistic predictions by combining Quantile Regression (QR) 

with LSTM units. A more comprehensive analysis of dependent variables can be 

obtained by QR's measures of central tendency and statistical dispersion [401]. To 

implement probabilistic estimation, a set of quantiles should be set in ahead � =��, �W, ⋯ , �a, and t is the total quantiles number. The τth quantile (τ-quantile) of a 

random variable G can be defined as: 

��(�) = {�)�(�) = ��7�V:{�(V) ≥ ��       0 < � < 1   (8-5) 

where {�(V) is the cumulative distribution function of G and can be expressed as: 

{�(V) = �(G ≤ V)       (8-6) 

The pinball loss function of QR is presented in (8-10): 

K�(�) = ?��                  �7 � ≥ 0
(� − 1)�      �7 � < 0    (8-7) 

MQ-LSTM requires training t models individually, and each model is an LSTM 

model. LSTM is a recurrent neural network; it can process entire data sequences and 

learn long-term dependencies. The LSTM unit regulates information by relying on a 

structure known as a gate. The gate consists of a sigmoid activation function 3 and a 

pointwise multiplication operation. The sigmoid activation function only has two 
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values, namely "0" and "1"; a value of “0” means the gate is closed, and “1” means 

the gate is open, and all information can go through the gate. There are three gates in 

the LSTM unit, which are forget gate 7U,�, input gate �U,� and output gate �U,�. With the 

regulations of the gates, the information of the cell state �U,�  is updated to retain 

critical information from the previous sequence.  

The responsibility of the forget gate is to delete the information from the cell state �U. 

As shown in (8-8), the forget gate 7U,� takes two inputs,  �U and ℎU)�,�, where ℎU)� is 

the hidden state from the previous cell, and �U is the input to the present stage. If the 

output of  7U,� is closer to “1”, that is, to keep, or the information is forgotten.  

7U,� = 3\©@,���U, ℎU)�,�� + £@,�^    (8-8) 

As for the input gate �U,� , �U  and ℎU)�,�  is passed through a sigmoid function to 

determine the values to be updated, see (8-9). Also, �U and ℎU)�,� is passed into a tanh 

function to squish values between [-1,1] to create a new candidate cell state value �U,��  

, see (8-10). Finally, the new cell state  �U,�  is determined given �U,� and �U,�� , shown in 

Equation (8-11): 

�U,� = 3\©�,���U, ℎU)�,�� + £�,�^    (8-9) 

�U,�� = ���ℎ \© ,���U, ℎU)�,��+ £ ,�^    (8-10) 

�U,� = 7U,� ⊙ �U)�,� + �U,� ⊙ �U,��     (8-11) 

Finally, the output of the cell and the hidden state is determined by the output gate 

�U,�: 
�U,� = 3\© ,���U, ℎU)�,�� + £ ,�^    (8-12) 

ℎU,� = �U,� ⊙ ���ℎ (�U,�)     (8-13) 

where ©@,�, ©�,�, © ,�, © ,� are weight matrices; and £@,�, £�,�, £ ,�, £ ,� are the bias. 

Typically, one fully connected layer }U,� is connected between the LSTM layer and 
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output layer. The function of the fully connected layer is to convert ℎU,e into proper 

output size, see (8-14): 

}U,� = 3\©r,� ⋅ ℎU,� + £r,�^     (8-14) 

where ©r,� , £r,�  are the weight and bias of the fully connected layer, respectively. 

Finally,t quantiles estimations {�(�U) = î7�R(�U), 7�T(�U), ⋯ , 7��(�U)ð are evaluated 

by the MQ-LSTM. Hence, the output of the MQ-LSTM neural network is: 

7�(�U) = ©%,� ⋅ }U,� + £%,�     (8-15) 

and  ©%,� , £%,� are the partial parameters of the �-th quantile output layer. The MQ-

LSTM model is optimized by minimising the quantile optimization function v�: 
v� = �

Y ∑ K�\VU − 7�(�U)^YU`�      (8-16) 

where � is the total number of data, VU is the �th ground truth value.  

8.3.2.2 Model Description  

The techniques introduced in previous sections are combined to construct the energy 

disaggregation model. The model takes the MQ-LSTM as the core component, and 

the variables introduced in Table 8-1 are adopted as the model's input variables. Three 

input layers are designed since multiple independent variables are considered. As 

shown in Figure 8-7, The input layers take the demand load sequence �� , Temperature 

sequence �, and other variables as input, respectively. LSTM layers are then applied 

to the first two input layers to process the sequence data, and a one-hot encoder is 

adopted to transfer categorical variables (e.g., the hour of the day, the season of the 

year) into numerical data. Then a concatenate is used to merge three input layers. Two 

fully connected layers enable the network to extract features better and learn the input 

data. A quantile layer evaluates multiple outputs for different quantiles.  
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Figure 8-7. The main structure of the MQ-LSTM-based energy disaggregation algorithm. 

8.4 Evaluation Criteria 

8.4.1 Software and hardware platform   

Various open access packages and libraries based on Python 3.7 are adopted to 

implement the proposed simulation case study. PyWavelets package [379] is adopted 

to implement the DWT-based data denoising method. Scikit-Learn package [402], and 

LightGBM package [258] are used for implementing Q-GBRT and Q-LGB 

algorithms, respectively. Moreover, TensorFlow 2 [403] is used to construct a quantile 

deep neural network. As for hardware, the simulation and computation are 

implemented on a high computation ability computer equipped with a Core i7-

7700HQ CPU, NVIDIA GTX 1060 GPU 2.80 GHz (8 cores), and 8 GB RAM.  
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8.4.2 Performance metrics 

In this chapter, three probability density prediction metrics are adopted to assess the 

efficiency of the energy disaggregation model. 

The conventional point/deterministic prediction estimates a deterministic curve that 

minimises the actual curve's error. In comparison, the probabilistic prediction 

describes the variation of the load by providing outputs in the form of Probability 

Density Function (PDF), confidential intervals, or quantiles of the distribution. The 

uncertainty information predicted by the probabilistic model cannot be evaluated with 

point prediction metrics such as RMSE, MAE, and MAPE. Referring to [404], the 

main properties of a probabilistic forecast are summarised into four aspects: accuracy, 

bias, reliability (also called calibration), and sharpness. As for accuracy and bias 

properties, these two properties are important for both point, and probabilistic 

prediction. The MAE and the RMSE are widely used to measure accuracy, while the 

Pearson correlation coefficient (ρ) is used to measure bias. In terms of reliability and 

sharpness, which are two special properties of the probabilistic method, reliability 

quantifies the similarity between the a priori forecast probability and the a posteriori 

observed frequency; a forecast is reliable if it appears to be drawn from the same 

distribution as the observations. Sharpness is defined as the ability of a forecast to 

concentrate probabilistic information about future outcomes. Therefore, the metrics 

introduced in this thesis (Prediction Interval Coverage Probability (PICP) and 

Absolute Average Coverage Error (AACE), Winkler Score (WS)) are used to evaluate 

the reliability and sharpness, respectively. Furthermore, a metric should consider all 

four properties of the probabilistic prediction to make a comprehensive evaluation of 

the model performance, so a Continuous Ranked Probability Score (CRPS) is 

employed to show the overall performance. 
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8.4.2.1 Reliability 

Reliability indicates whether the quantile regression model can efficiently capture the 

targets into their predicted Prediction Intervals (PIs). PICP and AACE are introduced 

to assess the model's reliability.  

(1) PICP: As an essential metric adopted to assess probability density prediction, 

PICP indicates the probability that ground truth values are within the prediction 

interval (between lower and upper boundary). The values of  PICP range from 0% 

to 100%, and the more significant PICP value represents more ground truth values 

that fall into the predicted interval. The formula to calculate PICP is: 

�D�� = �
Y ∑  Y�`� ��                  �� = ?1,    V� ∈ [�,y� ]

0,    V� ∉ [�,y�]   (8-17) 

where � is the number of testing data, ε+  is the Boolean value, �  is the lower 

boundary, and y� is the upper boundary.  

(2) AACE: AACE indicates the deviation of PICP to PINC, the expected PICP value. 

The equation of AACE is:  

���v = |�D�� − �D��|      (8-18) 

where �D�� = 1 –  ®, and α is nominal proportions. Smaller AACE represents a 

more precise coverage probability provided by PIs.  

8.4.2.2 Sharpness 

The model's performance cannot be thoroughly investigated with reliability metrics 

only since a more comprehensive PI can include more target points into it and achieve 

a higher PICP value. However, a wide PI has poor performance in tracking the 

variation and fluctuation of the target curve. Hence, the sharpness of the PIs is also 

extremely important for probabilistic estimation. Proposed by Winkler in 1972 [405] 
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uses WS to assess the width of the interval with a penalty once the observation is 

outside the interval. WS is defined as: 

©u = !Δ�    � ≤ V� ≤ y�Δ� + 2(� − V�)/®    V� < �Δ� + 2(V� − y�)/®    V� � y�
    (8-19) 

where ΔU is the width of PIs at time point � and  ΔU  = yU − U. As for WS, lower 

scores are associated with narrower intervals and better estimates of the PIs.  

8.4.2.3 Overall Performance 

Finally, the overall performance of the probabilistic model is evaluated by the CRPS. 

CRPS measures the difference between the predicted and observed cumulative 

distributions functions (CDF) by considering both reliability, sharpness and accuracy 

[406]. Let {(�) be the predictive CDF and V be the ground truth observation. The 

continuous ranked probability score for single observed point V, ���Z is given by: 

���Z({, V) = 6  ∞

)∞
({(�) − ¡(� − V))W�V   (8-20) 

where ¡(∙) is the Heaviside function, it takes the value of 1 when  � < V and equals 0 

otherwise. The average score of crps among � observations, ���u is used to assess 

the model performance: 

���u = �
Y ∑  Y�`� ���Z ({�, V�)     (8-21) 

It is noticed that the ���u is negatively oriented, a smaller value of CRPS represents 

a better prediction performance, and the predicted CDF is closer to the ground truth 

CDF. Moreover, the unit of ���u is the same as the observed variable, which is t© 

in this case. 
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8.5 Case Study  

Two case studies are introduced in this section to evaluate the proposed energy 

disaggregation model. The first case study compares the proposed  MQ-LSTM 

algorithm with other advanced quantile regression models. The second case study 

investigates the transferability of the proposed energy disaggregation model. 

8.5.1 Benchmark models 

Following state-of-the-art algorithms are adopted in the case studies: 

(1) Multi-Quantile Gated Recurrent Unit (MQ-GRU) [214]; 

(2) Multi-Quantile Convolutional Neural Network (MQ-CNN) [407]; 

(3) Quantile Light Gradient Boosting Machine (Q-LGB) [258];  

(4) Quantile Gradient Boosting Regression Tree (Q-GBRT) [214]. 

The hyperparameter space of the proposed model and the benchmark models, is 

presented in Table 8-2. 

8.5.2 Case study I: comparison of the proposed algorithms with 

other methods 

The interval resolution of the data adopted in this case study is 15 min, and a denoising 

level 2 is applied to the original data to filter out noise in the measurements. Moreover, 

four weeks' historical feeder load demand and temperature record are adopted as input 

variables to enable the LSTM neural network to extract helpful information from the 

past. The estimated demand load U
@&&'&!  is then fed into the energy disaggregation 

model to obtain the power consumption of individual appliances: AC, furnace, and 

EV. The proposed model is compared with MQ-GRU, MQ-CNN, Q-LGB, and Q-

GBRT algorithms to thoroughly investigate the performance in four metrics: PICP, 

WS, Score, and training time.  
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Table 8-2.  Hyperparameter space. 

Hyperparameter Space 

Hyperparameters of all models  
Upper bound 0.975 
Lower bound 0.025 
Number of quantiles 24 
Loss function Pinball loss 
Q-GBRT  
Learning rate  0.1 
Number of estimators 250 
Maximum depth  6 
Maximum number of features 5 
Minimum number of samples to split 2 
Minimum number of samples for a leaf 10 
Q-LGB  
Boosting type gbdt 
Maximum depth  6 
Number of leaves 30 
Minimum number of samples for a leaf 10 
Learning rate 0.1 
Objective quantile 
Number of estimators 250 
Early stopping rounds 20 
MQ-CNN  
Number of convolutional layers 3 
Number of kernels of each convolutional layer 64 
Kernel size in each convolutional layer 9 
The activation function in each convolutional layer ReLU 
Pooling type after each convolutional layer MaxPooling 
Pooling size after each convolutional layer 4 
Number of dense layers  3 
Number of neurons in each dense layer 256, 64, 32 
The dropout rate of the dense layer 0.5 
Batch size 512 
Optimizer Adam 
Epochs 1000 
Early stopping rounds 10 
Learning rate 10)¥ 
MQ-LSTM/MQ-GRU  
Number of LSTM/GRU layers 3 
Number of neurons in each LSTM/GRU layer 1024, 512, 128 
The activation function in LSTM/GRU layer ReLU 
Recurrent dropout rate 0.3 
Number of dense layers  3 
Number of neurons in each dense layer 256, 64, 32 
Batch size 512 
Optimizer Adam 
Learning rate 10)¥ 
The activation function in the output layer Linear 
Epochs 1000 
Early stopping rounds 10 

The training time of each algorithm is shown in Table 8-3; the proposed MQ-LSTM, 

MQ-GRU, and MQ-CNN are trained on a GPU-based Tensorflow platform, while Q-

LGB, Q-GBQT models are trained on a computer without GPU used. GPUs are 

suitable for training deep neural network models because they can process multiple 
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computations simultaneously. The computer installs many cores, which allows it to 

better and faster compute multiple parallel processes. Although a high computation 

ability CPU (Core i7-7700HQ CPU) is adopted, it still takes nearly 275 min (4.6 h) to 

finish the evaluation of the Q-GBRT model. The training time of the Q-GBRT model 

is much longer than other algorithms, demonstrating that the Q-GBRT model is less 

practical and flexible in application. 

Table 8-3. Comparison of training time (min). 

Appliance\Algorithm MQ-LSTM MQ-GRU MQ-CNN Q-LGB Q-GBRT 

AC 17.67 16.65 20.12 37.69 277.12 
Furnace 16.78 17.23 22.32 36.26 273.45 
EV 17.23 18.67 21.87 37.72 274.90 
Average 17.22 17.52 21.43 37.22 275.16 

In contrast, the training time of the Q-LGB model is less than the Q-GBRT model, 

while it only takes 37.22 min to finish the training process on average. When it turns 

to GPU-based training models, the training time of the proposed MQ-LSTM is 93% 

less than the time of the Q-GBRT model. Furthermore, the training time of MQ-GRU 

and MQ-CNN are shorter than 25 min. From the result, apart from the Q-GBRT model, 

the training time of all other models is considerable in industrial applications.  

The reliability of the probabilistic models is assessed by metrics PINC and AACE, 

respectively. The comparison results are shown in Figure 8-8 and Table 8-4. In Figure 

8-8, the PICPs of five algorithms to three appliance loads are plotted. In an ideal 

situation, the value of PICP is equal to PINC, as shown in the solid red curve (1:1 

line). From the figure, among all curves, the proposed MQ-LSTM is closest to the 

ideal curve, meaning that the MQ-LSTM model is better than other benchmarks for 

energy disaggregation tasks and can produce reliable PIs. The maximum AACEs of 

the PIs evaluated by the MQ-LSTM model, which is the metric to show the deviation 

between PICP and PINC, are 2.79%, 8.10%, and 10.12% for AC, Furnace, EV load, 

respectively. As for AC load, the other four algorithms also show merit reliability as 

the maximum AACEs of MQ-GRU, MQ-CNN, Q-LGB, and Q-GBRT are 5.42%, 

8.30%, 18.63%, and 12.63%, respectively. However, the reliability of PIs computed 

by MQ-CNN and Q-LGB for Furnace load is considerably low as these algorithms 
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overestimate PICP, and the disaggregation result is unreliable for the power system 

industry. Furthermore, as for EV load, PIs evaluated by all five algorithms are well-

calibrated as all five curves overlap with the ideal curve precisely. To summarize, the 

reliability of PIs provided by MQ-LSTM is higher than any other algorithm for 

different load tasks.  

 

Figure 8-8. PI reliability diagrams: PICP of five algorithms as a function of PI nominal coverage.  

The sharpness is assessed by metric WS, as indicated in the boxplots in Figure 8-9 

and Table 8-4. From the figure, MQ-CNN is the bluntest model. The average WS of 

its PIs is 2.70, 3.70, and 5.10 for AC, Furnace, and EV loads. Meanwhile, the Q-LGB 

and Q-GBRT are the sharpest models among all algorithms, and the sharpness of MQ-

LSTM and MQ-GRU is between the abovementioned models. However, it should be 

noticed that the sharpness should be analysed along with reliability performance, 

which can be visualized via metric CRPS.  

  

Figure 8-9. Boxplot of the Winkler Score. 

From Table 8-4, by comparing the CRPS of each model for different PINC, A smaller 

value of CRPS indicates a better performance of the probabilistic model. It is noticed 
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that the CRPS value of the proposed MQ-LSTM is the smallest among most cases and 

PICPs. The MQ-LSTM model achieves the best performance in disaggregating AC 

load components. The CRPS of MQ-LSTM reduced by 37.25%, 31.91%,  28.89%, 

and 5.88%, compared to the values of CRPS of Q-GBRT, Q-LGB, MQ-CNN, and 

MQ-GRU models, respectively. The superior of MQ-LSTM is also obvious when 

disaggregating Furnace load components. In the furnace case, The CRPS of MQ-

LSTM reduced by 25.80%, 25.00%, 11.54% and 5.48%, compared to the values of 

CRPS of Q-GBRT, Q-LGB, MQ-CNN, and MQ-GRU models, respectively. 

However, when it comes to the EV case,  the performance of Q-LGB turns better than 

MQ-LSTM, as the CRPS value of the Q-LGB model reaches 0.068, which obtains the 

best performance among all probabilistic models.  

Figure 8-10 presents the PIs evaluated by the proposed MQ-LSTM model with 

different confidence levels and the actual appliance load curve (AC, Furnace, and EV 

loads). As for AC load, almost all actual curves are between the upper and lower 

bounds. The solid yellow line, which represents the median estimation, tracks the 

variation of AC demand load precisely. Meanwhile, the width of PIs, especially 95% 

PI, are the smallest among all appliance loads. The estimation of the Furnace load is 

quite similar to the AC components, as the Furnace in Austin, Texas, area plays dual 

roles: heating and circulating air during the usage of AC. Hence, the demand load 

curve of the furnace is correlated to the curve of AC demand. Most of the ground truth 

data are within estimated PIs; the median curve of PIs overlaps with the actual furnace 

load curves. However, the width of PIs is wider than the PIs of estimated AC loads. 

This result demonstrates that the reliability of the MQ-LSTM model on Furnace load 

has equal performance on AC loads, but the model's sharpness on Furnace is not as 

good as it is on AC loads. As for EV loads, the component is harder to be separated 



Case Study 259

 

from the overall demand load for two reasons: Firstly, the portion of EV load is 

relatively small compared to the portion of AC load or Furnace load; secondly, the 

average operation duration of EVs is also shorter than other cases. From Figure 8-10, 

the PIs estimated by MQ-LSTM are compared with the actual EV load curve; the 

figure shows that although the model cannot estimate the exact load curve, most all 

operation durations are estimated precisely.  

Table 8-4. Probabilistic estimation performance. 
 

PINC (%) Appliance Metrics 
MQ-

LSTM 

MQ-

GRU 

MQ-

CNN 

Q-

LGB 

Q-

GBRT 

Overall 
performance 

AC CRPS (MW) 0.096 0.102 0.135 0.141 0.153 
Furnace CRPS (MW) 0.069 0.073 0.078 0.092 0.093 
EV CRPS (MW) 0.073 0.076 0.127 0.068 0.126 

95% 
 

AC 
PICP (%) 95.23 96.35 94.44 80.28 88.77 
WS 5.81 5.39 7.71 4.99 4.56 
AACE (%) 0.20 1.35 0.56 0.14 6.23 

Furnace 
PICP (%) 97.80 89.93 67.60 82.00 89.20 
WS 3.61 3.51 9.61 4.12 3.57 
AACE (%) 2.80 5.07 27.40 13.00 5.73 

EV 
PICP (%) 97.00 97.33 98.40 89.40 90.40 
WS 7.15 7.69 8.12 7.02 7.56 
AACE (%) 2.00 2.33 3.40 5.60 4.60 

85% 

AC 
PICP (%) 85.46 82.47 80.71 78.66 83.33 
WS 3.57 4.05 4.22 3.48 3.54 
AACE (%) 0.46 2.53 4.29 6.34 1.67 

Furnace 
PICP (%) 79.56 72.76 47.92 53.89 59.11 
WS 3.48 4.46 6.53 3.96 4.49 
AACE (%) 5.44 12.24 37.08 31.11 25.89 

EV 
PICP (%) 84.29 78.24 80.94 79.44 78.21 
WS 6.29 6.55 7.41 6.32 6.91 
AACE (%) 0.71 6.76 4.06 5.56 6.79 

70% 
 

AC 
PICP (%) 72.56 65.38 62.88 51.37 57.37 
WS 2.81 3.24 3.48 2.70 2.67 
AACE (%) 2.56 4.62 7.12 18.63 12.63 

Furnace 
PICP (%) 62.38 52.29 32.80 36.74 46.82 
WS 3.04 3.59 4.57 2.77 2.80 
AACE (%) 7.62 17.71 37.20 33.26 23.18 

EV 
PICP (%) 67.82 55.06 72.87 51.36 59.60 
WS 5.36 5.45 5.86 4.99 5.12 
AACE (%) 2.18 14.94 2.87 18.64 10.40 

40% 
 

AC 
PICP (%) 42.43 36.58 36.97 25.94 35.86 
WS 2.05 2.29 2.56 1.94 1.90 
AACE (%) 2.49 3.42 3.03 14.06 4.14 

Furnace 
PICP (%) 35.53 25.66 15.76 22.27 23.85 
WS 2.21 2.83 2.98 1.85 1.08 
AACE (%) 4.47 14.34 24.24 17.73 16.15 

EV 
PICP (%) 29.88 20.83 26.40 34.46 24.46 
WS 4.09 4.05 4.33 3.77 4.02 
AACE (%) 10.12 19.17 13.60 5.54 15.54 
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The probability density curves obtained by the proposed MQ-LSTM are presented in 

Figure 8-11. The actual values of different load components during the time are 

investigated, the grey shading curves are the probability density function (PDF) with 

95% confidence levels, and the red vertical line is the actual value of a specific hour, 

while the black dash vertical line shows the maximum probability point of the 

probability density curve. First, all selected actual values are in the middle of the PDFs 

for AC and Furnace load components, the maximum probability points almost overlap 

with the actual values, except for 1 pm and 2 pm, and the model has the highest 

accuracy when estimating the maximum and minimum values of the target loads. 

However, the PDF graph for EV load is not in good shape, as the maximum probability 

point of the PDF is not as high as expected, and the shape of the PDF is not strictly 

following the Gaussian distribution. 

Figure 8-12 shows the estimation results of all quantile regression models for three 

load components from 23rd September 2018 to 28th September 2018. The figure 

provides a clearer view of the performance of the individual energy disaggregation 

model. The colour shadings are the estimated PIs between 90-quantile and 10-quantile, 

and the solid red curve is the ground truth curve of the load component, while other 

colour solid curves are the median values of estimated PIs.  The figure shows that the 

ground truth curve is within the PIs of all models, and the PIs of MQ-LSTM and MQ-

GRU can track the fluctuations of the actual values with high accuracy. Among all 

PIs, the PIs provided by the MQ-CNN have the most significant interval, while the 

widths of Q-LGB and Q-GBRT are relatively small, but the errors between the PIs of 

these two models and the actual values are also considerably higher. To summarise, 

the proposed MQ-LSTM energy disaggregation algorithm has superior performance 

in reliability and sharpness for all load components investigated in this chapter.   
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Figure 8-10. PIs of the MQ-LSTM energy disaggregation model with various confidence levels for 

AC, Furnace, and EV loads.  

 
Figure 8-11. The MQ-LSTM energy disaggregation model obtained probability density curves for 

AC, Furnace, and EV loads. 
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Figure 8-12. Comparison of the results of energy disintegration implemented by various algorithms. 

The solid curve is the median estimate, the colour shading is the range between the estimated curve of 
quantiles 10 and 90, while the solid red curve is the ground truth load. 

8.5.3 Case study II: transferability of the proposed scheme 

One major issue of the proposed energy disaggregation method is that it requires 

historical feeder-level demand load data to train the machine learning/ neural network 

models before adopting them for industrial application. However, such data is not 

always available in many areas, limiting a broader application. Hence, it is essential 

to investigate the transferability of the proposed energy disaggregation model. The 

transfer learning process is shown in Figure 8-13, as a transductive transfer learning 

problem (source data labels are available, but target data labels are unavailable [408]), 

the deep neural network model is pre-trained with data in the source domain, the 

difference between the distributions of the source domain and target domain can be 

minimized by modified the source domain (adjusting the portions of different load 

components, adjusting seasonal and trend, etc.). The source data is also normalized 

and resampled to fit the target data. Then the model is fine-tuned with the training set 

of the target domain, and the model is tested with the testing set of the target domain.  
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In this case study, the semi-synthetic dataset constructed from Austin, Texas data of  

Dataport between 2018 and 2019 (sampling frequency is 1 Min) is used as the public 

training dataset, and the New York data from the Dataport during 2019 (sampling 

frequency is 15 Min) is used as the local data to be disaggregated (testing dataset). 

Since the geographical location, sampling frequency, climate condition, and portion 

of load components are different, the two datasets can be viewed differently, and the 

result would be reliable. An investigation of the installation rate of AC, Furnace, and 

EV in the local area is implemented to roughly obtain the portion of different load 

components. Referring to the investigating result, the training dataset is adjusted to 

make the training dataset more like the testing data. Like Case Study 1, the solar 

energy component is separated at the first stage and followed by the demand load 

components to be disaggregated from the overall demand load.   

 

Figure 8-13. Block diagram of the transfer learning process. 

Table 8-5 presents the performance metrics of the transfer learning model. Compared 

to the results concluded in Table 8-4, the results of the transfer learning model are not 

as good as the typical energy disaggregation model. The WS, AACE, and Score of the 

transfer learning case are more significant than the results in Case Study I. However, 

referring to Figure 8-15, the probabilistic models can still provide precise estimation 

results as most of the actual values are within the estimated PIs with narrow widths. 

The results show that the proposed MQ-LSTM-based energy disaggregation model 

has good transferability; by selecting a suitable source domain, the model can be well-

trained and adopted to other feeder models.  
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Figure 8-14. PIs of the transfer learning model with various confidence levels for AC, Furnace, and 

EV loads.  

8.5.4 Application of Energy Disaggregation Technology in Power 

System 

The disaggregated components obtained by the proposed probabilistic model have 

multiple applications in the power system industry, especially demand response and 

power system operation. Detailed applications are illustrated as follows:  

1) Estimating the behind-the-meter renewable energy, especially residential PV 

energy, will increase the visibility of the power system and help the power system 

operator better understand the real-time condition. As a result, the operators can 

better deal with the stability problems raised by integrating renewable energy and 

better plan energy reserves [191].  
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2) Demand response programs that involve TCLs can reduce the 10-30% peak loads 

in most cases [409]. TCLs, especially AC and furnace loads, can be cut down or 

turned off for a short period without influencing the customer's normal life. Hence, 

the demand response operator can better plan demand response actions by 

knowing TCL portions. 

3) The demand response operator can better optimize capacity bids in electricity 

markets by real-time estimating demand-responsive loads.  

4) The estimation of the demand-responsive loads can be used as a feedback signal 

in the load coordination algorithms [395]. 

Table 8-5. Performance of transfer learning. 

PINC (%) Appliance Metrics MQ-LSTM 

Overall performance 
AC CRPS (MW) 0.154 
Furnace CRPS (MW) 0.121 
EV CRPS (MW) 0.178 

95% 
 

AC 
PICP (%) 91.55 
WS 10.97 
AACE (%) 3.45 

Furnace 
PICP (%) 89.35 
WS 16 
AACE (%) 5.65 

EV 
PICP (%) 97.92 
WS 8.61 
AACE (%) 12.94 

85% 

AC 
PICP (%) 82.18 
WS 6.97 
AACE (%) 2.82 

Furnace 
PICP (%) 80.61 
WS 12.83 
AACE (%) 4.39 

EV 
PICP (%) 88.54 
WS 6.85 
AACE (%) 3.54 

70% 
 

AC 
PICP (%) 60.65 
WS 5.45 
AACE (%) 9.35 

Furnace 
PICP (%) 62.85 
WS 8.17 
AACE (%) 7.15 

EV 
PICP (%) 59.99 
WS 5.65 
AACE (%) 10.01 

40% 
 

AC 
PICP (%) 43.17 
WS 3.63 
AACE (%) 3.17 

Furnace 
PICP (%) 26.39 
WS 5.82 
AACE (%) 13.61 

EV 
PICP (%) 32.7 
WS 3.88 
AACE (%) 7.3 
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8.5.5 Limitation of the method 

Although the proposed feeder-level energy disaggregation method achieves good 

accuracy in separating load compositions, the limitation of this work is summarized 

as follows: The proposed method has a national bias and highly depends on the 

nation/area of the dataset used for training. The appliance categories change a lot in 

different countries and areas; for instance, the AC, widely installed in the U.S. and 

China, is not common in the U.K. The proposed transfer learning approach can only 

be transferred to an area with similar load components. 

To better interpret the proposed model in other countries, such as the U.K., several 

approaches can be employed: 

1) Build a high-resolution household-level electricity dataset with detailed appliance 

usage readings for the U.K., then use the data to build distribution network models. 

Existing U.K. datasets such as Low Carbon London [410] can only provide 

household-level electricity consumption, while appliance-level data is 

unavailable.  

2) Develop a more flexible unsupervised/semi-supervised learning model which can 

adapt to the distribution networks in different countries and areas. 

8.6 Privacy Risk Analysis 

In this section, the privacy risk of the proposed feeder-level energy disaggregation 

method is analysed by comparing it with the existing method. As shown in Figure 

8-15. The existing approach to obtaining the feeder-level load components requires 

first obtaining load components at each house respectively. The DNO need to 

implement the NILM data mining algorithm on the individual smart meter readings to 

infer detailed appliance consumption (Appliance 1-N in Figure 8-15), and then the 

DNO will sum up the consumption of the same appliance for all houses to determine 

the portion of this load category under the feeder. Such an approach is complex and 
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introduces various privacy risks. Detailed risks and disadvantages can be summarized 

as follows: 

1) As demonstrated in Chapter 4, high-frequency appliance-level data links a large 

amount of personal information, which could reveal detailed behaviour patterns 

of the energy consumers.  

2) The existing approach requires DNO access to an individual’s smart meter data, 

which contradicts the data access policy of OFGEM [41] and BEIS [12].  

3) By sharing the appliance-level data with the DNO, external adversaries can obtain 

the information that may eavesdrop on the communication between the smart 

meter and the DNO. 

4) This method requires all smart meters in the distribution network to participate; 

the absence of a part of meters would result in a mismatch between the estimation 

and the actual value. 

As for the proposed feeder-level energy disaggregation method, the NILM data 

mining algorithm on individual electricity consumption is not required. Only the 

aggregated readings provided by the aggregator are shared with the DNO, and the 

DNO has no authority to access the individual meter readings. In such case: 

1) Load components algorithm moves from existing household-level to 

feeder/distribution level, which decreases the possibility that the adversary 

invades personal information.  

2) Given the aggregated data and the external information, the proposed model 

determines the portion of each load component from the aggregated demand. The 

proposed scheme strictly follows the data access regulation made by OFGEM [41] 

and BEIS [12]; both the input and output of the proposed model are aggregated 

data without accessing any individual information.  

3) The external adversary has no/less opportunity to obtain the individual 

consumption/appliance information as such information has never been shared.  

4) Furthermore, the proposed model is more reliable than the existing method as only 

the aggregators, and all smart meters are required to participate.  
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Based on the analysis above, the privacy risk in the current feeder-level energy 

disaggregation model is reduced.  
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(a) The proposed approach is to obtain load components at the feeder level. 

Figure 8-15. Comparison of the existing/proposed feeder level energy disaggregation methods.  

8.7 Chapter Summary 

Understanding the load components under the grid supply point will contribute to the 

utility's ability to deliver improved demand-side management and peak shaving 

services. This chapter proposes a probabilistic feeder-level energy disaggregation 

model based on MQ-LSTM deep neural network. The purpose of the proposed model 

is to disaggregate the net load into four components: renewable energy generation 

(rooftop PVs in this case), TCLs (AC and Furnace loads), and Non-TCLs (EV load 

chosen as a case study), and other loads.  
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Then other load components are disaggregated via the proposed MQ-LSTM 

algorithm; the proposed model considers various relevant variables as input features, 

including current and historical demand load and temperature, meteorological 

measurement, and calendar information. Four state-of-the-art probabilistic machine 

learning/ deep learning models: MQ-GRU, MQ-CNN, Q-LGB, and Q-GBRT 

algorithms, are adopted as the benchmarks. Two case studies thoroughly investigate 

the performance of the proposed model and benchmark models in four aspects: 

reliability (PICP, AACE), sharpness (WS), training time and overall performance 

(CRPS). The case studies confirm that the proposed model performs better in 

disaggregating different load components. As for AC and Furnace loads, the proposed 

model can provide reliable and sharp PIs and estimate the precise load curves. 

Although the detailed load curve is not available when it turns to EV load, the 

probabilistic model can estimate the intervals with high accuracy. 

Moreover, the transferability of the proposed model is studied as well since obtaining 

a large amount of labelled data for training is unrealistic. The model is pre-trained 

with a public dataset (source domain) and then tested with local data (target domain). 

The results show that the proposed model is transferable to a different area with 

different interval resolutions and different portions of load components. 
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Chapter 9 Conclusion and Future Work 

9.1 Conclusion 

This thesis proposes a multi-channel smart metering system that fulfils reasonable and 

ethical user and system functionality whilst the energy consumer’s privacy is 

guaranteed. The thesis starts with investigating the configurations of the current smart 

metering systems and the limitations of the current solutions to the privacy leakages. 

Then, based on the system's vulnerability, a threat/adversary model is developed to 

utilize efficient data mining techniques to infer personal information. To defend the 

smart meter data against the threat/adversary model and better align to the GDPR, a 

multi-channel smart metering system is developed to transmit different granularity 

data between the consumers and other stakeholders (energy supplier, distribution 

operator, and third parties). By comparing the privacy risks between the proposed and 

the existing systems, the conclusion is made that the privacy risks raised by the 

threat/adversary are reduced after the mitigations proposed.  

Then based on the proposed smart metering system, functionalities required by the 

third-party service provider and the distribution network operator are validated via 

case studies. The federated learning-based value-added service platform provides an 

edge-cloud computing infrastructure to enable the smart meter to be analysed locally, 

and the TP, the honest-but-curious adversary, is prevented from accessing the smart 

meter data. Whilst the DNO benefits from the physical/informatic aggregator to 

improve the predictability (short-term load forecasting), the visibility (feeder-level 

energy disaggregation) and reduce the uncertainty (solar energy decoupling) of the 

distribution network. The results validate that the proposed system can better benefit 

distribution network operation without scarifying privacy.  

Seven original contributions and finds of the thesis are summarized as follows: 
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9.1.1 A comprehensive attacker/threat model 

The threat/adversary model with the motivation to obtain personal data from the smart 

metering system is defined at the beginning of the thesis. The purposes and the routes 

for the adversary to obtain personal information are studied. This thesis includes the 

inner adversary (third-party service provider) and the external adversary (adversary 

who can eavesdrop on the communication channels). The proposed smart metering is 

better assessed by developing the threat/adversary model.   

9.1.2 A multi-channel smart metering system 

A multi-channel smart metering system is developed based on the threat/adversary 

model, the requirements from the GDPR, and the compulsory functions required by 

the stakeholders. The core strategy of the proposed system is only to transmit the 

minimum granularity data to the stakeholders to reduce the possibility that the 

personal data to be disclosed. In the proposed system, three channels are developed; 

the first is the high-frequency data aggregation channel, which utilizes 

physical/informatic aggregators, collects the readings from the neighbouring smart 

meters, and only shares the aggregated data to the energy utility. The second channel 

is the TOU billing channel, and the bills are generated by the smart meter and only the 

cumulative energy consumption and bills during a reporting duration are sent to the 

ES.  

9.1.3 The privacy boundary of the smart meter data 

The boundary between sensitive and insensitive smart meter data is not well studied 

in the literature. A NILM-based data mining algorithm used by the adversary is 

employed to detect the privacy boundary of two vital parameters: the aggregation size 

and the interval resolution. By evaluating the detectability of the NILM algorithm on 

different granularity datasets, a three-level privacy boundary benchmark is concluded. 

The results show that the data with an aggregation size over 40 or an interval 
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resolution over eight hours can provide complete protection to consumers’ private 

information. 

9.1.4 A federated learning platform to enable third-party value-

added services 

As the potential internal adversary in the system, the third-party service providers 

should be restricted from accessing the personal data while the accuracy of the 

services should not be influenced. To better solve the contradiction, a differential 

private federated learning platform is developed. The FL provides a strong privacy 

guarantee to the clients, and the client's data will not leave their homes during the 

process. This way, the probability of sensitive information being inferred or used by 

potential adversaries is reduced. Consumers could be more willing to share their data 

with third parties if this is the case. Moreover, the modular design allows the platform 

to access external databases and provide multiple TPSs. 

9.1.5 A distribution level load forecasting method with aggregated 

smart meter data 

The distribution network was not well monitored in the past due to the lack of proper 

metering infrastructure and communication channels. The proposed smart metering 

system provides high-quality aggregated smart meter data that can help the DNO 

better forecast load without accessing the individual consumptions. This thesis 

introduced a hybrid STLF method to predict day-ahead load at the distribution level. 

Unlike the traditional machine learning/deep learning method, the proposed method 

extracts both frequency and time domain features from the netload, and the results 

show that the proposed hybrid STLF achieves more precise prediction results.  

9.1.6 A solar energy decoupling method at the grid supply point  

Behind-the-meter PV generation brings uncertainty for the DNO to monitor the 

distribution network; accessing each PV meter installed at the consumer’s house 
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increases the privacy risk and is time-consuming. The proposed smart metering 

system provided real-time netload data of the distribution feeder or the distribution 

network from the physical/informatic aggregator. Three solar energy decoupling 

models (unsupervised upscaling model, supervised GBRT model, and 1D CNN-

LSTM model) are built with the netload data. The proposed model can separate the 

PV generation from the netload at the grid supply point on a real-time base, given 

external information such as irradiance data and weather conditions.   

9.1.7 A Probabilistic energy disaggregation method at the feeder's 

head  

The load components under the feeder/LV distribution network are important 

information for the DNO to design a demand response plan. In the current smart 

metering system, such information can only be obtained by accessing an individual’s 

smart meter readings and implementing the NILM algorithm to each data. Such access 

is in contradicts the BEIS specification and increases the privacy risks. A probabilistic 

feeder-level energy disaggregation model is developed based on the proposed smart 

metring system to disaggregate the measured netload into controllable and 

uncontrollable loads with the aggregated data provided by the physical/informatic 

aggregator only. Moreover, a transfer learning approach is proposed to increase the 

flexibility and robustness of the energy disaggregation model.  

9.2 Plan to Influence Existing Industry Specification 

The findings and contributions of this thesis will also benefit the policy marker and 

can potentially influence the existing industry specifications.  

1) Although the existing Review of the Data Access and Privacy Framework 

published by BEIS highlights that the data should be aggregated before being 

shared with the DNO, the aggregation size is not quantified in the current 
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document. With the privacy boundary quantified by the thesis, BEIS can better 

specify the granularity of the data that can be shared with different stakeholders.  

2) As discussed in the thesis, the smart meter data contains personal information and 

should be regulated by the GDPR. However, the existing smart metering system 

does not follow the GDPR strictly, as no option is given to consumers to select the 

granularity of data to be transmitted. The further generation of SMETS is expected 

to send multiple resolution data to different entities, which follows the data 

minimization principle.  

3) Referring to the results summarised in this thesis, policymakers, especially BEIS 

and OFGEM, should carefully implement methods such as the noise-adding 

method. Although these methods would reduce the sensitivity of personal 

information and thus risks of privacy intrusion, the data's usability and value 

would decrease, potentially undermining the achievement of benefits for 

stakeholders.  

4) Existing SMETS 2 focuses on billing and recording, while the next generation 

smart meter requires higher computation ability and storage space to enable smart 

home management and interaction with the smart appliances.  

9.3 Future work 

Although a hierarchical smart metering system is designed to illustrate the privacy and 

functionality configurations, there are still some limitations of the existing works and 

several research problems to be settled in future works. 

9.3.1 Tamper-resistance of smart meters 

The smart metering system proposed in this research assumes that the smart meter is 

tamper-resistance to guarantee the correctness of the reading. The real-world smart 

meter could be tempered by the attacker and would bypass any data protection 

technologies. Future work should develop an economical solution to guarantee the 

integrity of the smart meters. 
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9.3.2 The influence of the smart appliances on the privacy 

IoT-based smart appliances are becoming more intelligent with the help of AI, and 

their domestic adoption continues to soar. However, before the widespread adoption 

of beneficial technologies like Energy Demand Side Management (DSM), future work 

is required to understand how the interactions between multiple smart devices in the 

home can affect home users’ privacy, security, and safety. 

9.3.3 Security of the value-added service platform  

Although the federated learning model is efficient in training cloud model via the edge 

devices, it is vulnerable to suffering from the cyberattack, as a significant abnormal 

data from a client while cause to fail the whole cloud server. The malicious clients 

could be a fake smart meter that hackers clone or be controlled by an attacker who 

wants to destroy the third-party platform. Hence, future work is required to provide 

better security to the services.  

9.3.4 The influence of the smart meter and rooftop PV on the human 

behaviours 

The installation of the smart meter and the rooftop PV improve consumers’ energy 

awareness and reshape their lifecycle. Peoples are more willing to use their appliances 

on a sunny day when more solar energy is generated or during the off-peak period 

with low tariffs. Future work should investigate how these devices benefit the DSM 

programmes.  

9.3.5 Reduce the national bias of the methodology 

The existing methodology and the datasets proposed in this thesis have a national bias, 

and the results of the experiments highly depend on specific countries/ areas. Due to 

the limitation of public datasets and laboratory/facilities, existing work only focuses 

on the appliances in the US. Hence, future work can be conducted in the following 
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aspects to eliminate/ reduce the national bias: (1) extend the existing database to 

include more appliances and smart meter data from different counties; (2) evaluate the 

proposed method with the energy data from different countries to obtain the results 

which fit specific countries. 
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Appendix A Variational Mode Decomposition 

and Empirical Mode Decomposition  

In Appendix A, two mode decomposition techniques, variational mode decomposition 

(VMD), and empirical mode decomposition (EMD), are introduced. These two 

methods are employed as benchmarks in Chapter 6. 

A.1 Empirical Mode Decomposition  

EMD is a self-adoptive mode decomposition method, it can decompose the signal in 

temporal space directly without transferring the signal into frequency space. The 

characteristic of EMD is it does not reply on any mathematical functions but adopt to 

the signal 7(�) accordingly, 7(�) is decomposed into � + 1 Intrinsic Mode Functions 

(IMFs) 7X(�) and a residuum �(�), see (A-1). 

7(�) = ∑  YX`~ 7X(�) + �(�)      (A-1) 

An IMF is an AM-FM function and can be expressed as follow: 

7X(�) = {X(�) cos\OX(�)^     where {X(�) ,OX0 (�) � 0    ∀�  (A-2) 

The main assumption is that {X(�) and OX0 (�) varies much slower than OX(�). An The 

detailed process is presented in Program A-1. An IMF should satisfy two conditions: 

(1) the number of extrema and the number of zero crossings must be the same or differ 

at most by one; 2) at any point, the mean value of upper (defined by local maxima) 

and lower envelope (defined by local minima) is zero. The detailed process of EMD 

is demonstrated in Algorithm A-1.  

 



Future work 309

 

 
(a) 

 
(b) 

Figure A-1. (a) EMD: basic IMF detection; (b) the : the first IMF candidate. 

A.2 Variational Mode Decomposition  

Variational mode decomposition (VMD) is proposed by K. Ragomiretskiy in 2014, it 

is a non-recursive, adaptive decomposition estimation method to decompose the 

original signal into 1 mode functions �X(�) with specific bandwidth in the frequency 

Algorithm A-1: Empirical Mode Decomposition (EMD). 
Input: Real-world signal 7(�). 
Output:  IMFs 7X, where j = 1,2, … , � + 1. 
Initialization: �:= 1, �~(�) = 7(�). 
Step 1: Extract the �th IMF as follows: 
 a): Initialize ℎ~(�) ∶=  ��)�(�) and j ∶=  1. 

b): Detect the maxima and minima of ℎX)�(�). 
c): Compute the upper and lower envelope, yX)�(�)  and X)�(�) by a cubic spline interpolation 
from the maxima and minima (See Figure B-1 (a)). 

d): Compute the mean envelope: sX)�(�) = � �R(U)�� �R(U)
W . 

e): Obtain the candidate component: ℎX(�):= ℎX)�(�) − sX)�(�) (See Figure B-1 (b)). 
f): If  ��(�) satisfies conditions of an IMF: 
             i): ��(�):= ℎX(�) and ��(�):= ��)�(�) − ��(�). 
g): Else: 
             i): j:= j + 1. 
             ii): Repeat step b)-g) until ℎX(�) is an IMF. 

Step 2: If ��(�) is a residuum, stop the process. 
             Else �:= � + 1 and start from Step 1. 
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domain. And each �X(�) is concentrated near the central frequency VX . The nature of 

VMD method is an optimal process to look for 1  modes that make the overall 

bandwidth smallest, shown in (A-3): 

s���¨ �,�Z �  ?∑  5X`� ∥∥∂U �*�(�) + ]cU, ∗ �X(�)� �)]Z U∥∥W¦   s.t. ∑  5X`� �X = 7(�)  (A-3) 

where 7(�)  is the original signal, �(�)  represents Dirac distribution function;  

*�(�) + ]cU, ∗ �X(�)  is the corresponding unilateral spectrum of �X(�)  by 

implementing Hilbert transformation;  �X  and VX  represents the j th mode and 

corresponding central frequency; �)]Z U is the exponent term to adjust the frequency 

spectrum to the corresponding base frequency band.  

Then by introducing a quadratic penalty ® and Lagrange multiplier operator §(�), the 

constrained problem mentioned in (A-3) is transformed into a non-constrained 

problem, the augmented Lagrangian expression is expressed as: 

(��X�, �VX�, §) = ® ∑  5X`� ∥∥∂U �*�(�) + ]cU, ∗ �X(�)� �)]Z U∥∥W
W

+∥∥7(�) − ∑  5X`� �X(�)∥∥W
W

+⟨§(�), 7(�) − ∑  5X`� �X(�)⟩
   (A-4) 

where ® is adopted to ensure the accuracy of the reconstruction; and §(�) is employed 

to tighten the constraint; and ∥∥7(�) − ∑  5X`� �X(�)∥∥W
W
 is a quadratic penalty term to 

speed up the convergence. The expression (A-4) can be solved by employing alternate 

direction method of multipliers (ADMM) to compute the saddle point of the equation. 

According to ADMM optimization method,  �X and VX  is updated as: 

�X��� = arg s��¨  (���¨X����, ���©X� �, �V���, �§��)   (A-5) 

VX��� = arg s��Z  (�������, �V�¨X����, �V�©X� �, �§��)   (A-6) 

§��� = §� + �(7(�) − ∑  5X`� �X���)      (A-7) 

∑  5X`� ∥∥�X��� − �X�∥∥W
W/∥∥�X�∥∥W

W < �      (A-8) 
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Finally, �X��� and VX��� are solved as: 

�X���(V) = @(Z))∑  <ª ¨<(Z)�«(¬)
T

��W¼(Z)Z )T      (A-9) 

VX��� = 6  ® Zb¨ =[R(Z)bT'Z
6  ® b¨ =[R(Z)bT'Z       (A-10) 

where 7(V), §(V), ��(V), �X���(V) represent the Fourier transform of 7(�), §(�), 

��(�), �X���(�). 

 

 

 


