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Preface to ”Solar Power System Planning & Design:

Resource Assessment, Site Evaluation, System Design,

Production Forecasting and Feasibility Studies”

With growing concerns about greenhouse gas emissions, the security of conventional energy

supplies, and the environmental safety of conventional energy production techniques, renewable

energy systems are becoming increasingly important and are receiving much political attention.

Photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of solar energy

into electricity are, in particular, technologically robust, scalable, and geographically dispersed, and

they possess enormous potential as sustainable energy sources. Despite the advances in PV and CSP

systems, inappropriate planning and design could impede the extensive penetration of solar energy.

Systematic planning and design, considering various factors and constraints, are necessary for the

successful deployment of PV and CSP systems.

This book on solar power system planning and design includes 14 publications from esteemed

research groups worldwide. The research and review papers in this Special Issue fall within the

following broad categories: resource assessments, site evaluations, system design, performance

assessments, and feasibility studies.

Yosoon Choi

Editor
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1. Introduction

With growing concerns about greenhouse gas emissions, the security of conventional energy
supplies, and the environmental safety of conventional energy production techniques, renewable
energy systems are becoming increasingly important and are receiving much political attention [1].
Photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of solar energy into
electricity are—in particular—technologically robust, scalable, and geographically dispersed, and they
possess enormous potential as sustainable energy sources [2]. Despite the advances in PV and CSP
systems, inappropriate planning and design could impede the extensive penetration of solar energy.
Systematic planning and design considering various factors and constraints are necessary to deploy
PV and CSP systems successfully [3].

This Special Issue on solar power system planning and design includes 14 publications from
esteemed research groups worldwide. The research and review papers in this Special Issue fit in
the following broad categories: resource assessment, site evaluation, system design, performance
assessment, and feasibility study.

2. Resource Assessment

Solar radiation is the most important parameter to be considered when installing PV or CSP systems.
Therefore, it is necessary to assess solar resources by analyzing and forecasting the spatiotemporal
distribution of solar irradiance. Wang et al. [4] proposed an improved deep learning model based on
discrete wavelet transformation (DWT), convolutional neural network (CNN), and long short-term
memory (LSTM) for day-ahead solar irradiance forecasting. In the case study—which used two
datasets from the Elizabeth City State University and Desert Rock Station in the United States—the
performance of the proposed model, named DWT–CNN–LSTM, was compared with six other solar
irradiance forecasting models. The results showed that DWT–CNN–LSTM is highly superior for solar
irradiance forecasting, especially under extreme weather conditions.

Analyzing sky dynamics by processing a set of images of the sky dome is a new trend for
solar resource assessment [5,6]. Valentín et al. [5] proposed a methodology based on implementing
several image processing techniques to achieve a robust and automatic detection of the sun’s position
from a set of images acquired by a low-cost artificial vision system. The methodology could detect
the position of the sun not only on clear but also on cloudy days, even if the sun was completely
occluded. Richardson et al. [6] validated the all-sky imager technology using data obtained from three
geographically diverse locations: in Golden, Colorado on the rooftop of the Energy Systems Integration
Facility (ESIF) building at the National Renewable Energy Laboratory (NREL); in San Antonio, Texas
at the CPS Energy microgrid facility of the Joint Base San Antonio (JBSA) and the Engineering Building
of University of Texas at San Antonio (UTSA); and in the Canary Islands, Spain at Tenerife and Caleta
de Sebo. The operations at the three locations provided several improvements to the UTSA SkyImager
regarding weatherproofing techniques, environmental sensors, maintenance schedules, and optimal
deployment locations.

Appl. Sci. 2020, 10, 367; doi:10.3390/app10010367 www.mdpi.com/journal/applsci1
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Choi et al. [3] reviewed geographic information system (GIS)-based studies on solar resource
assessments, especially for solar radiation mapping. GIS is beneficial for spatial and temporal analyses
of solar resources while implementing location-specific technologies. The solar radiation analysis can
be performed for individual points such as stations and for large areas represented by many pixels.
The GIS analysis could also be conducted for specific administrative districts.

3. Site Evaluation

It is necessary to increase the effectiveness of installing solar power plants by prioritizing and
selecting suitable locations to maximize electricity generation and minimize the damage that may occur.
The results of such site evaluation can help solar utility companies, energy companies, and policymakers
select potential sites for the construction of solar power plants [3].

Chen et al. [7] proposed an evaluation model of demand-side energy resources (DSER) for urban
power grids based on geographic information. The commonality and individuality indices for five
kinds of DSER, revolving wind power generation, photovoltaic power generation, electric vehicles,
energy storage, and flexible load, were selected based on geographic information. Then, the weight of
each sub-index of the commonality and individuality indices was determined by the analytic hierarchy
process (AHP) and entropy weight method. Finally, the weighted overlay was generated according to
the weights and quantized values of each index, and a comprehensive score was obtained from the
commonality indices. The results depicted that the evaluation model is beneficial for the planning of
the city and the power grid.

The installation of PV panels on the ground can cause some problems, especially in countries
where there is not enough space for installation. As an alternative, floating PV, with advantages in
efficiency and for the environment, attracted attention. Kim et al. [8] analyzed the water-level data
from 3401 reservoirs in South Korea and selected suitable reservoirs for floating PV systems, with an
average reservoir water depth greater than 5 m and minimum water depth greater than 1 m. The results
were utilized to estimate priorities and potentiality prior to the actual floating PV installation and
detailed analysis.

GIS is useful for site evaluations when installing solar power plants for PV or CSP on the regional
scale. Choi et al. [3] reviewed the GIS-based methods for determining suitable locations for solar power
plants. In most site evaluation studies, solar radiation is the primary consideration. However, it is
also necessary to consider economic, environmental, technical, social, and risk factors. These factors
can be used to exclude unsuitable regions through a Boolean overlay and can be employed in various
multiple-criteria decision analysis (MCDA) methods to estimate suitability indices [3].

4. System Design

Before installing a solar power system, it is crucial to ensure that the system is not over- or
undersized. Therefore, the designer should investigate the viability of the system carefully to operate
in optimum conditions regarding produced unit costs and power reliability. Alsadi and Khatib [9]
reviewed the sizing procedures of grid-connected and standalone PV systems, including system
component modeling, available optimization software, optimization criteria, optimization methods,
and sizing constraints. The study revealed that PV modeling and battery modeling are essential in
system sizing optimization to predict the systems’ performances.

The performance of a PV system depends significantly on the tilt angle of the PV panels.
Chou et al. [10] conducted a wind-load analysis using wind tunnel experiments and numerical
simulations for a stand-alone panel at high tilt angles. The effects of wind direction were also
investigated. The findings of this study will be useful for the detailed structural design of offshore
PV panels.
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5. Performance Assessment

Chamkha and Selimefendigil [11] performed a numerical analysis of a photovoltaic–thermal (PV/T)
unit with SiO2–water nanofluid. The coupled heat conduction equations for the layers and convective
heat transfer equations for the channel of the module were solved using the finite volume method.
The effects of various particle shapes, solid volume fractions, water inlet temperature, solar irradiation,
and wind speed on the thermal and PV efficiency of the unit were analyzed. The performance
characteristics of the solar PV–thermal unit determined by the radial basis function artificial neural
network were found to be in excellent agreement with the results obtained from computational fluid
dynamics modeling.

Gulkowski et al. [12] carried out a comparative analysis of energy production by a grid-connected
experimental PV system composed of various technology modules, which operates in the
temperate-climate meteorological conditions of eastern Poland, for the year 2015. The study revealed
that the copper indium gallium diselenide (CIGS) technology demonstrated the highest energy
production and performance ratio, as well as the lowest observed temperature-related losses. These
results can be useful for the prediction of electric energy production by different PV technologies at
high latitudes under temperate climate conditions.

Rouibah et al. [13] determined the performance and viability of direct normal irradiation for three
solar tower power plants to be installed in the Algerian highlands and the Sahara (Béchar, El Oued,
and Djelfa regions). Each plant, with the annual production specification of 20 MW, is equipped with a
supply of molten salt, an external receiver, and a field of heliostats. Results showed that there is a strong
and direct relationship between the solar multiple, power generation, and storage capacity hours.

Machine learning methods were successfully applied in PV output prediction models. Xie et al. [14]
proposed a hybrid short-term forecasting method based on the variational mode decomposition (VMD)
technique, the deep belief network (DBN), and the auto-regressive moving average (ARMA) model to
improve forecasting accuracy. The results showed that the hybrid forecasting method offers better
accuracy and stability than the single prediction methods. Additionally, Mei et al. [15] developed an
ultrashort-term forecasting model based on the phase space reconstruction and deep neural network
(DNN) by considering the characteristics of the net load. The performance of this model was verified
using real data, with superior accuracy in forecasting the net load under high PV penetration rates and
different weather conditions.

Solar potential assessment using GIS can be placed in three different categories: (1) physical
potential, which is the total amount of solar energy reaching a target surface or the total solar radiation
on a surface or rooftop; (2) geographic potential, which is the spatial availability of a surface or building
rooftop where solar energy can be obtained; and (3) technical potential, which represents the total
amount of electricity considering the technical characteristics of the PV system. Choi et al. [3] reviewed
39 published articles on GIS-based solar potential assessment.

6. Feasibility Study

Within the agriculture sector, current solutions for groundwater pumping are primarily based
on diesel technologies, with remarkable fossil-fuel dependence and emissions that must be reduced
to fulfill both energy and environmental requirements. The integration of PV power plants into
groundwater pumping installations was recently considered as a suitable alternative. Rubio-Aliaga
et al. [16] presented a feasibility study with a multidimensional analysis of PV solar power systems
connected to the grid as a groundwater pumping solution, including net-metering conditions and
benefit estimations, in Castilla-La Mancha (Spain). Different surplus energy sale scenarios were
analyzed based on crops typical in this location, the corresponding annual water requirements,
and common grouping areas. The study found that PV power plants connected to the grid for the use
of surplus energy could generate non-negligible global revenues: 10–18 million €/year with legislation
promoting net-metering and 5–10 million €/year under the current legislation framework in Spain.
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Abstract: In this study, geographic information system (GIS)-based methods and their applications in
solar power system planning and design were reviewed. Three types of GIS-based studies, including
those on solar radiation mapping, site evaluation, and potential assessment, were considered to
elucidate the role of GISs as problem-solving tools in relation to photovoltaic and concentrated solar
power systems for the conversion of solar energy into electricity. The review was performed by
classifying previous GIS-based studies into several subtopics according to the complexity of the
employed GIS-based methods, the type of solar power conversion technology, or the scale of the
study area. Because GISs are appropriate for handling geospatial data related to solar resource and
site suitability conditions on various scales, the applications of GIS-based methods in solar power
system planning and design could be expanded further.

Keywords: geographic information system; solar energy; resource mapping; site evaluation; potential
assessment; photovoltaic; concentrated solar power

1. Introduction

With growing concerns about greenhouse gas emissions, the security of conventional energy
supplies, and the environmental safety of conventional energy production techniques, renewable energy
systems are becoming increasingly important and are receiving a great deal of political attention [1].
In particular, photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of
solar energy into electricity have been found to be technologically robust, scalable, and geographically
dispersed and possess enormous potential as sustainable energy sources [2] (The full terms and their
abbreviations referred to in the paper are summarized on the last page of this paper). Despite the
advances in PV and CSP technology, inappropriate planning and design could impede the extensive
penetration of solar energy. Systematic planning and design considering various factors and constraints
are necessary to deploy PV and CSP systems successfully.

To achieve these objectives, geographic information system (GIS)-based methods have been
applied effectively for rational solar power system planning and design. GISs have often been
combined with analytical models and methods (e.g., probability/statistical, machine learning, and data
mining methods) to complement the inherent capabilities of GISs in evaluating the spatial patterns or
characteristics of events and their attributes.

The objective of this study was to review the GIS-based methods and applications currently used
for solar radiation mapping, site evaluation, and potential assessment associated with PV and CSP
systems. The scope of this review was confined to published literature related to GIS-based methods
and applications in solar radiation mapping, site evaluation, and potential assessment of PV and CSP
systems. There are numerous recent review papers dealing with solar potential [3,4]. The distinct

Appl. Sci. 2019, 9, 1960; doi:10.3390/app9091960 www.mdpi.com/journal/applsci5
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difference between the aforementioned studies and this paper is the scope of GIS applications. In this
study, we tried to investigate and summarize overall roles and applications of GIS to research associated
with solar energy (not only focused to solar potential). Keywords (i.e., GIS, solar or PV or CSP, modeling
or radiation or mapping or evaluation, or assessment) were inputted into the Google Scholar website
to search the published literature, and 92 articles were selected for review. Specifically, three different
keywords (A, B, and C) were combined and inputted to search papers (e.g., GIS, PV, and modeling).
Then, 92 articles were selected for review by analyzing the title of the searched papers by authors.
Even so, it should be noted that the number of papers included in this topic is not necessarily 92.
Articles concerning remote sensing technologies for solar radiation mapping were excluded from this
study if they did not involve any GIS-based methods.

This paper is organized into five sections. Section 1 introduced the main concept. Section 2
reviews the literature dealing with solar radiation mapping using GISs. Sections 3 and 4 describe the
GIS-based methods and applications for solar site evaluation (geospatial suitability) and solar potential
assessment (electricity production), respectively. Finally, the conclusions are summarized in Section 5.

2. Solar Radiation Mapping Using GISs

2.1. Overview

Solar radiation is the most important consideration when installing PV or CSP plants. Therefore,
it is necessary to identify areas where solar radiation is abundant and to predict the spatial and temporal
distribution of solar radiation for effective solar resource utilization. GISs are very useful in spatial and
temporal analyses of solar resources while implementing location-specific technologies.

Solar radiation analysis can be performed for points such as stations as well as for many pixels
over a large area. It may also be conducted for specific administrative districts. In addition to spatial
mapping of solar radiation, analysis and visualization over time are performed. The spatial and
temporal considerations are summarized in Table 1 based on the reviewed literature.

The solar radiation analysis methods using GISs can be classified according to the type of data
employed. If solar radiation data are obtained at certain stations, it is useful to estimate the solar
radiation through interpolation in the areas in which it is not measured. In addition, there have been
some studies on solar radiation prediction at stations that acquire other weather information but do
not obtain solar radiation information. If there are no data for stations at which observations are made,
solar radiation models can be employed considering various geographical and terrain information.
These methods are focused on predicting or mapping solar radiation. On the other hand, there have
been many studies on analysis or simply visualization of the information about the solar resources in
the area using the existing solar radiation map as a database (DB). The methods and types of data used
for solar radiation analysis are summarized in Table 1 based on the reviewed literature.

2.2. Solar Radiation Map as a Spatial DB

There have been several studies that analyze the solar energy information in the area using the
existing solar radiation map. These studies do not directly perform solar radiation mapping but use
existing solar radiation maps to predict sunshine hours per year or to predict and compare regional
solar radiation [5].

Some studies have compared the solar data extracted from the solar radiation map with the
surface-measured data such as global horizontal irradiance (GHI), direct normal irradiance (DNI),
diffuse horizontal irradiance (DHI), and the daily average clearness index to verify the accuracy and
applicability of these solar radiation maps [6,7]. The solar radiation maps constructed by various
sources such as Solargis (Slovakia), the National Renewable Energy Laboratory (NREL) in the US,
and the Energy Sector Management Assistance Program (ESMAP) of the World Bank are used as the
spatial database of solar energy information.
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Some studies were conducted for further analysis using solar radiation maps as DBs. The PV
potential, power production, and economic effects can be estimated from a solar resource map using
the software like RETScreen (Natural Resources Canada, Canada) shown in Figure 1 [8]. In addition,
the impact of climate change can be analyzed using the solar radiation map [9]. In these studies,
solar radiation maps constructed by the institution of each target country such as Korea Meteorological
Administration (Seoul, Korea) and Met office (Exeter, UK) were used. Interactive web applications
have also been developed that can assess the potential PV electricity generation in Europe, taking into
account the solar energy data and climatic parameters from the solar radiation map [10].

 
Figure 1. Locations of seven abandoned mine promotion districts in Korea (modified from
Song et al. [8]).

2.3. Spatial Solar Radiation Mapping Using Interpolation Methods

GIS maps facilitate the assessment of radiation at various locations and times without measurement
equipment. Because solar data are not available for all potential sites, there have been some attempts
to estimate the spatial distributions of solar radiation or other parameters.

Probable relationships among the radiation-related parameters can be used to map the global solar
radiation at sites where data were not available [11]. The interpolation method based on inverse distance
weight or spatial autocorrelation is a very useful tool for solar radiation mapping. The interpolation
methods have been widely used in many studies in various countries [12,13]. These methods have the
advantage of predicting the entire area of the solar radiation in the form of grids based on the data
of the stations where observations are made. In addition, solar radiation mapping based on satellite
image can be performed using the certified method and it can be verified through observation data.
For example, a solar atlas for Pakistan was made using Meteosat-7 satellite data by validating it with
ground measurements based on the ESMAP approach. To adapt the radiation data to the measured
datasets, the impacts of different aerosol models were evaluated [14].

2.4. Solar Radiation Estimation for Stations with No Solar Radiation Records

Because some nations have limitations on the number of stations recording solar radiation, due to
the expense of acquiring data using precise sensors at all sites, the extent to which the accuracy of solar
radiation mapping can be improved is limited. Therefore, attempts have been made to predict solar
radiation at stations without solar radiation data by using the solar radiation measurements of other
stations. This approach has the advantage that the accuracy of a specific point can be improved over that
achievable using a mapping method in which spatial prediction is only performed via interpolation.
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ANN is used to perform training in areas where data are present and to perform testing on areas
without solar radiation records. It is important to know which input variables other than solar radiation
are used for training. Variables such as average temperature, average relative humidity, average
sunshine duration, average wind speed, average precipitation, longitude, latitude, and month of the
year can be considered to estimate the monthly solar radiation [15]. To increase the accuracy of ANN,
a multi-regression analysis and a genetic algorithm can be combined to develop a monthly average
daily solar radiation (MADSR) estimation model for locations without measured data [16]. This method
can also be combined with the Kriging interpolation to improve the prediction accuracy [17,18].

2.5. Solar Radiation Model

Solar radiation models integrated with GISs are also employed to generate spatial DBs.
Solar radiation information over large territories can be provided by these models by considering
surface inclination, aspect, and shadowing effects. In particular, these models can be useful for
predicting solar radiation in areas without measured data.

The r.sun solar radiation model was developed for an open source environment of the geographic
resources analysis support system GIS [19]. The model computes three components (i.e., the beam,
diffuse, and reflected components) of global solar radiation for clear-sky or overcast conditions.
The model can be applied to large regions, and the shadowing effects of the terrain can be modeled
using a shadowing algorithm. In a case study, the model was applied to PV system planning in Central
and Eastern Europe and for solar radiation modeling in mountainous terrain in Slovakia.

By integrating the clear-sky index based on a multivariate interpolation method with the r.sun
model, the radiation estimation ability was improved [20]. This method can be especially helpful for
data at higher resolutions and in regions lacking ground measurements. A study that models solar
radiation considering the interaction over topographic and plant canopies was performed using both a
GIS (SOLARFLUX) and an image processing system (ATM Model) [21]. The effects of topography and
plant canopies on solar radiation were analyzed with various options for obtaining the data. Design
issues, computational problems, and error propagation were considered to implement the model for
mountainous areas.

An algorithm was presented for calculating the slope gradient, aspect, and cell surface area as a
normal vector using the DEM [22]. Based on this algorithm, the sun position, the direct component of
insolation, and the hillshade can be calculated. In addition, the horizon angles and sky view factor can
be calculated more economically than they could with previous algorithms. A 3D urban solar model
was developed for the calculation and visualization of building potential [23]. Light detection and
ranging (LiDAR) data were used to build a DSM of an urban region (the University of Lisbon campus),
and a shadow algorithm was developed to calculate shadow maps and sky view factors both for roofs
and facades. In this study, climatic observations based on the typical meteorological year data were
utilized for direct and diffuse solar radiation mapping at each point on the ground, roof, and facades.

3. Solar Site Evaluation Using GISs

3.1. Overview

As regulations for environmental pollution are becoming stricter, there is a growing need to
install generating plants using solar energy. To increase the effects of installing such plants, it is
necessary to prioritize and select suitable locations to maximize the electricity generation and to
minimize the damage that may occur. The results of this site analysis can help solar utility companies,
energy companies, and policy makers select potential sites for the construction of solar power plants.

Solar power generating plants are heavily influenced by solar radiation, and the distribution of
solar resources varies considerably by location. In most studies in which GISs have been used for site
selection, this solar radiation has been considered as an input layer.
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Depending on the type of solar power plant, the type of solar radiation used for analysis can
be distinguished. Solar power plants can be divided into PV plants and CSP plants. Unlike PV
plants where diffuse radiation is also important, direct radiation plays an important role in CSP plants.
Therefore, GHI is mainly used for studies on PV plants, and DNI is mainly used for studies on CSP
plants. In some site evaluation studies, only general solar energy distributions have been analyzed,
without classifying PV and CSP plants. The types of power plants are summarized in Table 2 based on
the reviewed literature.

GIS-based methods of evaluating suitable locations for solar power plants can be largely classified
depending on whether they are applied on a regional or local scale. Site selection studies using GISs
have been widely conducted on the regional scale, and the results have been usefully applied for policy
and installation planning. When performing site evaluation on the regional scale, it is necessary to
consider various factors such as economic, environmental, technical, social, and risk factors related to
the installation of solar power plants, as well as solar radiation. For example, it is difficult to install
large-scale solar power plants in the center of cities, so land availability must be considered. In addition,
solar power plants must be accessible for installation, so it is necessary to consider the distance to the
road network. Solar power plants also should not be far from the power grid to transmit the electricity
produced. Many other factors must be considered, and some of these factors serve as constraints to
exclude areas where solar power plants should not be installed or as suitability criteria to quantify
suitability. Even if the same GIS layer is used, it can be employed in different ways depending on
the research.

GIS-based multi-criteria analysis basically relies on two main approaches: Boolean overlay
operators and weighted summations procedures. Although there are some differences in the definition
of the term multi-criteria decision analysis (MCDA) according to the literature, MCDA is specified as a
method of quantifying suitability using weights (i.e., weighted summation procedures) in this paper.
The term multi-criteria decision making (MCDM) is also used instead of MCDA in some literature.

The Boolean overlay simply determines whether any conditions are satisfied, and analyzes
the suitable area that satisfies all conditions. These results can be used as constraints in weighted
summation analysis methods. Weighted summation can be subdivided according to the method of
weighting each factor. In this study, we use the term weighted sum when we use the same weight or a
very simple weight. The Analytic Hierarchy Process (AHP) method is the most widely used method
to quantify the weight according to the expert opinion. Fuzzy AHP (FAHP), which combines fuzzy
theory with AHP, is used to mitigate the uncertainty that may arise in this process. A typical flow
chart of these GIS-based MCDA methods is shown in Figure 2.
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Figure 2. A representative flow chart of GIS-based MCDA methods for solar site evaluation.
(Circle: goals, rectangle: GIS layer, and parallelogram: method).

3.2. Boolean Overlay

Although various MCDA techniques in which GISs are employed are useful for site selection
for solar power plants, several studies have also been performed to find suitable sites by considering
constraints using Boolean overlay operators.

The potential of large-scale CSP has been mainly studied in Africa, which has strong solar
energy [24,25]. Conditions such as solar radiation, proximity to transmission lines, terrain, land cover,
and hydrology can be considered to select a suitable area for CSP plant installation. Although the
detailed constraints are different for each study, the suitable area for large-scale PV plant installation
can be analyzed using similar approaches [26,27]. The constraints such as population areas and
infrastructures are also important for evaluating suitability as well as the geographic factors such as
slope, aspect, and land cover. Some studies have used GHI and DNI to analyze both PV and CSP [28].
After selecting a suitable area, the installation capacity or power generation of the area can be analyzed.
This Boolean overlay method has the advantage that it is the simplest method for solar site evaluation,
but it has a disadvantage that it cannot quantify the relative suitability for the appropriate region.

3.3. Weighted Sum

These methods, based on the Boolean overlay, can elucidate suitable areas for solar power plant
installation, but are limited in that they cannot prioritize suitable areas. To quantify suitability,
various MCDA approaches have been developed, and the results have been presented mostly as
suitability indices.

The simplest way to quantify the suitability indices for a solar power plant installation is to
normalize and add each factor linearly. At the method, the same or a very simple weight is given.
To produce the suitability indices, scaled solar radiation maps can be multiplied times a land capability
map or the environmental risk map [31]. There are studies that have analyzed solar power plant
suitability indices for various regions using a similar method. The geographical factors such as slope,
land use, urban extent, population distribution, and proximity to the power grid, as well as solar
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radiation are combined to generate a suitability map [32,33]. In addition, by considering not only
several spatial factors, but also social acceptance data collected through surveys regarding the potential
public resistance to development, solar energy suitability can be assessed [36]. However, these studies
are logically limited in determining scaling and weighting criteria.

3.4. Analytic Hierarchy Process (AHP)

Evaluating the relative importance between different factors and calculating the overall suitability
is a controversial and difficult task. Some techniques have been applied to reflect the opinions of
experts in order to reasonably calculate and quantify the weight of each of these factors.

As a method of the expert system, SWARA and WASPAS were integrated with the MCDA
method to determine the relative significance of every effective criterion and to evaluate specified
alternatives [37]. The AHP is the most widely used and useful systematic expert tool for handling
MCDA. In the AHP, hierarchical structures are used to represent a problem and make judgments based
on experts to derive priority scales. The overall weights and importance of each input parameter are
obtained using a pair-wise comparison matrix.

There have been a number of studies evaluating appropriate sites for CSP or PV power plant
installations using AHP [38–44]. In the process of AHP, solar radiation, transmission lines, water bodies,
slope, land use, the possible electricity generation, and various economic and technical factors can
be considered as assessment factors. In most MCDA studies using the AHP, the unsuitable area is
first excluded considering the constraints and then the suitability for each analysis unit (pixel or
administrative district) is calculated considering the weights determined via the AHP.

3.5. Fuzzy AHP (FAHP)

Although the AHP is broadly utilized to deal with the complexity of many problems by prioritizing
the alternatives, the AHP does not consider the uncertainty associated with the process. To alleviate
this issue, fuzzy set theory has been combined with the AHP. The FAHP considers the vagueness,
imprecision, and uncertainty associated with the process.

The FAHP has been widely applied in Asia to locate the most appropriate sites for PV or CSP power
plants [46–48]. In these studies, various criteria for climatology, location, environment, and meteorology
related to solar power plant installation were considered. In addition, the annual electricity production
for solar energy plant was estimated in some studies. The FAHP has also been applied to the PV plant
installation suitability analysis for Ulleung Island, Korea [49]. PV solar farm criteria were evaluated for
an island-based case region having complex topographic and regulatory criteria (Figure 3a), along with
high demand for low-carbon local electricity production. Six factor variables (solar radiation, sunshine
hours, average temperature in summer, proximity to transmission lines, proximity to roads, and slope)
(Figure 4) were normalized via a fuzzy theory to calculate an on-site suitability index (Figure 3b).
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(a) (b) 

Figure 3. PV solar farm evaluation for Ulleung Island, Korea using the FAHP method: (a) Distribution
of constraint areas; (b) Suitability index for a PV solar farm (Suh and Brownson [49]).

Figure 4. Factor layer inputs to identify a suitable area for PV installation on Ulleung Island (Suh and
Brownson [49]).
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3.6. Other Approaches

The AHP and specific models have also been used together, and new attempts have been made to
support reasonable decision making.

To evaluate PV plant location alternatives, the alternatives were assessed through the AHP and
TOPSIS method based on the concept that the chosen alternative should have the shortest distance
from the positive ideal solution and the farthest from the negative ideal solution [50]. The final
ranking is obtained using a closeness index. An MCDA model was developed by applying the
ELECTRE-TRI method and the decision support system IRIS to classify the suitable areas for PV solar
farms, into ordered categories of merit according to multiple evaluation criteria [51]. ELECTRE-TRI
was used to classify the alternatives by utilizing IRIS, which implements the most common variant of
the ELECTRE-TRI method (pessimistic variant). This approach involves classification of each location
based on its absolute merits and drawbacks and does not require setting a precise numerical value to
express the importance of each criterion. In addition, ANN was applied to identify suitable areas for
the installation of PV systems [52]. The final index was determined by combining the quantitative
criteria using an ANN trained with values corresponding to the sites of existing PV plants in the region.

3.7. Solar Site Evaluation for Specific Objects

As mentioned above, most solar site evaluation studies involving GISs have been focused on
selecting and prioritizing suitable areas from a macroscopic view. These studies were conducted mainly
from the regional scale to the national scale and rarely on the continental scale, because solar site
evaluation studies using GISs can play an important role in decision making. However, some studies
have been performed on more specific objects, rather than land for solar power plant installation.

Choi and Song [54] assessed the PV potential at abandoned mine reclamation sites in Korea.
A spatial DB was constructed for 218 abandoned mine reclamation sites (Figure 5) according to
reclamation type. By combining the solar energy resource and mine reclamation maps using overlay
analysis, mine sites with high annual GHI were selected and energy simulations were conducted based
on the system advisor model (SAM) by NREL in the US. Kim et al. [55] estimated the priorities and
potential of floating PV for 3,401 reservoirs in Korea. To select a suitable reservoir for floating PV
installation, a water depth DB of reservoirs was constructed using OpenAPI (Figure 6a). The annual
power production for all possible reservoirs was calculated by considering solar radiance, topographical
information (Figure 6b), and solar panel parameters.

 

(a) (b) 

Figure 5. Spatial DB for abandoned mine reclamation sites in Korea: (a) Locations of abandoned mine
reclamation sites; (b) Composition according to reclamation type in each administrative district (Choi
and Song [54]).
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(a) (b) 

Figure 6. Floating PV analysis for reservoirs in Korea using a GIS: (a) Map of average water depth for
each reservoir; (b) Solar radiance map considering terrain (Kim et al. [55]).

Lukac et al. [56] rated roof surfaces in terms of solar potential and suitability for PV systems.
The solar potential was determined by combining the urban topography extracted from LiDAR data
with pyranometer measurements and analyzing the shadowing effect. After the roofs were split
into segments, a filtering process was conducted to identify buildings unsuitable for PV installation.
Then, the solar potential rating was employed for the suitable buildings. Lee et al. [57] evaluated the
rooftop solar PV suitability of a building from a microscopic view. To consider not only its technical
performance, but also its economic performance, hillshade analysis and life cycle cost analysis were
conducted. To develop a rooftop solar PV rating system, cluster analysis based on the technical and
economic suitability criteria was performed. The rating system was applied to 21,681 buildings in the
Gangnam district in Seoul, South Korea by dividing them into four grades according to their rooftop
solar PV potentials, investment returns, and payback periods.

Because only one type of renewable energy system cannot provide continuous power generation,
there have been site selection studies for two or more renewable energy systems including solar PV or
CSP energy. When multiple renewable energy sources are used in combination, they can compensate
for each other when one of them is not available.

In some studies, a Boolean overlay method or weighted sum method was applied to find suitable
locations for hybrid solar-wind power station construction by considering factors such as the resources,
topography, and environmental and economic viewpoints [29,30,34,45]. In addition, an MCDA
framework incorporating an FAHP was applied for hybrid solar-wind renewable energy system site
selection [35]. The OR-SAGE tool was developed to analyze the impacts of future energy technology
while balancing competing resource use [36]. The tool considers population growth, water availability,
environmental indicators, and tectonic and geological hazards and was applied to the western US.
The final map categorized and showed the most suitable region for each energy source (solar, nuclear,
advanced coal, and CAES).

4. Solar Potential Assessment Using GISs

4.1. Overview

Solar potential can essentially be categorized into three different types [30]. First, physical potential
is the total amount of solar energy reaching the target surface, which can be referred to as the total solar
radiation on the surface or rooftop. Second, geographic potential is the spatial availability of the surface
or building rooftop where solar energy can be obtained, which can be referred to as the available area
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for solar PV installation. Third, technical potential is the total amount of electricity considering the
technical characteristics of the solar PV system (e.g., module efficiency, inverter capacity, and system
design), which can be referred to as electricity generation. A GIS can be used for physical potential and
geographic potential.

In this study, 39 published articles on GIS-based solar potential assessment were reviewed. Table 3
summarizes the classification and number of articles according to the role of the GIS, solar type, or scale.
GISs were utilized for various purposes in solar potential assessment, such as DB and visualization,
rooftop extraction, radiation modeling, shading analysis, and spatial analysis tools. Regarding solar
type, most studies were focused on PV or both PV and CSP, while few dealt with CSP. In terms of
analysis scale, most of the solar potential assessment studies were conducted on national or regional
scales, while few were performed on global, continental, or object (building) scales.

This section consists of five sub-sections corresponding to the roles of GISs in research as DB and
visualization, rooftop extraction, radiation modeling, shading analysis, and spatial analysis tools.

Table 3. Classification and number of articles according to the role of the GIS, solar type, or scale.

Role of GIS No. Solar Type No. Analysis Scale No.

DB & Visualization tools 9 PV 23 Global 1
Rooftop extraction tool 2 CSP 6 National 16

Radiation modeling tool 6 General 1 Region 20
Shading analysis tool 7 PV & CSP 9 Object 2
Spatial analysis tool 15

Sum 39 Sum 39 Sum 39

4.2. DB and Visualization Tools

This sub-section discusses the use of GISs as solar potential DB (map) or solar potential visualization
(map production) tools.

A few researchers have used GISs as only solar DB maps in solar potential assessment.
Song et al. [58] employed a georeferenced raster-formatted solar resource map (i.e., annual mean daily
global horizontal radiation at the surface) in Kangwon province, created by the Korea Meteorological
Administration, to assess the PV potential at three mines (Figure 7). By overlapping the solar resource
map with a mine map, the annual mean daily global horizontal radiation at the three mines was
extracted. Then, these values were entered into RETScreen software to analyze the electricity production
and greenhouse gas emission reduction.
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Figure 7. GIS DB map showing annual mean daily global horizontal radiation (kWh/m2/day) at the
surface (Song et al. [58]).

Many researchers have used GISs as both solar DB maps and visualization tools in solar potential
assessment. Tarigan et al. [59] performed a SolarGIS-pvPlanner simulation to assess PV power
generation for household in Surabaya, Indonesia. This simulator provides assessment results at any
selected site online by integrating numerical simulation models generated from the latest climate DB.
Specifically, the SolarGIS method is based on using statistically aggregated solar and temperature data
stored in the DB with a time step of 15 min. The simulator provides meteorological and geographical
data as inputs to assess power generation from PV systems.

A GIS plays a role in the web-based simulator as both a DB system and a visualization system.
Besarati et al. [60] generated solar radiation maps for five different tracking modes to compare the
applicability of PV and CSP power plants. Then, a 5 MW PV power plant was considered for 50 cities
in Iran to investigate the viability of PV power plants for each city. The capacity factors, electricity
generated, and annual greenhouse gases emission reductions were compared. Fichter et al. [61]
considered a DNI map sourced from the German Aerospace Center to extract CSP hotspots in Northeast
Brazil. Using these data, the optimal CSP plant configuration was derived and the potential of CSP
for the northeast power system of Brazil was assessed. Lukač et al. [62] utilized rooftop LiDAR point
cloud data to generate a grid-type map with 1 m resolution to assess the PV potential of building roofs
considering the nonlinear efficiency characteristics of a given PV module type and the solar inverter.

Bergamasco and Asinari [63] generated a solar resource map showing the yearly sum of global
irradiation in the Piedmont region by performing interpolation among all of the cell values of the solar
radiation map within the municipality. Using this map, the roof surface area available for installation
was calculated, and the PV energy potentials of the rooftop integrated PV systems were assessed.
Malagueta et al. [64] explored a DNI map and meteorological data for the northeastern region of
Brazil to assess incentive policies for integrating CSP generation into the Brazilian electric power
system. As a result, subsystems and interchanges in the model in the national grid were proposed.
Martı̆n-Pomares et al. [65] generated GHI and DNI average monthly sum maps (2003–2013) in Qatar by
improving satellite-derived data using ground measurement data. By considering the characteristics
of reference solar power plants and the aforementioned solar resource map using the SAM software,
various solar potential electricity generations in Qatar were calculated according to plant type.

19



Appl. Sci. 2019, 9, 1960

Milbrandt et al. [66] assessed and mapped renewable energy potential, including PV, CSP, wind,
geothermal, and biomass energy and landfill gas-to-energy on marginal lands (e.g., abandoned,
disturbed, under-utilized, wasteland, limbo-land, degraded, and idle) in the US, representing about
11% of the US mainland. Solar technologies exhibited the highest potentials. It was estimated that
about 4.5 PWh and 4 PWh of electricity could be produced from PV and CSP energy, respectively,
on marginal lands in the contiguous US.

4.3. Rooftop Extraction Tool

A rooftop solar PV system is a PV system in which electricity-generating solar panels are mounted
on the rooftop of a residential or commercial building or structure. With the ever-increasing population
and unavailability of large-scale solar power plant installation in urban areas, interest in rooftop solar
systems that can be installed on buildings in urban area is increasing. GISs have been utilized to extract
rooftops to assess their solar potentials on the national and regional scales.

Khan and Arsalan [67] extracted rooftops from Google Earth satellite imagery of the Karachi
region of Pakistan using a feature extraction tool of ENVI EX software employing object-based image
recognition. From the extracted rooftop data and their characteristics (i.e., building orientation, shading
effect, and other roof uses), the PV energy and power output were assessed. The characteristics of
previous GIS-based rooftop PV potential studies were also summarized.

Izquierdo et al. [68] calculated roof surface area using vector-type roof data compiled throughout
Spain. The installation of solar hot water systems (SHWSs) and PV systems was considered.
With assumptions for SHWS demand coverage and payback evaluation, the results showed that
SHWSs could contribute up to 1662 ktoe/year of primary energy. In addition, the PV potential of
each rooftop was calculated by multiplying the area of the roof times simple constants derived from
technical parameters, and it was found that PV systems would provide 10 TWh/year of electricity.

4.4. Radiation Modeling Tool

Solar radiation modeling enables prediction of the average daily and hourly global horizontal
radiation, beam radiation, and diffuse radiation. GISs were utilized to map and analyze the effects of the
sun over a geographical area for specific time periods. In general, GIS-based radiation modeling was
implemented, on the national or regional scales to calculate the insolation across an entire landscape
(area) or to calculate the amount of radiant energy for a given location (point).

Charabi and Gastli [69] discussed solar power prospects to assess a large CSP plant in Wilayat
Duqum, Oman in a geospatial context. A solar radiation map of Wilayat Duqum was generated by
employing solar radiation tools in ArcGIS software and DEM data. Subsequently, the yearly electric
power generation potential was calculated according to the type of CSP technology. In a similar manner,
Gastli et al. [70] mapped the solar radiation over Wilayat Duqum by employing the aforementioned
identical tools and data to investigate the potential of implementing a combined CSP electric power
and seawater desalination plant. This study dealt with two options (i.e., the combination of a CSP plant
with a thermal desalination unit and exploitation of only the electricity output of a CSP plant with
a reverse osmosis desalination unit) and showed where each concept is preferable considering local
conditions. Hofierka and Kaňuk [71] estimated the annual PV electricity production in kilowatt-hours
per building in the urban areas of Bardejov in eastern Slovakia. In this study, 3D city model input
data, the r.sun solar radiation model, and PVGIS estimation utility, an open-source solar radiation tool,
were utilized to assess the PV potential of each building. The analysis revealed a high PV potential
that could cover about two-thirds of the current electricity consumption of the city.

Meanwhile, Catita et al. [72] modeled the vertical facades of buildings as well as solar radiation
on roofs to inspect the potential of building an integrated PV system in the region of the University of
Lisbon, Portugal. To achieve this objective, a 3D building model and DSM data were employed as input
data for the self-developed software. The DSM data indicated the digital surface height, including
objects (e.g., buildings, facilities, and trees), while the DEM data excluded the built (e.g., power lines,
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buildings, and towers) and natural (trees and other types of vegetation) elements. Izquierdo et al. [73]
listed hierarchical methodologies for potentials such as the physical, geographic, technical, economic,
and social potentials. The horizontal irradiance on roofs was derived by using radiation computed
based on the geometry of the sun–earth system, land use maps, and building maps. Subsequently,
considering the PV arrangement and model, the technical potential of a roof-integrated PV system
in Spain was estimated. Polo et al. [74] presented maps of the solar resources in Vietnam and the
solar potential for CSP and grid-connected PV technology. GHI and DNI maps were derived from the
Meteosat Indian Ocean Data Coverage satellite imagery based on the Heliosat method. Subsequently,
the solar potential was assessed by performing simple simulations. GISs were used to combine the
solar potential with the land availability determined based on the slope conditions and to map the
technical solar potential.

4.5. Shading Analysis Tool

Surfaces and rooftops are shaded if the direct path of the light from the sun is obstructed. Shading
of PV modules is a common phenomenon that can affect the performances of PV systems. As such,
shading analysis is essential during solar PV project design or analysis since it is associated with
solar access or unobstructed solar gains. In PV systems, it is important to analyze shading caused by
surrounding objects (buildings) and/or vegetation.

Several authors have employed the hillshade algorithm and analysis to compute shadow areas
and sunshine hours. Ko et al. [75] determined the shadow areas on rooftops to obtain the hourly sun
and shade grayscale values to evaluate rooftop solar PV potential in Taiwan. A national-scale hillshade
map was generated as a sun–shadow model showing the illuminance of each grid of the surface by
setting the location of the assumed light source and calculating the related illuminance value between
each grid and its neighboring grids. The preset conditions ranged from 0 (black; more shadowing) to
255 (white; less shadowing). The grayscale values were then integrated into binary images to calculate
the shadow areas on rooftops. Lee et al. [76] and Hong et al. [77] analyzed shadows based on the
location of the sun via hillshade analysis to examine the available building rooftop areas for solar
PV installation. The altitude and azimuth of the sun were calculated every hour from 6 a.m. until
7 p.m. (when the sun is over the horizon) on the 15th (when the sun is at the average position for the
present month) of each month from January until December in Seoul. Using these input data, hillshade
analysis was conducted on 12 days (on the 15th of each month from January until December) in hourly
intervals (from 6 a.m. to 7 p.m.), for a total of 156 times. Thereby, the unshaded rooftop area in which
the solar PV system could perform at the optimal level without any disturbances by building shadows
was extracted.

Many researchers have used DSMs (or 3D building models) to examine regional shadow
characteristics. Song and Choi [78] conducted a simple shadow analysis to evaluate rooftop PV
electricity generation systems to establish a green campus in a GIS environment. Prior to shadow
analysis, 3D modeling of the study area was performed using a DEM (0.1 m grid spacing) easily
accessed and building height data. As mentioned above, since the DEM data only describe the relief
of the natural terrain, the DEM and building height data were integrated to create 3D building data.
Subsequently, shadow analysis was conducted using the solar radiation tools in ArcGIS to analyze the
yearly shadow patterns based on the changes in the angle of the sun (Figure 8). Locations, that were
unaffected by shadows for more than 9 h/day, were regarded as usable areas for a rooftop PV system at
the university. Choi et al. [1] developed a PV analyst that couples ArcGIS with a transient systems
simulation (TRNSYS) to assess the distributed PV potential in urban areas. In this study, a DSM was
input into the area solar radiation model of the solar radiation tools in ArcGIS to calculate the sun hours,
which is the duration (in hours) of direct solar irradiation at each grid cell in the DSM. The duration
of direct incoming solar irradiance from 9 a.m. until 3 p.m. (solar time) at the winter solstice was
analyzed to fulfill the requirement that the PV systems to be installed in the study area would work
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solar time throughout the year without shading effects. The areas satisfying this requirement were
regarded as usable areas for rooftop PV systems on each building in the study.

 
Figure 8. Shadow analysis. (a) Satellite image of the study area; (b) Shadow analysis of the overall
study area; (c) Satellite image of a building; (d) Shadow analysis of the rooftop area of a building
(modified from Song and Choi [78]).

In a few studies, detailed field investigations using fish-eye lens cameras as well as regional
shadow analysis using DSMs were performed. Choi and Song [79] analyzed the usable area for
installing a PV system, considering the surrounding topography, for PV potential assessment at the
tailing dam of an abandoned mine. For this purpose, two-step shading analysis, including local
shading analysis and detailed field investigation, were conducted. In the first step, the study area was
represented in 3D using a DEM with 10 m grid spacing in ArcGIS. To assess the shading effects on the
surface of the tailing embankment for a conservative perspective, the daily hours of sunshine on the
surface were analyzed at the winter solstice using the DEM and solar radiation analysis tool in ArcGIS.
The number of sunshine hours was found to range from 6.1 h/day to 7.9 h/day without interference
from shadows (Figure 9). In the second step, the detailed shade effects associated with nearby light
barriers such as trees and plants were evaluated by performing a field investigation. By using a fish-eye
lens camera, a skyline image at the solar site was captured, and the image was used to analyze on-site
barriers to light reception (Figure 10). From the results generated by checking the distribution of light
obstructions from on-site barriers, a shading matrix was generated (Table 4). The shading matrix stored
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month-by-hour shading data for the shading elements surrounding the solar site, expressed by values
ranging from 0.0 (complete shielding of direct radiation from the PV system) to 1.0 (no shading effects).

 

Figure 9. Daily sunshine hours on the surface of the tailing embankment on the winter solstice
(Choi and Song [79]).

Figure 10. Results of shading analysis using a fish-eye lens camera (Sun Eye 210) (Choi and Song [79]).

Table 4. Shading matrix generated from the onsite solar assessment (Choi and Song [79]).

Month
Time

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

January 0 0 0 0.02 0.63 1 1 1 1 1 0.96 0.72 0.02 0 0
February 0 0 0.04 0.64 0.99 1 1 1 1 1 1 0.99 0.44 0.06 0

March 0 0.10 0.56 1 1 1 1 1 1 1 1 1 0.84 0 0
April 0 0.09 0.83 1 1 1 1 1 1 1 1 1 0.92 0.03 0
May 0 0.24 0.92 1 1 1 1 1 1 1 1 1 1 0.33 0
June 0 0.25 0.92 1 1 1 1 1 1 1 1 1 1 0.65 0
July 0 0.15 0.89 1 1 1 1 1 1 1 1 1 1 0.69 0

August 0 0.10 0.84 1 1 1 1 1 1 1 1 1 0.99 0.21 0
September 0 0.17 0.84 1 1 1 1 1 1 1 1 1 0.73 0 0

October 0 0.04 0.64 1 1 1 1 1 1 1 1 1 0.26 0 0
November 0 0 0.02 0.54 0.98 1 1 1 1 1 0.97 0.60. 0 0 0
December 0 0 0 0.01 0.61 1 1 1 1 1 0.89 0.42 0 0 0
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Song and Choi [80] performed shading analysis to identify the area suitable for installing a floating
PV system on a mine pit lake in Korea. A four-step procedure was suggested to assess the potential
of a floating PV system, including solar site assessment, design of the PV system, simulation of the
PV system, and evaluation of economic feasibility. In the first step, shading analysis was performed
in a GIS environment using a method similar to that described above. The maximum amount of
sunshine was 6.5 h/day. The area of the pit lake surface with more than 6 h/day of sunshine was found
to be 87,650 m2, accounting for 38.9% of the total water surface area. Moreover, small obstructions
around the pot lake were captured from the east and west of the skyline images. Based on these results,
a month-by-hour shading matrix was generated.

4.6. Spatial Analysis Tool

Spatial analysis in a GIS environment is a concept in contrast to general analysis, which does not
take into account spatial characteristics. Spatial analysis includes any of the formal techniques used to
investigate entities based on their topological, geometric, or geographic properties. These techniques
include various approaches such as rooftop extraction and solar radiation modeling. However, the roles
of GISs for spatial analysis discussed in this sub-section are confined to simple geospatial analysis
tools such as map algebra, overlaying, reclassification, slope, orientation, distance, and so on.

In some studies, map algebra analysis (including filtering) or overlaying of two or more maps
was employed to generate new maps. Clifton and Boruff [81] identified the potential of using CSP
to generate electricity in a rural region of Western Australia. Potential CSP sites were defined by
overlaying environmental variables and electricity infrastructure on a high-resolution grid using widely
available datasets and ArcGIS. The CSP potential map regions were classified as high potential, medium
potential, and low potential, and the statistics of each class were calculated. Wong et al. [82] generated
transmissivity and diffuse proportion maps by applying map algebra analysis to maps showing the
proportions of clear days, partly cloudy days, and cloudy days in Hong Kong. Moreover, the slope of
the terrain was analyzed and rooftops with angles of more than 40◦, which is regarded as maximum
for installing PV modules, were excluded. Subsequently, building footprint and solar potential maps
were spatially joined, within a GIS environment, to calculate the rooftop PV potential in Hong Kong.
Massimo et al. [83] overlapped solar radiation in the areas exploitable for solar energy production.
Subsequently, the electricity consumption and potential production were investigated for each district
in Central Italy. Sun et al. [84] generated a map showing the spatial distributions of geographical
constraint areas such as built-up, non-built-up, and unsuitable areas. Then, technical potential and unit
generation cost maps for each area were created by using a few equations. Furthermore, the simple
payback period value, net present value, and carbon reduction potential for each area were calculated
and visualized via map algebra analysis based on several equations.

Bayrakci et al. [85] generated two TRNSYS-based solar power output maps, one in which
temperature was ignored and one in which it was considered, to examine the effects of temperature
on PV systems. The power output differences for 236 cities across the US were used to generate
contour maps indicating a continuous surface of differences between these two approaches via map
algebra analysis. Mahtta et al. [86] included wasteland areas for solar potential calculation using a
filtering approach in a GIS environment. Conversely, areas with average slopes greater than 2.1% and
those with less than minimum thresholds of 4.0 kWh/m2/day for GHI and 5.47 kWh/m2/day for DNI,
were excluded to calculate the solar potential for suitable areas. Lopez et al. [87] proposed GIS-based
approaches to analyze various renewable energy technical potentials in the US. Various spatial analysis
tools were utilized to estimate the system performance and for mapping, including various solar PV
and CSP systems.

Several researchers applied spatial joining of two maps (of different types) or spatial comparison
of maps. Monforti et al. [88] spatially compared solar and wind potential maps to calculate hourly,
daily, and monthly wind and solar electricity correlation coefficients in Italy for 2005. Based on the
results, the complementarity of wind and solar resources for energy production in Italy was assessed
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using a Monte Carlo approach. Niblick and Landis [89] assessed five different renewable energy
potentials on US marginal and contaminated sites that could be re-used. For this purpose, point data
for three different types of marginal land (i.e., Brownfield, Landfill, and abandoned mine lands) and
grid cell data for five different renewable energy sources were spatially joined to map energy resources
to regions of interest in a GIS environment.

Many researchers examined surface characteristics, including slope, aspect, orientation, and
curvature. Choi et al. [90] analyzed the slope of terrain using the surface toolset and DEM data in
ArcGIS to identify regions with slopes of less than 10◦ for a fixed-type PV system. The purpose of
setting this terrain condition was to minimize the environmental damage caused by constructing
a solar power plant in an abandoned mine area. Buffat et al. [91] computed the slope, orientation,
and horizontal angles of each building, using a DSM coupled with building footprints, to assess solar
irradiation on building rooftops, because shadows occur when the elevation angle of the sun is less
than the angle of the local horizon of the observer. Gastli and Charabi [92] analyzed the slope in Oman
to calculate the yearly electricity generation potential for different CSP technologies, such as parabolic
trough, parabolic dish, tower, and concentrated PV. It was determined that if only the land of Oman
with a slope less than 1%, which constitutes 10% of the total land area, is considered to be exploitable
for parabolic trough CSP technology, then the total potential yearly electricity generation would be
about 7.6 million GWh. He and Kammen [93] calculated the available land for solar development in
each province by applying the following filters in the GIS modeling: DEM with an elevation less than
3000 m and a slope less than 1% and land use categorized as barren land, as defined in the land use data
available for solar development. Forests, cropland, wetlands, water, woody savannas, shrub lands,
savannas, grasslands, snowy and glacial areas, and protected land were excluded from this study for
stationary PV.

In a few studies, distance or buffer analysis was performed to derive specific regions or values
related to distance. Köberle et al. [94] generated two worldwide maps showing the cost of electricity
by PV systems with and without transmission lines to analyze the effects of the cost of building new
transmission lines to the nearest load center on the cost of PV electricity. At this point, distance analysis
and map algebra were employed to estimate the cost derived from the length of the transmission line
(distance to the nearest load center). Peterseim et al. [95] identified regions with DNI of more than
18 MJ/m2/day to determine the most promising regions for CSP systems. In addition, transmission
lines with more than 66 kV were considered as they can technically absorb the output of 5–60 MWe
CSP-biomass hybrid plants. In addition, 50 km buffer analysis was conducted around transmission
lines as biomass transport for 50 km is possible. These two conditions were integrated to generate
a map showing the areas within 50 km of the existing transmission lines, overlapped with different
DNI values.

5. Discussion and Conclusions

In this paper, numerous published articles on GIS-based methods and applications for the planning
and design of solar power systems were reviewed. For solar radiation mapping, site evaluation,
and potential assessment of PV and CSP systems, GISs have been used for purposes ranging from
simple to complex, such as (i) DB and visualization, (ii) rooftop extraction, (iii) shading analysis,
(iv) solar radiation modeling, (v) spatial analysis, and (vi) MCDA. In addition, GIS-based methods can
be applied differently according to the scale of study area, as well as the type of solar energy conversion
technology. Based on the detailed literature review, the following conclusions were drawn.

(1) Solar radiation maps can be useful spatial DBs in spatial and temporal analyses of solar resources.
Interpolation methods can be employed for solar radiation mapping in areas with sufficient
measured data. The results are presented as solar maps over large areas in pixels. In the absence
of sufficient measured solar radiation data, other weather information can be used to predict solar
radiation. This method is performed for a specific point, such as a station, by predicting the solar
radiation relatively accurately based on various parameters. In recent years, machine learning
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techniques such as ANNs have been used. After accurately estimating the solar radiation for
additional stations, more accurate solar radiation mapping can be achieved via interpolation.
Solar radiation models using topography were also developed to predict solar radiation where
there is no measured data. Various algorithms and shadow analysis based on GISs are mainly
utilized in these models. The solar radiation maps produced using these methods can facilitate the
identification of solar resources in specific areas and the determination of suitable areas for solar
power plants. Validation using measured data is necessary to verify the accuracy of such maps.

(2) GISs are useful for site evaluation when installing solar power plants for PV or CSP. While diffuse
radiation is also an important factor in PV suitability analysis, only direct radiation is considered
in CSP suitability analysis. In most site evaluation studies, solar radiation is the primary
consideration and is obtained in various ways depending on the presence or absence of data.
In particular, site evaluation by employing a GIS is useful for supporting decision making on the
regional scale, and it is necessary to consider economic, environmental, technical, social, and risk
factors in addition to solar radiation. These factors can be used to exclude unsuitable regions
through Boolean overlay. They can also be employed in various MCDA methods to estimate
suitability indices. Some researchers have performed suitability analysis for buildings, mines,
and reservoirs.

(3) The assessment of solar PV potential is critical in the development of planning policies and
financing schemes for successful PV system deployment. Most of the reviewed literature
focused on assessing the technical potential in the region of interest among the three types
of solar potential. GISs are effective for assessing physical potential (total solar radiation on
the surface/rooftop) and geographic potential (available surface/rooftop area considering the
shadow), serving various purposes such as DB and visualization, rooftop extraction, radiation
modeling, shading analysis, and spatial analysis tools. In addition, GISs can be utilized to
visualize and interpret solar energy-based power output or economic values in the geospatial
context in technical potential assessment.

Despite the advances of PV and CSP technology, a lack of information regarding the feasibility of
solar power systems among installers and consumers, financial groups that broker large installations,
policymakers who enable the deployment of technology, and even scientists and engineers from
other complementary disciplines, has become a formidable barrier to their extensive penetration.
The widespread use of GISs has provided information to various social groups with the modeling
and assessment capabilities of solar power systems associated with resource mapping, site evaluation,
and potential assessment. The roles of GISs have extended beyond data inventory and visualization to
sophisticated modeling, evaluation, assessment, and interdisciplinary studies of solar energy.

Nonetheless, a gap is still present between the solar energy related maps generated by researchers
and their practical use in solar energy system design and management works by engineers, planners,
and designers. Consequently, greater efforts are required to minimize this gap by maximizing the
applicability and practicality of future modeling and assessment results. All the solar energy’s potential,
economic, environmental aspects are associated with geospatial context and thus GIS can be used as a
basis platform. Therefore, it is necessary to conduct convergence research or to develop to couple GIS
technology and solar energy related potential/economic/environmental analysis software.

In the future, related research will continue to improve and develop via the use of high-resolution
geospatial data, advancement of spatial data analysis techniques, and coupling of GIS technology with
various (empirical, theoretical, and analytical) models and methods. Furthermore, the future of solar
PV energy is in going to a distributed power system or a smart grid that reflects a spatial perspective.
Therefore, it is necessary to conduct research on the optimization of solar energy system design using
GIS in the future.
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Abbreviations and Symbols

The following abbreviations are used in this manuscript:

AHP analytic hierarchy process
ANN artificial neural network
ATM atmospheric and topographic model
CAES compressed air energy storage
CBR case based reasoning
CSP concentrated solar power
DB database
DEM digital elevation model
DHI diffuse horizontal irradiance
DNI direct normal irradiance
DSM digital surface model
ESMAP energy sector management assistance program
FAHP fuzzy analytic hierarchy process
FEM finite element method
FLOWA fuzzy logic ordered weight averaging
GHI global horizontal irradiance
GIS geographic information system
IODC Indian Ocean Data Coverage
IRIS Interactive robustness analysis and parameters’ inference for multicriteria sorting problems
LiDAR Light Detection and Ranging
MADSR monthly average daily solar radiation
MCDA multi-criteria decision analysis
MCDM multi-criteria decision making
NREL National Renewable Energy Laboratory
OR-SAGE Oak ridge siting analysis for power generation expansion
PV photovoltaics
SAM system advisor model
SHWS solar hot water systems
SWARA step-wise weight assessment ratio analysis
TOPSIS technique for order preference by similarity to ideal solution
TRNSYS transient systems simulation
US United States
WASPAS weighted aggregates Sum Product Assessment
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Abstract: Solar photovoltaic (PV) power forecasting has become an important issue with regard to
the power grid in terms of the effective integration of large-scale PV plants. As the main influence
factor of PV power generation, solar irradiance and its accurate forecasting are the prerequisite
for solar PV power forecasting. However, previous forecasting approaches using manual feature
extraction (MFE), traditional modeling and single deep learning (DL) models could not satisfy the
performance requirements in partial scenarios with complex fluctuations. Therefore, an improved
DL model based on wavelet decomposition (WD), the Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM) is proposed for day-ahead solar irradiance forecasting.
Given the high dependency of solar irradiance on weather status, the proposed model is individually
established under four general weather type (i.e., sunny, cloudy, rainy and heavy rainy). For certain
weather types, the raw solar irradiance sequence is decomposed into several subsequences via
discrete wavelet transformation. Then each subsequence is fed into the CNN based local feature
extractor to automatically learn the abstract feature representation from the raw subsequence data.
Since the extracted features of each subsequence are also time series data, they are individually
transported to LSTM to construct the subsequence forecasting model. In the end, the final solar
irradiance forecasting results under certain weather types are obtained via the wavelet reconstruction
of these forecasted subsequences. This case study further verifies the enhanced forecasting accuracy
of our proposed method via a comparison with traditional and single DL models.

Keywords: solar irradiance forecasting; wavelet decomposition; convolutional neural network;
recurrent neural network; long short term memory

1. Introduction

1.1. Background and Motivation

With the global attention to environmental issues, the solar photovoltaic (PV) power has been
increasingly regarded as an important kind of renewable energy used to supply clean energy for
the power grid [1]. Nearly 60% of power generated in 2040 is projected to come from renewables,
which wind and solar PV accounts for more than 50%. Additionally, International Energy Agency
(IEA) reported that the installed solar PV capacity has already reached more than 300 GW by the end
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of 2016 [2]. The annual market of solar PV power has increased by nearly 50%. The top five countries,
led by China, accounted for 85% of additions [3]. The above phenomena verified that solar PV power
was the world’s leading source of renewables in 2016.

However, the high dependence of solar PV power on geographical locations and weather
conditions can lead to the dynamic volatility and randomness characteristics of solar PV output power.
This unavoidable phenomenon makes PV power forecasting become an important challenge for the
power grid in terms of the effective integration of large-scale PV plants, because accurate solar PV
power forecasting can provide expected future PV output power, which provides good guidance for
the system operator to design a rational dispatching scheme and maintain the balance between supply
and demand sides. At the same time, scheduling PV power and other power reasonably may be
helpful for effectively addressing the problems, such as system stability and electric power balance [4].
Therefore, accurate solar PV forecasting is essential for the sustainable and stable operation of the
whole power system.

In the actual PV stations, its final PV output is affected by a variety of meteorological factors,
such as solar irradiance [5], moisture, ambient temperature, wind velocity and barometric pressure.
There are two categories of the existing PV forecasting approaches: direct forecast and step-wise
forecast. Direct forecast creates a map between historical power data and power forecast values [6,7].
Differently, the step-wise forecast is comprised of two steps. In the first step, each meteorological factor
is predicted at the target time. In the next step, these predicted meteorological factors are then utilized
to create a map that can reflect the relationship between these meteorological factors and PV power
forecast value. In sum, the reliable information of the relevant meteorological factors is the key to PV
power forecasting. Therefore, as the main influence factor of PV power generation, the solar irradiance
and its accurate forecasting are the prerequisite for solar PV power forecasting.

1.2. Literature Review

With the fast advancement of forecasting theories [8,9], solar physics [10], stochastic learning [11],
and machine learning [12], the relevant technology of the solar irradiance forecasting research area
has also developed rapidly. In general, the existing various forecasting models are correspondingly
designed for solar PV prediction with different time horizon. For example, the forecasting horizon of
Numerical Weather Prediction (NWP) forecasting models is from several hours to several days [13].
Time series forecasting models generate forecast outputs with a time scale that ranges from 5 min to
6 h [14]. Statistical forecasting models based on cloud motion images and satellite information can
generate PV forecast value with a time sclerosis of 6 h [15]. In this paper, we focus on day-ahead solar
irradiance forecasting which the forecasting horizon is 24 h.

Among the previous studies, solar irradiance forecasting approaches can be generally divided
into several categories: statistical approaches, physical approaches and machine learning approaches
and ensemble approaches. In physical approaches, three kinds of basic methods are NWP forecasting
model [16], Total Sky Imagery (TSI) [17] and cloud moving based satellite imagery models, which can
also help to estimate the output power of distributed PV system [18]. These kinds of physical based
forecasting models require additional information about the sky image.

As for the statistical approaches, persistence forecasting, time series, and Model Output Statistics
(MOS) models [19] are involved. In this model, it is supposed that the forecasting data at time t + 1 is
equal to the historical data at time t.

Time series approaches primarily aim at the modeling of long-term solar irradiance forecast,
which includes Moving Average (MA), Autoregressive (AR) [20], Autoregressive Moving Average
(ARMA) [21], and Autoregressive Integrated Moving Average (ARIMA) [22] models. The time series
forecasting model only requires historical irradiance data, in which the relevant meteorological factors
are not involved. In addition, time series approaches can merely capture linear relationships and
require stationary input data or stationary differencing data.
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In recent years, machine learning based forecasting methods have also been successfully applied in
many fields [23–26]. Machine learning models that have been done widely applied in solar forecasting
field are non-linear regression models such as Artificial Neural Network (ANNs) [27,28], the Support
Vector Machine (SVM) [29], and the Markov chain [30]. These nonlinear regression models are also
frequently used together with the classification models [31].

Regarding the ensemble approach, this kind of integrated model consists of multiple trained
forecasting sub-models. Additionally, all the outputs of these forecasting sub-models are taken into
consideration to determine the best output of the ensemble model. This method can well leverage
the advantages of different forecasting sub-models to achieve the performance optimization of the
ensemble model to provide better forecasting results for application [32,33].

Based on the abovementioned forecasting theories, many researchers have carried out important
research work in the field of solar irradiance forecasting and PV power forecasting (both referred
to as “solar forecasting” in what follows). Considering this abundant literature on solar forecasting,
Yang et al. [34] have conducted an adequate literature review work on the history and trends in solar
irradiance and PV power forecasting through text mining. Furthermore, Wan et al. [35] have also
reviewed the state-of-the-art of PV and solar forecasting methodologies developed over the past
decade. Regarding the forecasting of grid-connected photovoltaic plant production, Ferlito et al. [36]
implemented a comparative analysis of eleven forecasting data-driven models online and offline.
The above eleven models include: (1) simple linear models, such as Multiple Linear Regression;
(2) nonlinear models, such as Extreme Learning Machines and weighted k-Nearest Neighbors; and (3)
ensemble methods, such as Random Forests and Extreme Gradient Boosting. To improve real-time
control performance and reduce possible negative impacts of PV systems, Yang et al. [37] proposed
a weather-based hybrid method for 1-day ahead hourly forecasting of PV power output with the
application of Self-organizing Map (SOM), Learning Vector Quantization (LVQ) and Support Vector
Regression (SVR). Gensler et al. [38] used auto-encoder to reduce the dimension of historical data,
and employed LSTM to forecast solar power.

In the field of solar forecasting, a few researchers have also paid attention to the prediction of solar
irradiance due to its important influence on PV power output. For example, Hussain et al. [39] applied
a simple and linear statistical forecasting technique named ARIMA to day ahead hourly forecast of solar
irradiance for Abu Dhabi, UAE. In another relevant study, five novel semi-empiric models for hourly
solar radiation forecasting are developed and then compared with the Angstrom-Prescott (A-P) type
models [40]. Differently, a multi-level wavelet decomposition is applied by Zhen et al. [41] to preprocess
the solar irradiance data in order to further improve the day-ahead solar irradiance forecasting accuracy.
In Zhen’s another paper, a new day-ahead solar irradiance ensemble forecasting model was developed
based on time-section fusion pattern classification and mutual iterative optimization [42]. With the
emergence of deep learning (DL) models, Qing et al. [43] turned to Long Short Term Memory (LSTM)
to catch the dependence between consecutive hours of daily solar irradiance data.

In general, the DL algorithm is more promising compared to the abovementioned traditional
machine learning. Recently, DL approaches have been not only successfully applied in image
processing [44], but also utilized to address the classification and regression issues of one-dimensional
data [45]. In the DL system, there are various branches, including LSTM, Convolutional Neural
Networks (CNN), and Recurrent Neural Network (RNN) and so on. In spite of the superior
performance of DL algorithms, few studies have applied the DL methods in the day-ahead solar
irradiance forecasting. Researchers need to validate whether the introduction of DL can improve the
solar irradiance forecasting accuracy. Moreover, there are various versions of DL models just like those
mentioned above. Different DL models have their own advantages and disadvantages. Therefore,
in the practice of solar irradiance forecasting, three important issues should be taken into consideration,
namely how to select the rational DL models, how to well combine them, and how to further improve
the performance of the hybrid DL model.
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1.3. The Content and Contribution of the Paper

According to the literature review work, we have found that the previous forecasting approaches
using manual feature extraction (MFE), traditional modeling and single DL models could not satisfy the
performance requirements in partial solar irradiance forecasting scenarios with complex fluctuations.
In this paper, we proposed an improved DL model to achieve the performance improvement of
day-ahead solar irradiance forecasting. This proposed model is named the DWT-CNN-LSTM model.
It should be noted that the historical daily solar irradiance curve always presents high variability and
fluctuation since the solar irradiance is influenced by the non-stationary weather conditions. Therefore,
the forecasting accuracy of day-ahead solar irradiance strongly depends on the weather statuses no
matter what kinds of forecasting models we choose. Given this fact, the DWT-CNN-LSTM models
are independently constructed for four general weather types (i.e., sunny, cloudy, rainy, and heavy
rainy days). This is because a single forecasting model cannot well reflect the temporal relationships
between historical and future solar irradiance under different weather conditions. In other words,
classification modeling could reduce the complexity and difficulty of intro-class data fitting to improve
the corresponding forecasting accuracy [1,28].

The basic pipeline framework behind data-driven DWT-CNN-LSTM models consists of
three major parts: (1) Discrete Wavelet Transformation (DWT) based solar irradiance sequence
decomposition, (2) a CNN-based local feature extractor, and (3) an LSTM based sequence forecasting
model. In solar irradiance forecasting under certain weather types, the raw solar irradiance sequence is
decomposed into several subsequences via discrete wavelet transformation. Then, each subsequence is
fed into the CNN-based local feature extractor, which leverages the advantage of CNN to automatically
learn the abstract feature representation from the raw subsequence data. Since the extracted features
are also time series data, they are individually transported to LSTM to construct the subsequence
forecasting model. In the end, the final solar irradiance forecasting results under certain weather types
are obtained via the wavelet reconstruction of these forecasted subsequences. Compared to the existing
studies for solar irradiance forecasting, the contributions of this paper can be summarized as follows:

(1) Discrete wavelet transformation is applied in our proposed DWT-CNN-LSTM model to
decompose the raw solar irradiance sequence data of certain weather types into several
stable parts (i.e., low-frequency signals) and fluctuant parts (i.e., high-frequency signals).
These decomposed subsequences have better behaviors (e.g., more stable variances and
fewer outliers) in terms of regularity than the raw solar irradiance sequence data.
Such wavelet decomposition (WD) is helpful for precision improvement of the solar irradiance
forecasting model.

(2) The CNN and LSTM are perfectly combined in our proposed DWT-CNN-LSTM model, in which
the abstract feature representation from the raw subsequence data is effectively extracted by
CNN and then these features are fed into LSTM. CNN is good at automatically extracting abstract
features from its input, and LSTM is able to find the long dependencies of the time series input.

(3) The validity of the proposed DWT-CNN-LSTM model is verified based on the two measured
dataset, namely the dataset of Elizabeth City State University and Desert Rock Station.

The rest of paper is constructed as follows. Section 2 illustrates the three main parts of the
proposed DWT-CNN-LSTM model, including DWT based solar irradiance sequence decomposition,
the CNN-based local feature extractor, and the LSTM based sequence forecasting model. In Section 3,
the details of the experimental simulation are introduced and the relevant analysis results are discussed.
Finally, conclusions are drawn in Section 4.

2. Improved Deep Learning Model for Day-Ahead Solar Irradiance Forecasting

The historical daily solar irradiance curve always presents high variability and fluctuation since
solar irradiance is influenced by non-stationary weather conditions. This makes the forecasting
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accuracy of day-ahead solar irradiance strongly depend on the weather statuses no matter what kinds
of forecasting models we choose.

Therefore, as shown in Figure 1, the solar irradiance forecasting models are independently
constructed for four general weather types, because according to different weather types, classification
modeling could reduce the complexity and difficulty of intro-class data fitting so as to improve the
corresponding forecasting accuracy.

Figure 1. The flowchart of the day–ahead solar irradiance forecasting for four general weather types.
The DWT-CNN-LSTM forecasting model is based on discrete wavelet transformation (DWT),
convolutional neural network (CNN) and long short term memory (LSTM) network.

In terms of the proposed model (i.e., DWT-CNN-LSTM model) for day-ahead solar irradiance
forecasting, its integrated framework is illustrated in Figure 2. The basic pipeline framework behind
data-driven DWT-CNN-LSTM models consists of three major parts: (1) DWT based solar irradiance
sequence decomposition; (2) CNN based local feature extractor; and (3) LSTM based sequence
forecasting model. As for certain weather types, the raw historical solar irradiance sequence is
decomposed into approximate subsequence and several detailed subsequences. Then each subsequence
is fed to the CNN based local feature extractor, which leverages the advantage of CNN to automatically
learn the abstract feature representation from the raw subsequence data. Since the features extracted
by the CNN are also time series data that have rich temporal dynamics, then they are input
to LSTM to construct the subsequence forecasting model. In the end, the final solar irradiance
forecasting results under certain weather types are obtained through the wavelet reconstruction of
these forecasted subsequences. More details about three major parts above are respectively illustrated
in Sections 2.1–2.3.
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Figure 2. The detailed framework of DWT-CNN-LSTM day-ahead forecasting model for solar
irradiance under certain weather type. The DWT-CNN-LSTM forecasting model is based on discrete
wavelet transformation (DWT), convolutional neural network (CNN) and long short term memory
(LSTM) network.

2.1. Discrete Wavelet Transformation Based Solar Irradiance Sequence Decomposition

In general, solar irradiance sequence data always presents high volatility, variability and
randomness due to its correlation to non-stationary weather conditions. Therefore, the raw solar
irradiance sequence probably includes nonlinear and dynamic components in the form of spikes and
fluctuations. The existence of these components will undoubtedly deteriorate the precision of the
solar irradiance forecasting models. In practice, high-frequency signals and low-frequency signals are
contained in solar irradiance sequence data. The former primarily results from the chaotic nature of the
weather system. The latter is caused by the daily rotation of the earth. As for each signal with certain
frequency, it is easier for a specific sequence forecasting model to predict the corresponding outliners
and behaviors of that signal. Given the above considerations, DWT is employed here to decompose
the raw solar irradiance sequence data into several stable parts (i.e., low-frequency signals) and
fluctuant parts (i.e., high-frequency signals). These decomposed subsequences have better behaviors
(e.g., more stable variances and fewer outliers) in terms of regularity than the raw solar irradiance
sequence data, which is helpful for the precision improvement of the solar irradiance forecasting
model [46].

In numerical analysis, DWT is a kind of wavelet transform for which the wavelets are
discretely sampled. The key advantage of DWT over Fourier transforms is that DWT is able to
capture both frequency and location information (location in time). In addition, DWT is good at the
processing of multi-scale information processing [47]. These superiorities make DWT an efficient
tool for complex data sequence analysis. In wavelet theory, the original sequence data are generally
decomposed into two parts called approximate subsequence and detailed subsequence via DWT.
The approximate subsequence captures the low-frequency features of the original sequence, while the
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detailed subsequence contains the high-frequency features. This process is regarded as wavelet
decomposition (WD), and the approximate subsequences obtained from the original sequence can also
be further decomposed by WD process. Then the high-frequency noise in the forms of the fluctuation
and randomness in original sequence can be extracted and filtered through WD process.

Given a certain mother wavelet function ψ(t) and its corresponding scaling function ϕ(t),
a sequence of wavelet ψj,k(t) and binary scale-functions ϕj,k(t) can be calculated as follows:

ψj,k(t) = 2
j
2 ψ

(
2jt − k

)
(1)

ϕj,k(t) = 2
j
2 ϕ

(
2jt − k

)
(2)

in which t, j and k respectively denote the time index, scaling variable and translation variable.
Then the original sequence os(t) can be expressed as follows:

os(t) =
n

∑
k=1

cj,k ϕj,k(t) +
J

∑
j=1

n

∑
k=1

dj,kψj,k(t) (3)

in which cj,k is the approximation coefficient at scale j and location k, dj,k denotes the detailed coefficient
at scale j and location k, n is the size of the original sequence, and J is the decomposition level. Based on
the fast DWT proposed by Mallat [48], the approximate sequence and detailed sequence under a certain
WD level can be obtained via multiple low-pass filters (LPF) and high-pass filters (HPF).

Figure 3 exhibits the specific WD process in our practical work. During a certain k-level
WD process, the raw solar irradiance sequence of certain weather types is first decomposed into
two parts: approximate subsequence A1 and detailed subsequence D1. Next, the approximate
subsequence A1 is further decomposed into another two parts namely A2 and D2 at WD level 2,
and continues to A3 and Ds at WD level 3, etc. Therefore, as shown in Figure 2, the approximate
subsequence Ak and detailed subsequences D1 to Dk can be individually forecasted by various time
sequence forecasting models (i.e., our proposed CNN-LSTM model, autoregressive integrated moving
average model, support vector regression, etc). Then the final forecasting results of solar irradiance
sequence can be obtained through the wavelet reconstruction on the forecasting results of Ak and D1
to Dk.

Figure 3. The detailed process of k-level wavelet decomposition. A1 to Ak are the approximate
subsequences, and D1 to Dk are the detailed subsequences. All of these subsequences can be forecasted
individually using some kind of time sequence forecasting models.

2.2. Convolutional Neural Networks Based Local Feature Extractor

Generally speaking, the historical solar irradiance sequence data is the most important input that
contains abundant information for forecasting the day-ahead solar irradiance. In our proposed
DWT-CNN-LSTM model, the original solar irradiance sequence under certain weather type is
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decomposed through DWT into several subsequences. These subsequences also include relevant and
significant information that is useful for the later forecasting of subsequences. Therefore, the effective
extraction of local features that are robust and informative from the sequential input is very important
for enhancing the forecasting precision. Traditionally, many previous works primarily focused on
multi-domain feature extractions [49], including statistical (variance, skewness, and kurtosis) features,
frequency (spectral skewness) features, time frequency (wavelet coefficients) features, etc. However,
these hand-engineered features require intensive expert knowledge of the sequence characteristics
and cannot necessarily capture the intrinsic sequential characteristic behind the input data. Moreover,
knowing how to select these manually extracted features is another big challenge. Unlike manual
feature extraction, CNN is an emerging branch of DL that is used for automatically generating
useful and discriminative features from raw data, which has already been broadly applied in image
recognition, speech recognition, and natural language processing [50].

As for application, the subsequences decomposed from solar irradiance sequence can be regarded
as 1-dimensional sequences. Thus 1-dimensional CNN is adopted here to work as a local feature
extractor. The key idea of CNN lies in the fact that abstract features can be extracted by convolutional
kernels and the pooling operation. In practice, to address the sequences, the convolutional layers
(convolutional kernels) firstly convolve multiple local filters with the sequential input. Each feature
map corresponding to each local filter can be generated by sliding the filter over the whole
sequential input. Subsequently, the pooling layer is utilized to extract the most significant and
fixed-length features from each feature map. In addition, the convolution and pooling layers can be
combined in a stacked way.

First of all, the most simply constructed CNN with only one convolutional layer and one pooling
layer is introduced to briefly show how the CNN directly process the raw sequential input. It is
assumed that K filters with a window size of m are used in the convolutional layer. The details of the
relevant mathematical operation in these two layers are presented in the following two subsections.

(1) Convolutional Layer

Convolution operation is regarded as a specific linear process that aims to extract local patterns
in the time dimension and to find local dependencies in the raw sequences. The raw sequential
input S and filter sequence FS is defined as follows. Here vectors are expressed in bold according to
the convention.

S = [s1, s2, s3, · · · , sL] (4)

FS = [w1, w2, w3, · · · , wK] (5)

in which si ∈ R is the single sequential data point that is arrayed according to time, and wj ∈ Rm×1 is
one of the filter vectors. L is the length of the raw sequential input S, and K is the number of total filters
in the convolutional layer. Then the convolution operation is defined as a multiplication operation
between a filter vector wj and a concatenation vector representation si:i+m−1.

si:i+m−1= si ⊕ si+1 ⊕ si+2 ⊕ · · · ⊕ si+m−1 (6)

in which ⊕ is the concatenation operator, and si:i+m−1 denotes a window of m continuous time steps
starting from the i-th time step. Moreover, the bias term b ∈ R should also be considered into the
convolution operation. Thus, the final calculation equation is written as follows.

ci = f
(

wj
Tsi:i+m−1 + b

)
(7)

in which wj
T represents the transpose of a filter matrix wj, and f is a nonlinear activation function.

In addition, index i denotes the i-th time step, and index j is the j-th filter.
The application of activation function aims to enhance the ability of models to learn more complex

functions, which can further improve forecasting performance. Applying suitable activation function
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can not only accelerate the convergence rate but also improve the expression ability of model. Here,
Rectified Linear Units (ReLu) are adopted in our model due to their superiority over other kinds of
activation functions [51].

(2) Pooling layer

In the above subsection, the given example only introduces the detailed convolution operation
process between one filter and the input sequence. In actual application, one filter can only generate
one feature map. Generally, multiple filters are set in the convolution layer in order to better excavate
the key features of input data. Just as assumed above, there are K filters with a window size of m in
the convolutional layer. In Equations (5) and (7), each vector wj represents a filter, and the sing value
ci denotes the activation of the window.

The convolution operation over the whole sequential input is implemented via sliding a filtering
window from the beginning time step to the ending time step. So the feature map corresponding to
that filter can be denoted in the form of a vector as follows.

Fj = [c1, c2, c3, · · · , cL−m+1] (8)

in which index j is the j-th filter, and the elements in Fj corresponds to the multi-windows as
{s1:m, s2:m, · · · , sl−m+1:L}.

The function of pooling is equal to subsampling as it subsamples the output of convolutional layer
based on the definite pooling size p. That means the pooling layer can effectively compress the length
of feature map so as to further reduce the number of model parameters. Based on the max-pooling
applied in our model, the compressed feature vector Fj−compress can be obtained as follows. In addition,
the max operation takes a max function over the p consecutive values in feature map Fj.

Fj−compress = [h1, h2, h3, · · · , h L−m
p +1] (9)

in which hj = max
(

c(j−1)p, c(j−1)p+1, · · · , cjp−1

)
.

In the application in our solar irradiance forecasting, the solar irradiance sequence input is a
vector with only one dimension. The subsequences that are decomposed from the solar irradiance
sequence are also a vector with only one dimension. Therefore, the size of the input subsequences in the
convolution layer is n × L × 1. n is the number of data samples and L is the length of the subsequences.
The size of the corresponding outputs after the pooling layer is n × ((L − m)/p + 1)× K. It can be
obviously noted that the length of the input sequence is compressed from L to ((L − m)/p + 1).

In sum, the CNN based feature extractor can provide more representative and relevant information
than the raw sequential input. Moreover, the compression of the input sequence’s length also increases
the capability of the subsequent LSTM models to capture temporal information.

To give a brief illustration, the framework for the CNN-based local feature extractor is shown
in Figure 4. Additionally, in the actual application, some important parameters need to be set
according to the specific circumstances. These parameters include the number of the convolutional
and pooling layers, the number of filters in each convolution layer, the sliding steps, the size of sliding
window, the pooling size, etc.
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Figure 4. The picture shows the framework of the CNN based local feature extractor. The convolution
layer consists of different filters marked by yellow, green and grey colors. Each filter can generate
a specific feature map to extract the key information of the raw sequence input through sliding the
corresponding windows. The activation function is used to enhance the ability of models to learn more
complex functions. The function of pooling is equal to subsampling as it subsamples the output of
convolutional layer based on the definite pooling size.

2.3. Long Short Term Memory Based Sequence Forecasting Model (from RNN to LSTM)

In the previous works, some sequence models (e.g., Markov models, Kalman filters and
conditional random fields) are commonly used tools to address the raw sequential input data.
However, the biggest drawback of these traditional sequential models is that they are unable to
adequately capture long-range dependencies. In the application of day-ahead solar irradiance,
many indiscriminative or even noisy signals that exist in the sequential input during a long time
period may bury informative and discriminative signals. This can lead to the failure of these above
sequences models. Recently, RNN has emerged as one effective model for sequence learning, which has
already been successfully applied in the various fields, including image captioning, speech recognition,
genomic analysis and natural language processing [52].

In our proposed DWT-CNN-LSTM model, LSTM that overcomes the problems of gradient
exploding or vanishing in RNN, is adopted to take the output of CNN based local feature extractor
to further predict the targeted subsequences. As mentioned in Section 2.1, these subsequences are
decomposed from solar irradiance data. In the following two subsections, the principle of RNN is
simply introduced and the construction of its improved variant (i.e., LSTM) is then illustrated in detail.

2.3.1. Recurrent Neural Network

The traditional neural network structure is characterized by the full connections between
neighboring layers, which can only map from current input to target vectors. However, RNN has the
ability to map target vectors from the whole history of the previous inputs. Thus RNN is more effective
at modeling dynamics in sequential data when compared to traditional neural networks. In general,
RNN builds connections between units from a directed cycle and memorizes the previous inputs via
its internal state. Specifically speaking, the output of RNN at time step t−1 could influence the output
of RNN at time step t. This makes RNN able to establish the temporal correlations between present
sequence and previous sequences. The structure of RNN is shown in Figure 5.
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Figure 5. The structure of Recurrent Neural Network.

In Figure 5, the sequential vectors X = [x(0), x(1), x(2)] are passed into RNN one by one according
to the set time step. This is obviously different from the traditional feed-forward network in which all
the sequential vectors are fed into the model at one time. The relevant mathematical equation can be
described as follows.

S(t) = σ(U·x(t) + W·S(t − 1) + b) (10)

y(t) = σ(V·s(t) + c) (11)

in which x(t) is the input variable at t time step, W, U and V are weight matrixes, b and c are the
biases vectors, σ is activation functions, and y(t) is the expected output at t time step.

Although RNN is very effective at modeling dynamics in sequential data, it can suffer from
the gradient vanishing and explosion problem in its backpropagation based model training when
modeling long sequences [53]. Considering the inherent disadvantages of typical RNN, its improved
variant named LSTM is adopted in our work, which is illustrated in the following subsection.

2.3.2. Long-Short-Term Memory

LSTM network proposed by Hochreiter et al. [53] in 1997 is a variant type of RNN, which combines
representation learning with model training without requiring additional domain knowledge.
The improved construction of LSTM is helpful for the achievement of avoiding gradient vanishing
and explosion problems in typical RNN. This means that LSTM is superior at capturing long-term
dependencies and modeling nonlinear dynamics when addressing the sequential data with a
longer length. The structure of LSTM cell is shown in Figure 6.

Figure 6. The structure of Long Short-Term Memory Cell.
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LSTM is explicitly designed to overcome the problem of gradient vanishing, by which the
correlation between vectors in both short and long-term can be easily remembered. In LSTM cell,
h(t) can be considered as a short-term state, and c(t) can be considered as a long-term state.
The significant characteristic of LSTM is that it can learn what needs to be stored in the long-term,
what needs to be thrown away and what needs to be read. When c(t − 1) point enters into cell, it first
goes through a forget gate to drop some memory; then, some new memories are added to it via an
input gate; finally, a new output y(t) that is filtered by the output gate is obtained. The process of
where the new memories come from and how these gates work is shown below.

(1) Forget

This part reveals how LSTM controls what kinds of information can enter into the memory cell.
After h(t − 1) and x(t) has passed through sigmoid function, a value f(t) between 0 and 1 is generated.
The value of 1 means that h(t − 1) will be completely absorbed in the cell state c(t − 1). On the
contrary, if the value is 0, h(t − 1) will be abandoned by cell state c(t − 1). The formula of this process
is shown below.

f(t) = σ(w f ·[h(t − 1), x(t)] + b f ) (12)

in which W f weight matrix, b f is biases vectors, and σ is activation function.

(2) Store

This part shows how LSTM decides what kinds of information can be stored in the cell state. First,
h(t − 1) passes through sigmoid function, and a value i(t) between 0 and 1 is then obtained. Next,
h(t − 1) passes through tanh function and then a new candidate value g(t) is obtained. In the end,
the above two steps can be integrated to update the previous state.

i(t) = σ(Wi·[h(t − 1), x(t)] + bi) (13)

g(t) = tanh(Wg·[h(t − 1), x(t)] + bg) (14)

Then the previous cell state c(t − 1) considers what information should be abandoned and stored
and then creates a new cell state c(t). This process can be formulated as follows.

c(t) = f(t)·c(t − 1) + it·gt (15)

(3) Output

The output of LSTM is based on the updated cell state c(t). First of all, we employ the sigmoid
function to generate a value o(t) to control the output. Then tanh and the output of sigmoid function
o(t) are further utilized to generate the cell state h(t). Thus we can output y(t) after the above process
as shown in the following two steps.

o(t) = σ(Wo·[h(t − 1), x(t)] + bo) (16)

y(t) = h(t) = o(t) ∗ tanh(C(t)) (17)

The training process of LSTM is called BPTT (backpropagation through time) [54].

3. Case Study

3.1. Data Source and Experimental Setup

The historical irradiance data applied in the above proposed solar irradiance forecasting models
is based on the dataset of Elizabeth City State University and Desert Rock Station. The first irradiance
dataset in our simulation is downloaded from the National Renewable Energy Laboratory (NREL),
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which is measured by the Elizabeth City State University at Elizabeth City from 2008 to 2012 [55].
There are 1817 days of solar irradiance data available with 5 min time resolution. The second irradiance
dataset in our simulation is downloaded from the National Oceanic & Atmospheric Administration
(NOAA) Earth System Research Laboratory website, which is measured by the Surface Radiation
station at Desert Rock from 2014 to 2017 [56]. There are 1196 days of solar irradiance data available
with 1min time resolution.

To meet the international standard of short-period solar irradiance forecasting, the irradiance data
should be further transformed to be the data with 15 min time resolution by taking the average of
irradiance points data in the span of every 15 min. Therefore, there are total 96 irradiance data points
in one day. Considering the earliest sunrise time and the latest sunset time in three years, we only use
daily data points that range from 18th to 78th. As for the forecast periodicity, we use the historical
irradiance data from the previous three days to predict the irradiance value for the next day. Therefore,
in the solar irradiance forecasting model, the input variable is the historical irradiance data from the
previous three days and the output variable is the predicted irradiance value for the next day.

All experimental platforms are built on high-performance Lenovo desktop computer equipped
with the Win10 operating system, Intel(R) Core(TM) i5-6300HQ CPU@2.30GHz, 8.00 GB RAM,
and NVIDIA GeForce GTX 960M GPU. We use Python 3.6.1 with Keras [57] and Scikit-learn [58]
to establish the DWT-CNN-LSTM forecasting models for day-ahead solar irradiance.

3.2. Model Training and Hyperparameters Selection

In the DL based forecasting models, the mean square error (MSE) is chosen as loss function,
and Adam Optimization is selected as an optimizer. During the deep learning training process,
weight initialization and bias initialization play a vital role. Therefore, we choose the data from
truncated normal distribution with 0 mean and 0.05 standard deviation as weight initialization method
of CNN and fully connected layer. This method is the recommended initializer for neural network
weights and filters. Orthogonal method, a popular initialization way, is selected as weight initializer
for LSTM block. The bias for all hidden layers is set as 0.1. The learning rate is 0.001, the batch size is
24 and the epoch is 200.

In addition, for two dataset, the numbers of training set and the testing set are different under
four general weather types. The training set is used for training forecasting model, the testing set for
evaluating forecasting result. All the above mentioned details of the division of training and testing
sets, as well as parameter setting of DWT-CNN-LSTM model, are listed in Tables 1 and 2.

Table 1. The division detail of samples sets under four general weather types.

Weather Types Elizabeth City Desert Rock Station

Sunny type
The number of training set: {288} The number of training set: {412}
The number of validation set: {32} The number of validation set {46}
The number of testing set: {80} The number of testing set: {115}

Cloudy type
The number of training set: {504} The number of training set: {230}
The number of validation set {56} The number of validation set{25}
The number of testing set: {140} The number of testing set:{65}

Rainy type
The number of training set: {366} The number of training set: {147}
The number of validation set {40} The number of validation set {14}
The number of testing set: {100} The number of testing set: {40}

Heavy Rainy type
The number of training set: {153} The number of training set: {72}
The number of validation set {16} The number of validation set {10}
The number of testing set: {42} The number of testing set: {20}
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Table 2. The parameter setting detail of DWT-CNN-LSTM model.

Option Parameter Setting

Training Method Adam Optimizer
Learning rate {0.001}

Batch size {24}
Epoch {200}

Training stop strategy {early stopping}
Loss Function MSE

We set the split proportion of training set, validation set and testing set as 0.7:0.1:0.2. The training
set is used to train the solar irradiance forecasting models. The validation set is used to adjust
the hyper-parameters of these DL forecasting models. The testing set is used to verify the
model performance.

For the proposed model, we first design two CNN layers with 64 filters, and the filter size and
pooling size are both set to 3. Then, two LSTM layers are connected to CNN output with 100 neurons.
The outputs of LSTM are fed into two fully connected layers with linear activation function. The Relu
activation function is applied to CNN and LSTM layers. To overcome the overfitting problems
in models, dropout method with 0.2 parameter is applied after CNN and LSTM layers. In addition,
early stopping method is also applied. In addition, the output data format of the input layer, each
intermediate layer, and the output layer are accordingly shown in Table 3. Additionally, Table 4
illustrates the structure of the other forecasting models used as benchmarks.

Table 3. The output data format of the input layer, each intermediate layer, and the output layer in
DWT-CNN-LSTM model.

Layer Output Shape

Input layer (180,1)
Conv-1D layer (180,64)

Max-Pooling layer (60,64)
Conv-1D layer (60,64)

Max-Pooling layer (20,64)
LSTM layer (20,100)
LSTM layer (100)

Fully connected Layer (100)
Output layer (60,1)

Table 4. The structure of the other forecasting models used as benchmarks.

Forecasting Models Structure

CNN
Convolutional layer (64 filters + 3 filter size) + maxpooling

(3 pooling size) + convolutional layer (64 filters + 3 filter size)
MaxPooling (3 pooling size) + Fully connected layer (100 neurons)

LSTM 2 LSTM layers (100 neurons)
ANN 2 fully connected layers (100 neurons)

ARIMA Determined by the minimum AIC of each input sample

3.3. Performance Criterion

To evaluate the performance of solar irradiance forecasting models, we employ three effective
error indexes that are Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation
Coefficient (R). The smaller RMSE and MAE, together with the higher R denote the good performance
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of a forecasting model. The mathematical calculation methods of these three error indexes are shown
in the following equations in turn.

RMSE =

√√√√√ N
∑

t=1
(yt − ŷt)

2

N
(18)

MAE =

N
∑

t=1
|y t − ŷt|

N
(19)

R =
Cov(y, ŷ)√
V(y)

√
V(ŷ)

(20)

in which ŷt, yt are, respectively, the forecasting value and actual value at time t. y refers to the mean
value of the whole yt, and N is the sample size of the test set.

3.4. Model Performance Analysis for DWT-CNN-LSTM Model with Different WD Level

In the proposed DWT-CNN-LSTM model, the first step is to decompose the raw solar irradiance
sequence of certain weather type into several approximate subsequences and detailed subsequences.
The key of this step is the determination of decomposition level. As for the solar irradiance forecasting
based on certain dataset, both the higher and lower WD level are not conducive to the performance
improvement of subsequent forecasting models. Therefore, in this part, the performance comparison of
DWT-CNN-LSTM model with different WD level is conducted using two different datasets, namely the
dataset of Elizabeth City State University and Desert Rock Station. The detailed results are respectively
shown in Tables 5 and 6. As shown in Table 5, under the sunny weather type, the DWT-CNN-LSTM
model without WD performs better than that with WD level 1 to 4. This is mainly because the solar
irradiance curve of sunny days is smooth and less fluctuating. Therefore, the application of WD will
not bring very obvious improvement of the forecasting performance.

Table 5. The performance comparison of DWT-CNN-LSTM model at different WD levels using the
dataset of Elizabeth City State University.

Weather Types Error Index
Wavelet Decomposition (WD) Level

Level 1 Level 2 Level 3 Level 4 without WD

Sunny
MAE 23.174 23.474 24.213 24.848 22.560
RMSE 36.548 36.363 40.323 41.244 36.226

R 0.991 0.991 0.989 0.989 0.992

Cloudy
MAE 86.313 81.466 83.547 88.731 86.754
RMSE 121.506 118.645 124.364 126.149 121.922

R 0.926 0.928 0.925 0.919 0.925

Rainy
MAE 95.1758 89.503 93.126 93.695 93.694
RMSE 145.219 139.133 143.919 142.998 142.194

R 0.748 0.757 0.741 0.741 0.743

Heavy rainy
MAE 41.234 38.642 39.981 42.774 43.435
RMSE 68.742 67.574 68.981 70.885 70.410

R 0.628 0.641 0.634 0.611 0.615
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Table 6. The performance comparison of DWT-CNN-LSTM model at different WD levels using the
dataset of Desert Rock Station.

Weather Types Error Index
Wavelet Decomposition (WD) Level

Level 1 Level 2 Level 3 Level 4 without WD

Sunny
MAE 17.131 17.379 18.249 18.498 16.573
RMSE 34.299 34.429 35.844 36.477 33.101

R 0.992 0.991 0.989 0.987 0.993

Cloudy
MAE 62.144 66.499 67.425 68.552 66.661
RMSE 91.099 95.377 96.374 98.551 96.641

R 0.965 0.963 0.958 0.957 0.959

Rainy
MAE 131.384 130.194 136.847 138.257 132.83
RMSE 181.392 180.079 184.963 187.241 182.97

R 0.865 0.866 0.847 0.832 0.857

Heavy rainy
MAE 68.212 62.160 64.161 65.840 63.448
RMSE 96.490 94.977 97.203 103.880 96.373

R 0.657 0.663 0.651 0.619 0.647

Nevertheless, for other three weather types (i.e. cloudy, rainy and heavy rainy) shown in Table 5,
DWT based solar irradiance sequence decomposition does enhance the corresponding forecasting
performance to a different extent. This can be explained by the fact that the solar irradiance curve
of cloudy, rainy and heavy rainy days presents higher volatility, variability and randomness than
that of sunny days. Therefore, the raw solar irradiance sequence of cloudy, rainy and heavy rainy
days probably includes nonlinear and dynamic components in the form of spikes and fluctuations.
The existence of these components will undoubtedly deteriorate the precision of the solar irradiance
forecasting models. Additionally, the application of WD can mitigate the above problems.

To summarize the information provided in Table 5, WD cannot effectively improve the forecasting
performance of sunny days. Under the other three weather types, DWT-CNN-LSTM model performs
best at WD level 2 when using the dataset of Elizabeth City State University. The results of performance
comparison shown in Table 6 are different. Specifically speaking, DWT-CNN-LSTM model of cloudy
days performs best at WD level 1 rather than WD level 2 when using the dataset of Desert Rock Station.
Therefore, we can draw the conclusion that the influence of WD on forecasting performance, as well as
the best WD level, generally varies under different weather types and validation datasets.

3.5. Performance Comparison Analysis of Different Solar Irradiance Forecasting Models

The proposed DWT-CNN-LSTM forecasting model is different from the previous traditional
solar irradiance forecasting models. The key characteristics of the DWT-CNN-LSTM forecasting
model are the perfect combination of the following parts: (1) DWT based solar irradiance sequence
decomposition; (2) CNN based local feature extractor; and (3) LSTM based sequence forecasting model.
In addition, the solar irradiance forecasting models are individually established under sunny, cloudy,
rainy and heavy rainy days. Given this fact, the relevant performance comparison analysis is also
shown and discussed under the above four weather types. The involved three error indexes (i.e., RMSE,
MAE, and R) are considered as the basis of the following performance comparison analysis of different
forecasting models.

3.5.1. Comparison Analysis of Sunny Days

As previously shown in Table 5, the DWT-CNN-LSTM forecasting model of sunny days performs
best at WD level 1 among different WD levels. So in this part, the DWT-CNN-LSTM model at WD level 1
is compared with six solar irradiance forecasting models, namely CNN-LSTM (i.e., our proposed model
without WD), artificial neural network (ANN), and manually extracted features (ANN, persistence
forecasting, CNN and LSTM). As for the manually extracted features-ANN model, the relevant
statistical features and their corresponding expressions are shown in Table 7.
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Table 7. The list of manually extracted features.

Statistical Features Expression

Variance 1 Zvar = (1/n)∑n
i=1(zi − μ)2

Maximum Zmax = max(z)

Skewness Zskew = E
[
((z − μ)/σ)3

]
Kurtosis Zskew = E

[
((z − μ)/σ)4

]
Average Zaver = (1/n)∑n

i=1 zi
1 zi is the solar irradiance data point at time i during the whole day. z is the data point set of {z1, z2, . . . , zn}.

The performance comparisons of different sunny days’ forecasting models using the dataset of
Elizabeth City State University and Desert Rock Station are respectively shown in Tables 8 and 9.
In Table 8, the prediction accuracy of DWT-CNN-LSTM (WD level 1) is worse than the single
CNN-LSTM without WD. The corresponding conclusion can be drawn that the application of
DWT based solar irradiance sequence decomposition does not improve the forecasting performance.
The reason behind this phenomenon has already been explained in Section 3.5.

Table 8. The performance comparison of different sunny day’s forecasting models using the dataset of
Elizabeth City State University.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 1) 23.174 36.548 0.991
CNN-LSTM 22.560 36.226 0.992

CNN 22.773 36.763 0.992
LSTM 24.497 37.049 0.990

Manually extracted features-ANN 43.045 54.796 0.985
ANN 23.533 36.888 0.989

Persistence forecasting 30.271 41.742 0.987
ARIMA 32.148 40.174 0.988

Table 9. The performance comparison of different sunny day’s forecasting models using the dataset of
Desert Rock Station.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 1) 17.131 34.299 0.992
CNN-LSTM 16.573 32.411 0.993

CNN 16.222 33.178 0.993
LSTM 17.032 33.294 0.992

Manually extracted features-ANN 30.187 44.101 0.981
ANN 17.869 34.783 0.990

Persistence forecasting 21.034 38.341 0.984
ARIMA 20.433 37.781 0.987

As for our proposed model without WD (i.e., CNN-LSTM), it is superior to manually extracted
features-ANN. This further verifies the ability of CNN to automatically and effectively extract
representative and significant information from the raw input data. Additionally, ANN, persistence
forecasting, and ARIMA models perform worse than CNN-LSTM, which also validates the advisability
of applying the combined DL models in solar irradiance forecasting. By comparing among CNN-LSTM,
CNN and LSTM, the comparing results also verify the reasonableness of the tandem connection of CNN
and LSTM, because the performance evaluation (based on MAE, RMSE and R) results of CNN-LSTM
are all better than those of CNN and LSTM. The above similar results can also be found in Table 9.
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Figure 7 shows the actual and forecasted solar irradiance curve on sunny day pattern using dataset of
Elizabeth City State University.

Figure 7. Actual and forecasted solar irradiance on sunny day pattern using dataset of Elizabeth City
State University.

3.5.2. Comparison Analysis under Cloudy Day

Based on the dataset of Elizabeth City State University and Desert Rock Station, the performance
comparisons among different cloudy day’s forecasting models are presented in Tables 10 and 11,
respectively. As previously discussed in Table 5, the DWT-CNN-LSTM model of cloudy days has the
highest forecasting precision at WD level 2 when using the dataset of Elizabeth City State University.
Therefore, as shown in Table 10, the proposed DWT-CNN-LSTM model with WD level 2 is selected to
make comparisons with the other kinds of forecasting models.

First of all, it should be noted that all the error index values of DWT-CNN-LSTM (WD level 2)
model is better than that of single CNN-LSTM. This result indicates that the DWT based solar irradiance
sequence decomposition has the capability to further improve the forecasting performance of combined
CNN-LSTM models. As discussed in Section 3.5, the obvious performance improvement can be
attributed to the fact that the solar irradiance curve of cloudy days presents high volatility, variability
and randomness. Therefore, the cloudy day’s solar irradiance sequence includes nonlinear and
dynamic components in the form of spikes and fluctuations. The existence of these components
will undoubtedly deteriorate the precision of the solar irradiance forecasting models. Additionally,
the application of WD could well mitigate the above problems.

Table 10. The performance comparison of different cloudy days’ forecasting models using the dataset
of Elizabeth City State University.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 2) 81.466 118.645 0.928
CNN-LSTM 86.754 121.922 0.925

CNN 87.043 122.042 0.923
LSTM 87.997 122.479 0.921

Manually extracted features-ANN 90.310 125.871 0.905
ANN 89.743 123.532 0.917

Persistence forecasting 95.370 168.443 0.849
ARIMA 110.334 207.694 0.772
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Table 11. The performance comparison of different cloudy days’ forecasting models using the dataset
of Desert Rock Station.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 1) 62.761 91.098 0.965
CNN-LSTM 63.661 96.641 0.959

CNN 64.339 95.373 0.961
LSTM 66.752 97.523 0.954

Manually extracted features-ANN 128.06 165.98 0.817
ANN 69.522 100.811 0.950

Persistence forecasting 74.413 114.369 0.939
ARIMA 89.543 150.192 0.865

When compared to the manually extracted features-ANN, as well as the traditional forecasting
models (i.e., ANN, persistence forecasting and ARIMA), the comparison results verify our proposed
model’s advantages in the following two respects. One is the ability to automatically extract
representative and significant information from the raw input data, and the other is the ability to
capture the long dependencies among the time series input data. In addition, the performance
improvement of CNN-LSTM over CNN and LSTM also reveals the benefits of the combination of them.
A similar discussion can also be made according to Table 11. Figure 8 shows the actual and forecasted
solar irradiance curve on cloudy day pattern using dataset of Elizabeth City State University.

Figure 8. Actual and forecasted solar irradiance on cloudy day pattern using dataset of Elizabeth City
State University.

3.5.3. Comparison Analysis under Rainy Days

In terms of the rain day, it is discussed in Section 3.5 that the corresponding DWT-CNN-LSTM
model performs best at level 2 whether using the dataset of Elizabeth City State University or Desert
Rock Station. Therefore, as shown in Tables 12 and 13, the DWT-CNN-LSTM (WD level 2) is compared
with other forecasting models.
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Table 12. The performance comparison of different rainy days’ forecasting models using the dataset of
Elizabeth City State University.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 2) 89.503 139.133 0.757
CNN-LSTM 93.694 142.194 0.743

CNN 94.773 143.072 0.737
LSTM 95.089 142.877 0.741

Manually extracted features-ANN 132.321 189.842 0.639
ANN 97.894 147.818 0.736

Persistence forecasting 114.338 173.497 0.680
ARIMA 132.066 181.681 0.656

Table 13. The performance comparison of different rainy days’ forecasting models using the dataset of
Desert Rock Station.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 2) 130.194 180.079 0.866
CNN-LSTM 132.831 181.973 0.857

CNN 132.755 183.076 0.857
LSTM 133.007 184.332 0.855

Manually extracted features-ANN 184.352 225.887 0.769
ANN 138.045 186.553 0.829

Persistence forecasting 155.661 205.340 0.788
ARIMA 177.053 210.119 0.772

When CNN-LSTM and DWT-CNN-LSTM (WD level 2) are compared, the results and the reasons
for them are similar to those discussed in Section 3.5.3. Specifically, the MAE is lowered from 93.694
in CNN-LSTM to 89.503 in DWT-CNN-LSTM. The RMSE is lowered from 142.194 in CNN-LSTM
to 139.133 in DWT-CNN-LSTM. At the same time, the R has also been improved from 0.743 in
CNN-LSTM to 0.757 in DWT-CNN-LSTM. The lower MAE and RMAE denote smaller differences
between forecasted and true solar irradiance data, and the higher R also represents that the forecasted
solar irradiance curve is closer to the true one. Therefore, the application of the DWT based sequence
decomposition also helps the improvement of forecasting performance. Additionally, the combined
CNN-LSTM shows better forecasting performance than the rest models (i.e., single DL models and
traditional forecasting models). This indicates that the reasonable combination of DL models can better
take advantage of the CNN and LSTM.

In sum, the improved DL models (i.e., DWT-CNN-LSTM) not only leverages the advantages of
DWT to obtain subsequences with good behavior (e.g., more stable variances and fewer outliers) in
terms of regularity, but also absorbs the superiority of CNN-LSTM to automatically extract abstract
features and find long dependencies. Similar results can also be found in Table 13. Figure 9 shows
the actual and forecasted solar irradiance curve on rainy day pattern using dataset of Elizabeth City
State University.
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Figure 9. Actual and forecasted solar irradiance on rainy day pattern using dataset of Elizabeth City
State University.

3.5.4. Comparison Analysis under Heavy rainy Days

Regarding the weather type of rainy days, the corresponding simulation result in Section 3.5
reveals that the DWT-CNN-LSTM model can reach the best precision at WD level 2. Therefore,
the DWT-CNN-LSTM (WD level 2) is adopted once again to be compared with other forecasting
models. Similar to the cloudy and rainy days, the solar irradiance data under heavy rainy days is also
volatile and fluctuates. The introduction of DWT based sequence decomposition is able to mitigate the
adverse influence of fluctuation on forecasting models. This idea is in accordance with comparison
results shown in Tables 14 and 15.

Table 14. The performance comparison of different heavy rainy days’ forecasting models using the
dataset of Elizabeth City State University.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 2) 38.642 67.574 0.641
CNN-LSTM 43.435 70.410 0.616

CNN 45.775 73.377 0.611
LSTM 44.373 74.086 0.611

Manually extracted features-ANN 54.580 120.495 0.354
ANN 48.956 77.034 0.589

Persistence forecasting 64.416 107.290 0.401
ARIMA 63.848 110.735 0.388

Table 15. The performance comparison of different heavy rainy days’ forecasting models using the
dataset of Desert Rock Station.

Forecasting Models MAE RMSE R

DWT-CNN-LSTM (WD level 2) 62.160 94.977 0.680
CNN-LSTM 63.448 95.374 0.647

CNN 64.743 96.774 0.640
LSTM 65.014 97.096 0.641

Manually extracted features-ANN 81.249 138.689 0.454
ANN 66.312 99.863 0.615

Persistence forecasting 75.029 115.696 0.497
ARIMA 79.473 120.744 0.477
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Additionally, the great performance improvement is also achieved via automatic feature extraction
and long dependency identification, especially under unstable weather conditions. This can also be
verified by the following results shown in Table 14. For example, the MAE is reduced a lot from 64.416
in persistence forecasting to 38.642 in DWT-CNN-LSTM (WD level 2). The RMSE is reduced a lot
from 107.290 in persistence forecasting to 67.574 in DWT-CNN-LSTM (WD level 2). Additionally,
the R is enhanced from 0.401 in persistence forecasting to 0.641 in DWT-CNN-LSTM (WD level 2).
The performance improvement achieved by DWT-CNN-LSTM (WD level 2) can also be found when
compared with other forecasting models shown in Table 14.

Moreover, it should be noted the applicability degree of DWT-CNN-LSTM model in different
weather conditions is different. For instance, as mentioned in Section 3.5.1, the MAE of sunny days’
forecasting is decreased little with 30.271 in the persistence forecasting model and 23.174 in the
DWT-CNN-LSTM model. Nevertheless, in Table 12, the MAE of heavy rainy’ forecasting is reduced
a lot from 64.416 in the persistence forecasting model to 38.642 in the DWT-CNN-LSTM model.
This further indicates that our proposed model is more applicable for the solar irradiance forecasting
of extreme weather conditions. Similar results can also be found in Table 15. Figure 10 shows the
actual and forecasted solar irradiance curve for rainy day pattern using dataset of Elizabeth City
State University.

Figure 10. Actual and forecasted solar irradiance on heavy rainy day pattern using dataset of Elizabeth
City State University.

3.6. Simulation Discussion

In this paper, an improved DL model (i.e., DWT-CNN-LSTM) based on WD, CNN, and LSTM
is proposed for day-ahead solar irradiance forecasting. In the actual simulation based on two
datasets, the model performance of DWT-CNN-LSTM model with Different WD Level is assessed
for four general weather types (i.e., sunny, cloudy, rainy, and heavy rainy). At the same time,
the DWT-CNN-LSTM model with certain WD Level is also compared with other DL models (e.g., CNN
and LSTM) and traditional forecasting models (e.g., ANN, persistence forecast and ARIMA) for each
weather type. The information previously shown in Tables 5–15 is vividly described in the following
Figures 11–14, which is conducive to further summary. The changing trends of bars in these four
figures are similar, which can be summarized as follows.
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Figure 11. The MAE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Elizabeth City State University.

Figure 12. The RMSE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Elizabeth City State University.

Figure 13. The MAE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Desert Rock Station.
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Figure 14. The RMSE of different forecasting models for sunny, cloudy, rainy and heavy rainy days
using the dataset of Desert Rock Station.

First of all, it can be concluded that the influence of WD on forecasting performance, as well as the
best WD level, generally varies under different weather types and validation datasets. Additionally,
the introduction of certain WD level can improving the forecasting performance of DWT-CNN-LSTM
model for cloudy, rainy and heavy rainy days, excluding sunny day. The conclusions are revealed by
the fact in Figures 11–14 that the heights of all the blue bars (represent DWT-CNN-LSTM models with
different WD Level) of sunny day are higher than the dark green bars (represents CNN-LSTM model).
This can be explained by the fact that the solar irradiance curve of cloudy, rainy and heavy rainy days
presents higher volatility, variability and randomness than that of sunny days. Therefore, the raw
solar irradiance sequence of cloudy, rainy and heavy rainy days probably includes nonlinear and
dynamic components in the form of spikes and fluctuations. The existence of these components
will undoubtedly deteriorate the precision of the solar irradiance forecasting models. Additionally,
the application of WD could mitigate the above problems.

Secondly, the proposed DWT-CNN-LSTM models with suitable WD Level are always superior to
other DL models (e.g., CNN and LSTM) and traditional forecasting models (e.g., ANN, persistence
forecast and ARIMA) for cloudy, rainy and heavy rainy days. For sunny days, the CNN-LSTM
model without WD also performs better than other DL models and traditional forecasting models.
The performance enhancement can be attributed to the application of WD and the reasonable tandem
connection of CNN and LSTM. WD is used to decompose the raw solar irradiance sequence data of
certain weather types into several subsequences with better behaviors (e.g., more stable variances and
fewer outliers). CNN is good at automatically and effectively extracting representative and significant
information from the raw subsequence data. As shown in Figure 15, the sequential characteristics with
low and high frequency are well captured by CNN. LSTM is able to find the long dependencies of the
time series input.

In the end, it should be noted that the applicability degree of DWT-CNN-LSTM model under the
different weather is not the same. Specifically speaking, the height differences of bars under different
weather types reveal that our proposed DWT-CNN-LSTM model obviously performs better than
traditional forecasting models (e.g., ARMIA) under cloudy, rainy and heavy rainy days. In other
words, our proposed model is more applicable for the solar irradiance forecasting of extreme weather
conditions. However, as shown in Figures 7–10, there still exists a certain deviation between the actual
solar irradiance value and the predicted value. This may be explained by the fact that the DWT-based
decomposition of raw solar irradiance data may miss part of the information. It is an important
problem needed be overcome in the next research stage.
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Figure 15. The visualization of feature maps extracted by CNN from the raw subsequence data. (a) the
original data before convolution operation; (b) The first feature map yielded by convolution operation;
(c) the second feature map yielded by convolution operation; and (d) the third feature map yielded by
convolution operation.

4. Conclusions

The nature of the volatility and randomness characteristics of the output power of solar PV
generation causes serious difficulty for the real-time power balance of the interconnected grid.
This makes PV power forecasting become an important issue to the power grid in terms of the effective
integration of large-scale PV plants. As the main influence factor of PV power generation, the solar
irradiance and its accurate forecasting are prerequisites for solar PV power forecasting. Therefore,
this paper proposes an improved DL model to enhance the accuracy of day-ahead solar irradiance
forecasting. It should be noted that the DWT-CNN-LSTM model is individually established under
four general weather types (i.e., sunny, cloudy, rainy and heavy rainy) due to the high dependency of
solar irradiance on weather status.

The basic pipeline framework behind the data-driven DWT-CNN-LSTM model consists of three
major parts: (1) DWT based solar irradiance sequence decomposition; (2) the CNN-based local feature
extractor; and (3) the LSTM-based sequence forecasting model. In the solar irradiance forecasting under
certain weather types, the raw solar irradiance sequence is decomposed into several subsequences via
discrete wavelet transformation. Then each subsequence is fed to the CNN-based local feature extractor,
which leverages the advantage of CNN to automatically learn the abstract feature representation from
the raw subsequence data. Since the extracted features are also time series data, they are individually
transported to LSTM to construct the subsequence forecasting model. In the end, the final solar
irradiance forecasting results under certain weather types are obtained via the wavelet reconstruction
of these forecasted subsequences.

In the case study using two datasets of Elizabeth City State University and Desert Rock Station,
the performance of the proposed DWT-CNN-LSTM model is compared with another six solar
irradiance forecasting models, namely, CNN-LSTM (i.e., our proposed model without WD), ANN,
manually extracted features-ANN, persistence forecasting, CNN, and LSTM. Based on three error
indexes (i.e., RMSE, MAE, and R), the simulation results indicate that DWT-CNN-LSTM model has
high superiority in the solar irradiance forecasting, especially under extreme weather conditions.
This mans the proposed DL technique-based day-ahead solar irradiance forecasting model has high
potential for future practical applications.
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Nomenclature

PV photovoltaic
DL deep learning
WD wavelet decomposition
CNN convolutional neural network
LSTM long short-term memory
IEA international energy agency
NWP numerical weather prediction
TSI total sky imagery
MOS model output statistics
MA moving average
AR autoregressive
ARMA autoregressive moving average
ARIMA autoregressive integrated moving average
ANN artificial neural network
SVM support vector machine
SOM self-organizing map
LVQ learning vector quantization
SVR support vector regression
A-P Angstrom-Prescott
RNN recurrent neural network
MFE manual feature extraction
DWT discrete wavelet transformation
LPF low-pass filters
HPF high-pass filters
ReLu rectified linear units
RMSE root mean squared error
MAE mean absolute error
R correlation coefficient
ψ(t) mother wavelet function
ϕ(t) scaling function
ψj,k(t) a sequence of wavelet at time index t
ϕj,k(t) binary scale-functions at time index t
os(t) the original sequence at time index t
cj,k the approximation coefficient at scale j and location k
dj,k the detailed coefficient at scale j and location k
S the raw sequential input
FS the filter sequence
L the length of raw sequential input
K the number of total filters in the convolutional Layer
m window size
⊕ the concatenation operator
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si:i+m−1 a concatenation vector representation of si ⊕ si+1 ⊕ si+2 ⊕ · · · ⊕ si+m−1

f ,σ a nonlinear activation function
wj the j-th filter matrix
Fj the feature map of j-th filter
p pooling size
Fj−compress the compressed feature vector from the pooling layer
X the sequential vectors
x(t) the input variable at time step t
y(t) the expected output at time step t
W,U,V weight matrixes
b,c biases vectors
h(t) a short-term state
c(t) long-term state
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Abstract: Solar resource assessment is fundamental to reduce the risk in selecting the solar
power-plants’ location; also for designing the appropriate solar-energy conversion technology
and operating new sources of solar-power generation. Having a reliable methodology for solar
irradiance forecasting allows accurately identifying variations in the plant energy production and,
as a consequence, determining improvements in energy supply strategies. A new trend for solar
resource assessment is based on the analysis of the sky dynamics by processing a set of images of the
sky dome. In this paper, a methodology for processing the sky dome images to obtain the position
of the Sun is presented; this parameter is relevant to compute the solar irradiance implemented in
solar resource assessment. This methodology is based on the implementation of several techniques in
order to achieve a combined, fast, and robust detection system for the Sun position regardless of the
conditions of the sky, which is a complex task due to the variability of the sky dynamics. Identifying
the correct position of the Sun is a critical parameter to project whether, in the presence of clouds,
the occlusion of the Sun is occurring, which is essential in short-term solar resource assessment, the
so-called irradiance nowcasting. The experimental results confirm that the proposed methodology
performs well in the detection of the position of the Sun not only in a clear-sky day, but also in a
cloudy one. The proposed methodology is also a reliable tool to cover the dynamics of the sky.

Keywords: irradiance nowcasting; Sun detection; sky dynamics; image processing; particle filtering

1. Introduction

The assessment of solar irradiance has become one of the most important topics in the field of
solar energy, such as the photovoltaic industry (PV), concentrating solar power (CSP), and the solar
chemistry process [1–4]. In the solar power industry, constant assessment of the solar resource is
essential to establish the viability of exploiting a specific location and predicting the factors that may
affect its energy production. Having an accurate assessment of the solar resource is an important
advantage that can help in establishing solar energy as a more competitive alternative. Currently,
a number of maps and databases describing the solar resource distribution can be found on the Internet;
however, confidence intervals of data are not provided in any of them [5]. The proposal in [1] argued
that the assessment and forecasting of the solar resource are essential tasks, since they allow better
management of the solar field in real time, reducing the maintenance activities, thus improving the
expected benefits. Currently, the installation of PV and CSP plants has generated an increase in the
production of electricity with renewable energy, and it is to be expected that this trend will continue
increasing. However, the fluctuating nature of solar energy poses particular problems in delivering

Appl. Sci. 2019, 9, 1131; doi:10.3390/app9061131 www.mdpi.com/journal/applsci63



Appl. Sci. 2019, 9, 1131

the generated energy to the electricity grids, not to mention the high initial investment cost, which
require a short-term forecast of the solar irradiance availability, also known as “nowcasting” [1,2,6,7].
This makes the construction and improvement of “nowcasting” systems very important.

There are two main approaches that allow the forecast of solar irradiance [8]. The first one is
the physical-statistical method, which deals with the forecast of the availability of solar irradiance
by means of the so-called numerical weather prediction models (NWP). These prediction models
have a spatial resolution around of 100 km2 and deliver resolutions up to 10 km2 [9], with long-term
irradiance prediction [10,11]. On the other hand, there are models based on real-time prediction by
means of satellite images. The spatial resolution of the satellite prediction models is 1 km2 with a
medium temporal resolution greater than 6 h [2]. The need for low temporal resolution (minutes) has
been addressed by the development of sky imagers. These systems provide a hemispherical view of
the whole sky by using a fish-eye lens or a convex dome mirror and a camera; allowing the Sun motion
and cloud vector to be estimated [12].

Generally, the forecast of the NWP has a better performance in the temporal perspective than
satellite and sky imagers. However, the fluctuation in the initial conditions and the limited resolution
mean that the NWP numerical models cannot predict the position of the clouds accurately, nor their
effects on the solar irradiance in a specific location [2,9,13]. Therefore, it is inescapable to make better
forecasts by short-term measurements with high temporal and spatial resolutions.

Most of solar power plants look for reliable long-, medium-, and short-term data to estimate more
accurately the amount of energy they can produce daily and thus establish energy generation strategies.
In general, for these processes, irradiance sensors are used to obtain global horizontal irradiance (GHI),
direct normal irradiance (DNI), and diffuse horizontal irradiance (DHI) data. However, properly
calibrated and well-maintained sensors have a high cost, not only for the communication networks
required to centralize and store the data, but also for the installations that must be carried out, the
acquisition, and maintenance of the sensors themselves. It could be said that the forecasting of
solar irradiance is a technology that allows optimizing the costs, offering a better quality of energy
supplied by the electrical network, as long as the solar irradiance variation can be predicted with
great accuracy [14]. The combination of these two factors (costs and quality), has been the main
motivation for the development of a complex field of research that aims to make better predictions
of solar irradiance values at the ground level and, thus, be able to predict output values depending
on the type of technology used. The observations with terrestrial instruments that use a sky camera
and record complete images of the celestial dome are a powerful tool, since they represent a great
opportunity to fill the prognostic gap at a low cost of computational processing [2,15].

In this sense, the development of a robust and automatic Sun detection algorithm becomes an
important step in the process of the forecasting of the solar resource. By knowing the Sun position with
precision (solar centroid) and the cloud trajectory through the sky dome and towards the Sun (cloud
vector), irradiance variance can be forecasted due to possible Sun occlusion. In this work, a low-cost
solar nowcasting system based on artificial vision is proposed. With the purpose of capturing the image
of the full sky reflection, the system is equipped with a dome-type convex mirror and a Raspberry Pi
camera module pointing downwards. The camera acquires images every minute with a resolution
of 1024 × 780 pixels; while the mirror occupies 673 × 641 pixels. To process the acquired images,
a methodology addressing several challenges related to the computation of the position of the Sun has
been proposed. This methodology is based on the implementation of several algorithms, which help
to achieve a robust detection; since knowing the correct position of the Sun allows other processes to
be carried out. For instance, knowing the position of a cloud with respect to the Sun enables us to
identify if the Sun will be occluded, as well as the time it will take. In order to test this methodology,
the system was installed in Aguascalientes city, Mexico (21◦51′ N 102◦18′ W).
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2. Methodology

System development was achieved through an artificial vision system that analyzes Earth-sky
dynamics. The prototype was designed with the intention of capturing sky dome images for detecting
the position of the Sun and analyzing sky dynamics, avoiding the use of high-cost fish eye lenses, as well
as expanding CMOS sensor life by avoiding overexposure to the sunlight. A robust and automatic
methodology based on a digital image processing algorithm capable of identifying the position of the
Sun in the images throughout the day and under different conditions has been developed. Having this
information, the system will be able to estimate DHI and DNI values.

2.1. System Design

The prototype consists of a low-cost image acquisition system, based on a Raspberry-Pi camera,
mounted over a highly-convex mirror that reflects the Sun and sky dome over the CMOS IMX219PQ
sensor (see Figure 1).

1. Camera.
2. Support.
3. Mirror.
4. , 5., and 6. Prototype structure.

Figure 1. System prototype.

2.2. Sun Detection

To build a system capable of estimating irradiance values based on sky images, as a first step,
the correct detection of the Sun’s position in the image throughout the day is necessary. To fulfill
this purpose, an image processing algorithm capable of accurately calculating the position of the Sun,
through the elimination of any element different from it in the image, has been implemented.

With the proposed methodology, the system is able to perform the detection, regardless of the
conditions of the day. For the above, a completely clear sky (sunny day), a partially sunny day (partial
occlusions of the Sun) and a cloudy day (where in a period of time, a complete occlusion of the Sun is
presented) have been analyzed. Furthermore, the system is smart enough to perform the detection
without any extra information other than the image by combining several image processing algorithms.
The followed methodology, as well as the implemented algorithms that compose the core of the system
are detailed below.

2.2.1. Framework

The schematic overview of the proposed methodology is shown in Figure 2.
The system begins by acquiring a color image, where the algorithm executes the first process that

consists of the dome’s detection, which is the region of interest (ROI), that is where the Sun should be
in the image. Once this is done, the algorithm attempts to detect the Sun within the ROI, separating
it from the rest of the elements in the image (also known as the segmentation process). Then, if the
executed process finds the Sun, the system will store the position of the Sun in the image, the position
that will be used as input to the tracking process through the particle filter. However, if the algorithm is
not able to segment the Sun in the image, it is estimated through predefined and well-known equations,
and this estimation is used as input to the particle filter. With this methodology, the proposed system
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is always able to return a position of the Sun in the image, no matter what conditions are present in the
sky. This process is repeated automatically with each new image acquired by the sensor, except for the
detection of the dome, which has already been performed on the first image, since it will not change
its position while the system is running.

In the following sections, each of the processes followed by the proposed system are described
in detail.

Figure 2. Sun position detection process.

2.2.2. Dome Detection

In this section, the dome detection method, for the region where the Sun should be, is described.
The dome detection is carried out as follows. Let I(m, n, p) be the matrix, which represents an

image with dimensions m × n × p, where i = 1, 2, ..., m and j = 1, 2, ..., n represent the spatial position
of the pixel and k = 1, ..., p is the channel. Hence, I(i, j, k) is a function that returns the intensity
value of image I in position (i, j) in the k channel; in this case, the image has three channels, red,
green, and blue. The image I is converted to a gray scale image G. This conversion is given by
G(i, j) = 0.299 · I(i, j, 1) + 0.587 · I(i, j, 2) + 0.114 · I(i, j, 3) [16].

Once the gray scale image has been computed, the system performs a noise reduction, resulting
in a new image, denoted as Gs(m, n). The noise reduction was done through the well-known Gaussian
filter. This filter works with a convolution mask with dimensions of 11 × 11, which has the values of
the center pixels weighted more (for more details about the Gaussian filter, see [17]). Then, Gs(m, n) is
binarized by an adaptive thresholding algorithm, which calculates the threshold for a small region of
the image, getting different thresholds, according to its local neighborhood, for different regions of
the same image. Image thresholding segments a digital image based on a certain characteristic of the
pixels (for example, intensity value) based on a threshold (th); that means the new pixel value will
depend on if the pixel value is below or above this threshold, as follows:

B(i, j) =

{
0 if Gs(i, j) < th
1 if Gs(i, j) ≥ th

The goal is to create a binary representation of the image, let B(m, n) be such a representation,
classifying each pixel into one of two categories, such as “dark” (B(i, j) = 0) or “light” (B(i, j) = 1) [18].

In order to find the dome, the system uses B(m, n) as the input of Algorithm 1. Here,
the parameters m, n, and Δy are also needed, m and n are the image dimensions, and Δy is a
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slight vertical displacement that can take values in a range of 50–100 pixels with respect to the center
of the image. What Algorithm 1 does is find the circle that best fits the dome; this circle is defined by
three points, which are obtained through a search that starts at the center of the image and ends once a
pixel, with a value of one, is found. The way to find the pixel is by moving along the image from the
center, both to the left and to the right. As a result of this search, two of the three needed points are
found. The third point is found by moving along the image to the left starting at the center, but adding
a slight translation on the vertical axis (80 pixels). Having these three points, the parameters of the
circle (center and radius) are computed through the procedure DomeParameters, which is composed
of classical circle formulas. An example of dome detection is shown in Figure 3.

Algorithm 1 Dome detection algorithm.

1: procedure FINDDOME(B(m, n), Δy, m, n)
2: w = n/2
3: h = m/2
4: first = True
5: second = True
6: third = True
7: for j = 1 to (m/2) do
8: if B (h, w − j) is equal to 1 and first then
9: P1 = {h, w − j}

10: first = False
11: end if
12: if B (h, w + j) is equal to 1 and second then
13: P2 = {h, w + j}
14: second = False
15: end if
16: if B (h − Δy, w − j) is equal to 1 and third then
17: P3 = {h − Δy, w − j}
18: third = False
19: end if
20: if first is equal to False and second is equal to False and third is equal to False then
21: break
22: end if
23: end for
24: (Pdome, rdome) = DOMEPARAMETERS(P1, P2, P3)
25: return (Pdome, rdome)
26: end procedure

27: procedure DOMEPARAMETERS(P1, P2, P3)
28: {x1, y1} = P1
29: {x2, y2} = P2
30: {x3, y3} = P3
31: A = x1(y2 − y3)− y1(x2 − x3) + x2y3 − x3y2
32: B = (x2

1 + y2
1)(y3 − y2) + (x2

2 + y2
2)(y1 − y3) + (x2

3 + y2
3)(y2 − y1)

33: C = (x2
1 + y2

1)(x2 − x3) + (x2
2 + y2

2)(x3 − x1) + (x2
3 + y2

3)(x1 − x2)
34: D = (x2

1 + y2
1)(x3y2 − x2y3) + (x2

2 + y2
2)(x1y3 − x3y1) + (x2

3 + y2
3)(x2y1 − x1y2)

35: xd = −B/2A
36: yd = −C/2A
37: rd =

√
(B2 + C2 − 4AD)/4A2

38: return (xd, yd), rd
39: end procedure
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(a) Input image. (b) Dome detection.
Figure 3. Dome detection example. The input color image, as well as the dome detection are shown in
(a,b), respectively.

It is important to mention that this step is done only when the first image is acquired. Once the
dome is detected, the system is ready to find the Sun within the ROI.

2.2.3. Clear Sky Sun Segmentation

The ideal case to make the detection of the position of the Sun is when a sunny day is presented,
since there are no elements in the sky that interfere with the detection. This process is identified on the
block called Sun segmentation from the diagram shown in Figure 2. The needed sequence of steps
performed by the system to get the Sun’s position in the image are shown in the diagram of Figure 4.

Figure 4. Sun segmentation based on image processing.

In order to compute the Sun’s position, the system begins with a color space conversion from RGB
to HSL; let H(m, n, p) be the new image representation. HSL is another color space, which represents
the color on three channels: hue, saturation, and brightness (how bright the color is). Thus, objects
with very large brightness values can be easily separated from the background in the image. From the
image H(m, n, p), where in this case, p = 3, which represents the brightness channel in the image,
the system performs thresholding over it and then a binarization. This threshold value is chosen
based on the histogram of the image pixel intensities. From this operation, the matrix BH is obtained,
this matrix contains dark values in the object zone and white values in the background.

The resulting image is shown in Figure 5b, where the objects segmented are the those with the
highest brightness.

From each object found, the system computes the minimum enclosing circle to get the center, as
well as the radius; let C = {c1(xc1 , yc1 , rc1), . . . , cn(xcn , ycn , rcn)} be the set of detected circles, where
(xci , yci ) represents the center coordinates and rci the radius of the ith circle (ci). To discriminate the
Sun from all those objects found in the segmentation process, Algorithm 2 has been implemented.
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(a) Input images. (b) Binary image.
Figure 5. Binarization of the image. (a) shows the input color image. (b) shows the result of
the binarization.

Algorithm 2 Sun-searching algorithm.

1: procedure SUNSEARCHING(C, Pdome, rdome, MaxSunRadius, MinSunRadius)
2: n = |C|
3: for i = 1 to n do
4: Pi, ri = ci(xci , yci , rci )
5: d = ‖Pi, Pdome‖
6: if d < rdome and (MinSunRadius < ri < MaxSunRadius) then
7: cSun = ci
8: else
9: cSun = (0, 0, 0)

10: end if
11: end for
12: return cSun
13: end procedure

The input parameters of Algorithm 2 are the detected circles C, the center and radius of the
detected dome, and a max and min radius of the Sun, which have been determined experimentally.

From the input parameters, Algorithm 2 begins by computing the cardinality of the set C (detected
circles), then the algorithm iterates over each element in C, computing the distance (d) of each element
(centroid of the circle) to the dome center; if the distance of an element is lower than the dome radius
and the radius is between values MinSunRadius and MaxSunRadius, then the system considers this
element as one circle that could represent the Sun; otherwise, the system returns as the Sun position the
point (0,0) with a radius of zero. That means, in the end, that the algorithm returns the last element that
fulfills these conditions. As the output of this process, in Figure 6, a Sun detection example is shown.

Figure 6. Sun detection example.

2.2.4. Partially Sunny Day

The process described in Section 2.2.3 is repeated with each new image acquired by the camera.
However, it may be the case that a cloud with a brightness similar to the Sun is generated; if that

happens, the system could segment two objects (the cloud and the Sun), and both objects could be
within the circle that represents the dome; thus, they could be valid objects, and any of them could
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be considered as the Sun, or even worse, if a cloud is generated so close to the Sun such that the
segmentation process generates an object that fuses these two elements, then the Sun’s position in the
image would have a translation relative to the actual position. An example of this possible scenario is
shown in Figure 7.

(a) Input image. (b) Segmentation result. (c) Sun detection.

Figure 7. Sun and cloud segmented as a single object. (b) shows the output of the segmentation process,
while in (c), the resulting Sun position (red dot), as well as the enclosing circle are shown.

In order to deal with this problem, an object tracking algorithm based on particle filters
was implemented.

Particle Filter

Particle filters are based on probabilistic representations of states by a set of samples (particles),
with the advantage of making possible the representation of a non-linear system and measurement
models and multi-modal non-Gaussian density states [19,20]. The main idea of particle filters is to
represent the required posterior density function by a set of random samples with associated weights
and to compute estimates based on these samples and weights.

Let {xi
0:k, ωi

0:k}N
i=0 denote the set of samples that characterizes the a posteriori probability density

function (PDF) p(x0:k|z0:k), where {xi
0:k, i = 1, . . . , N} is a set of points with associated weights

{ωi
0:k, i = 1, . . . , N} and x0:k = {xj, j = 0, . . . , k} and z1:k = {zj, j = 0, . . . , k} are the set of all

states and measurements up to time k, respectively.
The weights are normalized such that ∑i ωi

k = 1, and they can be chosen using the principle of
importance sampling [21].

In the particle filter implementation, a re-sampling step has been applied. This step allows the
reduction of the effects of degeneracy, observed in the basic particle filter algorithm. The basic idea is
to eliminate particles that have small weights and to concentrate on particles with large weights [21].

Particle filtering provides a robust tracking framework, as it models uncertainty; besides, particle
filters can deal with occlusions.

Sun’s Position Based on the Particle Filter

After the segmentation process, the position of the Sun in the image is computed, allowing the
system to use this information as an input parameter for the particle filter. By doing this, the system is
able to track the Sun in each frame; then, if this position suffers an unexpected variation because it has
been merged with a very close cloud, the system is capable of mitigating this change.

In Figure 8, the detection (red dot), as well as the tracking (green dot) positions of the Sun
are shown.
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Figure 8. Sun detection (red dot) and tracking (green dot).

On the other hand, from the case shown in Figure 7, in which the Sun and a cloud (that has
suddenly formed very close to it) have been merged as a single object, causing the enclosing circle of
this object to be such that its center moves away from the circumsolar area, the system is capable of
mitigating the change, keeping the tracking position close to the circumsolar area, due to the use of the
particle filter, as shown in Figure 9.

Figure 9. Correction of the Sun’s position through tracking.

At this point, with the proposed approach, it is possible to determine the position of the Sun
even in cases where there are elements in the scene that may interfere, as is the case of clouds whose
intensity in the image could have values similar to the intensity of the Sun. However, it may be the
case that the Sun cannot be detected because it is totally occluded by a cloud during a long period of
time, for instance on a very cloudy day. To address this problem, a solution based on computing the
position of the Sun through the geographical position of the prototype has been implemented.

2.2.5. Detection of the Sun on Cloudy Days

When the position of the Sun, in the image, cannot be computed due to an occlusion commonly
caused by a cloud, the system attempts to approximate it through the geographical position (latitude
and longitude) of the prototype. In order to do that, the Pysolar library (available at pysolar.org) has
been used.

Pysolar is an online library of Python codes that implement an algorithm developed by the
National Renewable Energy Laboratory (NREL) for solar position calculation [22]. The implemented
algorithm is a set of fairly straightforward equations that calculate the Sun’s location in the sky at a
specific time of a specific day.

In Figure 10, a set of positions of the Sun (red dots) computed by the Pysolar library on a unit
sphere throughout the day are shown.

When the Sun is totally occluded by some clouds and it cannot be segmented in the image, which
means that it is not possible to obtain its position, the position computed by the Pysolar library (for
that specific day and time) is used. The computed point is projected onto the image and becomes the
input parameter of the particle filter instead of the output of the segmentation process.
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Figure 10. Solar position calculation made by Pysolar.

An example of the case where the Sun is occluded by some clouds is shown in Figure 11. Due to
fact that the Sun’s position cannot be segmented in the image, the system estimates its position by
the Pysolar library; however, once the segmentation process is capable of detecting the Sun, the
system improves that approximation, since the position of the Sun given by the segmentation is much
more precise.

(a) Cloudy day. (b) Estimated position of the Sun.
Figure 11. Estimation of the Sun’s position when it is occluded by a cloud. (a) shows the input image
where the Sun is occluded by some clouds, while in (b), the position estimation made by the Pysolar
library (blue dot), as well as the position computed by the particle filter (green dot) are shown.

By using this methodology, the proposed system is capable of detecting the Sun in the image,
regardless of the day’s conditions. Knowing the position of the Sun at all times is a fundamental step,
since from this information, a system like the one that has been proposed would be able to compute or
infer other information, for instance an irradiance value.

3. Results and Discussion

To test the proposed approach, three different scenarios have been selected. These three scenarios
are considered as the set of scenarios that cover all the possible conditions that may occur. In the first
scenario, a full clear-sky day has been selected, in the second one, a day where a partial occlusion of
the Sun in some instant of the day is present has been analyzed, and finally, for the third one, a day
where in a period of time, a complete occlusion of the Sun is present, has been selected.

3.1. Scenario 1 (Sunny Day)

In this scenario, a full clear-sky day has been selected. For this scenario, a set of images taken every
15 min, from 9:00–17:00 on 8 November (i.e., from sunrise to sunset), has been analyzed. In Figure 12,
three representative images of this first scenario are shown. In this case, since it is a clear-sky day, the
segmentation process was able to segment the Sun in each frame.
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(a) (b) (c)
Figure 12. Representative examples with full clear-sky day conditions. (a) shows an image taken at
9:00, (b) shows an image taken at 13:00, and finally, (c) shows an image taken at 17:00.

In Figure 13, the Sun’s path throughout the day is shown, where red dots represent the position
given by the segmentation process, while green dots represent the position given by the particle filter.

(a)
(b)

Figure 13. Path followed by the Sun. (a) Projection of the trajectory of the Sun. (b) Trajectory of the Sun.

In order to compare these two trajectories, the distance between the resulting positions of both
the segmentation process and the particle filter has been computed. Figure 14 shows a graph of the
computed distance, in which is shown the average distance between these two trajectories (dashed
black line), the value of which is about 8.03 pixels, as well as the standard deviation with a value that is
around 2.05 pixels. Considering that the average radius of the Sun in the image was about 45.5 pixels,
then it can be said that this error is not significant.

Figure 14. Difference of positions between segmentation and particle filter.
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3.2. Scenario 2 (Partially Sunny Day)

In this scenario, a day in which a partial occlusion of the Sun is present has been selected. The set
of analyzed data have been acquired by the sensor every 15 min, from 9:00 to 18:00 on 13 September.
Figure 15 shows, as in the first case, three representative images of this scenario.

(a) (b) (c)
Figure 15. Representative examples where a partially sunny day is presented. (a) shows an image
taken at 9:00, (b) shows an image taken at 14:30, and (c) shows an image taken at 18:00.

The partial occlusions of the Sun presented in this scenario are due to a cloud that formed very
close to it, which caused the segmentation process to fuse the Sun and a part of the cloud as a single
object; then, the calculated position is such that it is between the Sun and the cloud. In Figure 16, the
trajectory during the day, as well as the partial occlusions of the Sun are shown.

(a) Path of the Sun.

(b) Partial occlusion (ti) (c) Partial occlusion (ti+1)

(d) Partial occlusion (ti+2)

Figure 16. Path followed by the Sun (Set 2). In (b–d), partial occlusion of the Sun are shown.

As in Section 3.1, the distance between the positions given by the segmentation process and the
particle filter have been computed.

In Figure 17a, three instants during the day where there is a clear difference in the position of
the Sun computed by the segmentation process and the particle filter are shown. These differences
become more evident when the distance between these positions are plotted, as shown in Figure 17b,
in which an upper limit given by two-times the standard deviation of the distance above the mean
value has been marked, and as can be seen, these points are above this limit; this means that these
three points moved too far away from the average distance, an effect caused by inaccurate detection in
the segmentation process (see Figure 16b–d).
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(a) Sun trajectory.

(b) Distance between trajectories.

Figure 17. Sun trajectory and distance between trajectories.

3.3. Scenario 3 (Cloudy Day)

Figure 18 show the representative images of the third test scenario.

(a) (b) (c)
Figure 18. Representative examples of cloudy day conditions. (a) shows an image taken at 10:00, while
(b,c) show an image taken at 12:15 and 14:00, respectively.

For this scenario, the images were taken from 10:00–14:00, every 15 min, on 17 August. Along this
period of time, the Sun was completely occluded at several moments; one of these moments was at the
beginning, as shown in Figure 18a.

In order to compute an approximate position of the Sun, the system uses the the geographical
position (latitude and longitude) of the prototype to then, project this position in the image (see
Figure 19).

(a) Estimated position of the Sun. (b) Estimated Sun trajectory.
Figure 19. Estimated position of the Sun. (a) shows the Sun position estimation at the beginning, and
(b) shows an example of the trajectory of the Sun given by the Pysolar model (blue dots), as well as the
trajectory given by the particle filter (green dots).
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The system attempts to follow the Sun using the computed estimated position until the system is
able to segment the Sun. This is done because it is very important to know the position at any moment.
However, given that the projected position is just an approximation, we improve it once the system is
able to detect the Sun in the segmentation process, as is shown in Figure 20.

Figure 20. Sun detection (red dot), estimation (blue dot), and tracking (green dot).

By adding this strategy to the system, it is possible to have an estimation of the position of the
Sun in the image regardless of the occlusions generated by the clouds.

In Figure 21, the complete trajectory during the evaluated period of time is shown. It can be
observed that there are some positions away from the trajectory; this is due to the cloud that was
initially generating an occlusion of the Sun begins to move, so there is an instant where the Sun is
partially occluded, and as a consequence, the segmentation process considers these two elements as a
single one; however, by using the particle filter, the system avoids this abrupt change.

(a) Sun trajectory in the image.
(b) Trajectories’ plot.

Figure 21. Trajectory of the Sun during the evaluated period of time detection.

To form a better view of the performance of the system, a video in the three scenarios described
above, can be seen online at Supplementary Materials https://youtu.be/HY2plwtBR-4.

3.4. Detection Accuracy

In order to test how accurate the system is, a day in which the system can always detect the
Sun has been chosen, then, as reference the position given by the segmentation process, the positions
generated by both the particle filter and the Pysolar model position have been compared. In Figure 22,
the trajectories of the Sun given by the three proposed strategies are shown.
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Figure 22. Trajectory of the Sun given by the segmentation process (red dots), the particle filter (green
dots), and the estimated position (blue dots), during the day.

In Figure 23, each of the three trajectories have been plotted to clearly show their behavior. It can
be observed that the estimated position (position given by the Pysolar model) diverges considerably
from the trajectory of the Sun in the image, while the position given by the particle filter remains
close. Nevertheless, as was mentioned before, when the system cannot segment the Sun, the only
information it has is the result of the position model.

Figure 23. Trajectory of the Sun during a day where we can always detect it.

To evaluate the system quantitatively, the solar zenith angle (SZA) has been calculated as follows.
From each point (Pdome with coordinates (x, y)) of the positions of the Sun in the dome given by the
segmentation process, particle filter and Pysolar model, the distance to the center of the dome has been
calculated (this distance is denoted as dp in Figure 24).
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Figure 24. Sun position in the dome.

Then, each of these distances is normalized by dividing them by the radius (defined as rdome in
Figure 24) of the dome. Thus, it is possible to compute the solar zenith angle on a unit sphere according
to the following expression,

SZAi = arctan

(
dpi /rdome√

1 − ((xi/rdome)2 + (yi/rdome)2)

)
, i ∈ {1, . . . , N}

By doing this for the N Sun’s positions given by the segmentation process, the particle filter and
the Pysolar model, the set of plots shown in the Figure 25 results.

Figure 25. Solar zenith angle (SZA).

Using the SZA of the segmentation process as the reference, the error from the SZA for both the
particle filter and Pysolar model have been calculated.

As can be seen in Figure 26, the SZA given by the particle filter deviated about 0.86◦ away on
average from the SZA given by the segmentation process; this indicates that the position of the particle
filter remained practically in the center of the circumsolar area of the Sun. On the other hand, the SZA
given by the Pysolar model was around 4.51◦ away on average from the SZA given by the segmentation
process; thus, using only this information can result in significant errors in later processes, for instance
the irradiance estimation.
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Figure 26. Solar zenith error.

Besides of the SZA calculation, the solar azimuth angle (SAA) has also been calculated using the
following expression:

SAAi = arctan
(

yi/rdome
xi/rdome

)
, i ∈ {1, . . . , N}

Figure 27 shows the set of plots of the azimuth angles of the segmentation process, the particle
filter, and the Pysolar model.

Figure 27. Solar azimuth angle (SAA).

Similar to the previous case, taking as a reference the SAA of the segmentation process, the error of
both the SAA of the particle filter and the SAA of the Pysolar model have been computed; in Figure 28,
these errors are shown.
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Figure 28. Solar azimuth error.

The behavior of the SAA errors was similar to the behavior of the SZA errors, the SAA of the
particle filter having an average error of 2.47◦ while the SAA of the Pysolar model was around of 6.88◦

on average.
From the results obtained, it can be observed that clouds occluding the Sun generated the

perception of changing the size of the Sun depending on the water vapor concentration of the cloud.
“Thin” clouds (low water vapor concentration) tended to generate a perception of growth in the Sun
size. On the other hand, when “heavy” clouds were present (high water vapor concentration), the
sunlight was obstructed completely, and the Sun position could not be determined. Nevertheless,
having the position of the Sun, at any moment, was crucial, and this could only be accomplished
by a combination of algorithms that was ready for all the sky scenarios. In addition, mapping sky
coordinates to image coordinates allowed working in a new reference system that avoided hardware
errors.

4. Conclusions

A novel methodology based on the implementation of several image processing techniques to
achieve a robust and automatic detection of the position of the Sun from a set of images, acquired with
a low-cost artificial vision system, was proposed. The methodology allowed not only detecting the
position of the Sun in a clear-sky day, but also in a cloudy one, even if the Sun was completely occluded.
The proposed methodology has been tested using a set of images of three different scenarios, clear-sky
day, a partially sunny day, and a cloudy day. Experimental results demonstrated that regardless of
the conditions of the day, the computed position of the Sun was within the circumsolar area. It is
important to mention that knowing an accurate position of the Sun at any moment allows performing
other processes, for instance knowing not only the position of a cloud with respect to the position of
the Sun to identify if an occlusion will occur, but also the time it will take, which is fundamental in the
implementation of better solar resource assessment systems.

Supplementary Materials: A supporting video is available at: https://youtu.be/HY2plwtBR-4.
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Abstract: Increasing photovoltaic (PV) generation in the world’s power grid necessitates accurate
solar irradiance forecasts to ensure grid stability and reliability. The University of Texas at San
Antonio (UTSA) SkyImager was designed as a low cost, edge computing, all-sky imager that provides
intra-hour irradiance forecasts. The SkyImager utilizes a single board computer and high-resolution
camera with a fisheye lens housed in an all-weather enclosure. General Purpose IO pins allow
external sensors to be connected, a unique aspect is the use of only open source software. Code for
the SkyImager is written in Python and calls libraries such as OpenCV, Scikit-Learn, SQLite, and
Mosquito. The SkyImager was first deployed in 2015 at the National Renewable Energy Laboratory
(NREL) as part of the DOE INTEGRATE project. This effort aggregated renewable resources and
loads into microgrids which were then controlled by an Energy Management System using the
OpenFMB Reference Architecture. In 2016 a second SkyImager was installed at the CPS Energy
microgrid at Joint Base San Antonio. As part of a collaborative effort between CPS Energy, UT San
Antonio, ENDESA, and Universidad de La Laguna, two SkyImagers have also been deployed in the
Canary Islands that utilize stereoscopic images to determine cloud heights. Deployments at three
geographically diverse locations not only provided large amounts of image data, but also operational
experience under very different climatic conditions. This resulted in improvements/additions to
the original design: weatherproofing techniques, environmental sensors, maintenance schedules,
optimal deployment locations, OpenFMB protocols, and offloading data to the cloud. Originally,
optical flow followed by ray-tracing was used to predict cumulus cloud shadows. The latter problem
is ill-posed and was replaced by a machine learning strategy with impressive results. R2 values
for the multi-layer perceptron of 0.95 for 5 moderately cloudy days and 1.00 for 5 clear sky days
validate using images to determine irradiance. The SkyImager in a distributed environment with
cloud-computing will be an integral part of the command and control for today’s SmartGrid and
Internet of Things.

Keywords: distributed PV generation; microgrid; irradiance forecasting; all-sky imager; Raspberry
Pi; optical flow; machine learning; cloud-computing; SmartGrid; Internet of Things (IoT)
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1. Introduction

The Department of Energy (DOE) estimates that PV power will grow to 14% of the electricity
supply by 2030 as the price of solar electricity reaches a point at which it is cost-competitive with
cogen ($0.06/kwh by 2020). It is imperative that power grid reliability and stability be maintained
under this high penetration of low carbon energy [1]. Organizations such as North American Electric
Reliability Corporation (NERC) and California Energy Commission (CEC) [2] have formulated several
requirements needed in a “grid-friendly” PV power plant. For instance, CEC has developed a set
of several smart inverter functionalities such as dynamic volt/var operation and ramp rate control.
Existing PV plants do not have these functionalities even though the inverters are capable, due to the
lack of communications standards and dynamic control. For PV power plants to participate in energy
markets and ancillary services markets, they need to be considered “dispatchable” power plants.

High penetration of PV systems can be achieved if PV inverters [3] participate in the grid frequency
regulation by active power control. Currently, frequency disturbances in the grid are handled by load
curtailment. The disadvantage of this methodology is that it can cause voltage stress on the distributed
generation. The alternative is to operate the PV system below its MPP (Maximum Power Point) to
provide active power control. This can be done by modifying the MPP algorithm in such a way that it
can track the next MPP point while working in the reduced power mode (RPM). A critical component
of coordinated inverter control is forecasted solar power output or forecasted MPP at the array level.
Having accurate intra-hour solar forecasts can enable implementation of a coordinated inverter control
strategy capable of regulating a set-point, which may be a signal from a utility requiring either power
curtailment or frequency regulation. The electric utility industry has yet to see an integrated solution
to the dispatchability problem of PV plants, a system solution that effectively integrates intra-hour
solar forecasting and smart control of inverters to achieve not only a grid-friendly plant, but also one
that provides monetary and efficiency benefits to the PV plant operator.

Microgrids lack the stabilizing effects present in a large urban macrogrid that itself is joined
to an interconnect; these issues are critical when a microgrid is operated in islanded mode. The
Energy Management Systems (EMS) that balance PV output, load, and battery storage require accurate
intra-hour irradiance forecasts to solve the control problem by shedding non-critical load when power
generated is predicted to drop significantly below the load. An increasingly important problem for
utilities is optimal scheduling and dispatch of a microgrid [4–7], both when connected to the macrogrid
and when operated as an island. This task is divided into Day-Ahead Scheduling, which finds optimal
schedules for the next operating day and focuses on energy markets, and Intra-day Dispatching and
Scheduling in which schedules are continuously updated during the current day. Both cases follow
these steps: (1) forecast day-ahead load, (2) forecast day-ahead renewable power (solar, wind), (3)
Micro-Grid Management System (MGMS) optimizes the day-ahead plan, produces schedules for flows
within the microgrid and to the PCC, (4) MGMS transmits schedules to utility control center.

This article describes a four-year research effort to develop hardware and software with an aim to
solve the intra-hour solar forecasting problem for electric utilities. It was a collaborative effort between
many groups, including national labs and research institutes (NREL and the Texas Sustainable Energy
Research Institute TSERI), two universities (The University of Texas at San Antonio and Universidad
de La Laguna in the Canary Islands), public and private utilities (CPS Energy, ENDESA, and Duke
Energy), and a private company, Siemens-Omnetric. It serves as a case study in managing research in
a joint theatre of operations and integrating the efforts of researchers and engineers who came from
very different university and industrial cultures. Details of our research and technology development
have been presented in journal articles [8,9], conference proceedings [10–13], and technical reports [14].
While this paper gives a detailed overview of that research, our primary goal is to describe how the
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UTSA SkyImager was validated at three geographically diverse locations, the pitfalls encountered, the
lessons learned, and the outlook for future research efforts.

The SkyImager evolved from a realization that existing all-sky imaging systems were too
expensive to be deployed in large numbers, suffered from data-loss issues caused by the shadow
band and camera arm, and used proprietary software. The Raspberry Pi single board computer ($35)
and programable high-resolution Pi-Cam ($20) with a fisheye lens ($20) formed the heart of the new
system. The most expensive component was the all-weather security camera enclosure ($350). In
addition, General Purpose IO (GPIO) pins would allow a variety of external sensors to be connected
to the Pi. Low cost and ease of use were essential if the SkyImager were to be deployed in a rural
sustainable development microgrid. In contrast to some commercial all-sky imaging systems, only
open source software would be used. The Pi accommodates several operating systems (OS) including
Raspbian, a Linux-based derivative of Debian. It can be operated with a monitor or in “headless”
mode, and once deployed can be accessed remotely with SSH/SFTP. Code for the SkyImager would be
written in Python and allow calls to libraries such as Open Computer Vision, Scikit-Learn, SQLite, and
Mosquito. In the summer of 2014 it was an open question whether the proposed imager could deliver
the functionality of much more expensive systems and be thoroughly tested before its deployment.

As part of the DOE microgrid INTEGRATE program, the first deployment of the SkyImager
occurred in Fall 2015 at the ESIF building at NREL. INTEGRATE aggregated sustainable generation
and loads into microgrids controlled by an Energy Management System with the OpenFMB protocol.
In 2016 a second SkyImager was installed at the CPS Energy microgrid at Joint Base San Antonio.
A multi-year collaboration between CPS-UTSA and the Universidad de La Laguna resulted in the
deployment of two SkyImagers in the Canary Islands. These utilize stereoscopic images to determine
heights of the bases of cumulus clouds. Deployment of SkyImagers in three diverse locations
provided not only big data, but operational experience in harsh extremes of climate. This resulted in
improvements and additions to our original design: weatherproofing, new environmental sensors, the
need for scheduled maintenance, optimal positioning of the camera, communications with OpenFMB
publish-subscribe protocols, and using WiFi and cloud computing. The SkyImager will be an integral
part of the command and control for microgrids, both as part of the larger SmartGrid in an urban
environment or in an islanded mode in a military or rural setting.

Solar forecasting is widely considered a key means of integrating solar power efficiently and
reliably into the electric grid. For a utility to meet projected customer demand with electricity from
sustainable resources, high-accuracy global horizontal irradiance (GHI) forecasts must be available
over widely different time and space scales. A convenient separation of this forecasting problem into
two parts is as follows: (1) intra-hour forecasts of the ramp events that are caused when cumulus clouds
move between the sun and the solar panels, and (2) day-ahead forecasts for 12, 24, and perhaps 36 h into
the future. There is overlap between the two parts, but this taxonomy is convenient not only because
the physics and forecasting techniques are generally different, but also the way in which the utility
makes use of the forecasts. A single ramp event on a microgrid powered primarily by PV arrays can
result in over/under voltages, as well as frequency deviations and may require secondary spinning
reserves to be brought on line. Day-ahead irradiance forecasts are useful in predicting surplus/deficit
generation capacity that can then be augmented or sold in the day-ahead electricity market.

1.1. Day-Ahead GHI Forecasting

For day-ahead GHI forecasting, both numerical weather prediction (NWP) [15] and satellite
imagery provide effective tools for forecasting irradiance. The National Center for Environmental
Prediction (NCEP), a part of NOAA, runs two versions of the Rapid Refresh (RAP) numerical weather
model to predict environmental data. The first version generates weather data on a 13-km (8-mile)
resolution horizontal grid and the second, the High-Resolution Rapid Refresh (HRRR), generates data
on a 3-km (2-mile) grid. RAP forecasts use multiple data sources: commercial aircraft weather data,
balloon data, radar data, surface observations, and satellite data to generate forecasts with hourly

85



Appl. Sci. 2019, 9, 684

resolution in time and forecast lengths of 18 hours. For further details, consult the RAP website [16].
RAP data are available for download through the National Model Archive and Distribution System
(NOMADS). Several benefits accrue from using NWP for irradiance forecasting: NOAA incurs
much of the computational burden and these models incorporate first-principles physics such as the
Navier-Stokes equations, thereby allowing for the dynamic formation of clouds. Satellite technology is
advancing rapidly with GOES-16 (Geostationary Operational Environmental Satellite) pictures being
updated every 5 min with maximum resolution of 5000 by 3000 pixels. Figure 1 shows such an image
cropped to the central Texas region. The temporal sampling of the data is still insufficient to support
optical flow predictions 15-min ahead. Continued improvements in GOES-R (geostationary satellite
with high spatial and temporal resolution) may well make the satellite approach to minutes-ahead
irradiance prediction more attractive in the future [17–20]. Statistical methods based on historical
time-series data and climatology are also useful for day-ahead PV forecasting.

 
Figure 1. GOES high-resolution satellite image cropped to show the central Texas region.

1.2. Intra-Hour Solar Forecasting

The energy alliance between UTSA and CPS Energy has as one of its primary goals the
development of new solar forecasting technologies that combine inexpensive all-sky imaging cameras
with sophisticated image processing techniques and artificial intelligence software to produce
high-accuracy 15-min ahead solar irradiance forecasts. GHI consists of two components, the Direct
Normal Irradiance (DNI) caused by sunlight traveling in a direct path from sun to PV array and the
Diffuse Horizontal Irradiance (DHI), background illumination that is due to secondary reflections
and absorption/re-radiation. The formula is GHI = cos(θz) DNI + DHI where θz is the zenith angle.
Shadows cast by low-level cumulus clouds significantly impact the DNI but have little effect upon
the background DHI. While it is possible to predict DNI separately [21], for verifying PV power
output forecasts GHI is used. Figure 2 displays the three quantities: GHI, DNI, and DHI, on the date
27 October 2015 at the NREL ESIF facility in Golden, CO. It shows that moderately cloudy conditions
occasion multiple ramp events.
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Figure 2. Daily solar irradiance (W/m2) for 27 October 2015, Golden, CO.

Figure 3 displays a sequence of eight pictures taken by the SkyImager at the NREL site, one every
two minutes starting (upper left) at 12:31pm MST. At that time the sun is not obscured, but cumulus
clouds are moving in from the left. At 12:35 the cloud begins to enter the solar disk and by 12:37 the
sun is completely occluded. This continues until 12:44 when the cloud has moved past the sun and
the DNI recovers. This ramp event is seen in the DNI oscillations that occur around the noon hour in
Figure 2. While this example considers a single ramp event, it strongly suggests that the correlation
between measured GHI and the presence of clouds obscuring the sun in the SkyImager pictures could
be learned by AI models.

 

12:31:33 MST 12:33:37 MST 12:35:41 MST 12:37:45 MST 

 
12:39:49 MST 12:41:53 MST 12:43:58 MST 12:46:02 MST 

Figure 3. SkyImager sequence (27 October 2015, Golden, CO) showing a ramp event.

The challenge in short term prediction of PV power is simply “Where will cumulus cloud shadows
be fifteen minutes from now?” Our approach incorporates as much of the physics as possible, but is
an idealization necessitated by the requirement to produce GHI forecasts in real time for the MGMS.
Solving Navier-Stokes for the true dynamics of the atmosphere is not feasible on a Raspberry Pi. If
GHI can be accurately forecast, then predicting PV power output is straightforward. The evolution
of clouds and irradiance shown in Figures 2 and 3 is even more striking when video of the images is
viewed, confirming that SkyImager pictures are highly correlated with the observed GHI time series.
Moreover, it suggests the camera sensor could be used to measure irradiance as well as predict it. Once
GHI has been accurately forecast, it is usually straightforward to assign a corresponding PV power
output, which is what the MGMS requires.

Figure 4 shows the relationship between GHI (Watts/m2) and PV power (Watts) from the RSF2
PV arrays located at NREL. The relationship is almost linear with a slight hysteresis effect that reflects
the differences in morning versus afternoon irradiance. The task of predicting PV power output
over multiple temporal and spatial scales, and from a variety of different equipment is a challenging
one [22–24].
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Figure 4. Relationship between GHI (W/m2) and PV Power (Watts) determined at NREL.

State of the Art in Solar Forecasting

As photovoltaics achieve greater penetration, the SmartGrid will demand accurate solar
forecasting hence a network of low cost, distributed sensors to acquire large amounts of image
and weather data for input to the forecasting algorithms. Commercial sky imaging systems often
prove too costly and have proprietary software, leading several research groups to develop their own
systems. The solar forecasting research group at UC San Diego [25–29] has done pioneering work
in this field for many years. For one example, Coimbra et al. [30] proposed DNI forecasting models
using images from a Yankee TSI 880 with hemispherical mirror as inputs to Artificial Neural Networks
(ANN). The TSI has high capital and maintenance costs, uses a shadow band mechanism, and requires
proprietary software. The UCSD Sky Imager described in Yang et al. [31] captures images with an
upward-facing charge-coupled device (CCD) Panasonic sensor and a 4.5 mm focal length fisheye lens.
Compared with the TSI it has higher resolution, greater dynamic range, and lossless PNG compression.
The Universitat Erlangen-Nurnberg [32] group used a five-megapixel C-mount camera equipped with
a fisheye lens. They implemented the Thirions ”‘daemons’” algorithm for image registration and
cloud-motion estimation similar to optical flow. In Australia, West et al. [33] used off-the-shelf IP
security cameras (Mobotix Q24, Vivotek FE8172V) for all-sky imaging. Inexpensive compared to the
TSI, the cost of such systems still is ~800 euros. Rather than a feature-tracking strategy, they used
dense optical flow to estimate cloud movement. See also Wood-Bradley [34]. Several research groups
in China are working on the irradiance forecasting problem [35,36] generally using a TSI imager,
but in one case Geostationary Statellite data [37]. As mentioned before dramatic improvements in
GOES-R technology and resolution (spatial and temporal) will make this approach more attractive for
intra-hour forecasting. See also the historical review [38] of irradiance and PV power forecasting that
was produced using text mining and machine learning.

A recurring theme in the INTEGRATE project was that while all-sky imaging was a critical
component of microgrid stability and control, it could not be developed in a stand-alone fashion but
must be fully integrated into the microgrid management system (MGMS). Uriate et al. [39] discuss the
importance of Ramp Rates (RR) on the inertial stability margin of a microgrid deployed at the Marine
Corp Base at Twentynine Palms. They show that a large ramp in PV power can destabilize frequency
when the PV load is suddenly transferred to the cogen. The inertia constant H of a generator is the
ratio of stored kinetic energy to system capacity. Microgrids usually have H < 1 s compared to 2–10 s
for large generation plants. Frequency stability is defined by the condition

∣∣Δ fpu
∣∣ < Δ f pu

max where
allowable frequency deviation Δ f pu

max in p.u. is typically 0.01–0.05 per unit. In [39] the authors derive
the ODE ωmechJdωmech/dt +ω2

mechD = Paccel where ωmech is the mechanical speed of the generator
in rad/s, J the moment of inertia (kg·m2), D a damping coefficient (Nm/s), and Paccel the power
imbalance exerted on a generator rotor, to model the microgrid stability control problem. The NREL
microgrid has a 300 kW Caterpillar diesel generator, whereas JBSA has no cogen. However, the same
issues of stability and frequency control apply when there are no spinning resources. Some electric
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codes are specifying ancillary control must be added to the EMS in order to handle ramp events of a
certain magnitude and duration. See [40–42] for details.

1.3. Climatology and Microgrid Architectures at the Three Locations

As shown in Figure 5 the UTSA SkyImager has been deployed at 3 geographically diverse
locations: Golden, Colorado on the rooftop of the ESIF building at NREL, in San Antonio, Texas at the
CPS Energy microgrid facility at Joint Base San Antonio (JBSA) and the Engineering Building at UTSA,
as well as in the Canary Islands, Spain at Tenerife and Caleta de Sebo. Each location presented unique
challenges in terms of local climate, physical and cyber access, and microgrid design, equipment,
operation, and customer needs.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. SkyImager at (a) NREL, (b) JBSA, (c) Tenerife and (d) Caleta de Sebo.

The UTSA SkyImager was first conceived as a technology for providing accurate intra-hour
irradiance forecasts as inputs to a microgrid management system that would then provide the utility
with command and control of the microgrid in either connected or islanded mode. The Department of
Energy INTEGRATE project [43] lasted for 18 months beginning on 6 March 2015 and partnered NREL,
Omnetric-Siemens, CPS Energy, Duke Energy, and UTSA. The project goal was to increase the capacity
of the electric grid to incorporate renewables by upgrading and optimizing architectures for control
and communication in microgrids. There were three major components: (1) OpenFMB, a reference
architecture that allows real time interaction among distributed intelligent nodes, (2) optimization with
the Spectrum Power Microgrid Management System based on the Siemens SP7 Platform, and (3) PV
and Load Forecasting using UTSA’s applications for both intra-hour and day-ahead irradiance and
building load forecasts. The OpenFMB framework leverages existing standards such as IEC’s Common
Information Model (CIM) semantic data model and the Internet of Things (IoT) publish/subscribe
protocols (DDS, MQTT, and AMQP) to allow flexible integration of renewable energy and storage into
the existing electric grid. The OpenFMB standard was ratified by the North American Energy Standards
Board (NAESB) in March of 2016 and allows communication between diverse grid devices–meters,
relays, inverters, capacitor bank controllers, etc. It allows federated message exchanges with readings
such as kW, kVAR, V, I, frequency, phase, and State of Charge (SOC) published every 2 seconds as well
as data-driven events, alarms, and control in near-real-time.

1.3.1. SkyImager at National Renewable Energy Laboratory in Golden, CO

The site of the first SkyImager deployment was NREL in the Rocky Mountains. Golden’s high
elevation and mid-latitude interior continent geography results in a cool, dry climate. There are
large seasonal and diurnal swings in temperature. At night, temperatures drop quickly and freezing
temperatures are possible in some mountain locations year-round. The thin atmosphere allows for
greater penetration of solar radiation. As a result of Colorado’s distance from major sources of moisture
(Pacific Ocean, Gulf of Mexico), precipitation is generally light in lower elevations.

Eastward-moving storms from the Pacific lose much of their moisture falling as rain or snow
on the mountaintops. Eastern slopes receive relatively little rainfall, particularly in mid-winter. The
SkyImager enclosure came equipped with a heater/fan that performed well at NREL. Given the
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climate, it proved useful in keeping frost off the plastic dome. It adds to the expense and complexity of
the technology and may not be required at other locations. Most installations of the security camera
enclosure would be facing downward and perhaps under a building overhang. Used facing upward
and exposed to the sky, there were issues with water getting inside the enclosure. A simple solution
was silicon caulk applied at the base of the dome. In a typical security installation, a green tinted
plastic dome is used with the enclosure to protect components from UV radiation. For all-sky imaging
a clear plastic dome is a necessity. With any plastic material on a bright sunny day there can be issues
with glare caused by the dome, but this was minor. The alternative is a glass dome but that has it own
set of problems.

As shown in Figure 6, the microgrid at NREL was already well established and the process of
deploying the SkyImager went relatively smoothly. Denver International Airport is located some
36 miles from Golden; this distance introduces some error in the Cloud Base Height for the ray-tracing
algorithm originally used in the SkyImager. The ESIF building at NREL had the infrastructure necessary
for easy installation of both the SkyImager and the Hardkernel Odroid C1 single board computer (SBC)
used for load and day-ahead PV forecasts. Information was transferred using a Wi-Fi network on a
LAN system. NREL also provided un-interruptible 120 VAC power, ample Ethernet connectivity, and
excellent on-site weather and irradiance data. In addition to solar PV arrays, generation included a
500 kW wind power simulator and a 300 kW caterpillar diesel. A 300 kWh battery system provided
energy storage and the load was separated into a controllable component (250 kW) and a critical load
(250 kW).

 
Figure 6. Microgrid at NREL ESIF Building where the first SkyImager was deployed in 2015.

1.3.2. SkyImager at San Antonio, TX, USA

Texas produces more electricity than any of the other 49 states, and as a result has its own
interconnect ERCOT. In 2017, power statewide was generated by a variety of sources: natural gas
(45%), coal (30%), wind (15%), and nuclear (9%). In 2014, wind replaced nuclear as the third-largest
source of power and Texas now produces more wind power than any other state. Solar generation is
increasing, but still relatively small for a state with abundant annual sunshine. Located in central Texas
some 200 miles from the Gulf of Mexico, San Antonio is home to almost 1.5 million people and several
military bases. CPS Energy serves San Antonio and is the nation’s largest public power, natural gas
and electric company. They are committed to renewables, funding a 400 MWac project with multiple
PV plants (Alamo 1–7) close to San Antonio, and wind farms in West and South Texas. CPS Energy
is among the top public power wind energy buyers in the nation and number one in Texas for solar
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generation. In keeping with this commitment, TSERI was formed in 2001 as an alliance between CPS
Energy and UTSA.

For San Antonio, the most significant local weather issue is low-level Gulf stratus [44]. Elevations
of the terrain increase from sea level at the Gulf coast to almost 800 ft at San Antonio, and a moist
air mass over the Gulf of Mexico will cool adiabatically to saturation as it moves upslope. Nocturnal
radiational cooling causes cloud formation before midnight, resulting in a ceiling of 500–1000 feet. A
solid cloud deck will cover much of central Texas and remain in place until late morning when the
sun burns off the stratus and cumulus clouds begin to form. Forecasting Gulf stratus is an important
problem for aviation; it is a matter of accurately predicting low-level wind flow (<5000 ft) with the
most favored wind direction for stratus formation from 90◦ to 180◦. It is important to address these
local weather conditions that occur below the spatial and temporal resolution of NWP, but are crucial
for both inter-hour and day-ahead irradiance forecasts. Use of machine learning using local datasets
and climatology will allow the information and intelligence of a study such as [44] to be incorporated
in site-specific irradiance forecasts.

The Fort Sam Houston Library location at JBSA presented several unique challenges for the
deployment of the UTSA hardware and software, challenges that provide valuable insights for other
researchers. Many of the issues that arose were heavily dependent on the specific location. At JBSA, the
Sky Imager was deployed using an edge-computing configuration with a wired Ethernet connection
for cyber security. The JBSA microgrid is shown in Figure 7 and includes the Base Library building,
solar arrays, inverters, and the pod housing the battery energy storage system (ESS). The need for
accurate on-site meteorological observations necessitated installation of a complete MET Station atop a
10m antenna tower. A Campbell Scientific weatherproof instrument box at the tower base contained a
National Instruments MyRio computer, a transformer, backup battery, and an Odroid C2 single board
computer (SBC) for calculating the day-ahead load/PV forecasts. Atop the tower sat the SkyImager, a
WXT520 Vaisala weather transmitter, and a pyranometer.

Figure 7. The Microgrid at Joint Base San Antonio, TX, USA.
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In July of 2018 another SkyImager was deployed in San Antonio at the location of a university
PV generation project. Funded by a DOE-SECO grant [45] in 2014, solar panels were installed on
the Engineering Building, HEB University Center III, and Durango buildings at UTSA. In addition,
equipment was installed to record measurements from 4 Combiners, 4 Inverters, 2 Kipp & Zonen
CMP11 pyranometers, and a WXT520 Vaisala Weather Transmitter at the UCIII. Figure 8a displays the
SkyImager and PV panels and Figure 8b shows combiners/inverters atop the Engineering Building.
The only ingredient lacking to make this a research microgrid was energy storage.

 
(a) 

 
(b) 

Figure 8. (a) PV panels and SkyImager at UTSA; (b) Inverters & combiners, Engineering Bldg.

1.3.3. SkyImager in the Canary Islands

Six insular power grids comprise the electrical network in the Canary Islands. Conventional
generation costs more here than PV technologies, and savings can be shared between the PV system
owners and the Spanish utility ENDESA. Penetration of renewables varies among these grids, from a
high of 60% penetration of wind energy in El Hierro (after Gorona del Viento hydro-wind power plant is
operational) to Lanzarote-Fuerteventura which achieves single-digit integration of renewables because
of strong environmental regulations, a weak power grid, and an unstable regulatory environment
in Spain for renewable energy infrastructure during the period 2011-15. However, new regulatory
policies will provide a more attractive framework for investment. The Canary Islands Government
plans to avoid ground-based renewable facilities with a large environmental footprint in favor of
smaller rooftop plants close to electricity users. As in Hawaii, the existing distribution grid is not
prepared for a large penetration of residential PV systems with resulting reverse flows, voltage and
frequency instabilities, and drops at the end of long lines. ENDESA has built a testbed smart grid in a
village at the north end of the Fuerteventura-Lanzarote insular power system (La Graciosa).

La Graciosa is the smallest island in the Canary Archipelago with a surface area of 29 km2. It
is in a marine nature reserve north of Lanzarote and home to about 700 people in the island capital
of Caleta de Sebo. Average global irradiation is 5.157 kWh/ kW·day (1883 kWh/kW·yr) while the
average monthly high temperature is 20.8 ◦C. Located a few kilometers away from the African coast,
its proximity to the Sahara Desert gives to La Graciosa particularly stable atmospheric characteristics
due to a quasi-permanent subsidence thermal inversion. Constant north trade winds, along with the
high content of aerosols and dust in the atmosphere, have a large influence over the cloud dynamics
and therefore, the irradiance in the region. As shown in Figure 9, the La Graciosa grid is supplied by
three 20/0.4 kV transformers (600, 400, and 400 kVA) and tied by a 20 kV seabed cable to Lanzarote.
The island has two PV generation plants (5 kW and 30 kW), but recently La Graciosa PV capacity was
increased, enhancing the attractiveness of a smart grid energy management system.
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Figure 9. Microgrid in the Canary Islands.

One of the main differences between La Graciosa project and the prior two experiences in the USA,
is that in the island, a system composed of two sky-imagers was installed, as can be seen in Figure 9.
The reason behind this was to give the forecasting system the ability to estimate cloud base height
(CBH) making use of stereoscopic techniques as in [46,47]. This provides the system with added value
in terms of functionality and gives extra data to incorporate in the next steps of the image processing
and forecasting pipeline. A recent paper comparing the use of different instruments to measure the
CBH concluded that using a pair of inexpensive cameras was the most cost-effective alternative in
comparison with other methods such as a ceilometer or LIDAR [48]. In fact, cloud base height is quite
important to estimate the position of the shadows if a ray tracing approach is taken and it can also be
included as a feature if Machine Learning methods are preferred, as it correlates with the position of
the clouds in the image and the recorded irradiance or PV production.

In this case, the device falls away from the Internet of Things (IoT) concept, since two cameras
are involved in the system, and some computation must be done either in one of the devices or (as it
was done in the project) on a dedicated server. Of course, there are some advantages and drawbacks
for using either method, but we found particularly easy the connection between the sky-imagers and
the server, and we could exploit the higher computational capabilities of the dedicated server. The
main requirement to work this way is to have a robust internet access, which fortunately was granted
by the owners of the buildings where the sky-imagers were installed. The network speed can also
influence the way of operating, as it can act as a bottleneck in the data stream (due to the relatively
large size of images compared to other types of files). Also, in the future the use of Machine Learning
algorithms could be done on the server, which is expected to perform better than computing directly
on the device.

2. Materials and Methods

In the original configuration of the SkyImager, a security camera enclosure housed a Raspberry
Pi single board computer with programmable Pi camera. The enclosure contained a small circuit
board with heater and fan that runs off a supplied 24V AC power supply, standard with many security
cameras. The 12V AC output from this board is input to an AC-DC converter which supplies 12V DC
to a TOBSON converter which supplies 5VDC at 3A for the Raspberry Pi.

2.1. SkyImager Hardware

Figure 10a displays the original SkyImager hardware. At NREL it was found necessary to add
an extra SBC for increased computational power–the Odroid C1 by Hardkernel. Heat dissipation
is an issue with SBC in Texas summers. One C1 was destroyed by heat and as result a cooling fan
was added to the design. The new C2 Odroid has a heat sink to eliminate the overheating issue.
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Acquiring and fusing the 3-exposure images could be done with just the Raspberry Pi 2. The Pi 3
model is 50% faster than its predecessor; careful optimization of the workflow will allow acquisition,
processing, and forecasting with just a Pi 3. This would reduce cost and greatly simplify network
connections. Figure 10b shows this configuration with a single Pi 3, plastic case, cooling fan, camera,
and WeatherBoard. Images could be pushed to the cloud for processing, however, the necessary
bandwidth would be substantial. The sky imagers in La Graciosa are built upon a Raspberri Pi 3 model
B with no ancillary boards, and a super wide fish-eye lens (field of view over 180◦). An inexpensive
mini PV module was added to record irradiance at the camera locations there.

 

(a) 

 

(b) 

Figure 10. (a) Original configuration Raspberry Pi 2/Odroid C1, (b) Current hardware with a single Pi
3 Model B.

Figure 11 shows the equipment deployed on the MET tower at Ft. Sam: a Kipp&Zonen CMP11
pyranometer, the UTSA SkyImager, and a Vaisala WXT520 weather transmitter. Each of the commercial
devices costs several thousand dollars; this cost prompted us to search for low-cost substitutes.

 

 

Figure 11. CMP11 pyranometer, UTSA SkyImager, Vaisala Weather Station.

Several inexpensive alternatives to a commercial pyranometer exist [49]. Devices can be added to
the GPIO pins on the Raspberry Pi. The Hardkernel Weather-Board 2 shown in Figure 12a can take not
only temperature, humidity, and pressure readings (bme280 Application-Specific Integrated Circuit
ASIC), but also measures light in the Visible, Infra-Red, and Ultra-Violet bands (si1132 ASIC). There is
a Python interface for data retrieval. After calibration and conversion of Lux to W/m2, this provides
irradiance measurements and limited weather data in real time. Another ancillary device that will
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be useful during initial deployment of the SkyImager is a GPS locator. At $20, it looks like a small
mouse for a desktop computer and plugs into a USB port. The Linux programs gpsmon and cgps can
be installed on Raspbian and used to take readings of the exact position using the latest GPS satellite
data. These are just two of many environmental sensors that can be connected to the Raspberry Pi.
Figure 12b shows the new PiNoIR camera, which captures infrared light as well as visible. This would
allow for increased contrast between low-level cumulus and high-level cirrus clouds composed of ice
crystals. The SkyImager can be used for additional tasks such as air quality monitoring. Figure 12c
shows the $25 MQ-131 ozone detection sensor, for example.

 

(a) 

 

(b) (c) 

Figure 12. (a) Hardkernel’s WeatherBoard, (b) PiNoIR camera, and (c) MQ 131 Ozone Sensor.

2.2. Image Processing Pipeline

Several additional external inputs were required for our forecasting algorithms: distortion
parameters for the fish eye lens, zenith angle, True North, and most importantly the cloud base
height (CBH). These inputs are used in the image processing pipeline (Figure 13) to output real-time
GHI forecasts for the MGMS. A summary of the pipeline is included here, for details see [8]. (1)
Distortion Removal (due to fish eye lens), (2) Cropping and Masking, (3) Calculation of “Red-to-Blue
Ratio” (RBR), (4) Apply Median Filter to remove impulsive noise, (5) Thresholding to determine
cloud presence, (6) Compute Cloud Cover percentage (clear/moderately-cloudy/overcast), (7) Project
Clouds to height of CBH, (8) Use Optical Flow to move clouds forward in time, (9) Ray-Tracing to
locate cloud shadows, and finally (10) Calculate GHI using shadow locations. Although physically
correct, Step (9) Ray-Tracing is an inverse problem mathematically, hence “ill-posed”. Small errors in
locating shadows can produce significant errors in the forecast irradiance. To address this issue, we
investigated using artificial intelligence and neural works to predict GHI values directly from forecast
cloud locations.

At NREL another raw image was acquired every 15-seconds. The pipeline described above must
be fine-tuned if the processing SBC is to achieve the necessary throughput. An SBC is much more
limited than a desktop server as regards CPU speed and available memory/storage, which is provided
by a 32 Gb micro-SD card. The usual tradeoffs between keeping a large array in memory versus writing
it to disk, are still present even though there is no disk. Efficient programming constructs are required
if the goal of low cost is to be achieved. The EMS may run on a military grade RuggedCom server but
the SkyImager software is constrained run on an ARM architecture. Steps in the pipeline that have
little effect on the overall forecast accuracy can be eliminated. Profiling/timing runs on the optical
flow algorithms will show bottlenecks that can be addressed. This is important whether a ray-tracing
approach or a machine learning strategy is employed.

The goal in intra-hour solar forecasting is real time PV power predictions. Those forecasts result
from a two-step process: predicting cumulus cloud locations 15-min in the future and using projected
cloud locations to forecast irradiance. Each step introduces errors. Work is ongoing for Step 1 - Optical
Flow: compute error metrics of the 15-min ahead image versus the actual image. Step 2 - Machine
Learning takes the predicted image and computes GHI. This approach separates optical flow [50] from
machine learning (ML) and allows GHI to be predicted directly from the image itself. The SkyImager can
be used as a pyranometer for measuring/observing irradiance.
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The training datasets for the neural networks are region-specific, if not site-specific, and require
many all-sky images taken on moderately cloudy days. The weights determined for Golden, CO, will
have to be fined tuned for deployment in the San Antonio area for example. Training is computationally
expensive, whereas the inference or prediction is very fast and can be handled by the Pi. Research on
massive deep learning networks requires Graphical Processing Units (GPU) for training and software
such as Theano, Keras, or Tensorflow.

Figure 13. Image Processing Pipeline.

2.3. Machine Learning for Irradiance Forecasting

Machine Learning (ML) is now ubiquitous in all areas of engineering and data science. It has been
used in many different ways to help solve the solar power forecasting problem, as described in [51,52].
Another area where ML is widely used is forecasting building load [53,54] which includes methods that
are physics-based, statistics-based (Gaussian Process, Linear Regression), and use machine learning
(Artificial Neural Network, Support Vector Machine, Deep Learning). Classic references for Deep
Learning include [55–57] and for Convolutional Neural Networks, [58].

AI software for data mining has evolved dramatically over the last few years. In data analytics
Python is the premier programming language [59] and this fully validated our decision to use it for
the SkyImager project. Rapidminer (Version 8.1.001) [60] is a machine learning platform with a point
and click interface. As shown in Figure 14, a data flow pipeline is established that permits the user to
input a data set, select attributes to analyze, determine target and predictor variable roles, partition the
data into training, validation, and sometimes testing subsets, create a logical fork to apply different
subprocess models such as Random Forests or Deep Learning, run the model(s), and assess error
metrics and overall performance. It is a proprietary package, but a version with somewhat reduced
functionality is available for educational use. For some models Rapidminer utilizes the H2O machine
learning modules (Version 3.8.2.6) [61,62]. Specifically, our Deep Learning (DL) model is found in H2O
as the Python function H2ODeepLearningEstimator(). An open source Python package Scikit-Learn
(Version 0.19.0) [63] allows a user to prototype and compare a variety of classification, clustering,
and regression models. Neural networks and deep learning has seen the evolution of specialized
software such as Keras, Theano, and Google’s Tensorflow, which recently became open source. The
computational demands of training networks on big data are extreme, and this has resulted in a
hardware evolution from central processing units (CPU) to graphical processing units (GPU) to special
purpose tensor processing units (TPU).
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Figure 14. Point and click GUI for Rapidminer allows easy model development.

Before predicting irradiance for cloudy days, consider the much simpler problem of forecasting
on a clear day. The Haurwitz analytic model performs well on days with no clouds. Using physics,
one can derive a closed-form functional relationship [64]: GHIclr = 1098 [cosθz exp(−0.057/cosθz)],
where θz is the solar zenith angle. Can neural networks learn this relationship, given a large enough
dataset on which to train? The actual forecasting problem on a cloudy day is of course much harder.
Information in each all-sky image is used to locate and track low-level cumulus clouds as they move
between the sun and PV-arrays. It is the difference between using ML to recognize machine-written
(or even hand-written) digits versus recognizing and identifying faces in a crowd of people moving
down the street. Work is ongoing to identify the best features to extract from the images, to efficiently
solve the intra-hour solar forecasting problem and to predict very short-term ramp events.

A critical component of any machine learning strategy is deciding which features or input
variables are most strongly correlated with the labels or output variables. A second aspect involves
finding a representation of the data that is compressed or sparse in some basis. This dimensionality
reduction [65] can be achieved through principal component analysis (PCA) or by the simple process
of discarding unimportant features in the inputs. In our studies, the label or target variables were
scalars: GHI values measured atop the ESIF Building at NREL. Other choices are possible such as the
value GHIclr − GHImea, the deviation from the clear sky value.

Each input or example is a 3-channel RGB image from the Pi camera. In the current configuration,
3 images taken 5 seconds apart at low, medium, and high exposure times are fused using the Mertens
algorithm into one raw image. As mentioned, this approach reduces over-exposure and washout in the
circumsolar region. The 1024 × 768 JPEG forms the basic input measurement for both the optical flow
and machine learning algorithms. Low level cumulus clouds between the sun and the PV arrays have
the greatest effect on the DNI, hence on GHI. For that reason, and to satisfy the need for dimensionality
reduction, the first preprocessing step is to locate the area in the image that surrounds the sun and
extract a 128 × 128 subimage.

Several approaches to locating the sun in the image are possible. Calculating the zenith angle
from the SOLPOS program, finding true North, and then mapping physical to pixel coordinates would
require extensive calibration. It was decided to use a simple robust image processing approach that
finds the maximum intensity in the image. On a clear day, this always locates the sun, but occasionally
when the sun is totally obscured by broken clouds, the brightest point in the picture is actually sunlight
reflected off of a nearby cloud. This can be observed in a time lapse video clip in which for a few
frames the sun is not at the center of the sub-image. While the cause of some transient errors, it never
lasts long and does not happen when the sun is totally obscured by a uniform cloud deck without
breaks. Figure 15 shows the low exposure image used to locate and center the sun and the resulting
raw fused image that will ultimately become the input to the neural networks. Lastly the subimage
will be resized to a point (8 × 8) where the neural networks will train in a reasonable amount of time.
In supervised learning, the neural networks require labeled training examples: ordered pairs (x, y)
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where x is the input vector, in this case the extracted subimage img, and y is the measured irradiance in
units of Watts/m2 at the time the picture was taken. Since new images are fused every 15 seconds,
GHI values were treated as constant on a 60 second interval for the purposes of assigning labels for the
neural network images.

 
(a) 

 
(b) 

Figure 15. Sub-images of circumsolar region: (a) low exposure and (b) raw fused.

Many different metrics are used in data analysis and ML for evaluating model performance.
Table 1 lists common ones for solar forecasting. At is the actual value, Ft the forecast value, and μ the
mean; the summation over t can be over all observations in the ML context or over the values of a time
series. The metrics provide a posteriori error bounds upon which utilities can make economic decisions.
MAPE is relative L1 error, normalized for number of observations and converted to percent. When the
denominator of a fraction is close to zero, μ is used instead of At, a common practice when predicting
spot electricity prices. Some metrics such as L1 are more robust–less sensitive to outliers–than the
classical RMS error norms.

Table 1. Regression Metrics: A actual, F forecast, μ mean.

Metric Definition

Mean Squared Error MSE = (1/n)∑
t
(At − Ft)

2

Normalized RMS Error nRMSE =
√

MSE/ρ, ρ = (Amax − Amin)

Explained Variance R2 = 1 − ∑
t
(At − Ft)

2/ ∑
t
(At − μ)2

Mean Absolute Error MAE = (1/n)∑
t
|At − Ft|

Mean Absolute Percent Error MAPE = 100%
n ∑

t
|(At − Ft)/At|

2.4. Stereographic Method for CBH Estimation

Obtaining CBH from paired sky images has been done by several authors in the past. For
instance, the method proposed in [46] generated blocks of clouds which are computed to make a
3D reconstruction of the clouds. Then, the authors were able to obtain the height of the clouds by
using geometric computation. On the other hand, the method in [66] used the cross correlation of
non-projected saturation images to find all possible combinations that yield feasible heights, selecting
the most correlated one (or the one with the minimum error).

In the GRACIOSA project, a pure geometric method based on the relative position of the
sky-imagers and the clouds was implemented. First, the algorithm looks for the same cloud feature
in the images coming from the two sky-imagers. This task can be extremely difficult due to the
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chaotic nature of clouds and slight changes in image properties such as luminosity. But fortunately,
a Scale-Invariant Feature Transform (SIFT) algorithm [67], can handle this situation. This algorithm
performs excellently, identifying features in a constantly changing shape (as clouds), since it considers
possible changes in scale and orientation. SIFT is applied to pairs of simultaneous images from both
cameras (Figure 16). Once the features from both images have been paired up, the best matches are
selected to continue the calculations. Valid features are then transposed from the image (pixels) to real
space (azimuth and zenith). With real space coordinates defined and the projection matrix of the lenses
known, geometric computation is used to obtain the length of the vectors containing each feature and
the geographical position of each camera in real space, from which the height of the evaluated feature
can be derived.

 

Figure 16. Feature matching by SIFT algorithm in a pair of images from both cameras.

3. Results

Almost a terabyte of image data was collected at NREL from 15 October 2015 through 16 April
2016. The measured DNI values were recorded using NREL’s CHP1-L pyranometer with units of
Watts/m2. Days were grouped into three categories: (1) Clear Sky; consisting of predominantly clear
days with little or no cloud cover; (2) Overcast; large masses of clouds that obscure the sun for most of
the day; and finally (3) Moderately Cloudy; characterized by large variation in irradiance values and
multiple ramp events. For Clear Sky and Overcast conditions there is no forecasting to do –persistence
can’t be beat. Other cloud cover classifications are possible. One could use unsupervised ML clustering
algorithms on the raw irradiance data to find other breakdowns. Standard METAR cloud classification
separates clouds into low, middle, and high level. All clouds affect measured irradiance [68]. We focus
on cumulus clouds because they have the greatest effect on ramp events.

Prediction of intra-hour GHI can be partitioned into several distinct sub-tasks. (1) Acquiring a
time series of all-sky images. Every 15 s a new raw image is fused [69] from three different exposure
times to allow for High Dynamic Range (HDR) [70]. (2) Using the recent past images and optical flow
to extrapolate cloud locations 15 min into the future. It is possible to enhance the algorithm, but it must
not hamper production of real time forecasts. (3) Using the predicted image and the weights from
training the neural network, a predicted GHI value is output to the microgrid management system.

In the original configuration, our software used optical flow to track movement of cumulus
clouds and then ray tracing to predict cloud shadow locations. A better methodology would utilize
artificial intelligence (AI) to classify the reduction in GHI that will result when cumulus clouds are
predicted in the circumsolar region. It is expensive to train neural networks, but this is done offline for
a given location. Once optimal weights are determined, the calculation of a single GHI value is very
fast–amounting to an inner product. If the optical flow calculation requires too much time, a second
single board computer can be added to the hardware as was employed at NREL.

Details of our research on machine learning to predict solar irradiance are described in the
paper [9]. Our intent here is to provide the reader with a concise summary of that research. A
critical outcome was verification that the SkyImager with the Pi camera can measure GHI in real time.
Lacking the accuracy of an expensive pyranometer, this approach would use the image sequence
acquired to solve the forecasting problem, in order to simultaneously estimate GHI. This data could be
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incorporated with readings from the WeatherBoard to provide additional inputs to the MGMS using
MQTT or DDS protocols. Variables that are considered deterministic should be treated as stochastic
random variables. Convolutional neural networks [58] which preserve spatial information offer the
best performance for image datasets. Expensive offline training of the networks is normally done one
time but it is possible to do continuous learning where the networks use feedback in the form of newly
acquired data to refine the learned weights.

In the field of machine learning, there are standard ways of visualizing both the input dataset
consisting of vectors in a high dimensional space, as well as targets and predicted outputs. The UTSA
SkyImager collected all images in this study on the ESIF building rooftop at NREL as part of the
INTEGRATE project. During 147 days from October, 2015 until May, 2016 there were 14 days of
no data collected (technical reasons) and 27 days of partial data collection. The remaining 106 days
of no missing data formed the inputs for training and testing the neural networks. This yielded
156,495 observations (examples or rows) for input to the neural networks. We used the standard split
(70% − 30%) of the data into training and testing subsets: 109,547 examples for training and 46,948
for testing.

3.1. Comparing 4 Different ML Models

Each input example is uniquely associated with one of the SkyImager pictures taken every 15 s.
The normalized pixel values for the Red-Green-Blue (RGB) channels of an 8 × 8 resized subimage
centered about the sun are flattened into one row vector. Note that other color spaces such as HSV
or HSL could also be used. Resizing provided dimensionality reduction and reduced runtimes, but
with substantial computer resources the 128 × 128 sub-images could be used for training. Average
values of each channel were included as additional features for a total of 3 × 64 + 3 = 195 features.
The first entry in each row is the measured GHI in W/m2. To show how well random variables X
and Y are correlated, one uses a scatter diagram. Figure 17 shows scatter diagrams of measured GHI
versus predicted GHI for four ML models: Multi-Layer Perceptron (MLP), Random Forest (RF), Deep
Learning (DL), and Gradient Boosted Trees (GBT). While all models perform well (tight clustering
around y = x, perfect correlation), DL and GBT have fewer outliers and visually outperform the other
two models.

Note that the MLP and RF models were run using the Scikit-Learn ML software package while
DL and GBT were run on the Rapidminer platform. This validated our results on different ML
packages—results should depend on the algorithms, not the platform on which they are implemented.
Currently, Scikit-Learn does not offer a deep learning model. Using Rapidminer is very convenient on a
powerful desktop PC, our ultimate goal is to use the trained weights on a Raspberry Pi 3 computer for
real time forecasting. Scikit-Learn with its open source Python interface should prove valuable for
that task.

MAE, MAPE, nRMSE, and R2 error metrics are given in Table 2 and run times in minutes. The
explained variance (R2) in the last column is very significant. Both DL and GBT achieve values of 0.87,
while MLP and RF are 0.1 less. The other error metrics closely track the R2 values. In DL the extra
accuracy is at the expense of much longer run times, but GBT gets the highest accuracy and is very
fast: 10 min faster than RF.

Table 2. Evaluation of four machine learning models.

ML Model Platform Runtime (min) MAE MAPE nRMSE R2

Multilayer Perceptron Scikit-Learn 3:05 81.21 33.05% 32% 0.71

Random Forest Scikit-Learn 14:53 66.86 28% 29% 0.76

Deep Learning Rapidminer 43:52 50.992 27.13% 21.6% 0.871

Gradient Boosted Trees Rapidminer 4:50 47.072 22.73% 21.1% 0.875
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Figure 17. GHI actual vs GHI predicted on 24 October 2015 using different AI models.

A time series is another approach to visualizing the results: GHI values are plotted on the y-axis
and time on the x-axis. Figure 18 compares measured and predicted GHI for one day, 3 October 2015.
Although there are differences in the two curves, they track each other well. More illuminating is
a time series display for the entire group of testing days shown in Figure 19, where actual GHI is
blue and forecast values are red. It is difficult to distinguish the two curves because they track each
other so closely. For both figures the deep learning model was used for prediction. Observe in the
center of Figure 19 a group of five consecutive clear sky days that are easy to predict, as are completely
overcast days.

Figure 18. Time series of actual versus predicted GHI for single day of data.

The two curves differ most on moderately cloudy days with air mass cumulus clouds present.
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Figure 19. Time series of measured and predicted GHI for all testing days.

3.2. Different Deep Learning Model Results

Machine learning algorithms have many hyper-parameters that can be optimized to improve
accuracies and reduce run times. Table 3 shows how changing the number of hidden layers for the
DL model, nodes in the layers, and number of epochs (complete passes through the training dataset)
affects results. Model 1 has 2 hidden layers each with 50 nodes; it requires ten epochs to train with a
run time of ~2 min and R2 = 0.815. Model 2 also has two hidden layers (195,195) and 10 epochs, but
runs 3 times longer and only improves R2 to 0.824. To achieve R2 = 0.871 Model 3 (195,195,195) needs
500 epochs and ~45 min. A point of diminishing returns is reached: Model 4 (195,195,97, 195,195) takes
more than an hour to run on a desktop PC. Further improvements in accuracy would require larger
input images or tuning DL parameters.

Table 3. Comparison of 4 Deep Learning Models.

Hid.
Layer

Nodes per H.
Layer

# Epochs Run Time MAE MAPE nRMSE R2

2 50,50 10 1:55 min 65.807 32.73% 25.8% 0.815

2 195,195 10 7:10 min 66.872 40.76% 25.6% 0.824

3 195,195,195 500 43:52 min 50.992 27.13% 21.6% 0.871

5 195,195,97,195,195 100 67:42 min 48.519 26.09% 21.6% 0.871

3.3. Cloudy Versus Clear Sky Days

From each 1024 × 768 fused raw image, the algorithm extracts a 128 × 128 pixel subimage
centered on the sun. Using the transform.resize function from Skimage, this is resized to 8 × 8 pixels to
achieve dimensionality reduction. This idea is critical to successful machine learning: each example in
the dataset is a vector in a high-dimensional space and there are many examples. Principal Component
Analysis and Linear Discriminant Analysis are other techniques for reduction, but our approach is
simple and has proved to be effective.

In the following case study ten days of SkyImager data acquired at NREL were used to synthesize
two datasets. Five moderately cloudy days comprised the first dataset, October 16, 17, 18, 19, 20 in
2015. Five clear sky days of data from November 10, 11, 12, 13, 14 of 2015 made up the second dataset.
The neural networks were fed 32 × 32 pixel resized images and 4 ML models from Scikit-Learn were
compared: Generalized Linear Regression Model (GLM), Multi-Layer Perceptron (MLP), Random
Forest Regressor (RFR), and Gradient Boosted Trees (GBT). Table 4 and Figure 20 show the results.
GLM and GBT have much shorter runtimes in both cases, while MLP and RFR achieve higher R2

values. Maximum accuracies are achieved with MLP but at a cost of increased runtimes. Extreme
accuracy in R2 values for clear sky days (0.97, 1.0, 1.0, 0.99) indicates the networks are learning the
analytic form of the Haurwitz clear-sky GHI model well.
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Table 4. Results for two datasets of 32 × 32 resized sub-images.

5 Moderately Cloudy Days 5 Clear Sky Days

Model Name GLM MLP RFR GBT GLM MLP RFR GBT

MAPE 39.75 13.53 15.79 20.93 12.0 2.44 2.66 3.79

Explained Variance R2 0.70 0.95 0.93 0.90 0.97 1.00 1.00 0.99

Mean Absolute Error 86.43 30.66 33.30 44.68 20.43 5.30 5.84 8.57

Elapsed Time (Sec) 0.1 513.1 69.9 12.4 0.1 512.8 60.5 12.0

 
Figure 20. Scatterplots of Actual GHI versus Predicted GHI for 4 ML Models on moderately cloudy
days (top row) and clear sky days (bottom row).

Using still finer sampling for the resized sub-images should yield better results at the cost of larger
data files and runtimes. At some point however, statistics suggests diminishing returns. In addition to
detailed descriptions of ML models and software our article [9] presents another case study. It uses
only one moderately cloudy day (17 October 2015) of observations and runs the four ML models with
8 × 8, 32 × 32, and 64 × 64-pixel sub-images. The size of the CSV input data file increases quickly:
3 Megabytes, 111 Mb, and 442 Mb, as do runtimes 139 s, 444 s, and 1309 s. Accuracies improve, but not
beyond a certain point.

3.4. JBSA Microgrid Data

The JBSA microgrid was built as a testbed for the CPS Energy Grid Modernization Laboratory.
Management and control of a microgrid must address many factors including cybersecurity, data
acquisition, data management, real-time computation, storage, bandwidth, interoperability, and
usability requirements. In addition to the data acquired by the UTSA equipment–SkyImager, WXT520
Vaisala weather station, and pyranometer; this includes 36-hour ahead hourly weather forecasts
scraped from the web, the day-ahead Load/PV forecasts, battery State-Of-Charge (SOC) readings,
actual load for the base library building, and control data from the Siemens MGMS. The goal is to
use all available data in order to refine site-specific solar irradiance forecasts for improved operation
and control of the microgrid. Non-UTSA data from the JBSA microgrid was acquired from Itron
MV-90 xi meters. This is a system used for the collection and management of interval data consisting
of time stamped readings taken every x minutes where x can be 5, 15, 30, or 60. A large electric
utility may acquire a billion interval readings in a single year and use them in a variety of ways
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including billing (demand response, real time pricing, curtailable rates), open market operations, and
load/market research.

Analyses of the JBSA MV90 data, all of which were taken at 15 min intervals, demonstrated that
much finer temporal resolution would be required to capture details of ramp events and provide
accurate irradiance forecasts to the MGMS. While 1 min resolution was provided by the UTSA
equipment such as the pyranometer and Vaisala weather station, the cost of this equipment precluded
widespread deployment in a distributed environment. Similar equipment at the UTSA solar testbed
provided a wealth of 1 min data, but we envisioned a network of hundreds of low cost SkyImagers
spread across the city of San Antonio, and for this scenario low cost was an essential requirement. As
previously discussed, there are a plethora of low-cost sensors that can be connected to the GPIO pins on
a SBC, including the WeatherBoard2 (WB2), air quality and ozone sensors, and even devices to measure
dust. Costing tens of dollars they provide a cost-effective way of environmental sensing that can
easily be incorporated with the SkyImager. Figure 21 shows observations of irradiance, temperature,
humidity, and pressure taken every minute on 26 November 2018 with the WB2 sensor mounted on
a SkyImager.

 

Figure 21. Data from the WeatherBoard sensor on the UTSA SkyImager.

The mini photovoltaic module used at ULL is an off-the-shelf PV module, made of c-Si, with open
circuit voltage of 6V and a short circuit current of 200 mA, with a maximum DC output of 1.1 W. The
module was connected to a resistive load to dissipate the heat, and the data was registered by a INA219
DC Current Sensor able to measure very small currents, attached to the Raspberry Pi 3 model B.

3.5. One Second Minimodule Data from La Graciosa

The Universidad de La Laguna in the Canary Islands provided 1 sec data from the minimodule at
the La Graciosa microgrid operated by ENDESA. How does the spectral content of the voltage signal
change when moving from 1 s, 5 s, 15 s, to 60 s sampling? Figure 22 shows the effect of sub-sampling
on the time-series. Some of the noise present in the data might be due to voltage fluctuations or
seagulls (the location was the Fisherman’s Guild building). Certainly the area of the minimodule is
very small, so it behaves as a point measurement where small occulding objects can drastically the
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affect irradiance measurements. Still, the analysis strongly suggests that to resolve the frequency and
voltage swings that occur during a sudden ramp event, PMU measurements may be a necessity.

Figure 22. Effect of subsampling on the 1-sec minimodule data from La Graciosa.

3.6. CBH Estimations

The results of the CBH estimations are presented in Figure 23. The left boxplot shows the statistical
distribution of the heights obtained with the stereographic method, while the right boxplot shows
the statistical distribution of a weather station located in Arrecife, Lanzarote, which belongs to the
network of the University of Wyoming.

Figure 23. Statistical distribution of the heights obtained by two-camera stereographic method (left)
and from a weather station located in Arrecife, Lanzarote (right).

There are several reasons for the apparent mismatch in the data. First, the weather station is
located 30 km south of the position of the cameras, which undoubtedly has a significant effect taking
into account how the atmospheric conditions develop in the region (with the thermal inversion steadily
rising its level from the Sahara Desert). Second, the data of the weather station is obtained using a
punctual measurement such as LIDAR, while the CBH estimations of the cameras cover a larger area
of the sky (mainly the central part of the fish-eye image, since the distortion on the borders makes
it almost impossible to compute the height). Finally, the temporal resolution of the weather station
data is up to 1 hour, while the estimation of the CBH by the stereographic approach is done every
minute. Likely the most important conclusion here is that the estimations made by the systems are
coherent with the previous knowledge of the atmospheric conditions, with a stable thermal inversion
ranging from 600 to 2000 m depending on the season of the year, which prevents clouds to rise over a
certain height.

4. Discussion

Our future research efforts will be directed in several areas. Optical flow is a critical area for the
success of intra-hour solar forecasting. IoT and cyber-security also form a critical component. Solving
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the AC Optimal Power Flow equations with GHI forecasts from the SkyImager will be important for
solving the energy storage and microgrid control problems. Using the Raspberry Pi additionally as a
multiple-sensor platform will be investigated. Environmental studies of the effects of dust and bird
feces on the solar panels may well utilize SkyImager technology.

It was on the INTEGRATE project that a synergism developed between researchers and engineers
at the national lab, universities, utilities, and private industry that continued after the project ended.
Management styles are quite different in academia and private industry with national labs somewhere
in between. Software version control was critical, as was careful documentation of all work. Both for
the utility where engineers would use the hardware/software and for the university where graduate
students and faculty would move on to other projects this was very important. Our decision to use
Python was an excellent one. Increasingly, both documentation, tutorials, and example programs are
being delivered in the form of IPython notebooks (.IPNB files) as, for example, Google’s Tensorflow.
Even a package such as Open Computer Vision [71,72] that is written in C++ for efficiency has Python
bindings that allow easy access to routines for image fusion and optical flow.

4.1. Lessons Learned at the 3 Deployment Locations

4.1.1. SkyImager at NREL

The NREL microgrid was located at a specialized research facility, but every attempt was made
to simulate conditions at a utility. The communications network was well established; there was
abundant state-of-the-art ancillary equipment such as pyranometers and an on-site weather station,
and the process of deployment went relatively smoothly. Still there were important lessons to be
learned. The SkyImager was initially configured with a single Raspberry Pi 2, which proved insufficient
for both acquiring images and processing them through the pipeline to produce irradiance forecasts.
This problem was solved by adding an Odroid C1, but this made the design more complex and
required bridging between the two SBC using a USB-internet connection. The plethora of operating
systems for both the SBC and EMS servers provided still another challenge. There are differences
in the way open source packages such as OpenCV and Mosquitto install and operate on Raspbian,
Ubuntu 14, and Ubuntu 16. In some cases, there are compiled binaries available and in others software
must be compiled from source files. From a solar forecasting perspective, NREL was where the best,
most complete data was acquired: over six months of daily images and ground truth pyranometer
observations. It took researchers over a year to analyze the data and the process is ongoing.

4.1.2. SkyImager at San Antonio, TX, USA

Two critical applications of islanded microgrids are remote installations in developing countries
and power systems for the military that must be entirely stand alone. While this made a military
base the perfect site for testing a microgrid EMS, it also meant that obtaining base access for UTSA
researchers was an issue. For safety purposes, it requires at least two people to lower the 10 m MET
tower. Beyond the initial installation, access to the tower is required every month to inspect the
instruments and clean the surface of the plastic dome that covers the camera enclosure. The cost of
the pyranometer and weather station exceeded that of the SkyImager by a factor of 20 and prompted
adding low-cost sensors to the SBC for measuring temperature, humidity, and light.

Occasional loss of power to the SBC as the battery went through its initial testing phase was a
minor issue which required tinkering so that the forecasting software was immediately brought back
on line during a reboot. Initially the Mosquitto MQTT broker was chosen for the UTSA software, but
because of compatibility issues with the MyRio software, HiveMQ proved to be a better choice. Direct
internet access to our SBC from outside the corporate network was available only through a WebEx
session that required close coordination between the utility and university personnel. Lesson learned:
when initially transitioning hardware/software from a research environment to a production one, it
is imperative to have physical/cyber access to the equipment and network. Several Odroid’s were
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damaged by high temperatures in the enclosure boxes and had to be replaced. MV90 meter readings
every 15 min are clearly insufficient for the intra-hour forecasting problem. We are currently working
with a group in Austin to add inexpensive Phasor Measurement Units (PMU) to acquire detailed
frequency and phase information in conjunction with weather, irradiance, and sky images. Cloud
computing [73] and 5G networks offer unique opportunities to move most of the computations off the
Raspberry Pi to the cloud.

4.1.3. SkyImager at La Graciosa, Canary Islands

Some valuable lessons learned from the Graciosa project have to do with the performance and
durability of the sky-imagers in a harsh, dusty, and salty environment such as La Graciosa. The
closeness of the island to the Sahara Desert makes the dust content in the atmosphere high. Quality of
the images is severely affected by the deposition of dust on the enclosure, as seen in Figure 24, showing
that scheduled cleanings of the enclosure are necessary to ensure the proper function of the devices.
Our first estimation is that cleaning is necessary at least twice a year, but it is highly dependent on
the climatologic and atmospheric conditions. Besides the deposition of dust on the enclosure, water
infiltrations in the interior of the enclosure have been a frequent problem, even if the equipment
was specially selected to have a high degree of protection to water and dust (IP67). Closeness to the
sea, as well as the strong rains that occurred in December of 2017, appear to be the main source of
this problem.

 

(a) 

 

(b) 

Figure 24. (a) SkyImager/image with dust on enclosure, (b) after cleaning it.

5. Conclusions

In March of 2018 the California Energy Commission mandated that beginning in 2020, all new
home and apartment construction must include solar generation. When this level of distributed
generation becomes part of the electric grid, ISO are faced with new challenges in terms of frequency
and voltage control. Indeed, in Hawaii these issues resulted in a temporary hold on rebates for new
residential solar installations.

In a macrogrid extending over hundreds of square kilometers, integrating a mix of generation
conventional power plants, solar, and wind, and functioning as part of a larger interconnect such as
ERCOT, there is an inherent inertia that works on the side of the utility. In microgrids, however, this
inertia is lacking, and the control problem becomes much more difficult to solve when in islanded
mode [4,7]. There are also different temporal scales involved. Optimal day-ahead scheduling and
control of a microgrid is a distinct problem from hour-ahead control to ensure frequency and voltage do
not vary outside prescribed limits. Using equipment such as the OP4500 RT-LAB/RCP/HIL real-time
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power grid digital simulator by Opal RT, we hope to use Hardware-in-the-Loop equipment to analyze
the microgrid at JBSA. PMU measurements also need to be incorporated.

All-sky imaging technology will be a critical component in the overall solution strategy to predict
solar irradiance 15 min ahead, and to take corrective measures during ramp events. It must, however, be
fully integrated with NWP and satellite-based approaches for day-ahead load forecasting and optimal
control of a microgrid. Optimal use of this technology will encompass a diverse group of specializations,
including IoT and edge-computing, cyber-security, machine learning, and image processing.

For example, the characteristics and statistics of the all-sky imager must be included in the
stochastic optimization programming for risk neutral and risk adverse operational control of a
microgrid [6]. An holistic R&D approach is required. While a Raspberry Pi is the essence of
plug-N-play and it is relatively straightforward to build a SkyImager, integration into the IoT and field
deployment will remain an active area of research. Imagers will range the gamut in cost, accuracy, and
interoperability. MGMS will integrate forecasts from imagers, NWP, and satellites, as well as hundreds
of other meters and devices to solve the microgrid control problem. While physics-based methodology
will continue to be important, machine learning and IoT technology will play an increasingly critical
role. Development of standards such as OpenFMB for interoperability of thousands of devices will
also be a necessary component.

6. Patents

A provisional US patent application “distributed solar energy prediction imaging” has resulted
from the work reported in this manuscript.
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Featured Application: This paper contributes to guiding government planners and DSER

investors to compare and select various DSER, furthermore, they can make a relatively reasonable

planning scheme or investment scheme. Meanwhile, it provides a strong support for the

long-term optimization planning and medium-term optimization aggregation of DSER, which is

conducive to the development and utilization of DSER.

Abstract: In the context of current energy shortage and environmental degradation, the penetration
rate of demand-side energy resources (DSER) in the power grid is constantly increasing. To alleviate
the problems concerning the energy and environment, it is of tremendous urgency to develop and
make effective use of them. Therefore, this paper proposes the evaluation model of DSER in urban
power grid based on geographic information, and a variety of demand-side energy resources in
a region is evaluated. Firstly, as for five kinds of DSER, revolving wind power generation (WG),
photovoltaic power generation (PV), electric vehicle (EV), energy storage (ES), and flexible load,
the commonality indexes and individuality indexes of all kinds of resources are selected based
on geographic information. The commonality indexes are common indexes of all DSER, and the
individuality indexes are unique indexes of all DSER. Then the weight of each subindex under the
commonality and individuality indexes are determined by analytic hierarchy process (AHP) and
entropy weight method, respectively. Finally, weighted overlay are made according to the weights and
quantized values of each index, and a comprehensive score is obtained from the commonality indexes
and individuality indexes upon various demand-side energy resources in the region. The result
depicts that the proposed evaluation model of demand-side energy resources is of well practicability
and effectiveness, which is beneficial to the planning of the city and the power grid. Most of all,
such model provides a strong support for the long-term optimization planning and the medium-term
optimization aggregation of DSER.

Keywords: DSER; evaluation model; geographic information; commonality indexes; individuality
indexes
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1. Introduction

In the context of current energy shortage and environmental degradation, the proportion of
energy resources, such as distributed generation, ES and flexible load, is increasing in the power grid;
these resources are widespread existent on the demand side, thus are called demand-side energy
resources (DSER). In China, the National Development and Reform Commission and other departments
have issued a series of policies on distributed photovoltaic (PV) and decentralized wind power
generation (WG) since 2007. DSER plays an increasingly important role in the transformation of new
energy systems in China. By the end of 2017, the newly installed capacity of PV in China is 53.06 million
kilowatts, and the cumulative installed capacity is 130.25 million kilowatts. The cumulative installed
capacity of ES is 28.9 million kilowatts, an increase of 19%. In addition, according to the global
distributed energy technology report, the installed capacity of global distributed energy in 2017 is
about 132.4 million kilowatts. At the same time, to support the development of energy resources such
as WG and distributed PV, many countries have formulated relevant policies. Brazil, Canada, Spain,
the United States and other countries have formulated a localization rate policy for WG equipment.
The European Union (EU) has set a target that renewable energy will account for 27% of the energy
demand structure in 2030, promoting PV development. Nowadays, urban power grids are facing
severe challenges including increasing load density, increasing peak and valley difference, shortage
of power grid construction land and difficulties in raising funds for construction. At the same time,
DSER receives attention from all sectors of society and policy support from the government, and its
penetration rate in the power grid, especially in the urban power grid, is constantly increasing,
providing a huge potential for the implementation of various demand-side projects. At this time,
how to fully tap and exploit the potential of DSER, furthermore, ensuring their participation in the
planning, construction, and operation of urban power grids, has become a key issue in solving the
current difficulties existing in urban power grids [1–5].

It can be seen that the rational development and the effective use of DSER will have a far-reaching
impact on China’s energy power industry. The evaluation model of demand-side energy resources can
be used to explore the status, characteristics, and development prospects of DSER. It is an important
tool to develop and use DSER rationally. Therefore, the establishment of an evaluation model of
demand-side energy resources is very important for the development and utilization of DSER as well
as the energy power industry.

Therefore, many literature works discuss the evaluation of DSER. In literature [6],
the meteorological data of Kahnuj in Iran have been measured at an altitude of 10 m, over a four-year
period. Also, the monthly, annual and seasonal wind speed variations are investigated, and the
economic feasibility is determined of installing wind turbine at the site. Literature [7] proposes a
method to simulate a large wind farm and determine its capacity value, taking into account the
mechanical failure of the wind turbine and the influence of the transmission system, and evaluate
and compare the wind capacity values under different conditions. Literature [8] presents a study of
the installation of a hybrid PV-WG system for social interest houses in the city of San Luis Potosi,
Mexico. To assess the benefits of the implementation of this type of system, a technological, economic,
and environmental evaluation is carried out based on the available renewable energy resources and
considering a typical load profile of consumers. Literature [9] obtained a probability model for system
power output by analyzing the structural characteristics of the PV power system and by examining
its component failure mode and the effect of the component failure mode on the output power.
In literature [10], through the analysis of the results of the various operating parameters of large-scale
PV, the operation of large-scale grid connected PV grid is mastered. The comprehensive evaluation
system is established by using the analytic hierarchy process. In literature [11], the electric vehicle
(EV) charging load in a day is calculated by the traffic simulation and evaluated in order to assess
the influence of EV charging on the grid system and the applicability of EV in the smart-grid system.
Literature [12] proposes a reliability and economic evaluation model of distribution network under
large-scale EV’s access. The Monte Carlo method was utilized to evaluate the reliability of distribution
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network. In literature [13], on the basis of analyzing the traditional site selection program evaluation
method, fuzzy analytic hierarchy process (AHP) is proposed to evaluate the EV charging station sitting
programs, also the evaluation model algorithms are given, wishing to achieve the optimal program.
Literature [14] evaluates the benefits of ES systems applied to renewable intermittent sources like
wind. Literature [15] presents a real-time evaluation and simulation approach of ES system based on
large renewable-based electricity generation, which can be used for grid support. In literature [16],
a AHPPROMETHEE-GAIA method based on the analysis of the characteristics of the existing ES ways
is presented. Taking the factors, such as technology maturity, cost, life, efficiency, response speed,
and environment as assessment criterion, a comprehensive evaluation for the existing ES ways is made.

All of the above literatures have evaluated DSER, but the evaluation model constructed has
only evaluated single DSER without taking a variety of DSER into comprehensive consideration.
Therefore, this paper evaluates five kinds of DSER, including WG, distributed PV, EV, ES, and flexible
loads. There are many factors to be considered when evaluating the DSER. Firstly, the development
of various types of DSER will bring more or less benefits, which reflects the significance of these
resources. Also, benefits are the direct purpose of digging deeply into DSER. At the same time,
due to the difference in geographic location and development conditions, the development of different
DSER varies from region to region. Therefore, resource development, which means proportion of
resources currently developed in a certain region to the total resources of the region, is an important
index for evaluating the development status of DSER. In addition, the future development potential
of DSER is the focus of government and investment institutions, which lays fundamentals for the
government to formulate relevant policies and incentives for various types of DSER. The above indexes
need to be considered when all kinds of DSER are evaluated, which are defined as commonality
indexes. In addition, various DSER have different characteristics. To facilitate the evaluation of the
characteristics of DSER, DSER is divided into three groups and the key characteristics of evaluation
concern are sorted out, defined as individuality indexes.

The advantages of WG and PV lie in the large range of distribution areas, high development
value, almost zero pollution and inexhaustible [17,18]. However, the output of WG and PV are affected
by the meteorological conditions such as wind speed and light intensity. The output has characteristics
of volatility and intermittency, which increase the difficulty in regulating the peak of conventional
power supply in power grid. Therefore, it is necessary to evaluate the output characteristics of WG
and photoelectric, and the reliability of WG and photoelectric is also an important role in affecting the
stability of the power system.

EV and ES can effectively fulfill the demand-side response and behave interactively with the
grid. They can be used to cut peaks and valleys, smooth load fluctuations, and promote the use of
intermittent energy resources. Therefore, the peak shaving capacities of EV and ES are particularly
important, concerning that they will be connected to the grid in large scale, the reliability of EV and ES
resources cannot be ignored as well [19,20].

Flexible loads resources refer to flexible loads that have a power demand response. Demand
response technology is one of the core technologies in the smart grid. The application of demand
response technology can fully exploit the load-side resources and realize the comprehensive
optimization of resources configuration [21]. Different users' response willingness and responsive
device capacities are different, such as supermarkets, shopping malls, and hotels and other commercial
users with less response willingness and larger response capacity, the residents are the opposite,
with greater willingness to respond and smaller response capacity. The response capacities of
various users are very different. Therefore, as for flexible loads, features related to response
are evaluation-focused.

It can be seen that the current evaluation systems focus on the evaluation of single DSER, and the
selected indexes are often individuality indexes of DSER. So, a set of general evaluation system should
be set up to evaluate the commonality indexes and individuality indexes of all kinds of DSER. At the
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same time, these DSER are widespread distributed in the urban power grid, their distribution has
natural geographical features and is inseparable from the way of urban planning and partition.

According to the above situation, this paper proposes an evaluation model of DSER based
on geographic information. Based on the functional partition of the city, the commonality indexes
system and the individuality system are established by analyzing the commonality and individuality
of various DSER, and the commonality indexes and individuality indexes are selected separately,
that is, each index is defined. Then AHP is used to determine the weight of the commonality
indexes. The entropy weight method is used to determine the weight of the individuality indexes.
Finally, the comprehensive scores of the commonality indexes and individuality indexes are obtained
respectively. The specific process is shown in Figure 1. The comprehensive scores of various DSERs
in various regions are favorable for urban and power grid planning, guiding DSER investors and
government planners, and providing a strong support for the long-term optimization planning and
medium-term optimization aggregation of DSER.

Figure 1. Flow chart for calculating the composite score. The Establishment of Commonality Indexes
System for demand-side energy resources (DSER).

1.1. The Commonality Indexes System of Evaluation Model of DSER

According to the above analysis, benefits as well as resource development and development
potential are selected as commonality indexes of DSER, which are the indexes common to all types of
DSER, and the abovementioned first-level indexes are further refined to obtain a commonality indexes
system of evaluation model of DSER, as shown in Figure 2.
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Figure 2. The framework of the commonality indexes.

1.2. Selection of Commonality Indexes

(1) Benefits

Benefits are indexes that measure the effects and profits of a project. The benefits of various DSER
are evaluated in terms of three aspects of economic benefits, environmental benefits, and social benefits.
Taking WG as an example, the specific definitions are shown in Table 1.

Table 1. Definition of benefits.

Subindex Definition

Economic Benefits A11 = Gwind/Cwind
Environmental Benefits A12 = Ewind/Sq

Social Benefits A13 = Mwind

• Gwind—The production value of WG in a certain region
• Cwind—The production cost of WG in the region
• Ewind—The amount of carbon dioxide emission reduction due to WG in a certain region
• Sq—The area of the region
• Mwind—The average satisfaction of residents in a certain area to WG, which is quantified by

percentile system.

(2) Resource Development

The development of resources is another important index to evaluate DSER. The development of
various DSER is measured by Equation (1).

A2 =
Ruse

Rsum
(1)

A2—Resource development
Ruse—The amount of development of a DSER in a region
Rsum—The total amount of the DSER in the region

(3) Development Potential

All kinds of DSER must be taken into consideration to settle the long-term development
problem, so the development potential is also an essential index for evaluating all kinds of DSER.
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The development potential of various DSER is evaluated in terms of four aspects upon policy support,
sources of funds, benefits, and the amount of surplus resources. The specific definitions are shown in
Table 2.

Table 2. Definition of development potential.

Subindex Definition

Policy support According to the relevant documents issued by the government,
the support is divided into 1–5 levels from small to large

Sources of funds The amount of funds provided by country for a certain DSER

Benefits w1A11 + w2A12 + w3A13

The amount of surplus resources 1 − A2

• A11—The economic benefits of a certain DSER
• A12—The environmental benefits of a certain DSER
• A13—The social benefits of a certain DSER
• A2—Resource development, which means proportion of resources currently developed in a certain

region to the total resources of the region
• w1—The weight of the economic benefits of the DSER
• w2—The weight of the environmental benefits of the DSER
• w3—The weight of the social benefits of the DSER

2. The Establishment of Individuality Indexes System for DSER

2.1. The Individuality Indexes System of Evaluation Model of DSER

Based on the above analysis, indexes that can represent the characteristics of various types of DSER
are selected as individuality indexes. Among them, WG and PV resources share a set of individuality
indexes, EV and ES resources share a set of individuality indexes, and flexible load resources use a set
of individuality indexes. Output characteristics and reliability are selected as first-level indexes of WG
and PV, reliability, peak shaving capacity and discharge performance are selected as first-level indexes
of EV and ES, response capacity is selected as first-level indexes of flexible loads. The framework is
shown in Figure 3.

2.2. Selection of Individuality Indexes

2.2.1. The Individuality Indexes of WG and PV

(1) Output characteristics

The output characteristics of WG and PV resources are of great importance for the consumption of
WG and PV. The day with the maximum load is selected as the typical day. The output characteristics
of WG and PV resources are quantified and evaluated in terms of three aspects: daily load rate, peak
valley difference, and daily load fluctuation rate [22]. The definitions of the indexes are shown in
Table 3.

Table 3. Definition of output characteristics.

Subindex Definition

Daily Load Rate B11 = Pav/Pmax
Peak Valley Difference B12 = (Pmax − Pmin)/Pmax

Daily Load Fluctuation Rate B13 = S/Pav
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• Pmax—The maximum load of the typical day
• Pmin—The minimum load of the typical day
• Pav—The average load of the typical day
• S—Standard deviation of load.

Figure 3. The framework of the individuality indexes.

(2) Reliability

The maximum daily average load of WG or PV is recorded as P, and 0.8P is defined as the
threshold. The reliabilities of WG and PV in a certain region are quantified and evaluated in terms of
two aspects: the proportion of days meet the threshold and number of system failures, correspondingly,
the definitions of the indexes are shown in Table 4.

Table 4. Definition of reliability of WG and PV.

Subindex Definition

The proportion of the days meet the threshold B21 = Dth/365
Number of system failures B22

• Dth—The number of days in which the average daily load of a year meets the threshold
• B22—The number of system failures in a year
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2.2.2. The Individuality Indexes of EV and ES

(1) Reliability

The reliabilities of EV and ES in a certain region are quantified and evaluated in terms of two
aspects: power outage time and number of system failures. Such two indexes are represented by the
power outage time in one year in a region and the number of failures in the year.

(2) Peak shaving capacity

Realizing peak shaving and valley filling is one of the important goals for developing EV and
ES. Therefore, Peak shaving capacity is an important index for evaluating EV and ES, and it is
quantified and evaluated in terms of two aspects: battery capacity and charging and discharging speed,
correspondingly, the definitions of the indexes are shown in Table 5.

Table 5. Definition of peak shaving capability.

Subindex Definition

Battery capacity B41
Charging and discharging speed B42

• B41—Total battery capacity in a certain region
• B42—The average time required for a battery to be fully charged of battery once

(3) Discharge performance

A cycle means the ES system undergoes a charge–discharge process. Discharge performances
of EV and ES in a certain region are quantified and evaluated in terms of two aspects: cycle life and
charge and discharge efficiency, correspondingly, the definitions of the indexes are shown in Table 6.

Table 6. Definition of discharge performance.

Subindex Definition

Cycle life B51
Charge and discharge efficiency B52 = Er/Ei

• B51—The number of cycles the ES system can withstand before retired
• Er—Energy released by an ES system after charging
• Ei—Initial storage energy of ES system

2.2.3. The Individuality Indexes of Flexible Loads

The response capacity of flexible loads is quantified and evaluated in terms of four aspects: users’
willingness, responsive device capacity, response cost, and response success rate. Taking the users’
willingness as an example, users’ willingness in a certain region are quantified from low to high as 1–5,
according to different types of users (public, commercial, industrial, and residents). Then, the quantized
value upon the user’s willingness of each type of user is multiplied by the proportion of each type of
user in the region, and the comprehensive quantized value upon the user’s willingness in the region is
obtained. Specific quantization rule is shown in Table 7.
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Table 7. The rule of quantifying users’ response capacity.

User Type User Representative

Quantized Value

Response
Willingness

Response
Capacity

Response
Success Rate

Response
Cost

Public user office, school,
hospital 1–2 1 1–2 1

Commercial user supermarket,
shopping mall, hotel 1–2 3 1–2 3–4

Industrial user

spinning 4 4 3–4 2–3
cement 3–4 4 3–4 2–3

steel 1–2 2–3 1–2 5
mechanical 1–2 3–4 1–2 4–5

Resident user Residential area 4–5 1 4–5 1

3. Determination of Commonality Indexes Weights and Calculation of Comprehensive Score

3.1. Standardization of Evaluation Indexes

The dimensionlessness in the evaluation index system is the prerequisite for the integration
of indexes. If the nondimensionalized value of the index is called the index evaluation value,
then the dimensionlessness process is the process of converting the actual value of the index into
the evaluation value of the index, and the dimensionlessness method is to eliminate the influence of
the primitive variable (index) dimension by the mathematical transformation. When the indexes are
nondimensionalized, it is necessary to note that the positive and negative indexes have different effects
on the overall target. For example, indexes such as economic benefits, policy support, and response
capacity are positive indexes. The higher the index value, the better; the indexes such as power outage
time, number of failures, and response cost are negative indexes, the lower the index value, the better.

In summary, the threshold method in the linear nondimensionalization method is used to
nondimensionalize the index; threshold method is a dimensionless method to get the index evaluation
value through the ratio of the actual value to the threshold of the index. The corresponding formulas
are as follows.

Assume that there are m regions, n evaluation indexes, and xij represents the index value of the
ith region under the jth index [23].

Positive indexes

x′ij =
xij − min

{
x1j, · · · , xmj

}
max

{
x1j, · · · , xmj

}− min
{

x1j, · · · , xmj
} (2)

Negative indexes

x′ij =
max

{
x1j, · · · , xmj

}− xij

max
{

x1j, · · · , xmj
}− min

{
x1j, · · · , xmj

} (3)

3.2. The Calculation of Weights for Commonality Indexes

Since the commonality indexes such as benefits, resource development, and development potential
are indexes shared by the five DSER, and the preference of the decision makers for these indexes is
more obvious, the Analytic Hierarchy Process (AHP) is used to evaluate the commonality indexes.

On one hand, the AHP takes the subjective experience judgement of expert scoring into account.
On the other hand, the expert judgement is transformed into a mathematical model for quantitative
calculation, so that the proportion of each index in the company evaluation index can be calculated.
The combination of analysis and calculation is extremely useful for highlighting corporate evaluation
in different periods.
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The basic idea of the AHP is to build the problem hierarchically based on the decision goal (as is
shown in Figure 4). The highest level is the target level, several intermediate levels are the criterion
level, and the bottom level is the various options selected for solving the problem, which is called the
plan level [24,25].

Figure 4. Hierarchical structure.

The weights of indexes are determined by AHP as follows:

(1) Compare pairs of indexes in the same level, and refer to the number 1–9 and its reciprocal as a
scale to define the judgment matrix A, as shown in Table 8.

Table 8. The definition of the scale in the matrix.

Scale Meaning

1 two factors of equal importance
3 two factors, the former is slightly more important than the latter
5 two factors, the former is obviously more important than the latter
7 two factors, the former is mightily more important than the latter
9 two factors, the former is extremely more important than the latter

2, 4, 6, 8 the middle value of the above adjacent judgment

reciprocal
If the ratio of the importance of factor i to factor j is aij, the ratio of the

importance of factor j to the factor i is aji = 1/aij

(2) Calculate consistency ratios and test consistency

CR =
CI
RI

(4)

CI =
λmax − n

n − 1
(5)

where CI—Consistency indicator; RI—Random consistency indicator; CR—Test coefficient; λmax—The
maximum eigenvalue of the judgment matrix A; n—The order of the judgment matrix A.

The value of RI is shown in Table 9
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Table 9. Average random consistency.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45

When CR < 0.10, the consistency of the judgment matrix is considered acceptable, otherwise the
judgment matrix should be properly modified.

(3) The calculation of weight vector W

The weight vector W in AHP is calculated by the eigenvector method, and the weight vector W is
multiplied by the judgement matrix A

AW = λmaxW (6)

3.3. The Calculation of the Comprehensive Score upon Commonality Indexes

The comprehensive score upon the commonality indexes of all kinds of DSER can be obtained by
weighted overlaying the quantized values of each index and their corresponding weights in a certain
region, as shown in formula (7). Suppose there are n commonality indexes,

fA = ∑ WAj·xAj (7)

Taking WG as an example, WAj is the weight of the jth index in the general index of WG, xAj is
the quantified value of WG in jth index, and fA is the comprehensive score of the commonality index
of WG.

4. Determination of Individuality Indexes Weights and Calculation of Comprehensive Score

4.1. Standardization of Evaluation Indexes

The evaluation indexes are nondimensionalized, same as Section 3.1.

4.2. The Calculation of Weights for Individuality Indexes

Since the individuality indexes upon various DSER are different, and the relative importance of
each index is difficult to divide artificially, therefore, the entropy weight method is used to evaluate
the individuality index.

Entropy, one of the parameters that characterize the state of matter in thermodynamics, is a
measure of the degree of chaos in the system. Entropy method is to use the degree of variation of
information entropy to calculate the weight of each index, to evaluate the importance of each index [26].

Assuming that there are m regions, n evaluation indexes, the weights of indexes are determined
as follows:

(1) Calculate Pij, the weight of the index values of each region under various indexes

Pij =
xij

∑m
i=1 xij

(8)

where i represents the ith region, j represents the jth index, and xij represents the index value of
the ith region under the jth index.

(2) Calculate ej, the entropy of each index

ej = − 1
ln(m)

m

∑
i=1

pij ln pij (9)
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(3) Calculate gj, the difference coefficient of each index

gj = 1 − ej (10)

(4) Calculate Wj, the weight of each index

WBj =
gj

∑n
j=1 gj

(11)

4.3. The Calculation of the Comprehensive Score upon Individuality Indexes

The comprehensive score upon the individuality indexes of all kinds of DSER can be obtained by
weighted overlaying the quantized values of each index as well as their corresponding weights in a
certain region, as shown in formula (12). Suppose there are n individuality indexes,

fB = ∑ WBj·xBj (12)

Taking WG as an example, WBj is the weight of the jth index in the general index of WG, xBj is the
quantified value of WG in this index, and fB is the comprehensive score upon the individuality index
of WG.

5. Case Analysis

Twenty regions are selected as evaluation objects for example analysis. The schematic diagram is
shown in Figure 5.

Figure 5. The schematic diagram of 20 regions.

5.1. Commonality Indexes

5.1.1. Standardization of Indexes

According to Equations (2) and (3), each index value can be processed to obtain the relative value
of each index. Taking the commonality indexes of WG as an example, the processed index values are
shown in Figure 6.
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Figure 6. Value of commonality indexes of wind power generation (WG) in 20 regions.

As can be seen from Figure 6, among the 20 regions, WG in region 2 has the highest economic
benefits, however, whose social benefits, resource development and policy support are almost
behind those in other regions. The social benefits and funding sources of WG in region 18 are
in a leading position, however, the environmental benefits are the lowest, moreover, policy support is
not satisfactory.

5.1.2. The Calculation of Weights of Commonality Indexes

According to Equation (6), AHP is used to calculate the weights of benefits, resource development
and development potential of the commonality indexes, so are the weights of their respective
subindexes. The calculation results are shown in Table 10.

Table 10. Weight of commonality indexes.

Item First Level Index Weight Subindex Weight

Commonality
indexes

Benefit 0.5584
Economic Benefits 0.4567

Environmental Benefits 0.3745
Social Benefits 0.1688

Resource development 0.1220

Development potential 0.3196

Policy support 0.2956
Sources of funds 0.3554

Benefits 0.1026
The amount of surplus resources 0.2464

As can be seen from Table 10, the weight of benefits in the commonality indexes is the largest,
followed by the weight of development potential, and the weight of resource development is the least.
For the subindexes, under the benefit index, the economic benefit accounts for the largest proportion,
and under the development potential index, the sources of funds account for the largest proportion.

5.1.3. The Calculation of Comprehensive Score

After calculating the weights of the subindexes under the commonality indexes,
the comprehensive scores of the commonality indexes of various DSER in various regions are calculated
according to Equation (7). Analyzed results are as follows:
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As shown in Figure 7, the scores of commonality indexes of the PV and EV in region 1 are
relatively high, but that of WG, flexible load, and ES are in the middle level; the score of flexible loads
in region 2 is relatively high, and the score of PV is relatively low. As is shown in Figure 8, the scores
of commonality indexes of WG in regions 15 and 17 are relatively high, the scores of WG in regions
5, 7, and 19 are relatively low; the scores of commonality indexes of EV in regions 1, 3, 8, and 15 are
relatively high, the scores of EV in regions 6, 12, 16, and 18 are relatively low.

(a) (b)

Figure 7. The comprehensive scores of commonality indexes of various DSER in a certain region.
(a) The score of various DSER in region 1; (b) The scores of various DSER in region 2.

(a) (b)

Figure 8. The comprehensive scores of commonality indexes in various regions. (a) The scores of WG
in various regions; (b) The scores of electric vehicle (EV) in various regions.

5.2. Individuality Indexes

5.2.1. Standardization of Indexes

According to Equations (2) and (3), each index value can be processed to obtain the relative value
of each index. Taking the individuality indexes of WG as an example, the processed index values are
shown in Figure 9.
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Figure 9. Value of individuality indexes of WG in 20 regions.

It can be seen from Figure 9 that among the 20 regions, the number of system failures of WG in
region 5 is the lowest, but the remaining indexes are in a backward position in the ranking. The daily
peak rate and daily load fluctuation rate of WG in region 9 are relatively good, but the system has
more failures.

5.2.2. The Calculation of Weights of Individuality Indexes

The entropy weight method is used to calculate the weights of the individuality indexes upon
various DSER according to Equations (8) to (11), as shown in Figure 10.

As can be seen in Figure 10, among the individual indexes of WG and PV, the weight of the
daily load fluctuation rate is the largest, and the proportion of the number of days meet the threshold
accounts for the smallest part. Among the individual indexes of EV and ES, the weight of the power
outage time, number of system failures and the battery capacity index is relatively large, and the
weight of charge and discharge speed is relatively small. Among the individual indexes of flexible
loads, the weight of the response success rate index is the largest, and the response cost index has the
smallest weight value.

5.2.3. The Calculation of Comprehensive Score

After calculating the weights of the subindexes under the individuality indexes,
the comprehensive scores of the individuality indexes upon various DSER in various regions are
calculated according to Equation (12). Analyzed results are as follows:

As shown in Figure 11, the score of individuality indexes of the PV in region 1 is relatively low,
whereas that of the other DSER are relatively high. The scores of WG, PV, ES, and flexible loads in
region 2 are higher than the score of EV. As is shown in Figure 12, the scores of individuality indexes
of WG in regions 2 and 4 are relatively high, the scores of WG in regions 5 and 14 are relatively low;
the scores of individuality indexes of EV in regions 4, 6, and 13 are relatively high, the scores of EV in
regions 16 and 17 are relatively low.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 10. The weight of individuality indexes of various DSER. (a) The weight of indexes of WG;
(b) The weight of indexes of photovoltaic (PV); (c) The weight of indexes of EV; (d) The weight of
indexes of energy storage (ES); (e) The weight of indexes of flexible loads.

(a) (b)

Figure 11. The comprehensive scores of individuality indexes of various DSER in a certain region.
(a) The score of various DSER in region 1; (b) The scores of various DSER in region 2.
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(a) (b)

Figure 12. The comprehensive scores of individuality indexes in various regions. (a) The scores of WG
in various regions; (b) The scores of EV in various regions.

6. Conclusions

To facilitate the decision-making of optimal planning and optimally aggregate utilization of DSER,
this paper proposes an evaluation model of DSER based on geographic information, that is, various
DSER in a region are evaluated based on geographic information. Firstly, for five kinds of demand-side
energy resources of WG, PV, EV, ES, and flexible load, select the evaluation indexes of all kinds of
resources and divide all indexes into commonality indexes and individuality indexes. Then, AHP
is used to determine the weight of each subindex under the commonality indexes, and the entropy
weight method is used to determine the weight of each subindex under the individuality indexes.
Finally, weighted overlay is acquired according to the weights and quantized values of each index,
and a comprehensive score is obtained for the commonality indexes and individuality indexes of
various DSER in a region. The following conclusions are obtained through the cases analysis.

1. The evaluation results of commonality indexes are helpful to understand the development status
and prospects of DSER, which is conducive to the future development and long-term optimization
planning of DSER.

2. The evaluation results of individual indexes are helpful to understand the respective
characteristics of DSER, which is conducive to achieving a good interaction between the DSER and
the power grid, providing support for the medium-term optimization aggregation of the DSER.

3. The evaluation model of DSER based on geographic information proposed in this paper has good
practicability and effectiveness, which matches the development of DSER with urban planning
as well as power grid planning, providing a theoretical basis for the subsequent development
of DSER.
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Abstract: Photovoltaic (PV) energy is one of the most promising renewable energies in the world
due to its ubiquity and sustainability. However, installation of solar panels on the ground can cause
some problems, especially in countries where there is not enough space for installation. As an
alternative, floating PV, with advantages in terms of efficiency and environment, has attracted
attention, particularly with regard to installing large-scale floating PV for dam lakes and reservoirs
in Korea. In this study, the potentiality of floating PV is evaluated, and the power production is
estimated for 3401 reservoirs. To select a suitable reservoir for floating PV installation, we constructed
and analyzed the water depth database using OpenAPI. We also used the typical meteorological
year (TMY) data and topographical information to predict the irradiance distribution. As a result,
the annual power production by all possible reservoirs was estimated to be 2932 GWh, and the
annual GHG reduction amount was approximately 1,294,450 tons. In particular, Jeollanam-do has
many reservoirs and was evaluated as suitable for floating PV installation because of its high solar
irradiance. The results can be used to estimate priorities and potentiality as a preliminary analysis for
floating PV installation.

Keywords: floating photovoltaic system; renewable energy; solar energy; photovoltaic energy;
greenhouse gas

1. Introduction

To reduce greenhouse gas (GHG) and protect the environment, renewable energy sources are
increasingly utilized worldwide. According to Renewable Capacity Statistics [1], the total renewable
power capacity for power generation is 2179 GW in 2017, with an 8.3% increase over the previous year.
In particular, the growth rate of photovoltaic (PV) energy is prominent because the price of solar panels
is steadily declining, and various stimulus policies are being implemented. PV energy is considered to
be one of the most promising energy alternatives due to its ubiquity and sustainability. Particularly in
South Korea, PV energy is spreading very quickly after the introduction of the Renewable Portfolio
Standards (RPS) program, which requires electricity providers to increase their renewable energy
production. PV energy is the renewable energy that accounts for the largest portion in Korea today,
except for waste energy and bio-energy. According to the Korea New and Renewable Energy Center
(KNREC, Yongin, Korea), renewable energy supply ratio in Korea is about 19.5%, 61.7%, 4.3%, and 2.5%
for solar, biomass, hydro, and wind, respectively in 2016. The supply of PV energy in Korea was only
7.6 toe (tonne of oil equivalent) until 2006 but increased to a value of 1092.8 toe in 2016. This is because
government policies have been actively implemented, and the public has become actively engaged in
PV projects to generate profits by selling the produced electricity. However, the excessive installation
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of PV facilities has caused various problems. In addition to the damage to the landscape caused by
the installation of solar panels, the residents of areas where the panels have been installed have been
inconvenienced by the reflected light and increase in the ambient temperature. In addition, solar
panels that are swept away in the event of landslides or typhoons can cause safety accidents. In recent
years, there has been an increase in complaints from local residents, as the solar power generation
business has become a means of speculation in the area of PV power generation. These problems
can be even more significant in countries such as South Korea, where available land is scarce, so that
there is not enough area for the installation of solar panels. Therefore, floating PV systems, which can
overcome or alleviate these problems, have attracted considerable attention in these countries.

In addition to being able to utilize the reflected light from the water surface, the floating PV is
known to be about 11% more efficient than the terrestrial solar panel due to the temperature reduction
effect in water [2]. Solar panels that cover the water can also reduce evaporation [3] and prevent
algae [4] due to shadows by the panels. In other words, the floating PV is advantageous in terms
of efficiency and environmental aspects, in addition to the lack of need for land. Because of these
advantages, floating PV systems installed on water bodies, such as reservoirs or dam lakes, have
increased worldwide and have already been deployed in several countries, including South Korea,
Japan, China, and the US [5]. Although most technological growth occurred between 2007 and
2014, the global installed capacity for floating PV has increased significantly since 2015. Floating PV
installations in the world were estimated at 94 MW by 2016, of which about 60% were known to be
installed in Japan [6]. In 2017, however, the world’s largest floating PV system was installed on the
pit lake of a coal mine in China and is known to have capacity of 40 MW. The system is composed of
120,000 solar panels, supplying the electricity needs of 15,000 households [7]. Recently, South Korea
has been rapidly improving its floating PV technology and increasing installation capacity. The Korea
Water Resources Corporation (K-water, Daejeon, Korea) carried out the first demonstration project
in South Korea at the Hapcheon reservoir in 2014 with a capacity of 100 kW. In addition, K-water
operates South Korea’s first commercial system by producing 500 kW of electricity for approximately
170 households. K-water plans to install 550-MW capacity dam lakes by 2022, and the Korea Rural
Community Corporation (KRC, Naju, Korea) is planning 1900 MW of capacity for the reservoirs
under management.

Various studies have been conducted to improve and utilize floating PV. There have been many
studies on mooring systems to maintain the balance of panels on the water [8,9], and a solar tracking
system has been actively studied to improve efficiency [10,11]. In recent years, it has become possible to
transmit and receive data from a floating PV through the integration of ICT technology [12]. In addition,
there have been several studies where Geographical Information System (GIS) techniques have been
applied to determine a suitable location for field application and evaluation of the PV potential [13].
Song and Choi [14] evaluated the potential and economic feasibility of a pit lake on the abandoned
mine site in Gangwon-do, South Korea, by assessing shadow effects based on GIS techniques and a
fish-eye lens camera. Lee and Lee [15] evaluated the applicability of floating PV by region based on
the analytic hierarchy process (AHP), considering geographical conditions and weather conditions.
Lee et al. [16] evaluated additional parameters to be considered because of the difference between
conventional and floating PV systems and evaluated the suitability of the Hapcheon dam area.

There have been many studies regarding individual reservoirs, lakes, and dams, but little research
has been conducted on a national scale. Particularly in countries like Korea where large-capacity
floating PV systems will be installed in the long term, the PV potential of each available area should be
assessed. The purpose of this study is to evaluate the applicability and potential of floating PV for the
approximately 3400 reservoirs registered and managed in Korea.

2. Study Area and Data

In this study, we investigated whether floating PV installation is suitable for reservoirs distributed
in South Korea. There are 3401 reservoirs managed by the KRC as a database that contains information
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such as the area of the reservoir, dead water level, full water level, and water storage capacity.
The database was downloaded from the Public Data Portal (PDP, data.go.kr). Spatial data such as
location and boundary information for each reservoir are also managed and provided to the public.
They were downloaded from the National Spatial Data Infrastructure Portal (NSDI, data.nsdi.go.kr).
Figure 1a shows reservoir locations, provinces, and some major cities, and Figure 1b shows reservoir
density across the country. It can be seen that the most reservoirs are concentrated in Jeollanam-do.
Using this location data, each reservoir is constructed as point data, and each point object has the
name and standard code of the reservoir. Since these standard codes are used in the same way in all
the databases, they are used to perform joint work between different data sources. To calculate the
area for each reservoir and perform geospatial analysis, information on the boundary of the reservoir
was used. Most of the reservoir boundaries and locations are very accurately constructed, except
some of the very small reservoirs, when compared with satellite images. To operate floating PV
properly, the reservoir needs to have sufficient water depth. Therefore, information on reservoir depth
is required for this study, and the PDP provides the level of the reservoir managed by the KRC on a
daily basis. This information is provided through OpenAPI, which is a publicly available application
programming interface that provides developers with programmatic access to web service. In this
study, we constructed a database of the daily reservoir depth over one year in 2017 for all reservoirs
through Python coding for OpenAPI. To evaluate the potential of floating PV installed in the reservoir,
it is necessary to use the solar irradiance for each site. In this study, we use the typical meteorological
year (TMY) data constructed by the Korea Institute of Energy Research (KIER, Daejeon, Korea) to
predict the amount of solar irradiance at each site. Global horizontal irradiance (GHI) and direct
normal irradiance (DNI) derived from TMY data are used in this study. TMY datasets in 16 cities
are created by KIER and distributed by the National Center for Standard Reference Data (NCSRD,
Daejeon, Korea). In addition, it is necessary to analyze the shadowing effect to evaluate the power
production of floating PV. For this purpose, information about the terrain is needed. In this study,
the digital elevation model (DEM) of 90-m resolution, downloaded from the National Geographic
Information Institute (NGII, Suwon, Korea), is used. The DEM and TMY observation points for South
Korea are shown in Figure 2.

Figure 1. Reservoirs in Korea: (a) reservoir locations, provinces and some major cities; (b) reservoir
density across the country.
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Figure 2. Digital Elevation Model (DEM) and Typical Meteorological Year (TMY) data observation
points in Korea.

3. Methods

Figure 3 shows the study process used to select suitable reservoirs for installing floating PV from
approximately 3400 reservoirs in South Korea and to evaluate the expected effect. This study process
can be summarized as follows. In the first step, TMY data were used to predict the daily average solar
irradiance, considering the annual irradiance of South Korea. In this process, an interpolation method
was applied. However, this solar irradiance map does not take into account the effects of the terrain.
In the second step, we performed topographic analysis using the DEM to account for the influence of
the shadow caused by the terrain. An average daily irradiance map was created based on topography,
taking into account the shadowing ratio and solar irradiance map created in the first step. In the third
step, reservoirs that do not have sufficient water depth were excluded from the analysis. In the fourth
step, the possible power production of the floating PV system of each reservoir was estimated by
considering the meteorological data and system design parameters. In the fifth step, the economic
feasibility and reduction in GHG emissions by administrative districts were evaluated based on the
expected power production.
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Figure 3. Overall study process to select suitable reservoirs and assess the potential of floating
photovoltaic systems in Korea.

3.1. Point Irradiance Calculation and Interpolation

The solar irradiance was calculated based on an equal-area-equal-angle sky division grid [17]
with the TMY dataset of 16 cities. Beam and diffuse irradiances for each position in the celestial sphere
were calculated by summing all the irradiance over the entire year for a time interval. This study refers
to this irradiance intensity map of the sky as Sunmap. Figure 4a shows the average of Sunmap for a
tilt angle of 20◦ from all 16 cities, and Figure 4b shows the average of total irradiance as a function of
solar panel direction.

 

Figure 4. (a) Mean Sunmap of TMY dataset in Korea with a tilt angle 20◦; (b) Mean total irradiance
with respect to solar panel direction.

The top is north, and the center point represents the zenith. The sky diffuse model [18] is used
when calculating the diffuse irradiance in the sky. The total incident irradiance of the tilted surface is
the summation of all positive normal intensities from the entire sky. Considering the irradiance of each
city in the TMY dataset, it was assessed that the optimal panel direction of Korea is southward, and the
optimal tilt angle is about 30◦ for most cities. However, many solar panels in the floating PV system
have been installed with a tilt angle close to horizontal. National Renewable Energy Laboratory (NREL,
Golden, Colorado, USA) research has shown that a tilt angle of 11◦ is the typical mounting angle for
floating solar systems in Tokushima, Japan [19]. Other installed systems in Italy and Singapore also
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have a tilt angle close to the horizontal [20]. This preference is derived for reasons such as maximizing
power density or structural stability. Therefore, this study sets a tilt angle of 20 ◦, which has a difference
in irradiance of less than 1%, compared to a tilt of 30 ◦.

Point irradiance data was interpolated to generate an irradiance map to estimate the irradiance
in all areas in Korea. Interpolation is a technique to estimate values between known data. Kriging is
a widely used geostatistical interpolation method, which calculates weighting from the correlation
of known points. Although it is statistically powerful and is preferred in many cases, a sufficient
number of points is necessary to estimate the statistical relationship of each point. Therefore, kriging
is not applicable in this study, so the inverse distance weighting (IDW) method was applied. IDW
is a deterministic method, which is frequently used in many studies [21]. As shown in Equation (1),
the IDW method interpolates unknown values based on distances and values of known points.

Ip =
∑n

i=1
Ii

dP
i

∑n
i=1

1
dP

i

, (1)

where Ip is the irradiance of an unknown point, n is number of points, i is an index of a point, Ii is
irradiance of the known ith point, di is the distance between the unknown point and the known ith
point, and P is power parameter. This method was used to generate a renewable energy resource atlas
in Korea [22]. In addition, Evrendilek et al. [23] showed that the accuracies of IDW and co-kriging are
similar for Turkey.

3.2. Solar Irradiance Map based on Shadow Analysis

As the study area has mountainous terrain, calculating shadowing is an essential process. Whether
the sky is covered by terrain or not is determined using the DEM for each position in the Sunmap grid.
This sky coverage map is referred to as Viewmap and is used to calculate the shadowed irradiance or
sunshine duration. Details of the process are described in Oh et al. [17]. The annual sunshine duration
is calculated based on Sunmap and Viewmap.

The annual sunshine duration is calculated considering the effect of shadows, but the difference
in irradiance at different times is not considered. For example, even though the sunshine duration in
the morning or evening is the same as the sunshine duration at noon, the irradiance in the morning
or evening is smaller. To solve this problem, this study used an hourly weight. Figure 5 shows the
hourly distribution of irradiance, which is the hourly irradiance divided by the total irradiance, for
each city in the TMY dataset. This shows that the hourly distribution for all cities is similar. Therefore,
this study assumes that the pattern of hourly distribution of irradiance is the same for every location.
Based on this assumption, the sunshine duration for each hour is calibrated as the shadowless ratio by
considering the weighting according to the hourly distribution of irradiance.

138



Appl. Sci. 2019, 9, 395

 
Figure 5. Graph of the ratio of hourly irradiance of each city in TMY dataset.

Equation (2) shows the equation for the hourly weight calculation, and Equation (3) shows the
equation for irradiance considering shadows,

Wh =
Sh

Smaxh
× Ith

∑24
i=1 Iti

(2)

Isp =

(
24

∑
h=1

Wh

)
Ip (3)

where h is the time index Wh is the weight at each time h, Ith is annual irradiance of the TMY dataset at
time h, Sh is sunshine duration at time h, Smaxh is maximum sunshine duration at time h, and Isp is
irradiance considering shadows of the unknown point. The ratio of sunshine duration and the hourly
distribution of irradiance of the TMY dataset is calculated in Equation (2). Mean values for the entire
TMY dataset are used in the calculation. The weight at each time is the multiplication of these two
ratios. The summation of all hourly weights is used as the total weight, equal to 1 when there are no
shadows and equal to 0 when that position is fully shadowed.

The irradiance map assuming shadows (Figure 6c) is generated by the multiplication of the
interpolated irradiance map (Figure 6a) and total weight map (Figure 6b). This map can represent both
the influence of weather and terrain. The spatial resolution of the map is 90 m, which is equal to that
of the DEM.
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Figure 6. Irradiance prediction: (a) interpolated irradiance map; (b) shadowless ratio map;
(c) irradiance map considering shadow by terrain.

3.3. Constraint Analysis on Reservoir Depth

In general, for smooth installation and operation of the floating PV, a reservoir with a water depth
greater than 5 m is recommended, maintaining a water depth of at least 1 m [24]. Therefore, reservoirs
that do not meet these conditions were excluded in this study. In fact, a floating PV of 465 kW installed
in the Geumgwang reservoir in Korea had difficulty in operation because of a summer drought that
caused the bottom of the reservoir to be revealed [25]. The KRC provides the daily water level for
each reservoir using OpenAPI. The data format is XML, and the API service type is REST type. When
the standard code and search period are requested as parameters, the server provides the daily level
for that period. Since only one standard code for a particular reservoir can be input in one request,
Python-based coding was performed to obtain data for more than 3000 reservoirs. The Requests
module from Python was used for OpenAPI requests, and the BeautifulSoup module was used for
parsing XML data. Since the water level is provided as an elevation, the water depth was calculated
by subtracting the dead water level of each reservoir from the water level. This study constructed a
reservoir depth database of 2017 and used it for analysis because for some reservoirs there is no data
before 2017.

3.4. Design and Evaluation of the PV System

In this study, it is assumed that the solar PV panels are installed in a fixed-tilt array with a 20◦

slope facing south. The annual power production of the PV system was calculated using the formula
of RETScreen software developed by Natural Resources Canada (NRC, Ottawa, Canada). RETScreen
evaluates the power of the PV system via Equation (4),

EA = Ht × S × ηr × ηinv ×
[
1 − βp × (Tc − 25)

]× (
1 − λp

)× (1 − λc) (4)

where EA is the amount of power (kWh/h) produced by a PV system, Ht is solar irradiation per unit
area per unit time (kWh/m2/h), S is a surface area (m2) of the solar array, ηr is conversion efficiency
(0–1) of the solar cell module, ηinv is conversion efficiency of the inverter, βp is temperature coefficient
related to the efficiency of the solar cell module, Tc (◦C) is average temperature of the solar cell module,
λp is loss coefficient of the solar cell module, and λc is loss coefficient of the inverter [26]. Table 1
shows the parameters for the solar panel and inverter used in this study. In this study, the number and
surface area of the panels that can be installed are calculated, considering the area of each reservoir,
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the area of one panel, and array spacing. Then, this result is substituted into equation (4), and finally,
the power production is estimated.

Table 1. Design parameters for the photovoltaic systems considered in this study.

Type Parameter Value

Solar cell module

Model SPR-210-BLK
Length (m) 1.56
Width (m) 0.80

Power capacity (kW/unit) 0.21
Efficiency (%) 16.9

Nominal Operating cell temperature (◦C) 46
Temperature coefficient (%/◦C) −0.4

Losses (%) 1

Inverter

Model SPR-12000f
Efficiency (%) 95.5

Capacity (kW/unit) 12.5
Losses (%) 0

The parameters of solar panel and inverter in this study are the values of the products that
are commercially available and are produced on an industrial scale. If more efficient equipment is
installed in the reservoirs than Table 1, then the total power production and environmental benefit
will increase further. In that case, however, the overall cost will increase, and the economic burden
will also increase. Therefore, appropriate selection should be made according to technology level
and economic conditions at installation. According to Battaglia et al. [27], current silicon solar cells
technology achieved over 25% of efficiency, and several advanced concepts have been proposed to
overcome single-junction solar cells. In addition, silicon hetero-junction solar cell achieved over 26%
of efficiency [28]. Therefore, more efficient equipment is expected to be installed at a lower cost in
the future.

3.5. Economic Assessment and GHG Reduction

In this study, an economic assessment is performed in terms of the cost of the PV system and the
profit from the power production. The cost of a PV system can be separated into the initial installation
costs and operating costs. According to the Korea Energy Economics Institute (KEEI, Ulsan, Korea) [29],
the installation cost is about 1.43 USD/W, and the annual operating cost is about 10.38 USD/kW.
The RPS system was used to estimate the revenue generated by electricity production and sales.
The RPS system calculates the electricity sales revenue by summing the system marginal price (SMP)
and renewable energy certificates (REC). Here, SMP refers to the revenue from the sale of electricity
through the Korea Power Exchange (KPX, Naju, Korea). REC is a tradable, non-tangible energy
commodity that represents 1 MWh of electricity generated from an eligible renewable energy resource.
Since the prices of SMP and REC are constantly changing, this study used the average value of the
amount traded in Korea since 2018. SMP and REC prices are 82.93 USD/MWh and 89.06 USD/MWh,
respectively. In addition, in Korea, the power generated by a floating PV is multiplied by a REC weight
of 1.5 308.

The net present value (NPV) of the PV system was also calculated by Equation (5).

NPV =
N

∑
t=1

Et − Ct

(1 + r)t − C0 (5)

where N is the system operating period (20 y in this study), Et is annual electricity sales revenue (USD),
Ct the annual operating cost (USD), r is the discount rate, and C0 is initial cost (USD). A discount rate
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of 5.5% was applied in this study, according to KEEI [30]. The payback year can be determined by
calculating N, satisfying the condition that NPV becomes zero in Equation (5).

GHG reduction was also calculated in this study by multiplying the GHG emission reference
value (0.4415 tCO2/MWh) and total amount of power (MWh/year). GHG reduction refers to the
amount of GHG generated when the same amount of power produced through renewable energy is
generated through the fossil energy system.

4. Results

Figure 7 shows the variation in the mean water depth over one year by distinguishing reservoirs
for each province. In Gangwon-do, the number of reservoirs is small, but the reservoirs have a deep
water depth. On the other hand, Jeollanam-do has the highest number of water reservoirs but the
lowest average water depth. Commonly, the water depth falls rapidly from May to July and tends
to recover after July. Figure 8 shows the map of the average water depth for each reservoir over the
course of a year. There are a considerable number of reservoirs that are not suitable for floating PV
installations, in which the average water depth is less than 5 m. There are many reservoirs in Jeolla-do
and Gyeongsang-do, but many reservoirs are low in water depth.

 
Figure 7. The variation of mean water depth over one year for reservoirs of each province.

The floating PV capacity and power production of each reservoir was calculated considering
the solar irradiance, characteristics of the panel, and installation area of the panel. In this study, an
additional 11% efficiency was considered for the use of the floating PV. The results for all reservoirs
are shown in Table 2, based on the ratio of the installation area for the reservoirs satisfying the water
depth requirements assumed above. Only reservoirs with a floating PV capacity of 100 kW or greater
were considered. Generally, it is common to install floating PV panels in 10% of the reservoir area.
In this case, 1134 reservoirs satisfy the condition, and the total installed capacity of the panels is about
2103 MW, with an annual power production of 2932 GWh. In recent years, a floating PV has been
installed for a high percentage of the reservoir area in several cases [31]. If a floating PV is installed
over the entire area of the reservoir under extreme assumptions, the total installed capacity of the
panel is estimated to be 21,093 MW, and the annual power production is estimated to be 29,409 GWh.
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Figure 8. The map of the average water depth for each reservoir over a year.

Figure 9a is a map showing the annual electricity usage for the administrative units of Korea in
2017. Metropolitan cities or industrial cities such as Seoul, Ulsan, Incheon, and Busan show relatively
high electricity usage, and their annual electricity consumption is about 46,493 GWh, 32,095 GWh,
23,876 GWh, and 20,467 GWh, respectively. Figure 9b shows what percentage of electricity usage
can be satisfied when a floating PV is installed in each administrative unit. It is assumed that solar
panels are installed in 10% of the reservoir area. It is estimated that Jeolla-do, which has a relatively
low power consumption and is favorable for floating PV installation, can supply a large portion of
the electric power demand in comparison with other provinces. For example, it is estimated that
about 41% of the power demand of Imsil in Jeollabuk-do and 16% of the power demand of Gangjin in
Jeollanam-do can be covered by floating PV power generation.

Figure 9. (a) Map of the annual electricity usage for the administrative units and (b) map of the
demand-to-supply ratio for electricity usage.
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Table 3 shows the overall results of reservoir condition, installed floating PV capacity, annual
power production, and GHG reduction of each province. It can be seen that Jeollanamdo,
Gyeongsangbuk-do, and Chungcheongnam-do, which have high solar irradiance and a large number
of reservoirs, have high power production and high GHG reduction. If a floating PV is installed in 10%
of the area for all reservoirs, the expected annual power production is 2932 GWh, and the annual GHG
reduction amount is approximately 1,294,450 ton.

Assuming that a floating PV is installed in 10% of the reservoir area, the analysis results of the
top 10 reservoirs (Figure 10) with the highest power production are shown in Table 4. In this case, a
larger reservoir area corresponds to more power generation. Therefore, the top 10 reservoirs with high
economic efficiency were also analyzed for an installed 100-kW floating PV (476 units of PV panel with
0.21-kW capacity). For a floating PV installed in proportion to the area of the reservoir, the analysis
shows that maximum power production corresponds to a PV installed in Yedang reservoir, located
in Chungcheongnam-do. In this case, reservoirs suitable for floating PV installations are distributed
nationwide. On the other hand, in terms of economic efficiency, reservoirs of Jeollanam-do with high
solar irradiance were found to be advantageous.

Figure 10. Boundary data and satellite images of top 10 reservoirs with the highest power production:
(a) Yedang; (b) Seomjin; (c) Najuho; (d) Topjeong; (e) Togyo; (f) Miho; (g) Gosam; (h)Bulgop; (i) Yidong;
(j) Deokdong.
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5. Conclusions

In this study, we analyzed the water level data of 3401 reservoirs in Korea using OpenAPI
and extracted reservoirs suitable for floating PV installation. In this analysis, the conditions of an
average reservoir water depth greater than 5 m and minimum water depth greater than 1 m were
considered. GIS spatial analysis was applied to the TMY dataset to predict the national distribution
of solar irradiance for shadow conditions. Assuming an expected power production of 10% of the
area of all reservoirs satisfying the conditions, the annual power production was estimated to be
2932 GWh, and the annual GHG reduction amount was estimated to be 1,294,450 ton. In particular,
Jeollanam-do has many reservoirs, including many suitable for floating PV installation because of
high solar irradiance. The results of this study can be used to estimate priorities and potentiality
prior to actual floating PV installation and detailed analysis. This study did not take degradation into
consideration because it is aimed at estimating priorities through relative comparisons. However, as
floating PV is installed in the water, it is necessary to study the efficiency change and degradation
related to the moisture in actual installation.

The results of this study are very useful for preliminary evaluation at the national level, but
improvement is needed in the following points. First, there may be a limit to the prediction accuracy in
that only 16 data points are used to predict the solar irradiance. If the irradiance is measured at many
more points, accurate irradiance prediction can be made. However, because of budget limitations, it is
necessary to continuously increase the number of solar irradiance observation points at the government
level. It is also possible to improve the accuracy of solar irradiance prediction through complex analysis
with satellite image data. Next, the water level data used in this study is not well managed by the
government, and some data are missing or include errors. In this study, we manually identified and
corrected these errors. To reflect water level data in real time during the operation of the floating PV
in the future, more thorough management of water level data is needed. In addition, this study was
carried out to evaluate reservoirs suitable for floating PV installation and to evaluate their overall
potential. However, to actually install floating PV in individual reservoirs, a more accurate analysis
of the area’s solar irradiance, wind speed, accessibility, detailed topography, and other conditions
needs to be implemented. Finally, since SMP and REC prices are constantly changing, it is necessary to
periodically consider the economic feasibility. The results of this study have important implications in
Korea for large-scale floating PV installation in the future. For the successful application of floating PV,
a rigorous feasibility assessment and planning for the redistribution of profit is most important, to
minimize environmental damage and repudiation from the local residents.
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Abstract: The photovoltaic (PV) generating system has high potential, since the system is clean,
environmental friendly and has secure energy sources. There are two types of PV system, which are
grid connected and standalone systems. In the grid connected photovoltaic system (GCPV),
PV generator supplies power to the grid, whether or not the whole or a portion of the generated
energy will be used to supply load demands. Meanwhile, the standalone photovoltaic system (SAPV)
is used to fulfil a load demand that close to its point of use. These days, many researchers study
in term of optimization sizing of photovoltaic system, in order to select optimum number of PV
modules, inverter, battery storage capacity, and tilt angle. Based on that, this review aims to give
explanations on approaches done by previous researchers in order to find ultimate combinations
for design parameters. Moreover, the paper discusses on modelling of PV system components,
which includes PV panels’ output power estimation and battery system. Finally, simulation softwares
that used as sizing tools in previous studies are reviewed and studied.

Keywords: photovoltaic; optimum sizing; design; renewable energy; stand alone; grid connected

1. Introduction

Rapid reduction of fossil fuel resources and growing evidence of global warming phenomena
cause the necessity of urgent search for alternative energy sources. Recent studies shows that renewable
energy has great potential and can be used to fulfil world energy demand [1]. According to [2],
the PV industry has grown more than 40% per year since last decades due to rapid decrease in PV
technology cost. PV technology may become major alternative energy source in the future since it has
several positive attributes, low maintenances, free and inexhaustible energy source and robust and
long life time system’s components [3]. However, solar energy is not always reliable, because solar
radiation varies and frequently changes, due to unpredictable nature and dependence on weather
and climate changes. Hence, generated energy does not match with load demand all the time.
Energy generated in PV systems depends mainly on solar energy available at the site. Geographical
location, ambient temperature, clearness index, tilt and orientation of PV panel are the main factors
that affect solar energy collected by a PV panel. Hence, studying these meteorological data is very
crucial in preliminary design of a PV system. Other factors may affect energy generated, such as
shading effect, cable reduction factor, system elements and configurations losses.

There are two types of PV power systems namely grid connected and standalone systems.
Grid connected photovoltaic (GCPV) systems engage PV technology with electricity grid network.
In the GCPV system, an inverter converts DC electricity generated by PV modules into AC electricity.
Then, output power from inverter is fed to the utility grid [4]. On the other hand, standalone
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photovoltaic (SAPV) systems are off grid systems, where PV technology is not connected to the
grid, and power generated is not sold to the utility [5]. Before recommending and installing a PV
system, it is crucial to ensure that the system is not over/under sized. In other words, the designer
has to investigate the viability of system carefully. To efficiently and economically use solar energy,
optimal sizing of the system is necessary so that the proposed system can operate in optimum condition
in term of produced units costs and power reliability [6]. Electricity consumption is very important in
when it comes to system sizing, as well as economical analysis, since overproduction can affect the
feasibility of the system negatively. Thus, large self-consumption is desirable so as to ensure the lowest
investment with full use of PV array and/or battery bank.

Some review papers for PV system optimization can be found in the literature. In [7], a review of
grid connected PV system in terms of technical and economic aspects was done. Electrical performance
of PV modules, energy analysis, potential technical problems, and inverter’s role in GCPV was
explained exquisitely. However, the authors did discuss the optimization of these systems. In the
meanwhile, photovoltaic technology and its power generating capability are reviewed in [8].
The authors discussed different existing PV systems performance and reliability, evaluation models,
sizing and control methodologies, grid connection and distribution configurations. However,
the authors did not give the major focus to the optimization techniques and constrains. On the
other hand, in [9], general discussion for optimization methods applied to renewable energy is
presented. However, the PV systems were not given enough focus in this paper. In [10,11], the use
of artificial intelligence techniques for PV system optimization is reviewed. The work done in
these reviews mainly focuses on the implementation of a specific technique without focusing on
the optimization problem itself. Furthermore, in [11], there is no mention of optimization methods
for a grid connected photovoltaic system. In [12], a detailed review of the PV system optimization is
presented for standalone, hybrid and grid connected systems. However, in this review there is a lack
of discussion on available optimization software tools, recent used techniques optimization constrains
and systems models. In [13], a review on solar photovoltaic software tools was done. Software’s
accessibility, prices, working platform, capacities, scopes, resultants and updatability were discussed
in this paper. However, the authors did not evaluate the software’s limitations, advantages, simulation
scopes and what type of system configurations that can be simulated by the software. Meanwhile,
in [14], the authors reviewed 19 software tools for hybrid system analysis, with further evaluation on
HOMER and RETScreen. Yet, the authors did not mention the software’s cost and availability.

Based on that, this review aims to give explanations on approaches done by previous researchers
in order to find ultimate combinations for design parameters. Moreover, the paper discusses on
modelling of PV system components, which includes PV panels’ output power estimation and battery
system. Finally, as none of the aforementioned reviews has discussed the available PV softwares,
simulation softwares that used as sizing tools in previous studies are reviewed and studied in
this article.

2. Modelling of PV System’s Components

In a PV system, main and storage energy sources’ performance is dependent on each other. Hence,
it is important to investigate PV system with and without battery storage system. To predict system
performance, each component needs to be modelled first and then the combination can be evaluated
whether it meets the design objectives or not. As a fact, if power output prediction is accurate enough,
the resultant combination will deliver power with least cost.

2.1. Modelling of Photovoltaic Panel

The accuracy of a PV model has a great significance on system design. To predict the energy
output of the system, researchers have to investigate meteorological condition at system’s location.
It is because the performance of PV modules strongly depends on the sun light condition and cell
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temperature. Moreover, the energy generated also depends on components’ rated characteristics,
installation configuration, and surroundings’ condition [7].

PV power generated from a PV panel is highly affected by total of solar radiation received.
Solar radiation data provides information on how much energy strikes the specific earth location [15].
However, solar radiation value is different if the panel slanted at different angles and orientations.
Solar radiation data often measured in horizontal plane without any obstacle or shading effect.
However, in some situations, when PV panels are mounted in tilted position, such as in building
integrated photovoltaic system application, the total radiation input for the tilted PV modules has to
be calculated [3]. Following this, Khatib T. et al. reviewed solar energy modelling techniques in [15].
The authors presented linear, nonlinear and artificial intelligence approach models for both global
and diffused solar energy model on horizontal PV panel. The direct solar radiation comes directly
from the sun. Meanwhile, diffuse solar radiation scattered from dome of the sky without direction.
However, for a tilted PV panel, solar radiation comprises direct portion, diffuse portion and reflected
portion [15–17]. To model diffused radiation on a tilt surface, isotropic and anisotropic models can
be used [15]. According to [18], the isotropic model assumes the intensity of sky-diffused radiation is
uniform over the sky dome. Hence, the diffuse radiation incident on a tilted PV module depends on the
fraction of the sky dome seen by it. The second model is the anisotropic model, where it assumes the
anisotropy of sky diffused radiation in circumsolar region and isotropic distributed diffuse component
from the rest of sky dome.

The output power of a PV system is accessed via voltage and current produced from PV module
where the multiplication of voltage and current produces power [19]. However, it is important to
analyze power estimation accuracy, since the actual power output is usually lower than modelled
one [5]. In [20], the author reviewed methods to calculate annual photovoltaic generation, by sorting
all of the proposed methods into three categories. In the first method, the authors construct an I–V
curve by using atmospheric parameter value, and power generated was calculated from it. Meanwhile,
in the second method the power is directly calculated using time series atmospheric parameter values.
On the other hand, the last method employs some technical factors such as performance ratio and
system efficiency in calculating the power generated from a PV panel/array. In [1], the authors conduct
a simple review on classical and novel modelling techniques applied for various types of photovoltaic
systems such as meteorological data forecasting using artificial intelligence techniques.

In general, two circuit diagrams can represent PV cell model namely single-diode and two-diode
models. Single diode model is one of the most commonly used PV generator’s models. Both models
are based on the fact that the solar cell is an illuminated p-n junction in the reverse-bias, connected to a
resistive load. From [21], a solar cell can be represented using an equivalent circuit diagram consisted
of a dependent current source connected on parallel with diode in the reverse mode. These two
components are also connected in parallel with a relatively large resistor to represent the dark current
of this p-n junction. In addition to that a resistance is connected in series to the aforementioned
components so as to represents the internal resistance of the solar cell (see Figure 1), where IPH is light
generated current (A), D is diode, ID is diode current due to the p-n junction under forward bias (A),
RS is series resistor (Ω), and RSH is shunt resistors (Ω). The general I–V characteristic of a PV panel
based on the single exponential model is:

i = IPH − IO

(
e

v+iRS
nSVt − 1

)
− v + iRs

RSH
(1)

where IO is dark saturation current in STC, A is diode quality (ideality) factor, k is Boltzmann’s constant,
q is electron charge, ns is number of cells in series, and Tsc is temperature at STC. Vt is the thermal
voltage and it can be given by,

Vt =
AkTstc

q
(2)
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Figure 1. Electrical Equivalent of PV Cell on one-diode model [21].

On the other hand a diagram of a solar cell model using two diodes can be the same as Figure 1
but with additional diode in the parallel to the first diode. The general I–V characteristic of a PV panel
based on the two diodes model can be described as,

i = IPH − IO1

(
e

v+iRs
m1Vt − 1

)
− IO2

(
e

v+iRs
m1Vt − 1

)
− e

v+iRs
RP (3)

However, one of the most important methods used to predict power generated from a photovoltaic
panel is using current-voltage characteristic. Some researchers used maximum output power of the PV
module to forecast PV system performance, calculated using datasheet’s specification under standard
test condition (STC). The calculation of maximum power output of a solar cell can be done by,

Pmp_stc = Voc IscFF (4)

where Pmp_stc is maximum output power of solar cell (W), Voc is solar cell open circuit voltage (V),
Isc is short circuit current of solar cell (A) and FF is fill factor [22]. FF is a term to show how much
energy can be extracted from the module, and calculated as:

FF =
Pmp

Voc Isc
=

ImpVmp

Voc Isc
(5)

Then, the mathematical model to estimate instantaneous PV module power output under real
operating condition in term of Pmp_stc can be represented by following expression [5]:

Ppv(t) = ηPmp_stcPSF (6)

where PSF is peak sun factor (dimensionless) and η is de-rating factor. PSF was calculated using
following expression:

PSF =
Garray_plane

Gstc
(7)

where Garray_plane is the irradiance measured in array plane, and Gstc is solar irradiance under standard
test condition (1000 Wm−2).

Meanwhile, the mathematical model of a solar cell power output at time t is:

Ppv(t) = Vpv(t)Ipv(t) (8)

where Ppv is output power of solar cell (W), Vpv is solar cell operating voltage (V), and Ipv is output
current of solar cell (A) [23].

In some researches, several authors foresee energy output performance instead of power
prediction in their design. As in [24], the authors use energy produced by PV array, Epv in term
of derating factors, η, area, A (m2) and solar energy, ESun as follows,

EPV(t) = ESun(t)ηA (9)
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Moreover, some authors prefer to use energy yield as indicator for system performance.
Energy yield in a period of interest can be calculated using equation [25]:

EPV = Pmp_stcηPSH (10)

where PSH is peak sun hour at specified tilt angle over a period (h). Here PSH at specific tilt angle
means the number of hours that a PV panel that is slanted at a specific tilt angle can receive 1000 W/m2.
This mean that the maximum total energy yield that can be provided by a PV panel at a specific
tilt angle.

In [26], Mellit A. et al. proposed a model for photovoltaic system using adaptive artificial neural
network, that combines Levenberg-Marquardt algorithm (LM) as learning algorithm and infinite
impulse response (IIR) filter to accelerate convergence of the network [26]. SAPV experimental setup
at Tahifet, Algeria validated the new proposed model. Solar radiation, ambient temperature and
humidity are the simulation’s input, and the outputs are voltage and current for photovoltaic generator.
From the result, the authors prove that the proposed model is able to simulate different weather
condition, and it is possible to generate current used by the load. Later, by using the same experimental
setup for PV array area as before in [26], a similar case study with new modelling technique was
introduced in [27], using Adaptive Neuro-Fuzzy Interference Scheme (ANFIS). ANFIS is a method
that applies learning techniques in neural network and fuzzy inferences system, where the method
can exploit both data and knowledge. From global radiation, ambient temperature and clearness index
as an input, voltage and current for photovoltaic generator was generated. The result was proven to
have reasonable accuracy compared to measured data, and more accurate compared to ANN model.

As mentioned before, the real energy yield is always lower than theoretical energy production,
due to power derating factor, η such as losses caused by dirt, shading, mismatch factor, mounting
condition, manufacture tolerance, cable loss, aging and inverter efficiency. Most models correlate
de-rating factor with ambient temperature. Most studies calculate temperature losses factor using the
following equation,

ftemp = 1 +
[
γpmp(Tcell − TSTC)

]
(11)

where γpmp is power coefficient (%/C−1), Tcell is temperature measured from the back of the module,
and TSTC is temperature in standard test condition [4].

2.2. Modelling of Battery System

Energy storage is needed to supply load when a SAPV generates energy that is not sufficient to
supply a load demand, and to store surplus power when there is excess energy generated by the system.
For photovoltaic systems, there are three storage medium can be used, which is battery, fuel cell and
supercapacitor. The storage medium is very important as an energy source, during low radiation
in night or during autonomy days [28]. The most widely used storage technology in standalone PV
systems is a lead acid battery, since it has high system reliability and long time services. However,
lead acid battery may be damaged by poor charging control, which may cause overcharging or
under-discharging [29].

One of the most earliest battery models in a PV system was presented in [30]. The researchers
modelled the battery system based on its behaviour during charging and discharging. The behaviour
is described as state of charge (SOC) as follows,

SOC(t) = SOC(t − 1)σ + Ib(t)Δtηb (12)

where σ is self-discharge rate, Ib is battery current (charge during positive and discharge during
negative), and η is battery efficiency.

In recent years, most studies for system planning and sizing used different expression of SOC.
In low solar radiation intensity, load demand can be met if the battery has not reached the maximum
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allowable depth of discharge. Simple mathematical model for battery’s state of charge at time t is
represented by following equation [31,32],

SOC(t) = SOC(t − 1) +
[

Npv Ppv(t)− Pload(t)
Vb ∗ Cb

]
(13)

where Npv is number of PV module, Pload is electric power demand (W), Vb is battery voltage (V),
and Cb is capacity of battery bank (Ah). This model ignores charging, discharging and self-discharging
efficiencies. In [33–35], a more detailed model was used. In each time step, charging and discharging
efficiencies were applied in calculation.

In addition to that, energy management for standalone PV-Battery-Diesel was done in [36],
exclusively for a configuration where battery and diesel generators are centralized, and PV and loads
are distributed. In the proposed strategy, there are three different mode operations, which are normal
operation, PV power limitation, and diesel generator. During normal operation, diesel generator is not
connected, and the PV array supplies the load demand and battery is either charged or discharged
subject to demanded energy. While in the second mode where battery is fully charged, a new strategy
to limit distributed PV generation is presented by a controller scheme to avoid being overcharged
or over-currents. When power limitation is necessary, a battery inverter will increase the frequency,
and then PV inverters detect frequency increment, it will reduce their generated power. The system
will operates in third mode, in case when PV generated power is not enough to supply demand and
battery SOC is lower than its’ lowest limit. Hence, PV and diesel generator will supply demands and
charge battery, until fully charged. In this research different expression for battery state of charge was
used. The SOC was determined by,

SOC(t) = SOC(t − 1) +
[∫

Ibηbdt
Cb

]
(14)

Meanwhile, in [37], for standalone PV system, the authors estimated battery’s energy flow as in
equation below,

EB(t) =

⎧⎪⎨⎪⎩
EB(t − 1)ηinvηwireηdischarging − EL(t) ED < 0 (discharge)

EB(t − 1)ηcharging + Epv(t) ED > 0 (charge)
EB(t − 1) ED = 0

(15)

where
ED(t) = Epv(t)− EL(t) (16)

η is derating factor, EB is energy stored in battery, EPV is energy generated from PV generation
system, EL is energy demand, and ED is energy difference between EPV and EL. Energy stored in
battery is depend on inverter efficiency, cable losses, battery’s charging and discharging efficiency,
load demand and energy generated from PV system.

Besides that, there are several other methods that can be used to model a battery system.
A simulation model for grid tied residential PV battery system was done in [38], and evaluated
using energy assessment criteria. The authors modelled their battery system using AC coupled
battery system layout, multi-crystalline PV module technologies and lithium-based battery system.
Energy assessment criteria, in term of self-consumption rate, s and self-sufficiency, d of battery were
evaluated, using the following equations,

s =
EDU + EBC

EPV
(17)

d =
EDU + EBD

EL
(18)
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where EDU is energy directly used by load, EBC is energy to charge battery, EBD is energy discharged by
battery, EPV is energy generated by PV panel, and EL is load demand. Energy assessment is important
to monitor battery usage, in order to prevent energy saturation. However, in this battery model the
authors neglect several factors that affect a battery’s efficiency, like self-discharge power, temperature
effect and battery age. Besides, there is no explanation for the method to model PV generated power,
valuation of battery’s state of charge, and energy provided from/to grid.

Another study for optimization of battery capacity in GCPV was done, by considering battery’s
operation scheduling and ageing effect on economic analysis [39]. Discrete dynamic equation for
battery in day’s time step, (i, t), can be given as,

EB(i, t)− EB(i, t − Δt)
Δt

= PBdc(i, t) (19)

where PBdc is power stored in battery, EB is energy stored in battery, and t is time. If PBdc > 0, it is
charging since energy stored in battery is increase, and vice versa. Power feed to AC bus from battery
supply, PBac is given by,

PBac(i, t) =

{
ηBiPBdc(i, t), i f PBdc(i, t) < 0

PBdc(i,t)
ηBi

otherwise
(20)

where ηBi is battery bidirectional converter’s efficiency. Besides that, the equation for battery’s ageing
model is described as,

ΔC(i, t) =

{
ΔC(i, t − Δt)− Z PBac(i,t)

ηB
Δt, i f PBac(i, t) < 0

ΔC(i, t − Δt), i f PBac(i, t) > 0
(21)

where C is usable battery capacity, ηB is conversion capacity of battery, and Z is ageing coefficient.
A study to compare two type of storage types for grid tied PV generation application, which are

lead acid storage and hydrogen storage model are simulated in [40]. Equation (21) below represent
voltage of lead acid battery, Vb, where battery current, Ib is positive during charging, negative during
discharge, R is internal resistance, and Vo is equilibrium voltage.

Vb = Vo + RIb (22)

Meanwhile, in [41], the authors proven that CIEMAT (Copetti) model is able to present dynamic
and complex lead acid battery operation. In this paper, the Copetti battery model was simulated
and compared with two experimental PV system models. The model was presented by discharge,
charge and overcharge process. However, the result was slightly over approximated charging.

A model of PV pumping system, including PV array, battery and electric motor were modelled
in [42,43]. However, instead of using state of charge, the authors implemented state of voltage (SOV) to
model the battery system. It is because, since battery’s state of charge is dependent on voltage. In SOV
calculation, battery voltage, Vb was estimated using the expression below,

Vb = Vo + Keln
[

1 − Q
C ∗ Ib

]
+ Rb Ib (23)

where Vo is a constant that represents battery voltage at initial condition, C*Ib is battery capacity as a
function of current, coefficient Ke is model parameter, Q is exchanged electric charge, Rb is battery’s
internal resistor, and Ib is battery’s current, where Ib > 0 during charge and Ib < 0 during discharge.
Expression of Q is calculated using basic charge equation as below:

dQ
dt

= |Ib| (24)
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A modified battery ageing model, based on Shepherd’s initial model was developed in [44],
by predicting the temporal variation, and controlling deterioration of battery parameters and
performance [44]. In this paper, the authors predicted charge and discharge operation using correlation
of voltage, current and battery state of charge. During discharge, battery’s current is lower than zero,
and vice versa during charging. Both Equations (25) and (26) represent battery output voltage at each
time step, U (t) during discharge and charging process. Coefficient g is the coefficient with characterise
ΔU = f (Q), R is internal resistance, I is current, t is time, T is temperature, M is slope of U = f (t, I, Q)
characteristic, and c and d represent charge and discharge.

U(t) = Ud − gd
It
C

+ Rd I
[

1 +
Md It

C(1 + Cd)− It

]
(25)

U(t) = Uc − gc

(
1 − It

C

)
+ Rc I

[
1 +

Md It
C ∗ Cc − It

]
(26)

3. Available Photovoltaic Software

In fact, it is crucial to predict system’s performance in a given location and expected operation
condition. Moreover, system size must be determined in early stage of planning and designing.
System performance modelling tools and computer simulations can be useful to designers or system
integrators to predict energy output, as well as analyzing possible configuration [45,46]. Nowadays,
variable of software tools exist to analyze, simulate, and design PV system. Most of the systems
involve solar radiation estimation, while taking account of characteristic and location of PV system.
The simulation software may expedite overall design process, compared to sizing intuitively using
manual calculation.

There are five categories of software application, which are simulation tools, economic evaluation
tools, analysis and planning tools, site analysis tools and solar radiation maps, as shown in Figure 2.
In simulation, economic evaluation, and analysis and planning tools, the software divided into two
categories, which is exclusively on PV system only, and simulation on hybrid technology options.

 

Figure 2. Classification of simulation software based on its application.

3.1. PV System Simulation Tools

Simulation tools are software programmed to simulate or predict power system performances as
designed by users, using the best meteorological algorithm and/or collected meteorological database.
The software were developed to simulate, analyze, monitor and visualize power system performances,
but unable to optimize the system.
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Integrated Simulation Environment Language (INSEL) is simulation software developed by the
University of Oldenburg, Germany. INSEL is able to create system model and configurations for
planning and monitoring electrical and thermal system. This software is suitable to simulate time
series solar irradiance, PV power plant, solar cooling and heating system. The user will construct the
proposed power system configuration by connecting blocks provided in the library. The advantage of
this software is that it provides PV components database, such as PV modules, inverters, and thermal
collectors. Besides, the software is also able to detect faults in the system. It is said that the software
able to solve any computer simulation problem. The software has meteorological database from
2000 locations worldwide, and it can generate hourly irradiance, temperature, humidity and wind
speed. The output consist graphical and numerical output. Price for full version software is 1700 euro
and 85 euro for student. Trial version for this software is free and available in the website [13,47,48].

Another simulation tool available is Transient System Simulation (TRNSYS), which was developed
by the University of Wisconsin, Madison, USA. Compared to INSEL, TRNSYS able to simulate
cogeneration power system other than PV system and thermal system, including wind turbine,
fuel cells, and batteries. The objectives of the software are to simulate low energy and HVAC
system sizing, system analysis, multizone airflow analysis, electrical simulation, solar energy and
thermal system design, and control scheme. This software is flexible, where the users able to modify
mathematical model in its library. Besides, meteorological data and component designed by users are
required as the input in simulation. A demo version for the software is available in its website, and the
price for educational use is $2100 [13,14,49].

3.2. Economic Evaluation Tools

Software that classified as economic evaluation tools is able to provide economic analysis for the
proposed system designed by the users. To determine whether the system is feasible or to maximize
net benefit of consumption in the electricity services, user need to key in all of the cost and financial
parameters as input, and then run the analysis. The analysis is needed to minimize total project costs
to meet load demand or project constraints.

One suitable software for simulation and data analysis of PV system is CalSol. The founder of
this program is from the Institute National de I’Energie Solaire (INES), France. This software is able to
run economic analysis on grid connected, standalone and DC-grid system. Unfortunately, only French
meteorological databases are available in this software. Besides, as PVWatts, this software has no PV
component database and other programs unable to interconnect with this software. This software is
easy to handle, suitable for pre-sizing and it is free, since the software is available via internet [3,50].

The Hybrid Optimization Model for Electrical Renewable (HOMER) is an energy modelling
software, developed by National Renewable Energy Laboratory (NREL) USA. The software is
suitable to design and analyze hybrid power system, including conventional generators, cogeneration,
wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and others.
HOMER can provide system optimization and technology options according to cost and energy
resources availability. Moreover, this software able to simulate a system for 8760 h in a year and the
results are presented in varies of tables and graphs. The meteorological data for the proposed site can
be imported from HOMER energy website or provide specifically by the users. However, since Net
Present Cost (NPC) analysis was used in economic analysis, comparison between other power system
configurations in term of levelized cost of energy (LCOE) cannot be done. The developer provides a
six months free version and then a renewal for 100 USD is required annually. [13,14,48,51]

In addition, RETScreen is also suitable as feasibility study tools for hybrid power generation
technologies. Natural Resources Canada develops the software, and it is a Microsoft Excel-based
spreadsheet model. The core of the tools consists of standardized and integrated clean energy project
analysis that used in worldwide to evaluate energy production, life cycle cost, and green house
gas emission reduction for various types of energy efficient and renewable energy technologies.
The software also covers on grid and off grid analysis. Beside this, it has a global climate database
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for 6000 ground stations, and it also provides link to NASA climate database. Energy modelling
analysis, cost analysis, emission analysis, financial analysis, sensitivity and risk analysis are available
in this software. Unlike HOMER, the software can be used to compare levelized cost of energy (LCOE)
between other power system configurations. RETScreen is a free of charge software, [13,14,48,52].

System Advisor Model (SAM) is free software, developed by National Renewable Energy
Laboratory, Washington. The software is able to analyze all solar technologies, as well as provide
intensive financing and cost analysis. The results from the analysis will be presented in term of levelized
cost of energy (LCOE), system energy output, peak and annual system efficiency, and hourly system
production, in tables and graphs. SAM can automatically download online database, including energy
resources for solar, wind, bio fuel, geothermal, US incentives and US utility rates [13,53,54].

PVWatts is automated simple calculator software, it gives quick answer for the expected energy
production, and cost saving in grid connected system. PVWatts is a simplified version of PVForm,
and it can be used trough SAM or via the Internet. However, PVWatts only allows users to select
a location within United States or pre-determined list of locations only. It is also only calculates
crystalline-silicon PV modules [55,56].

Hybrid simulation (HybSim) is a hybrid energy simulator developed by Sandia National
Laboratory, and suitable to simulate renewable energy such as PV, diesel generators, and battery
storage at off grid system. It is able to perform financial analysis such as LCOE, life cycle cost, fuel and
O&M costs, and cost comparison between different configurations. HySim is able to interconnect with
other software. For example, HySim used weather and insolation data from TMY2. Unfortunately,
it has not been used up until 1996 [14,48].

Meanwhile, hybrid simulation (HybSim) is a hybrid energy simulator developed and copyrighted
by Sandia National Laboratory. It is suitable to simulate and analyze life cycle cost and benefit for
adding renewable energy at off grid system. It is able to simulate PV, diesel generators, and battery
storage. However, at this moment, only PV generation system can be generated, and wind turbine
may be added in the future. For weather and insolation, HybSim use measured data for 15-min time
intervals. It is able to compare cost and performance between diesel system only and hybrid system
with combination of diesel, PV and batteries [14,48].

3.3. Planning and Analysis Tools

Planning and analysis tools are suitable to help users in planning, designing, sizing, optimizing
sources, and defining proposed system to the highest standard. Some software provides database of
PV components available from market to help users design their system in detail.

Due to diligence review in United States, PVsyst is the most commonly used for project
development [45]. The founder of PVsyst is a graduate from the University of Geneva, Switzerland.
PVsyst is software that able to size, design, simulate and analyze grid connected, standalone and
DC-grid connected PV system. Beside Meteo Database existed in the software, this software can also
import meteorological data available from web. The software also has a PV-components database that
is available in the market. This system also provides variations of parameter settings possibility in
the design with high precision result. However, this software does not allow interconnection with
other programs. Besides, the sizing is also restricted to collector configuration. There are two types of
PVsyst products, which are Pro30 (maximum 30 kW installation) and Premium. For Pro30 (unlimited
installation), the price for first licence is CHF 1000, and CHF 1300 for premium product. While,
for second license, the price is CHF 700 and CHF 1000, and for third licence, the price is CHF 500 and
CHF 700 for both Pro30 and premium product [3,48,57,58].

PV*SOL Expert is a 3D design software for simulates and data analysis of roof-parallel and
roof-integrated PV system performances. This software is suitable to plan PV system, from small
off grid to large grid connected system. The developer is Solar Design Company from Powys,
UK. This software also analyses shading effect on energy performances [13]. Besides, it also gives
optimization configuration of PV modules among inverters. PV*SOL objectives include quick design,
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financial analysis and gives suitable proposal. The outputs included yield report, system efficiency,
losses and economic reports. Unfortunately, interconnection with another program is not possible [59].

Laplace System Co., Ltd. (Kyoto, Japan), develops SolarPro Japan. Same as PV*SOL Expert,
SolarPro is also 3D design software, and able to calculate shading losses. However, this software can
only be used to simulate grid connected photovoltaic system only. Its database subsists meteorological
from more than 8000 sites and PV components. SolarPro provides output in term of I–V curve,
and power generation based on latitudes, longitudes, and weather conditions. Economic analysis
in term of life cycle cost is also available in the software. The software price for educational use is
$1900 [3,13,60].

PV F-Chart is an analysis and design program for PV system, where the company’s principals are
faculty members at the University of Wisconsin. The software’s charge for single user is $400, and $600
for educational use. The program able to provides monthly average performance estimates hourly for
the day. PV F-Chart can simulate system configurations like utility interface system, battery storage
system and stand alone, restricted for PV system. Economic analysis is also included in the features,
such as buy and sell cost difference, life cycle, initial investment and cash flow analysis. Its database
consists of weather data from 300 sites, and can be added by users. The users can set load demand’s
hourly value for each month, and has statistical load variation. The output was accessible using
graphical and numerical, in English and SI unit [48,61].

SolarDesignTool is an online PV design web, that available via the Internet. The software’s price
is $7 for lite series, $25 per month for professional series, and the users are able to have 30 days of
free trial. It is suitable to simulate PV grid-tied system. This software allows users to design and
configure optimal solar system and panel layout. In optimal system design, the software gives several
recommendations for possible configurations. Meanwhile, in the system generator, the users also
can specifically design their own system configuration, and simulate it. SolarDesignTool has climate
database for US and Canada sites. However, the users still allowed to create a reusable custom location.
In addition, the software is user friendly, where it can use 3D building model based on aerial and
satellite imagery to create preliminary design. Other features available in the software are string
configuration for string inverters and distributed MPPT inverter system, branch configuration for
micro inverter, automatic optimal panel layout generation and embedded drawing tool to sketch or
modify installation area [62].

PV DesignPro-G is able to design and analysis grid connected with no battery storage, from small
to large-scale PV system. This software is one of three PV DesignPro included in Solar Design Studio
6.0 CD-Rom, where another two are PV DesignPro-S for stand alone, and PV DesignPro-P for water
pumping. The price for the CD-Rom is $249. The software able to simulate a predesigned system with
preselects climate condition, for one year, on hourly basis. It consist climate database for 239 locations
in UA, Alaska, Hawaii, Puerto Rico, and Guam. Besides, the CD-Rom also provides hourly climate
generator for 2132 international climates. Other than that, PV panel model was available in database
for system simulation. The software also provides Annual Energy Cost analysis and Life Cycle Cost
Analysis. The output was presented in tables and various chart [63].

Meanwhile, improved Hybrid Optimization by Genetic Algorithm (iHOGA) is a hybrid system
optimization software that suitable to find optimum size of a proposed system. It is a C++-based
software, and developed by the University of Zaragoza, Spain. It is suitable to analyze photovoltaic,
wind turbine, hydroelectric turbine, fuel cells, H2 tanks, electrolysers, storage system, and fossil
fuels, for both stand-alone and grid connected system configurations. Besides, the software is able
to simulate four different loads system, which are AC loads, DC loads, Hydrogen loads, and water
pumping loads. Its merits are the software use multi or mono objectives optimization using genetic
algorithm and sensitivity analysis with low computational time. The features are optimizing the best
combination of system components and best control strategies. iHOGA also able to optimize panels
slope, life cycle emission, allow probability analysis, and has purchase and selling options for grid
connected. iHOGA’s education version can be downloaded from the Internet for free. Unfortunately,
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as said in [14], the educational version has demerits, where it can only simulates daily load within
10 kWh, and sensitivity analysis, probability analysis, batteries models Coppetti and Schiffer, and net
metering is not included. For professional’s full version, the cost is €200 for a license, and for versions
with full technical support is €300 per year [64].

In addition, PV.MY software is a MATLAB-based user friendly software tool called for
optimal sizing of photovoltaic (PV) systems. The software is developed by the power research
group of the national university of Malaysia. The software has the capabilities of predicting the
metrological variables such as solar energy, ambient temperature and wind speed using artificial
neural network (ANN), optimizes the PV module/array tilt angle, optimizes the inverter size and
calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV
systems. The ANN-based model for metrological prediction uses four meteorological variables, namely,
sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods
are used for determining the optimal sizing of three types of PV systems, which are standalone PV
system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability
(LLP) technique is used for optimization in which the energy sources capacities are the variables to be
optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter
size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the
monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter
size [65] Finally, The Smart Grid Research group at Lakeside Labs has developed software called RAPS.
RAPS is able to simulate a grid connected or standalone microgrid with solar, wind or other renewable
energy sources. This software calculates the power generated by each source in the microgrid and
then it conducts a power flow analysis. This software is helpful for optimal placement of distributed
generation units in a micro grid. The software RAPS is designed for use in science and classroom
with a simple to use graphical interface. It is an easy extendable framework that supports users in
implementation of their own models, for grid-objects, and algorithms for grid controls [66].

3.4. Solar Radiation Maps

Solar radiation maps allow users to understand solar resources for every spot on Earth with a
simple visual. There are two software programs available online for this purpose, which are PVGIS
and SolarGIS. Both programs provide geographical information based on maps or satellite imaginary.
Photovoltaic Geographical Information System (PVGIS) is online software that estimates solar radiation,
provides solar radiation maps and calculates annual energy generated from grid connected and
standalone PV system. The system was founded in Institute of Energy and Transport—European
Commission and it is available on the Internet. This software provides simulation for grid connected
PV system only. It is easy to handle, and as PVsyst, it able to import meteorological data. However,
this software is exclusively used in Europe and Africa only and has no PV component database.
This software also does not include energy de-rating factor and economic analysis. Other than that,
no other software could interconnected with this program [3,67]. SolarGIS is also a free solar radiation
map that is available online. SolarGIS’s authors are also the main co-authors for the previous PVGIS.
There are six applications for SolarGIS, which is iMaps, estimate energy output, monitor performances
for existing power plants, purchase time series of meteorological data, receive real time performance
monitoring for solar energy system, and data visualization on poster maps. Its database is a high
resolution, and continuously updated on daily basis. The data is generated using in-house developed
algorithms [68].

4. Photovoltaic Systems Optimization Criteria

To select an optimum combination to meet sizing constraint, it is necessary to evaluate power
reliability and system cost analysis for the recommended system. An ideal combination for any PV
system is made by the best compromise between two considered objectives, which is power reliability
and system cost.
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4.1. Reliability Analysis

In PV system design, especially in SAPV system, one of the most important aspects to ensure
power system security is to analyze power supply availability. This is because solar energy production
in one site is intermittent, and energy generated usually will not match with load demand. A reliable
power system is a generation system that has sufficient power to feed load demand in a period.
There are many methods to determine reliability of power system. The most popular methods to
express system reliability are loss of load probability (LOLP) and loss of power supply probability
(LPSP). In both methods, if the probability is 0, the load then will always be fulfilled, while if the
probability is 1 then the load will never be fulfilled.

LOLP is a probability for the case when a load demand exceeds the generated power by the
system. Here, the reliable PV system is defined as the system which is able to generate sufficient power
(EPV) to fulfil the demanded load (EL) within time span. There are several researchers who apply this
method in their proposed system’s reliability analysis such as [26,69–82]. LOLP can be described as,

LOLP =
∑8760

i=1 Energy De f iciti

∑8760
i=1 Energy Demandj

(27)

where,
Energy De f iciti = ∑ 8760

i=1 (EL(i)− EPV(i)) (28)

On the other hand, LPSP is defined as probability of the case when the system generates
insufficient power to satisfy the load demand [83]. LPSP has been used in [84–87] to measure PV
system reliability as illustrated below.

LPSP =
∑8760

i=1 LPS(t)

∑8760
i=1 EL(t)

(29)

where,
LPS(t) = EL(t)− [(EPV(t) ηbat) + EB(t)− EB min]·[ηinv ηwire] (30)

There are two approaches for LPSP application in standalone PV design, based on chronological
simulation and probabilistic technique. Chronological simulation can present dynamic changing in
system performances, for example, energy accumulation effect on battery. Nevertheless, this technique
requires time series data in a certain period, and it needs more computational effort, compared to
probabilistic technique [83,86,88,89]. On the other hand, probabilistic technique eliminates need for
time series data and can assess long-term system performances. However, this technique not used
in recent studies anymore, as it has a flaw, where researchers cannot observe dynamic changing in
system performances.

Some of the researchers will analyze hourly, daily, or monthly energy generated and battery
state of charge, by using PV modelling and battery storage modelling as in the previous section.
Then, by using the results of energy generated and battery state of charge, reliability analysis within
analysis’s period, either LOLP or LPSP can be done.

4.2. System Cost Analysis

There are several economic analyses used by past researchers in order to find the optimum
configuration of proposed system. This criterion was applicable at both GCPV and SAPV system.
Economic feasibility analyses that frequently used in past years are Net Present Cost (NPC),
Levelized Cost of Energy (LCOE), and Life Cycle Cost (LCC). Economic analysis is worth doing
to determine whether the project has or has not acceptable investment. Sometimes, economic analysis
was used after reliability analysis, in order to propose a system with high reliability and lowest
cost [86].
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NPC is the total present value of a time series and it was the development of discounter cash flow
techniques. The net present worth is found by discounting all cash inflows and outflows, including cost
of installation, replacement and maintenance, at an interest rate or internal rate of return (IRR) [90].
NPC can be described as,

NPC(i) = ∑ N
n=0

An

(1 + i)n (31)

where An is net flow cash at end of period n, i is IRR, and n is project lifetime.
LCOE ($/kWh) defined as the average cost per kWh of useful electrical energy produced by

the system when a lifetime, investment cost, replacement, operation and maintenance, and capital
cost is considered [91]. LCOE method was frequently applied in past year’s economic feasibility
research, since the approach is very useful in comparing different generating technologies with
different operating characteristic [6,86]. LCOE is calculated by dividing the produced electricity
annualized cost on the total useful electrical energy generated. The mathematical model used to
calculate LCOE is as follows,

LCOE =
∑N

n=1
In+On
(1+r)n

∑N
n=1

Pn
(1+r)n

(32)

where N is economical lifetime of the system, In is the investment cost in year n, On is the maintenance
and operational cost (O&M) in year n, Pn is the electricity production in year n, and r is the discount
rate [2].

The third system cost analysis is life cycle cost (LCC). LCC is an estimation for sum of installation
cost, operating and maintenance of an item for a period of time, and expressed in today’s value [92].
Equation (33) is used to calculate LCC of a PV system,

LCC = CPV + Cbat + Ccharger + Cinv + Cinstallation + Cbatrep + CPWO&M (33)

where CPV is PV array cost, Cbat is initial cost of batteries, Ccharger is cost of charger, Cinv is inverter
cost, Cinstallation is installation cost, Cbatrep is battery replacement costs in present value, and CPWO&M
is operation and maintenance cost in present worth. CPWO&M’s equation is:

CPWO&M =
(

C O&M
Y

)( 1 + i
1 + d

) [
1 −

(
1+i
1+d

)]
[

1 −
(

1+i
1+d

)N
] (34)

Sometimes, some researchers also calculate annual basis expression of life cycle cost (ALCC), with
this equation:

ALCC = LCC

[
1 −

(
1+i
1+d

)]
[

1 −
(

1+i
1+d

)N
] (35)

5. Standalone PV System Optimization Technique

To recommend an optimum configuration for SAPV system, the designer has to evaluate system
design based on optimization variables. As mentioned in [6], as number of optimization variables
increase, number of simulation and iteration will exponentially increase, as well as time and effort.
Hence, to obtain the best system design as well as simplified sizing process, pioneer researchers
introduced several techniques for system sizing calculation. In the SAPV system, there are three
major methods which frequently used in former studies namely intuitive method, numerical method,
and analytical method [70]. Table 1 shows a summary of merits and demerits of three main optimization
techniques for better identification.
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Table 1. Brief comparison on three main optimization techniques.

Merits Demerits

Intuitive

• Simple
• Did not have to consider random

nature of solar radiation

• Only suitable for rough estimation
• Tend to oversize system
• Cannot measure system reliability

Numerical

• Frequently used
• Adequate analysis can be done
• Accurate reliability analysis

• More complex
• Need more time for calculation
•

Analytical

• Present relationship between
capacities and reliabilities

• Sizing task become much simpler

• The relation cannot be applied at
different sites

• Had error function compared to
numerical calculation

5.1. Intuitive Methods

The intuitive method is simple, easy to be implemented, and can be used to give rough suggestion
for preliminary design. The sizing rules are base on designer’s experience, using lowest performance
either in a time period data or by directly using average value (daily, monthly, or annual) of solar
irradiance. Hence, this method allocates the system to generate more power than required by a safety
margins. The quantitative relationship between subsystem, such as generated power subsystem,
battery’s state of charge subsystem, or reliability subsystem, is not considered. Besides, this technique
also does not consider random nature of solar radiation and meteorological condition. This method
is not very popular because it is limited for rough estimation and preliminary design only. Besides,
this method tends to give oversized design and has low reliability [12,34,79].

There are some studies for optimal sizing of a SAPV system using the intuitive method. Based
on the records, the first application of intuitive technique was done in 1997 [93], where optimization
of a SAPV system and tilt angle modules was done at five sites in Iran with different longitudes,
latitudes and altitudes. First, the authors start optimizing the system by determining the optimum
tilt angle between 0◦ to 90◦ for each sites, to maximize PV power generation. Then, PV array was
chosen using the least PV size required to fulfil demand requirements, in order to minimize the cost.
After that, by using statistical approach, number of successive cloudy days was decided. Based on that,
battery size was determined, with expectation to fulfil demands during low intensity of solar radiation
in cloudy days. However, this study only explains the PV and battery system sizing roughly without
explanation of the modelling methods. Besides, the smallest PV array size was selected, and thus, it is
very possible that the power generated by the system will be enough to supply the load, or unable to
charge battery until having is enough charge to supply the load during cloudy days.

Afterwards in 2003, more detailed study was done using intuitive approach based on estimated
monthly average of solar irradiation data in Dhaka, Bangladesh [94]. The researchers calculate array
size by choosing a month with minimum solar radiation. Three designs of sizing methods to fulfil
same daily load demands were developed and compared. In array sizing for first design, the authors
first compared and choose a month with the worst peak sun hour (PSH) at tilt angle of site latitude,
and tilt angle of ±15◦ to site latitude in summer and winter season. On the other hand, the second
design’s array sizing was done by manually chose worse radiation between 40◦ and 10◦ tilt angle with
azimuth of 0◦, and for third design, same method was applied for 40◦ and 10◦ tilt angle with azimuth
of ±45◦. Then, the battery capacity chosen is assumed be able to supply 2 to 3 autonomy days. Lastly,
the design with minimum array and battery size was selected as best design. Since the comparison has
too many variables, an exclusive comparison between designs is defeasible.

Later, a more neat sizing was done in 2009 [95]. Solar irradiation data in Egypt for south facing
PV array tilted by site latitude was used and considered as optimum tilt angle in that particular
region. To fulfil an average daily demand for a household in remote area, PV array was sized with
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consideration of temperature correction factor, PV efficiency, battery efficiency and inverter efficiency.
Intuitively, the authors modelled battery that competent to fulfil demand continuously for largest
possible period of cloudy days. Later, they analysed system’s life cycle cost to calculate unit generated
cost for the proposed system. However, based on findings, the system may over sized, since energy
price is very high as compared to typical electricity price in Egypt.

5.2. Numerical Methods

Numerical approach is the most frequently used in optimal sizing techniques for SAPV. In this
category, the design was simulated for each time step within a period. SAPV energy balance and
battery’s state is calculated and investigated. This technique is offer adequate and comprehensive
analysis. It is very accurate, but the calculation is complex and need more time for calculation
and simulation. Besides, since there are different kinds of approaches or manners applied in these
techniques, the comparison between studies under this method is inconsistent. As shown in Table 1,
there are 20 studies use numerical methods to determine optimal configuration in SAPV. However,
before 1997, there were five studies on numerical method done.

Optimization of tilt angle, PV size and battery storage using Greek Island’s monthly average
meteorological data size was presented in [69]. The optimum design was set to be the combination with
lowest life cycle cost, in a predefined loss of energy probability. Number of battery bank replacements
was determined using life cycle cost calculation. In [96], a simple technique for SAPV sizing was
developed. This study used 23 years of hourly insolation data from 20 different sites in US to develop
correlations between variability in insolation and average monthly horizontal insolation. Then, sizing
nomograms that give array size as function of average horizontal insolation and storage capacity
was generated as function of LOLP for long time interval. In [72], a computer aided program was
developed to find optimum PV tilted angle, PV array size and battery storage. The authors predicted
solar radiation model based on clear sky model. The difference between PV power generated and load
demand was used to size battery capacity. Meanwhile, in [71], optimization of SAPV system was done
by dividing the regions into four zone, based on sky clearness index characteristic. For a given LOLP,
many combinations of battery capacity and PV array peak power were determined, and the system
with lowest total cost is the best configuration. Afterwards, in 1996, optimal sizing method for SAPV
was applied in Corsica [97]. Similar with [71], design with the lowest cost of energy is the optimum
configuration to supply 1 kWh load.

Shrestha G. et al. proposed new sizing method based on combination of PV panel sizing,
battery storage sizing, charge regulator and load requirement in 1998 [73]. A stochastic model of PV
generation was representing random behaviour of solar insolation. Required load demand also has
been well defined in hourly basis. In this research, the system with minimum cost and minimum
loss of load probability is the most favourable configuration. However, since the researchers used
experimental load modelling, the LOLP and LOLH analysis are not too reliable.

Numerical code, named PHOTOV-III was presented to determine optimum configuration of SAPV
system at Greece in 2004 [98]. The system objective is to operate in zero load rejections, with optimum
tilt angle and minimum installation cost. In proposed system, hourly analysis using iterative technique
to find all possible combinations of PV panel number and battery maximum size that able to perform
zero load rejection operation. Then, based on analytical analysis, with minimum initial cost constraint,
several alternatives were selected as possible optimum configuration. However, this method is not too
convenience, since the possible configuration need to be selected manually.

A different simulation model for SAPV system sizing in Delhi with interconnection arrays was
approached in 2005 [76]. For a predefined load, the optimum combinations of PV array and batteries
for zero LOLP were calculated. Moreover, the authors compared fixed and tilted aperture arrays with
single tracking aperture arrays, and simple system cost analysis was carried out on both systems.

In 2006 [99], a new sizing method was presented by using stochastic simulation for solar radiation.
The proposed stochastic model is suitable to implement if original measured data is not available.

166



Appl. Sci. 2018, 8, 1761

For a given reliability index, energy balance using different pairs of PV array capacity and battery
capacity was done to find the optimum combination. Reliability index was calculated using ratio of
hours when load is satisfied over total simulation hours. The authors analysed fifteen different sites
in Greece.

A. Fragaki proposed a new sizing approach using numerical method in [100], similar to her
previous work in [101] by analytical method in 2008. This study constructed sizing curves for minimum
PV generator capacity and battery storage, without losing the load. Minimum PV generation required
was sized at least equal to load demand, by using the worst month daily radiation. Storage prerequisite
for minimum generator size was calculated from minimum battery SOC for each year based on
historical solar radiation data. However, this sizing method may cause oversizing, and the PV
generated power may not fully used during high solar radiation energy period.

Other than that, Celik A. et al. presented optimum sizing method based on six years of
meteorological data from five sites in Turkey [78]. Meanwhile, the authors obtained load profiles from
five households in Turkey. The system performance simulated using hourly solar irradiation and
ambient temperature data. The scheme was simulated iteratively, by increasing PV size gradually,
while battery capacity is remained constant for five days storage capacity. Hourly energy generated
flow in and out from battery and its state of charge was calculated. Then, the researchers constructed
sizing curves after LOLP and LCC analysis, where they calculated LCC and cost payback time for
three different LOLP values for each site in life cycle assessment.

Technical and economic analysis for SAPV system in Malaysia were done in 2008 [84], by using
annual daily radiation data. There are two design variables contemplated, which are tilt angle and
battery’s dead of discharge (DOD). For a given load demand, maximum DOD, and preset LPSP,
the best consolidation of PV size and battery size was calculated iteratively for several tilt angle values.
The optimum tilt angle was chosen based on the lowest unit cost value. Then, for preset LPSP and
chosen tilt angle, the same analysis was repeated using several DOD values.

The same author from [84] proposed new method for SAPV system sizing in 2009 [85].
This method implemented graphical approaches, where two graphs for a given LPSP was constructed,
which are array size versus battery size, and partially differentiated of system cost function graph.
The Tangent point of the graphs was the optimum size for PV array and battery. This method was
much better compared to his previous work, since the most advantageous system was chosen based
on graphical method, where the cost function was already minimized using partially derivation.

Arun P. et al. [33] presented chance constrained programming approach to solve uncertainty
problem in solar radiation. For a specific energy source, demand, desired confidence level and
system characteristic, a sizing curve for all possible combinations of photovoltaic array rating and
storage capacity was plotted. Then, design space for feasible design was determined from the curve.
Optimum configuration for a predefined reliability level was the combination with lowest cost of
energy. As mention in [82], the limitation in this study is PV model prediction using deterministic
approach was too simple, and cannot represent uncertainty in solar radiation [87]. Hence, it is better
for future researchers to use time series meteorological data or another PV model prediction. Moreover,
preset LOLP value used is considered high compared to other researches.

Askari I.B. et al. proffered an orderly optimal sizing method for PV array and battery system
in Kerman, Iran, based on the site’s hourly solar radiation data [86]. Panel’s tilt angle is fixed as site
latitude. For a given value of LPSP, PV module size and battery was determined iteratively. Then for a
given value of LPSP, chart of PV modules versus hours of battery autonomy and its LCOE’s graph was
plotted, and combination with minimum LCOE was selected as optimum configuration.

Later, in 2010, the authors [87] presented an optimization using the stochastic method
in equipment’s characteristic data (PV modules, battery, and inverters), average temperature,
solar radiation and load profile analysis. The optimization was done based on economic and reliability
analysis, similar to [85]. For a given LPSP, the researchers established possible combinations for PV
array size and battery storage size, and then they selected optimal combination with minimum cost
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by partially derivation of system cost equation. Moreover, the proposed method compared with
deterministic method, and their merit and demerit was listed.

Mellit A. et al. has done several studies on SAPV sizing by employed artificial neural network
(ANN). The studies was done in year 2005 [74], 2007 [77], and 2010 [81], in Algeria. In [74,77],
The ANN model inputs were site’s latitude and longitude, and the outputs were sizing factor of PV
system and storage system. Then, in [81], the model was improved to four input; latitude, longitude,
altitude and LOLP, and the output was PV array sizing factor. Storage sizing factor was calculated
using mathematical equation.

5.3. Analytical Methods

In SAPV system sizing, the analytical method was used to obtain a close relation or correlation in
a form of equation between capacities and reliabilities. From [34], usually there are three approaches
applied, which are the probability-based approach, empirical coefficient determination, and application
of novel methods, such as artificial neural networks (ANN). This technique allows designers to simplify
their sizing methods into a representative equation, reduce calculation or computer process and the
sizing procedure is more accurate. However, this method is not very popular because the constructed
expression is not flexible. It is because the expression is very exclusive and restricted for specific sites.
Moreover, it is hard to produce the relationship between capacities and reliabilities. The expression of
system sizing also may have small errors compared to result from iterative sizing process.

Before 1997, there were five studies used analytical method to find optimum sizing in SAPV
system. Three studies recorded in 1984, one in 1987 and the last one was in 1992. In [102],
an analytical method was presented to predict fraction of energy load covered by PV generation
system. The researchers attained sizing’s coefficients value from simulation based on long term
Italian meteorological data. However, this model leads to an oversized system. Meanwhile, a similar
analytical procedure was proposed in [103]. Analysis was done based on monthly average solar
insolation at Italian sites as well. However, Bartoli’s model produce too low sensibility to battery size,
as analyzed in [70].

Loss of load probability model was derived by two-event probability density function for
difference of PV generated and load demand in [104]. Battery storage size calculation for a given
array size was developed. The authors constructed analytical expressions for the probability of system
storage needed and auxiliary energy required to cover demands in that event. The method then
extended in [105], by taken account the effect of day-to-day insolation values. In [106], a similar
method was used, but the authors extended it using three states model. In this study, analytical
approaches based on stochastic theory were examined and recommended.

In 1992, a new analytical model was proposed based on meteorological data from three different
locations in Spain [70]. An expression to relate array capacity, storage sized and LOLP was illustrated,
with four different coefficient inputs, varies based on sites. Spain coefficient maps for two LOLP values
were constructed to represent SAPV system sizing.

After a long absence, in 2005, the authors proposed an ANN-based methodology to obtain LOLP
curves for SAPV system in Spain by using the Multilayer Perceptron (MLP) approach. In 2003 [107],
the author presented the three layer MLP structure consist two input only, which is ratio of accumulator
capacity over average daily load consumption and LOLP. Then, the structure was improved with
addition of yearly clearness index, as the third input. Last layer has one node, which is ratio of
generator capacity over average load consumption. The LOLP curves obtained in these researches
was compared with real curves and curves developed in Instituto de Energia Solar Madrid in [70].
By using different methods and consideration of clearness index, the proposed curves was more fit to
the real curves, and improvement can be seen compared to previous ones.

In 2006, a sizing procedure was proposed, where a curve was constructed using combination of
several climatic cycles at low daily solar radiation [101]. The study used long term daily solar radiation
from London, England. The procedure started with expressed array size equation and battery size’s
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range equation, in term of constant load. PV array sized based on assumption there were no variation
of solar radiation, and load could be supplied by array sized. Meanwhile, battery sized to be able to
supply load in low solar radiation time interval. Then, both equations were combined and expressed
in a sizing curve. The area above the graph is the feasible design region. Then, sizing curves for three
of the most prominent climatic cycles was constructed, and then new smooth line was created based
on curves’ tangent. Unfortunately, this developed expression is only applicable in South East England.
The system may be oversized or undersized, since the authors only considered three period of climatic
cycle. It seems that the missing years are neglected because relatively high solar radiation and/or
short climatic cycles.

There are two approaches for SAPV system sizing at 20 different locations in Spain proposed by
the same authors in 2008 [79,80]. For both researches, the authors developed sizing curves, to predict
LOLP, standard deviation of LOLP, failures, and standard deviation of failures, with a given tilt angle,
predetermined PV generator capacity, and battery storage capacity in specific location. In [80], a new
analytical analysis on daily energy balance analysis was proposed using variable monthly demand and
tilt angle (varied based on season). Based on daily incident energy on tilted PV panel and daily storage
state, LOLP and number of expected failures were calculated. Then LOLP’s and failures’ standard
deviation were calculated. Meanwhile, compared to [79], the steps used was almost the same, but this
technique consider monthly average clearness index in system analysis. Both studies analyzed relation
between PV generation capacity, storage capacity and LOLP analysis. Nevertheless, the second paper
has further analysis in dependence between PV generation capacity, LOLP, and storage capacity with
daily radiation on tilted PV panel. However, the researchers did not conduct optimization in system
sizing in both publications.

After a long absence, in 2012, the authors purposed an improved technique to present an inclusive
sizing for standalone system for five locations in Malaysia [82]. By using iterative approach, two graphs
were plotted to show relation of PV array sizes over LOLP, and relation between PV sizes and
optimum battery sizes, based on average annual daily meteorological data. By MATLAB fitting
toolbox, two formulas for optimum ratio of PV capacity and battery capacity over specific load
value was derived. This research attained average coefficients for different five sites. From the
finding, relation between ratios of PV generated capacity and load demand is exponential with LOLP,
while relationship between PV capacity and battery capacity ratio over specific load demand is linear.
However, as mentioned in [12], the limitation for the method used are the sizing was done based
on daily solar meteorological energy and a constant value of daily load demand. Table 2 shows a
summary of optimal sizing methods presented for SAPV.
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Table 2. Summary of SAPV optimal sizing methods.

Year Authors Technique Reliability Analysis System Cost Analysis Reference

1984 Barra, L., et al. Analaytical [102]
1984 Bartoli, B., et al. Analaytical [103]
1984 Bucciarelli Jr, et al. Analaytical [104]
1986 Bucciarelli Jr, et al. Analaytical [105]
1987 Gordon, J. Analaytical [106]
1988 Soras, C., et al. Numerical LOLP LCC [69]
1989 Chapman, R.N. Numerical [96]
1992 Egido, M., et al. Analaytical LOLP [70]
1995 Elsheikh Ibrahim, et al. Numerical LOLP [72]
1995 Hadj Arab, A., et al. Numerical LOLP [97]
1996 Notton, G., et al. Numerical LCOE [97]
1997 Samimi, J., et al. Intuitive [92]
1998 Shrestha, G., et al. Numerical LOLP [73]
2003 Bhuiyan, M., et al. Intuitive [94]
2004 Kaldellis, J. Numerical [98]
2005 Hontoria, L., et al. Analaytical LOLP [75]
2005 Mellit, A., et al. Numerical LOLP [74]
2005 Kaushika, N., et al. Numerical LOLP [76]
2006 Markvart, T., et al. Analaytical [101]
2006 Balouktsis, A., et al. Numerical [99]
2007 Mellit, A., et al. Numerical LOLP [77]
2007 Mellit, A., et al. Numerical LOLP [26]
2008 Fragaki, A., et al. Numerical Others [100]
2008 Celik, A., et al. Numerical LOLP LCC [78]
2008 Weixiang, Shen. Numerical LPSP LCC [84]
2008 Posadillo, R., et al. Analaytical LOLP [79]
2008 Posadillo, R., et al. Analaytical LOLP [80]
2009 Shen, W. Numerical LPSP Others [85]
2009 Arun, P., et al. Numerical Others [33]
2009 Askari, I.B., et al. Numerical LPSP LCOE [86]
2009 Nafeh, A. Intuitive LCC [95]
2010 Mellit, A. Numerical LOLP [81]
2010 Cabral, C.V.T., et al. Numerical LPSP Others [87]
2012 Khatib, T, et al. Analaytical LOLP [82]

6. Grid Connected PV System Optimization Technique

The system modelling for GCPV system can be the same as SAPV. Latest trend for GCPV optimum
sizing is most research was done to find the optimum distribution of PV modules among inverter,
and sizing within predefined space area (roof or land). However, GCPV size optimization methods
cannot be categorized as SAPV. It is because most researches were done using artificial intelligence
method, since in GCPV system sizing, there are many variables need to be optimized.

6.1. Numerical Methods

As mention in Section 5.2, numerical is a detail simulation is done within a period for each time
step, where the calculation may become too complicated if there are too many variables to investigate.
In 2005, design optimization of GCPV system on top of Federal Office Building in Carbondale [108]
was presented. Optimum array size and array size was determined by maximizing array output
energy, and minimizing electricity sold to grid. To evaluate ratio of energy generated used by building,
the effectiveness ratio was considered. Effectiveness factor was defined as ratio of energy used from
generated energy to supply load over total PV array output. Array size was determined using graph
of electricity sold. The limitation of the proposed method is the authors choose the optimum PV
and inverter size manually, without fine explanation for optimization criteria and inverter to PV
sizing ratio.

In [2], numerical method was presented in 2013 to optimize PV system based on roof
characteristics, either it is on flat or slightly tilted roof. The validation of developed simulation
was done based on PVGIS, PVsyst and site measured data from several Swedish PV installations.
Electricity generation profile was refined for all possible combinations constructed with different PV
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types, panel tilt angle, ground covering ratio, and azimuth. After evaluation of economical and physical
aspects, optimum distribution under different conditions was found, and several alternatives were
developed. This research also investigates three case studies, with different kind of roof characteristics.
However, this study did not involve inverter-to-PV array sizing. Besides, the technique is very
complicated, and need systematic calculations.

6.2. Computer Aided Method

Optimization sizing of GCPV system using computer aided design was implemented in 2006 [109].
The authors developed sizing strategies for PV installation by considering several economic issues as
initial cost, payback periods and compensation of reactive energy. In modelling PV energy production,
losses due to shading, conductors, tilted angle and orientation, and inverter efficiency were considered.
Monthly energy generated and grid delivered power, fee, bill and income was analyzed. Many data
variables were considered, which leads to a reliable results.

6.3. Genetic Algorithm (GA)

GA is an artificial intelligence technique (AI), which was inspired from evolution and inheritance
trait in living organism. The algorithm imitates population’s evolution, based on survival-of-the-fittest
strategy. GA has three operations, which is selection, crossover and mutation. GA method has ability
to derive global optimum solution with relative computational simplicity, including complicated
problems with non-linear function or constraint. However, GA may suffer excessive complexity if the
problem is too large [1].

In 2009 [22], the authors developed an optimum sizing method using genetic algorithm (GA)
among list of commercial system devices (PV modules and inverters) in Microsoft Visual C++ software.
The sizing process was started by selection of PV module and inverter model, available land area,
climatic parameters, cost and economy parameters. The best number of PV modules, inverters,
tilt angle, the best arrangement of PV modules among inverters, and optimum arrangement of PV
modules within site area was elected based on maximum net economic profit as GA objective function.
In this study, total net profit was maximised using NPC analysis, by considering total capital cost of
PV modules, inverters, cost of land area, mounting structure cost, cost of installation, and maintenance
cost. However, the researchers did not include inverter to PV array sizing ratio as one of optimization
criteria. In addition, several power losses were not taken into account, such as temperature, dirt and
cables. Moreover, the PV modules arrangement calculation is not suitable if the land area is not face
to south.

In 2011 [25], a new sizing method was proposed to determine optimal PV modules and inverters
by using GA. In this study, authors developed iterative sizing procedure as a benchmark to choose the
best optimization methods between GA and evolutionary studies (ES). The proposed GCPV system
capacity capable to fulfil energy requirement as specified by customer in kWh using preselect PV
module model and inverter model. Peak Sun Hour at tilted panel angle, temperature reduction factor,
manufacture’s tolerance reduction factor, cable reduction factor, and inverter reduction factor was
predefined was considered in sizing calculation. From possible PV modules arrangement among
inverters, the highest value of inverter to array sizing factor and minimum excess factor was chosen
as optimal design solution. From the methods comparison, GA method has lower percentage error
compared to ES method.

In 2011, authors in [110] proposed optimization methods for large PV plant design using Greece’s
time series of one minute average solar radiation data. The researchers optimize the proposed system
by maximizing energy production. From simulation, optimum PV module distribution, optimum PV
rows, distance between rows and tilt angle was determined. Then, LCOE was analyzed for the optimal
solution. The proposed method can only be used to design PV generation plant at fixed tilted panel
mounted on South faced ground. PV distribution system among inverters and PV arrangement layout
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at predefined space area was done similar with methods in [22,111,112], except the inverter used in
design are Central Inverter, Multi-string Inverter and Mini-Central Inverter.

In 2012, the same authors from [110] proposed a new optimization method for large PV
plant in [113]. By using GA simulation, optimum PV module distribution, optimum PV rows,
distance between rows and tilt angle was determined. However, the new technique was improved by
including LCOE analysis within optimization process. The simulation result was compared to cases
with non-optimized system, optimized for minimum cost only and optimized for maximum cost only.

An inclusive GA method presented in 2014, in [3] where the authors use all technical,
economical and environmental criteria in their analysis. The authors developed their solar irradiance
model using hourly average temperature and clearness index data Then PV model was developed to
maximize energy output using field area restriction and design safety restriction, for predefined PV
module model and inverter model characteristic. The PV layout design within space provided
was optimized to reduce shading losses. Then, based on the configuration obtained from PV
model, evaluation on economic, technical and environmental criteria was done. The authors used
IMPACT2002++ for environment evaluation. All of the listed steps were conducted using five different
types of PV panel technologies. The best configuration selection was based on weighted evaluation
with 15 goals, which is maximizing energy output, minimizing payback time, minimizing energy
payback time, and minimizing 12 environmental impacts.

6.4. Particle Swarm Optimization (PSO)

PSO is one of the metaheuristic methods using robust stochastic optimization technique based
on the movement and intelligence of swarms. The technique applies concept of social interaction to
problem solving. As mentioned in [111], PSO is easily programmed. Besides, the knowledge of good
solution is retained and all particles able to share information between them. Meanwhile, in [112],
multi-objectives was implemented, to allow optimization of two or more conflict objectives.

In 2010, Kornelakis, A., et al. developed two more optimization methods, based on particle
swarm optimization (PSO) and multi-objectives particle swarm optimization technique [111,112],
with several improvements compared to his previous proposed method in [22]. In [111], the authors
compared his PSO-based findings with GA-based result in term of iterations. They have proved that
by using PSO approach, the simulation time is shorter and lower number of iteration was obtained.
Besides, GA was proved failed to locate several optimum solutions during optimisation process. In his
later findings [112], environmental benefit was added in his optimization process as second objective
function, while the decision variables is still the same. Particle swamp optimization was used to solve
multi-objectives problem for purposed system. This technique was able to maximise both economic
and environmental benefits in the system.

6.5. Evolutionary Programming (EP)

Similar to GA technique, EP also involves random process of selection, mutation and crossover
in its operation. Individual fitness was defined in objectives function. EP evaluates behavioural
connection between parents and offspring, with respect to similarities, differences and their
performances [114].

In 2012 [4], Sulaiman, S.I., et al. proposed an optimization sizing with Evolutionary Programming
Sizing Algorithm (EPSA). Unlike his previous method in [25], the optimization was able to test all
available combination of PV and inverters in system database. The researchers implemented the same
technique to determine optimal PV modules distributions among inverter. EPSA sizing was done
using different EP modes with nonlinear step size scaling factor (NPSS), and the sizing results were
compared. The proposed method can choose to optimize the system based on energy yield or net
present value. Table 3 shows a summary of GCPV optimal sizing methods.
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Table 3. Summary of GCPV optimal sizing methods.

Year Authors Technique System Cost Analysis Reference

2005 Gong, X., et al. Numerical Others [108]
2006 Fernández-Infantes, A., et al. Evolutionary Programming NPC [109]
2009 Kornelakis, A., et al. GA NPC [22]
2010 Kornelakis, A. PSO NPC [111]
2010 Kornelakis, A., et al. Multi-Objective NPC [112]
2011 Sulaiman, S.I., et al. GA [25]
2011 Kerekes, Tamas, et al. GA LCOE [110]
2012 Kerekes, T., et al. GA LCOE [112]
2012 Sulaiman, S.I., et al. Evolutionary Programming NPC [4]
2013 Näsvall, D. Numerical LCOE [2]
2014 Perez-Gallardo, J.R., et al. GA Others [3]

7. Sizing Constraint

In PV system design, sometimes there are limitations or constraints that need to be explored.
In past studies, available space, budget and energy demand are considered before the optimization of
PV system design.

7.1. Space Constraint

Sometimes, customers give specific area to mount PV modules. In past years, several researchers
included area as a constraint in their sizing. There are two types of area sizing for PV system, which are
roof space’s area constraint and land space area constraint. As referred in [108], optimization process
for grid connected PV system on the rooftop of federal office building. In the study, array size and tilt
angle are optimized, and the objectives for the model are to maximize array output energy as well as
minimize electricity sold to grid.

Meanwhile, in [2,4], detailed sizing on top of roof was done based on PV module orientation.
As shown in Figure 3, the roof space was used by choosing between two arrangements that can
maximize panel’s quantity on top of the roof, where L is roof length, W is roof width, l is panel length,
and w is panel width.

 

Figure 3. PV system layout options based on roof space constraint in system sizing [2].

Moreover, authors in [2] also proposed to consider PV system layout as shown in Figure 4, to allow
PV panel mounted at optimum tilt angle on flat roof. Calculation was done to minimize shading losses
while area was exploited at the same time, where L is roof length, W is panel width, and β is module
tilt angle.
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Figure 4. PV tilted system layout options based on roof space constraint in system sizing [2].

Several past studies [3,22,109–112] designed more complicated sizing in land space area, where PV
modules tilt angle, maximum land space area, and shading effect was considered in order to find
optimal arrangement of PV modules in the available installation area. The system layout is as shown
in Figure 5 below, where D is space between collector rows, Lc is collector length, H is collector height,
Emax is limit of collector’s height from ground, W is land width, β is module tilt angle, K is rows number,
Lm is module length, and Hm is module width. However, this technique has limitation, where the
researchers can only use the calculation and layout for land in south direction only.

Figure 5. PV tilted system layout options based on land space constraint in system sizing [3].

7.2. Budget Constraint

In [109], a grid connected PV system was designed by considering economical element.
The authors design a computer application to automatically calculate all relevant parameters in
installation, such as physical, electrical, economical and ecological. The researchers included the
limitation in installation budget during sizing process.

7.3. Energy Constraint

In most studies usually use one load profile as a reference or constraint in their sizing method.
Energy constraint usually applied in standalone system, such as in [82,84–86]. However, grid connected
system also can use electric load profile of the building for reference, as used in [25,108]. In both studies,
researchers sized PV array based on energy required from customer. They selected optimal PV system
based on minimization of difference between energy required and energy produced. Besides that,
in [79,80], an analytical method was done in sizing for standalone PV system with variable monthly
demand. This demand was varied depend on season, monthly varies demand was use in system sizing
and analysis.

However, other energy constraints have been considered recently such as a bidirectional power
flow in PV system that contains normal electric vehicles (EV) or vehicle to grid EV [115,116].
Similarly having mechanical energy sources combined with the PV system may also affect the
constraints such as in [117].
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8. Conclusions

This paper provides a review on SAPV and GCPV systems sizing procedures, which are system
components modelling, optimization software available, optimization criteria, optimization method,
and sizing constraint. PV modelling and battery modelling is important in system sizing optimization,
in order to predict system performances. Besides, by using a suitable optimization software package,
the system process is express and simpler. Other than that, the most commonly used criteria in finding
optimum solution for system sizing were investigated. For SAPV methods, only three optimal sizing
methods were used for the past decades. Compared to GCPV system, even though the researches is not
as many as SAPV, different optimization method was used in finding optimal sizing, including artificial
intelligence (AI) methods, metaheuristic methods, and multi-objective (MO) design. System constraint
is an optional process in PV system sizing, based on customer’s requirements. Energy constraint was
commonly used in SAPV sizing. In the other hand, past researches frequently employ space constraint
in GCPV. According to the review in this paper, optimal sizing of proposed system is important as
early step in PV system design. An accurate sizing may prevent oversize or undersize, which leads
to development of high reliability system with low cost. Besides, AI and metaheuristic methods are
suggested to be included in both SAPV and GCPV system to improve sizing process and optimization
results in the future.
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Featured Application: This work aims to provide a good estimation of wind loads on a solar panel

to ensure proper operation under the extreme wind strength and wave climates. The data will be

also useful for the design of a mooring system.

Abstract: A solar photovoltaic system consists of tilted panels and is prone to extreme wind loads
during hurricanes or typhoons. To ensure the proper functioning of the system, it is important to
determine its aerodynamic characteristics. Offshore photovoltaic (PV) systems have been developed
in recent years. Wind loads are associated with wind, wave climates, and tidal regimes. In this study,
the orientation of a single panel is adjusted to different angles of tilt (10◦–80◦) and angles of incidence
for wind (0◦–180◦) that are pertinent to offshore PV panels. The critical wind loads on a tilted panel
are observed at lower angles of incidence for the wind, when the angle of tilt for the panel is greater
than 30◦.

Keywords: offshore PV; tilt angle; wind incidence angle; wind load

1. Introduction

Renewable energy is an integral part of the worldwide measures to address climate change and
reduce environmental pollution. Power generation from photovoltaic (PV) systems is one of the most
promising substitutes to the use of fossil fuel. The total capacity in operation was 303 GW in 2016
and 402 GW in 2017, which corresponds to energy supplies of 375 TWh in 2016 and 494 TWh in 2017
(20.4% of the global renewable energy supply) [1]. PV panels are usually mounted on the rooftops
of residential or commercial buildings. The systems are generally smaller than ground-mounted PV
systems, for which land occupancy is a potential problem. PV systems that float on reservoirs or
lakes use a pontoon structure for buoyancy, and there is a reduction in water evaporation and the
temperature of solar cells. Trapani and Santafe [2] reviewed projects with floating PV systems from
2007 to 2013, and more installations are expected in the near future. Oceans cover approximately 71%
of the Earth’s surface, and offshore environments can take full advantage of solar energy. Offshore PV
systems have been proposed recently [3,4]. However, these installations are subject to greater wind
loads in severe sea wave environments.

A PV system consists of tilted panels. Any PV system design requires an accurate estimation of
wind-induced loads in order to ensure proper function. Many studies determine the aerodynamic
characteristics of tilted panels or their supporting structure. Naeiji et al. [5] showed that the most
critical parameter is the angle at which the panel is tilted, α. Wind-induced loads are primarily due to
pressure equalization for small angles of tilt and turbulence for large angles [6,7]. For a stand-alone
panel that faces the direction of flow, Chung et al. [8] showed that an increase in α (15◦–25◦) results in a
decrease in the unit sectional uplift coefficient in a uniform flow. There are strong suction forces near
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the front edge on the upper surface and slight wind-induced pressure on the lower surface. The mean
spanwise pressure distributions have an inverted U-shape, which corresponds to the corner vortices.
For the extreme cases of open terrain exposure, Stathopoulos et al. [9] showed that an increase in α
(20◦–45◦) leads to greater suction, and peak suction occurs at α = 45◦. An increase in the intensity of
the freestream turbulence results in the upstream movement of a separation bubble and side-edge
vortices. More intense pressure fluctuations and bending moments have been observed [10]. Aly [11]
also showed that discrepancies in the available wind tunnel data may be due to the characteristics of
the inflow turbulence. Chou et al. [12] studied the effect of wind direction, β. When β = 15◦–60◦, there
is greater suction on the upper surface near the windward corner. Chu and Tsao [13] showed that the
maximum wind load occurs at β = 45◦. There are maximum overturning moments for β = 45◦ and
135◦ [14]. A sheltering effect was reported by Radu et al. [15]. The wind loads on the tilted panels
are significantly reduced by the presence of neighboring upwind panels, and the degree of reduction
decreases quickly. Warsido et al. [16] also had similar results.

To harness solar energy, the performance of a PV system depends significantly on the angle at
which the PV panels are tilted, their orientation, and shadowing [17–19]. The optimal value for α
is achieved when the sunlight is perpendicular to the surface of the PV panels. Designs for a PV
system often use wind loading standards, such as the American Society Civil Engineers (ASCE 7) [7,20],
in order to calculate wind loads. However, wind loads can be larger than the ASCE 7 standard [21].
For PV panels floating directly on the surface of water, Trapani et al. [3] showed that the system is
subject to salt water corrosion and to the dynamics of tides, wind, and waves. In extreme winds and
waves, the wind loads on the PV panels in a harsh sea environment are not the same as the load on the
PV panels that are on land. This study conducts a wind load analysis using wind tunnel experiment
and numerical simulation for a stand-alone panel at high α. The effect of β is also determined. The data
is useful for the detailed structural design of offshore PV panels.

2. Experimental Setup

Experiments were conducted in a wind tunnel at the Architecture and Building Research Institute.
The tunnel is a closed-loop type with a contraction ratio of 4.71. The constant-area test section is 2.6 m
(height) × 4 m (width) × 36.5 m (length). For a stand-alone panel (60%-scale commercial module), the
test configuration is shown in Figure 1. The length (L) and width (W) are 120 cm and 60 cm, respectively.
At x/L = 1.0, the panel is 3 cm above the tunnel floor. The blockage ratio is up to 6.3%. Note that a
blockage correction is required for the mean surface pressure for a tilted panel if the blockage ratio is
more than 10% [22].

Figure 1. Test configuration for a stand-alone model.

This study determined the effect of α and β. Meteorological data (wave, wind, tide, and current)
were collected from three near-shore buoys in Taiwan (Qigu, 23◦05”42”N, 120◦00’27”E; Hsinchu,
24◦45”19”N, 120◦50’12”E; and Longdong, 25◦05”48”N, 121◦55’19”E) [23]. In Qigu, the wind rose for
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the period of 2013–2017, and is shown in Figure 2. The most common values of β are 210◦–225◦ and
315◦–360◦. Note that the wind direction is 30◦–45◦ in Hsinchu, and 0◦ in Longdong. The inclination
of the PV panels depends on the waves. The historical data for typhoons shows that the maximum
wave height and wind speed in Longdong are 17.12 m (mean period = 12.5 s during typhoon Soudelor,
2015) and 26.7 m/s (mean period = 11.8 s during typhoon Soulik, 2013), respectively. The variation in α
for the PV panels with respect to wind is ±45◦. Therefore, the setup for α is 10◦–80◦ (in increments of
10◦). The value for β ranges from 0◦ (facing the direction of the wind) to 180◦ (in increments of 15◦).
Note that the angle between the PV panels and their base is not changed in sea wave environments,
which is not exactly the same as the case for the experimental setup.

 
Figure 2. Probability distribution for the incidence of wind for the Qigu buoy (2013–2017).

The experiments were conducted in a uniform flow. The freestream velocity was set
at 14.5 ± 0.1 m/s, measured using a Pitot-static tube, and the turbulence intensity was 0.3%.
Chung et al. [24] showed that there is greater expansion on the upper surface, and more positive
pressure on the lower surface of a tilted panel when the intensity of the turbulence increases. The front
edge of the test model was located 2.8 m from the inlet of the working section. A Reynolds number of
1.17 × 106 is based on the length of the tilted panel. Chung et al. [25] reported that a tilted panel is not
affected by the Reynolds number.

A total of 330 pressure taps were drilled on the test model and were connected to flexible polyvinyl
chloride tubing that is 1.1-mm in diameter and 60-cm in length, so the phase distortion has little
effect on the measured peak pressure [26]. As there are strong pressure gradients (flow separation
and reattachment) near the front edge of the tilted panel, 92% pressure taps were machined on the
first two-thirds of the upper and lower plate surfaces. SCANVALVE multichannel modules (Model
ZOC 33/64Px 64-port; Model RAD3200 pressure transducer) were used for the surface pressure
measurements. The full-scale range of the sensors was ±2490 Pa, with an accuracy of ±0.15% full
scale. The sampling rate was 250 Hz and each record contained 32,768 data points. A Pitot-static
tube, which was at the same height as the front edge of the tilted panel and 2.8 m from the inlet
of the working section, was used to measure the static pressure, p∞, and the dynamic pressure, q,
of the incoming flow. The mean surface pressure coefficient was given as Cp (=(p–p∞)/q). The uplift
coefficient, CL (= 1

A

∫
A ΔCp cos(α)dA), was calculated by integrating the differential mean surface

pressure distributions (ΔCp = Cp,up − Cp,low) between the upper and lower surfaces of the tilted panel.
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3. Results and Discussion

3.1. Longitudinal Pressure Distributions

The Cp distributions on the centerline (y/W = 0.5) for β = 0◦ are shown in Figure 3. The origin
of the coordinates (x/L = 0 and y/W = 0) is located at the left corner of the tilted panel. The solid
and hollow symbols represent the value of Cp on the upper and lower surface, respectively. Suction,
which corresponds to flow separation, is observed on the upper surface for all of the test cases.
For α = 30◦, the value of Cp decreases significantly near the front edge, reaches a peak value of −1.66,
and approaches a more moderate level in the second half of the panel. At larger angles of tilt (α ≥ 50◦),
there are flattened Cp distributions, for which the value of Cp ( −0.72 to −0.82) for a specific value of α
varies by less than 4%. On the lower surface, there is a slight expansion near the front and rear edges
for α = 10◦. Positive pressure is observed and the magnitude increases as α increases. This shows that
the localized load is the most significant near the front edge for α = 30◦. There is also a slight variation
in the magnitude of Cp (0.91 to 0.93) for α = 50◦–80◦, so the uplift lift force is approximately constant
for larger angles of tilt (α ≥ 50◦), when β = 0◦.
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Figure 3. Mean longitudinal pressure distributions at y/W = 0.5; β = 0◦.

The Cp distributions for β = 30◦, 45◦, and 135◦ are shown in Figures 4–6. These correspond to
the most common direction for the wind for the meteorological data. For β = 30◦ and 45◦, there is
greater suction on the upper surface for α = 10◦ and 20◦. A flow expansion in the second half of the
panel is also observed, particularly for β = 45◦. This agrees with the results of Chou et al. [12]. Suction
near the front edge is mitigated for α = 30◦, and there is a flatter Cp distribution. The value of Cp is
approximately the same for α = 40◦–80◦ (−0.701 to −0.711), and the effect of α is minimal. Its amplitude
increases slightly more than that for β = 0◦ (Cp = −0.743 to −0.756). For β = 135◦, a small degree of
suction is observed near the front face, and the value of Cp increases downstream. The value of α has
an obvious effect, in that the amplitude of Cp increases as α increases. There is a slight flow expansion
near the rear edge for α = 10◦ and 20◦. On the lower surface for β = 30◦ and 45◦, there is a fairly uniform
Cp distribution for specific values of α. The value of Cp is positive, except for the case of α = 10◦ near
the rear edge. This shows that the uplift force increases as α increases. Suction on the lower surface for
β = 135◦ produces greater downward force, particularly for α ≥ 30◦.
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Figure 4. Mean longitudinal pressure distributions at y/W = 0.5; β = 30◦.
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Figure 5. Mean longitudinal pressure distributions at y/W = 0.5; β = 45◦.
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Figure 6. Mean longitudinal pressure distributions at y/W = 0.5; β = 135◦.
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3.2. Spanwise Pressure Distributions

At x/L = 0.5, the spanwise pressure, Csp, and distributions for β = 0◦ are shown in Figure 7. There is
suction (negative Csp) on the upper surface for all of the test cases. Inverted U-shaped distributions are
observed for small α, particularly for α = 20◦ and 30◦. This produces strong corner vortices, which is in
agreement with the results of Chung et al. [10]. For α ≥ 40◦, the Csp distributions show a small degree
of variation. On the lower surface, the footprints of the corner vortices are also visible. The peak value
of Csp (0.29 to 0.99) at y/W = 0.5 increases as α increases. The increase in Csp as α increases is more
significant for α ≤ 50◦.
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Figure 7. Mean spanwise pressure distributions at x/L = 0.5; β = 0◦.

Figures 8 and 9 show that β = 30◦ and 45◦. There are flattened Csp distributions in the left half of
the panel for α = 10◦ and 20◦. The expansion and compression near the right edge corresponds to the
formation of a separation bubble or corner vortices. The variation in Csp for α ≥ 40◦ is less than 3%.
An increase in the value of Csp (−0.738 to −0.693) is associated with greater α (less suction). An increase
in the value of Csp is observed from the left to the right edges, so there is a greater uplift force near the
right edge. Figure 10 shows that for β = 135◦, the wind blows over the lower surface of the tilted panel.
The Csp distributions on the lower surface show similar patterns to those on the upper surface for
β = 45◦. This demonstrates that there is an increase in the downward force from the left to right edges.
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Figure 8. Mean spanwise pressure distributions at x/L = 0.5; β = 30◦.
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Figure 9. Mean spanwise pressure distributions at x/L = 0.5; β = 45◦.
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Figure 10. Mean spanwise pressure distributions at x/L = 0.5; β = 135◦.

3.3. The Uplift Coefficient

The value of CL is calculated by integrating ΔCp. Examples of Cp distributions on the upper and
lower surface (α = 30◦ and β = 0◦) are shown in Figure 11. There is a symmetrical spanwise pressure
distribution with respect to y/W = 0.5. The flow expansion and corner vortices on the first half of the
panel result in a relatively large negative value of Cp for the upper surface. A positive value of Cp is
observed on the lower surface. Near the front and rear edges, a more positive value for Cp corresponds
to the blocking effect of the tilted panel.

The variation in CL with respect to α and β is shown in Figure 12. The value of CL (uplift force) is
negative for β < 90◦, and is relatively small for β = 90◦. The lowest value for CL is for α = 30◦ to 40◦. This
is similar to the observation by Stathopoulos et al., who noted that peak suction occurs at α = 45◦ [9].
The positive value for CL for β ≥ 105◦ represents a downward force. A kink is also observed at α = 50◦.
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(a) (b) 

Figure 11. Pressure coefficient contours for α = 30◦ and β = 0◦ for (a) the upper surface and (b) the
lower surface.
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Figure 12. Uplift coefficient.

For a specific value of β, the effect of α on CL is shown in Figure 13. For β ≤ 75◦, CL decreases
linearly as α increases (≤30◦), following an increase for α = 50◦. The value of CL at high α (60◦ to 80◦) is
approximately the same as that at α = 30◦ and 40◦. Wind loads on a tilted panel at lower β require
caution at the design stage. An opposite effect is observed for β ≥ 90◦. The variation of CL with α
(≥60◦) is minimal. The value of CL also varies linearly with α (≤30◦) for a specific value of β. Figure 14
shows that the value of CL increases as the value of α increases. The value of dCL/dα increases from a
negative to a positive value when there is an increase in β. Therefore, the uplift force is more significant
at lower values of β, so dCL/dα = −0.0542 + 7.376 × 10−4β − 1.67 × 10−6β2. Figure 15 shows the effect
of β on CL for a specific value of α. For α = 10◦ and 20◦, the value of CL decreases initially and the
lowest value of CL is for β = 30◦, following an increase in CL with β. There is a smaller variation in CL
for β ≥ 120◦. For α ≥ 30◦, the value of CL increases as the value of β increases.
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Figure 13. Uplift coefficient for a specific value of β.
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For the numerical study, 3D incompressible RANS simulations of wind flow over a stand-alone
PV panel in full scale were performed using a steady finite volume solver of second-order accuracy
(ANSYS Fluent 13) for the value of α of 10◦ to 40◦ (in increments of 10◦) and the value of β of 0◦ to
180◦ (in increments of 45◦). The semi-implicit method for the pressure-linked equation (SIMPLE) is
used. The SST κ-ω turbulence model [27] models flows with separation reasonably well. However, it is
necessary to mesh down (wall spacing; y+ ~ 1). Therefore, this parametric study uses the realizable κ-ε
turbulence model (y+ ~ 30) [28], in which a modified transport equation for the dissipation rate is derived
from an exact equation for the transport of the mean-square vorticity equation. The computational
domain is an upstream fetch of 5 L and a downstream length of 10 L. The height and width are 5 L and
6 L, respectively.

The grid is created using the grid generating software, Pointwise. Once a solution is obtained and
the value of y+ for the first grid point from the wall is verified, the grid sensitivity (number of grids,
G = 20–40.0 million) is performed using the value of Cp on the upper and lower surfaces for α = 10◦
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and β = 0◦. The difference in Cp for G = 35 and 40 million is less than 1.5%. Therefore, the total number
of unstructured grids that is used is approximately 35 million.
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Figure 15. Uplift coefficient for a specific value of α.

At the domain inlet, there is a uniform freestream flow of 15 m/s. The results are shown in Figure 16.
For α = 10◦–40◦, the variations in the value of CL with β is similar to that for the experimental data.
The maximum difference between the numerical and experimental results is up to 18%, which occurs
for the peak value of CL or stronger corner vortices for a specific value of α (i.e., β = 45◦ for α = 10◦ and
20◦). Further study of the effect of scaling on the wind flow field is required.
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Figure 16. Uplift coefficient: numerical and experimental results.

4. Conclusions

Meteorological data were collected from three near-shore buoys in Taiwan. For a sea wave
environment, this study determines the effect of α and β on wind loads on a tilted panel. At lower
angles of tilt (≤40◦), the experimental results agree with those of previous studies. Greater suction on
the upper surface produces flow expansion and corner vortices. The uplift force increases linearly with
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α. When there is an increase in β, expansion and compression are observed near the right edge, which
produce a greater uplift force. The increase in the uplift coefficient with α changes from a negative to a
positive value (dCL/dα = −0.0542 + 7.376 × 10−4β − 1.673 × 10−6β2 for α ≤ 30◦). The variation of CL with
β using a numerical simulation is similar to that for the experimental data. At high angles of tilt, there
is a kink in the curve for CL at α = 50◦. A small variation in CL is observed at high angles of tilt (≥60◦),
for which the magnitude is approximately the same as that at α = 30◦ and 40◦. Caution is necessary
when there are wind loads on a tilted panel at lower values of β, when the value of α is greater than 30◦.
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Nomenclature

CL uplift coefficient

Cp
pressure coefficient in the longitudinal direction,
(p–p∞)/q

Cp,low pressure coefficient on the lower surface
Csp pressure coefficient in the spanwise direction
Cp,up pressure coefficient on the upper surface
L length of tilted panel
p∞ freestream static pressure
q dynamic pressure
W width of tilted panel
x coordinate in the longitudinal direction
y coordinate in the spanwise direction
α angle of tilt
β wind incidence angle
ΔCp differential pressure, Cp,up − Cp,low
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Abstract: Numerical analysis of a photovoltaic-thermal (PV/T) unit with SiO2-water nanofluid was
performed. The coupled heat conduction equations within the layers and convective heat transfer
equations within the channel of the module were solved by using the finite volume method. Effects
of various particle shapes, solid volume fractions, water inlet temperature, solar irradiation and wind
speed on the thermal and PV efficiency of the unit were analyzed. Correlation for the efficiencies
were obtained by using radial basis function neural networks. Cylindrical shape particles were found
to give best performance in terms of efficiency enhancements. Total efficiency enhances by about
7.39% at the highest volume fraction with cylindrical shape particles. Cylindrical shape particle gives
3.95% more enhancement as compared to spherical ones for the highest value of solid particle volume
fraction. Thermal and total efficiency enhance for higher values of solid particle volume fraction,
solar irradiation and lower values of convective heat transfer coefficient and inlet temperature.
The performance characteristics of solar PV-thermal unit with radial basis function artificial neural
network are found to be in excellent agreement with the results obtained from computational fluid
dynamics modeling.

Keywords: PV-thermal collector; nanofluid; particle shape; finite volume method

1. Introduction

Nanofluids are composed of base fluid such as water, ethylene glycol or mineral oil and
added solid nano-sized particles. They have been extensively used in different thermal engineering
applications [1–14]. The nano-sized particle could be metallic or non-metallic such as Cu, Ag, CuO,
Al2O3, TiO2, SiO2 with average particle size less than 100 nm. Higher thermal conductivity of
the nanoparticles increase the thermal conductivity of the heat transfer fluid and enhances the
thermal performance. Size, shape and type of the particles are effective for the thermal conductivity
enhancement of nanofluids. Thermophysical properties are derived from theoretical or experimental
studies for nanofluids containing various particle types, shapes and sizes for different temperatures.
Generally, a small amount of particle addition of the base fluid results in higher heat transfer
enhancements. Application of the nanofluids for the thermal engineering systems are diverse such
as in refrigeration, microelectromechanical systems (MEMs), cooling of nuclear reactors, thermal
management of fuel cells, cooling of hydrogen storage, heat exchangers and many others. In the
refrigeration application, nano additives are added to compressor oil to increase the coefficient of
performance. In some applications, solid nano particles are added to the refrigerants. In heat exchanger
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design, more compact and lightweight structures can be designed when heat transfer fluid has a higher
thermal conductivity with the addition of nanoparticles.

Application of nanotechnology in the field of renewable energy is growing. There are many studies
related to the nanofluids application in solar power. A review for the application of the nanofluid in
solar energy was presented in the study by Mahian et al. [15]. Using nanofluids in solar collectors and
solar water heaters and their impacts on the efficiency and environmental effects were also discussed.
Mahian et al. [16] performed analytical study for the performance of a solar collector with various
types of nanofluids such as Cu/water, Al2O3/water, TiO2/water, and SiO2/water nanofluids with
particle size of 25 nm. System with Cu/water nanofluid has lowest entropy generation rate whereas
Al2O3/water nanofluid has the highest heat transfer coefficient as compared to other nanofluids. In the
study by Meibodi et al. [17], an experimental investigation was performed for a flat plate solar collector
with SiO2/ethylene glycol (EG-water nanofluid. Various mass flow rates and particle volume fraction
up to 1% were tested. It was observed that, despite the low conductivity of SiO2 nanoparticles, solar
collector efficiency was found to be enhanced with nanofluid. Chen et al. [18] studied the effects
of inclusion of Au nanoparticles for the photo-thermal conversion performance numerically and
experimentally for various solar intensities and particle volume fractions. The absorption efficiency
was found to increase with higher nanoparticle volume fractions. Effects of SiO2 nanoparticles in
solar collector tubes were numerically and experimentally studied by Yan et al. [19]. Heat transfer
rate was found to be higher for nanofluid and, due to nanofluid agglomeration, the heat transfer rate
deteriorates for longer operation times.

In the Photovoltaic/Thermal modules (PV/T), heat and electricity are produced by using
photovoltaic and heat extraction units. A review study for the application of nanofluids in PV/T
systems and discussions about effective parameters and effectiveness of nanofluids were presented
in [20]. Al-Waeli et al. [21] performed an experimental study for the determination of effective
thermophyscial properties of water containing SiC nanoparticles that was used as a cooler for PV/T
system. It was observed that thermal conductivity enhancements are about 8.2% for the temperature
range of 25–60 ◦C. The electrical efficiency with 3 wt % of SiC nanofluid results in electrical efficiency
enhancements of 24.1% and it was observed that the nanofluids were stable for long use. In the
study by Hassani et al. [22], a new cascade PV/T module was proposed with separate channels.
Two nanofluids were used to enhance the electrical and thermal performance of the PV/T module.
Jing et al. [23] investigated the effects of silica/water nanofluids on the efficiency of PV/T module.
Various sizes of nanoparticles, concentrations and flow velocity were considered. Optimum operational
parameters for the economical considerations were also obtained.

In the present study, efficiency of a PV/T module with SiO2-water nanofluid was numerically
investigated for nanoparticle properties (shape, volume fraction) and for different operating conditions.
Despite the low conductivity of SiO2 nanoparticles as compared to other particles, its low cost, favorable
physical and chemical properties makes it attractive for usage with water. Artificial neural networks
with radial basis functions are used to obtain the correlations for efficiencies of PV-thermal module.

2. Mathematical Modeling

Figure 1 shows a schematic representation of a PV-thermal module which is composed of several
layers and a channel in which SiO2-water nanofluid is flowing throughout. Thermophysical properties
of the layers in the PV-thermal module is given in Table 1.

An energy balance between the solar irradiance and heat transfer to the heat transfer fluid with
nanoparticles is considered. Within the layers of the PV-module, the heat conduction equation is used.

Within the layers of the PV-thermal module steady state, the heat conduction equation is valid
and is given by the following equation:

∇.
(

klayer∇T
)
= 0. (1)
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Navier–Stokes and energy equations for the fluid flow and heat transfer in the channel are given
by the following equations:

∇.(u) = 0, (2)

ρu.∇u = −∇p + μ∇2u, (3)

ρcpu.∇T = ∇. (k∇T) . (4)

The PV cell electrical efficiency is given by the following equation:

ηpv = ηTre f

[
1 − βre f

(
Tpv − Tre f

)]
. (5)

Thermal efficiency is defined as the ratio of the energy gained by the collector divided by the total
incident energy

ηth =
ṁcp (Tout − Tin)

G
. (6)

• For the upper surface, the heat flux boundary condition with incident radiation and convective
heat loss due to wind (heat transfer coefficient h and wind speed are related) is considered:

q′ = q − hA(Tupper − T∞).
• Among the layers of of the PV-module, heat flux continuity is utilized, qlayer,n+1 = qlayer,n.
• At the inlet of the channel, temperature and velocity are uniform, u = u0, v = 0, T = Tc.
• At the exit of the channel, gradients in the x-direction are set to zero, ∂u

∂x = 0, ∂v
∂x = 0, ∂T

∂x = 0.

Figure 1. Schematic representation of the layers in the PV-thermal module.

Table 1. Thermophysical properties of layers of the PV-thermal module.

Name Thickness (mm) Density (kg/m3) Thermal Conductivity (W/m K) Heat Capacity (J/kg K)

glass 3.2 2515 0.98 820
eva 0.45 960 0.31 2090
PV 0.2 2330 150 712

tedlar 0.35 1162 0.23 1465
aluminum 1 2700 160 900
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2.1. Nanofluid Thermophysical Properties

SiO2-water nanofluid was used in this study and the thermo-physical properties are given in
Table 2 [24]. The effective density, specific heat, thermal expansion coefficient of the nanofluid are
given by the following formulas:

ρn f = (1 − φ)ρ f + φρp, (7)

(ρcp)n f = (1 − φ)(ρcp) f + φ(ρcp)p, (8)

(ρβ)n f = (1 − φ)(ρβ) f + φ(ρβ)p, (9)

where the subscripts f , n f and p denote the base fluid, nanofluid and solid particle, respectively.
The effective thermal conductivity of the nanofluid includes the effect of Brownian motion. In this

model, the effects of particle size, particle volume fraction and temperature dependence are taken into
account and it is given by the following formula [25]:

kn f = kst + kBrownian, (10)

where kst is the static thermal conductivity as given by [26]

kst = k f

[
(kp + 2k f )− 2φ(k f − kp)

(kp + 2k f ) + φ(k f − kp)

]
. (11)

The interaction between the nanoparticles and the effect of temperature are included in the
models as

kBrownian = 5 × 104 × 1.9526 × (100φ)−1.4594φρ f cp, f

√
κbT
ρpdp

f ′(T, φ), (12)

where the function f ′ is given in [25].
The effective viscosity model of the nanofluid was given in [27]

μn f = μ f
1(

1 − 34.87
(

dp
d f

)−0.3
φ1.03

) , (13)

where the average particle size of the fluid is given as [27]:

d f =

(
6M

Nπρ f

)1/3

, (14)

with M and N denoting the molecular weight and Avogadro number.

Table 2. Thermophysical properties of base fluid and SiO2 nanoparticle [28].

Property Water SiO2

ρ (kg/m3) 998.2 2200
cp (J/kg K) 4812 703
k (W/mK) 0.61 1.2
μ (N s/m2) 0.001003 -
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2.2. Nanoparticle Shape Effect

The above given correlations in Equations (10)–(14) are used for the description of effective
thermal conductivity for spherical particles. The effective thermal conductivity and viscosity of the
nanofluid using non-spherical nanoparticle shape are defined using the following formulas:

kn f = k f (1 + Ckφ) , μn f = μ f

(
1 + A1φ + A2φ2

)
, (15)

where the constant coefficients for different nanoparticle shapes are defined as in Table 3 [28,29].

Table 3. Constant coefficients for the effect of nanoparticle shape to the thermal conductivity and
viscosity of the nanofluid [28,29].

Nanoparticle Type Ck A1 A2

cylindrical 3.95 13.5 904.4
bricks 3.37 1.9 471.4
blades 2.74 14.6 123.3

2.3. Solution Method

The finite volume method was used to solve the governing equations along with the boundary
conditions. A general convection-diffusion equation for a scalar transport variable Ψ has the following
form:

∇. (ρuΨ) = ∇. (Γ∇Ψ) + b (16)

for velocity u, source term b and diffusion coefficient Γ. Integration of the PDE over a control volume
and using Gauss divergence theorem yields:∫

A
(n). (ρuΨ) dA =

∫
A
(n). (Γ∇Ψ) dA +

∫
CV

bdV. (17)

After using suitable discretization schemes for convective and diffusion terms, the resulting
algebraic equation at the node point p surrounded by neighboring relevant nodes (subscript n) is
written as:

apφp = ∑ anφn + s. (18)

A QUICK scheme is used to discretize the convective terms in the momentum and energy
equations while a SIMPLE algorithm is used for velocity–pressure coupling. The resulting system of
algebraic equations was solved using the Gauss–Siedel point-by-point iterative method and algebraic
multigrid method. The normalized residual is calculated as:

Rφ =
∑all cells |apφp − anφn − s|

∑all cells |apφp| . (19)

When the residuals for all dependent variables become less than 10−5, an iterative solution is
stopped. Under-relaxation factors are used to enhance the converge speed of the solution and the
under-relaxation parameters for u, v, and T are all set to 0.6, whereas the under-relaxation parameter
for pressure correction is set to 0.32.

2.4. Grid Independence and Code Validation

The grid independent test for various numbers of elements was performed. High gradients in
the boundary layers are resolved by using finer meshes near the walls.Thermal efficiency and PV
efficiency for different number of elements are demonstrated in Table 4. G3 with 66,056 triangular
elements are used in the subsequent computations. Validation of the present code is performed by
using the numerical results of [30]. Forced convection in a cavity was considered at Reynolds number

197



Appl. Sci. 2018, 8, 2223

of 500. The comparison results for the local Nusselt number distribution along the walls of the cavity
are shown in Figure 2.

Table 4. Grid independence test (q = 1000 W/m2, h = 5 W/m2K, φ = 0.05, Tin = 30 ◦C).

Grid Name Number of Elements Thermal Efficiency (%) PV Efficiency (%)

G1 10,816 50.32 12.52
G2 19,457 48.25 12.50
G3 66,056 47.20 12.49
G4 144,934 47.13 12.49

Figure 2. Code validation study.

3. Results and Discussion

Effects of nanoparticle addition to the water in the channel of a PV-thermal module on the
thermal and PV-efficiency was numerically investigated. SiO2 nanoparticles different shapes and solid
particle volume fractions were used. Figure 3 shows the velocity and temperature distribution in the
PV-module. In the channel, a laminar velocity profile is developed and its maximum value is seen
in the mid of the channel which has a value of 0.025 m/s for the fixed value of (q = 1000 W /m2,
h = 5 W /m2 K, φ = 0.02 with cylindrical shape particles). For this flow velocity, Reynolds number
remains less than 2100 in the channel. Thermal gradients are seen in the layers of the PV module,
which is due to the different thicknesses and thermal conductivities of these layers.

Figure 4 shows the effects of nanoparticle volume fraction (φ) and particle type on the variation of
thermal and total efficiency of the PV-thermal module. Both efficiencies enhance with higher φ values.
Among different particle shapes, cylindrical ones perform best. Discrepancy between cylindrical shape
and other shapes increases for higher particle volume fractions. Total efficiency increases by about
7.39% at the highest volume fraction (φ = 0.05) with cylindrical shape particles. As compared to
spherical shape particle, cylindrical ones gives 3.95% more enhancement in the total efficiency for the
highest particle volume fraction.

As the inlet temperature of water-SiO2 nanofluid increases, thermal and total efficiency deteriorate
as shown in Figure 5. The rate of deterioration is higher for the thermal efficiency and up to 40% in the
reduction of the efficiency is seen when nanofluid temperature is increased from 10 ◦C to 50 ◦C.

Figure 6 demonstrates the effects of solar irradiation and solid nanoparticles volume faction on
the variation of efficiencies (h = 5 W /m2 K, Tin = 30 ◦C with cylindrical shape particles). Thermal
efficiency increases with higher values of solar irradiation while the PV-efficiency decreases and higher
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efficiency values are achieved for higher φ values. Higher surface temperature is obtained for higher
values of solar irradiation and PV-efficiency decreases, which are defined in Equation (5). Thermal
efficiency increases by about 9.17% and 9.82% for water and for nanofluid with highest volume fraction.
There is a negligible effect of the particle addition on the PV-efficiency enhancements.

Convective loss is characterized by the convective heat transfer coefficient dependent upon the
wind speed v. As the value of heat transfer coefficient enhances, thermal efficiency decreases as it is
shown in Figures 7 and 8. However, PV-efficiency enhances with higher h values since the PV-layer
surface temperature decreases, but the rate of enhancement is not significant.The discrepancy between
thermal efficiency for heat transfer coefficient of h = 5 W /m2 K and h = 10 W /m2 K is 12.5% and 9.28%
for water and for nanofluid with φ = 0.05. Adding nanoparticle results in higher thermal efficiency
enhancement for the highest value of heat transfer coefficient, which is 11.11% with the highest volume
fraction of cylindrical particles.

(a)

(b)

Figure 3. velocity field (a) and temperature (b) in the Photovoltaic-thermal module module, (q =
1000 W/m2, h = 5 W/m2K, φ = 0.02, cylindrical shape).
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(a) thermal efficiency

(b) total efficiency

Figure 4. Effects of the particle shape and solid volume fraction on the variation of efficiencies (q =
1000 W/m2, h = 5 W/m2K, Tin = 30 ◦C)

(a) thermal efficiency

Figure 5. Cont.
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(b) total efficiency

Figure 5. Effects of the inlet temperature on the variation of efficiencies (q = 1000 W/m2, h = 5 W/m2K,
φ = 0.02, cylindrical shape).

(a) thermal efficiency

(b) PV efficiency

Figure 6. Cont.
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(c) total efficiency

Figure 6. Effects of the solar radiation on the variation of efficiencies for various solid particle volume
fraction (h = 5 W/m2K, Tin = 30 ◦C, cylindrical shape ).

(a) thermal efficiency

(b) PV efficiency

Figure 7. Efficiency versus solid particle volume fraction for two values of external heat transfer
coefficient (q = 1000 W/m2, Tin = 30 ◦C, cylindrical shape).
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(a) thermal efficiency

(b) PV efficiency

(c) total efficiency

Figure 8. Efficiency versus external heat transfer coefficient for two values of nanoparticle volume
concentration (q = 1000 W/m2, Tin = 30 ◦C, cylindrical shape).

3.1. Efficiency Correlation with Artificial Neural Networks

Artificial neural networks (ANN) or other practical prediction methods can be used to obtain the
correlations for efficiencies of PV-thermal module or thermal engineering systems [31–41]. Radial basis
function networks consist of three-layer network structures that include input, hidden and output
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layers. The hidden layer nodes are radial basis functions. The outputs are calculated by a weighted
average sum of the radial basis functions, which can be given as [37]:

y(xi) =
N

∑
k=1

wkΨ (||xi − dk||) + b. (20)

Radial basis function response decreases monotonically from a center point with distance.
Gaussian function is a radial basis function which has central point c and smoothness parameter
σ which controls the shape of the function. It is given in the following form:

f (x) = e(−(x−c)2/σ2). (21)

A schematic representation of network topology is given in Figure 9 with three inputs: (solid
particle volume fraction (φ), convective heat transfer coefficient (h) and solar irradiation (q)) and two
outputs (thermal and PV-efficiency).

Figure 9. Schematic representation of the layers in the PV-thermal module.

In order to evaluate the performance of trained networks, different error measures can be used.
Mean square error (MSE) and coefficient of determination (R2) performance parameters can be given as:

MSE =
1
N

N

∑
k=1

(yCFD − yANN
k )2, (22)

R2 = 1 − ∑N
k=1(y

CFD
k − yANN

k )2

∑N
k=1(y

CFD
k − ȳ)2

, (23)

where yANN
k , yCFD

k , N and ȳ represent the predicted value form ANN, CFD value, sample number and
the mean value of CFD values, respectively.

The MATLAB Neural Network Toolbox (Version 2010, The Mathworks, Natick, USA) was used
to select the number of hidden layers, number of neurons in each layer, training algorithm [42].
Feed-forward network structure with one hidden layer and a linear output layer was selected. The
number of the neurons of ANN model was taken as 10. The feed-forward network structure with
hidden layers and the linear output layer was selected and Levenberg–Marquardt back-propagation
was used as the training algorithm. The random data division property of MATLAB is used and 70%
of the data was used for estimation while 15% was used for validation and 15% of the data was used
for testing purposes. Table 5 shows the number of samples for training, validation and testing, mean
squared error (MSE) values and regression R values. A higher R value denotes a higher correlation
between the outputs and target values.

Table 6 represents the comparison results of CFD data between the predicted data by artificial
neural networks for various values of pertinent parameters. The difference between the actual CFD
data and established artificial neural network model is very small. This modeling strategy with ANN
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is useful for this system in order to obtain the performance predictions of a PV-thermal module in a
fast and cheap way as compared to a high fidelity CFD computation, but it still requires some of the
data from CFD computations for training.

Table 5. Number of samples, mean square error (MSE) and correlation coefficients in the artificial
neural network (ANN) modeling.

Number of Samples MSE R

Training 378 3.89 ×10−6 0.99992
Validation 81 4.60 ×10−6 0.99991

Testing 81 3.53 ×10−6 0.99993

Table 6. Performance predictions of solar PV-thermal module with ANN.

φ h (W/m2K) q (W/m2) ηthermal (CFD) ηthermal (ANN) ηPV (CFD) ηPV (ANN)

0 3 400 41.716 41.953 12.609 12.594
0 3 800 44.497 44.436 12.485 12.444
0 3 1200 45.424 45.31 12.361 12.408
0 4 700 43.305 43.281 12.519 12.507
0 4 1100 44.497 44.576 12.397 12.417
0 5 600 42.18 41.973 12.553 12.557
0 5 1000 43.663 43.636 12.431 12.454
0 6 500 40.604 40.399 12.586 12.593
0 6 900 42.952 42.708 12.465 12.479
0 7 400 38.24 38.28 12.619 12.63
0 7 800 41.716 41.797 12.499 12.491
0 7 1200 42.875 42.967 12.38 12.417
0 8 700 40.524 40.696 12.532 12.527
0 8 1100 42.222 42.148 12.414 12.427

0.015 3 400 42.47 42.85 12.617 12.606
0.015 3 800 45.365 45.387 12.503 12.478
0.015 3 1200 46.33 46.291 12.389 12.379
0.015 4 700 44.124 44.235 12.535 12.529
0.015 4 1100 45.629 45.532 12.421 12.427
0.015 5 600 43.113 42.926 12.566 12.568
0.015 5 1000 44.786 44.604 12.454 12.46
0.015 6 500 41.697 41.235 12.596 12.601
0.015 6 900 43.757 43.674 12.485 12.477
0.015 7 400 38.609 38.995 12.626 12.634
0.015 7 800 42.47 42.634 12.516 12.513
0.015 7 1200 43.757 43.799 12.406 12.424
0.015 8 700 41.367 41.526 12.547 12.539
0.015 8 1100 43.172 42.991 12.437 12.44
0.02 3 600 44.62 44.91 12.565 12.555
0.02 3 1000 46.404 46.344 12.455 12.428
0.02 4 500 43.727 43.395 12.595 12.589
0.02 4 900 45.611 45.438 12.486 12.479
0.02 5 400 41.273 41.261 12.625 12.623
0.02 5 800 44.62 44.356 12.516 12.52
0.02 5 1200 45.363 45.515 12.408 12.421
0.02 6 700 43.345 43.185 12.546 12.56
0.02 6 1100 44.62 44.647 12.438 12.434
0.02 7 600 41.645 41.829 12.576 12.579
0.02 7 1000 43.727 43.765 12.469 12.456
0.02 8 500 40.158 39.914 12.605 12.598
0.02 8 900 42.637 42.828 12.499 12.493

0.025 3 400 44.038 43.705 12.624 12.61
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Table 6. Cont.

φ h (W/m2K) q (W/m2) ηthermal (CFD) ηthermal (ANN) ηPV (CFD) ηPV (ANN)

0.025 3 800 45.981 46.237 12.516 12.501
0.025 3 1200 47.06 47.149 12.409 12.386
0.025 4 700 45.148 45.11 12.546 12.551
0.025 4 1100 46.158 46.375 12.44 12.443
0.025 5 600 44.038 43.801 12.575 12.583
0.025 5 1000 45.593 45.517 12.47 12.464
0.025 6 500 42.484 42.021 12.604 12.608
0.025 6 900 44.326 44.522 12.499 12.495
0.025 7 400 40.153 39.743 12.632 12.639
0.025 7 800 43.391 43.495 12.528 12.526
0.025 7 1200 44.902 44.648 12.425 12.435
0.025 8 700 42.188 42.4 12.557 12.542
0.025 8 1100 43.803 43.829 12.454 12.458
0.035 3 400 45.282 44.557 12.629 12.617
0.035 3 800 47.023 47.139 12.528 12.527
0.035 3 1200 48.184 48.136 12.427 12.414
0.035 4 700 45.779 46.11 12.556 12.573
0.035 4 1100 47.498 47.371 12.455 12.447
0.035 5 600 45.282 44.79 12.583 12.592
0.035 5 1000 46.675 46.538 12.484 12.479
0.035 6 500 43.192 42.898 12.61 12.614
0.035 6 900 45.669 45.523 12.512 12.514
0.035 7 400 40.057 40.62 12.637 12.642
0.035 7 800 44.411 44.556 12.539 12.532
0.035 7 1200 45.862 45.682 12.441 12.452
0.035 8 700 42.794 43.424 12.566 12.545
0.035 8 1100 44.965 44.845 12.469 12.475
0.04 3 600 46.84 46.837 12.582 12.58
0.04 3 1000 48.178 48.229 12.483 12.472
0.04 4 500 44.966 45.202 12.609 12.608
0.04 4 900 47.286 47.305 12.511 12.528
0.04 5 400 42.156 42.872 12.636 12.641
0.04 5 800 46.171 46.335 12.538 12.558
0.04 5 1200 47.509 47.53 12.441 12.434
0.04 6 700 44.737 45.254 12.565 12.563
0.04 6 1100 46.718 46.678 12.469 12.467
0.04 7 600 44.163 43.741 12.591 12.572
0.04 7 1000 45.769 45.72 12.496 12.501
0.04 8 500 41.755 41.638 12.617 12.596
0.04 8 900 44.61 44.85 12.523 12.524

0.045 3 400 46.023 45.272 12.634 12.622
0.045 3 800 48.324 48.05 12.537 12.549
0.045 3 1200 49.092 49.222 12.441 12.43
0.045 4 700 47.338 47.102 12.564 12.579
0.045 4 1100 48.534 48.38 12.468 12.454
0.045 5 600 46.023 45.742 12.59 12.595
0.045 5 1000 47.864 47.522 12.495 12.499
0.045 6 500 44.182 43.729 12.616 12.617
0.045 6 900 46.023 46.579 12.521 12.526
0.045 7 400 41.421 41.485 12.641 12.641
0.045 7 800 46.023 45.646 12.548 12.536
0.045 7 1200 46.79 46.784 12.455 12.466
0.045 8 700 44.708 44.436 12.574 12.549
0.045 8 1100 46.023 45.908 12.481 12.495
0.05 3 600 47.203 47.64 12.589 12.58
0.05 3 1000 49.301 49.157 12.495 12.499
0.05 4 500 46.154 45.935 12.614 12.613
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Table 6. Cont.

φ h (W/m2K) q (W/m2) ηthermal (CFD) ηthermal (ANN) ηPV (CFD) ηPV (ANN)

0.05 4 900 47.786 48.193 12.521 12.538
0.05 5 400 44.581 43.556 12.639 12.647
0.05 5 800 47.203 47.351 12.547 12.554
0.05 5 1200 48.078 48.497 12.454 12.449
0.05 6 700 46.454 46.239 12.572 12.558
0.05 6 1100 47.68 47.661 12.48 12.488
0.05 7 600 45.455 44.587 12.597 12.573
0.05 7 1000 47.203 46.745 12.506 12.518
0.05 8 500 41.959 42.418 12.622 12.602
0.05 8 900 45.455 45.935 12.531 12.531

4. Conclusions

In this study, a numerical simulation of a PV-thermal module with SiO2-water nanofluid was
performed. It was observed that cylindrical shape particles give the best performance in terms of
efficiency enhancement. Total PV/T module efficiency enhances by about 7.39% at the highest volume
fraction with cylindrical shape particles. As compared to spherical ones, up to 4% more in the efficiency
enhancement was observed with cylindrical shape particles. Thermal and total efficiency increase for
higher solid particle volume fraction, higher values of solar irradiation, lower values of convective heat
transfer coefficient and inlet temperature. Adding nanoparticles is advantageous for the case where
convective heat transfer coefficient is high. Finally, correlation based on radial basis artificial neural
networks was obtained for thermal and PV-efficiency of the PV-thermal module. The performance
characteristics of solar PV-thermal module with ANN are compared with those obtained using the
CFD modeling and have been to be in excellent agreement
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Abbreviations

b bias term
c center point
d particle size
G incident energy
h local heat transfer coefficient
k thermal conductivity
M molecular weight
N Avogadro number
n unit normal vector
p pressure
R residual
T temperature
u, v x–y velocity components
w weight of neural network
x, y Cartesian coordinates

207



Appl. Sci. 2018, 8, 2223

Greek Characters

α thermal diffusivity
β thermal diffusivity
η efficient
θ non-dimensional temperature
μ dynamic viscosity
ρ density of the fluid
σ smoothing parameter
φ solid volume fraction
Ψ radial basis function

Subscripts

c cold
h hot
nf nanofluid
n neigbour
pv photo-voltaic
ref reference
th thermal
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Featured Application: This research contributes to guiding planners and investors in the sizing,

locating and selection of module types for photovoltaic (PV) installations. It can be useful for

the prediction of electric energy production by different PV technologies at high latitude under

temperate climate conditions.

Abstract: This study presents a comparative analysis of energy production over the year 2015 by the
grid connected experimental photovoltaic (PV) system composed by different technology modules,
which operates under temperate climate meteorological conditions of Eastern Poland. Two thin film
technologies have been taken into account: cadmium telluride (CdTe) and copper indium gallium
diselenide (CIGS). Rated power of each system is approximately equal to 3.5 kWp. In addition,
the performance of a polycrystalline silicon technology system has been analyzed in order to provide
comprehensive comparison of the efficiency of thin film and crystalline technologies in the same
environmental conditions. The total size of the pc-Si system is equal to 17 kWp. Adequate sensors
have been installed at the location of the PV system to measure solar irradiance and temperature of
the modules. In real external conditions all kinds of modules exhibit lower efficiency than the values
provided by manufacturers. The study reveals that CIGS technology is characterized by the highest
energy production and performance ratio. The observed temperature related losses are of the lowest
degree in case of CIGS modules.

Keywords: photovoltaic systems; thin film modules; performance assessment; PV efficiency

1. Introduction

The European Directive (EU) 2015/1513 amending Directive 2009/28/EC on the promotion of
the use of energy from renewable sources sets a binding target of 20% final energy consumption in EU
from renewable sources by 2020 [1,2]. One of the renewable energy systems (RES) is solar energy which
can be utilized in photovoltaic (PV) systems that are non-polluting and do not generate greenhouse
gases or wastes which have to be stored. This kind of system has no moving parts, so the maintenance
cost is very little [3,4]. Due to its advantages, photovoltaic (PV) energy production has experienced a
rapid growth all over the world in recent years, and, according to the policies of particular countries,
a number of photovoltaic (PV) power plants increases [5–9].

Producers of PV modules provide characteristic parameters measured under Standard Test
Conditions (STC) which are defined as follows: solar irradiance G = 1000 W/m2, module temperature
25 ◦C, AM 1.5, and wind speed less than 5 m/s. The testing measurements are usually made in
laboratories with the use of solar simulators. Under real conditions, the results of PV performance can
be different because of the influence of specific environmental parameters in the given location [10],
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such as global solar radiation intensity and spectrum [11], ambient temperature, relative humidity,
wind speed, and dust concentration in the air [12–17]. All these factors strongly depend on
meteorological conditions, characteristic for given climate [18,19]. Moreover, it is important that
the influence of environmental conditions is complex and final energy production depends on the
overlapping of several effects, which are difficult to analyze individually [20]. In general, the most
important factors are solar irradiation and temperature, since they directly influence the energy
production, and PV modules temperature, which affects modules efficiency. For this reason, outdoor
analysis of daily and seasonal variations of PV module performance allow the energy production to be
realistically estimated and also limit the over or under sizing in prospective plants.

In recent years much research on outdoor measurements of PV systems has been done, but the
majority of them refer to warm climate conditions [21–23]. Nonetheless, spreading of PV technology
all over the world implies the need for this kind of study also in locations characterized by lower
insolation level such as temperate climate [24,25].

It is also worth noting that most of work on outdoor photovoltaic (PV) performance is devoted to
the investigation of pc-Si technology, since this is the one which is the most popular on the PV market.
However, the dropping price of thin film technology (e.g., a-Si, CdTe, CIGS) is a motivation to testing
of various kinds of thin film solar modules under real external conditions. The following types of PV
technologies were studied experimentally under different climatic conditions:

• a-Si, HIT, mc-Si—India [26],
• a-Si, HIT, pc-Si—India [27],
• a-Si, c-Si, CdTe—Turkey [5],
• mc-Si—Greece [2],
• mc-Si, pc-Si, a-Si, CIGS, CdTe–Italy [28],
• c-Si, a-Si, HIT—Italy [29],
• mono-Si, CIS—Turkey [30],
• a-Si, c-Si, CIGS—United Kingdom [11],
• a-Si, c-Si, CIGS, CdTe—Germany [31],
• mono-Si, poli-Si, a-Si, CIGS, CIS, CdTe—Netherlands [20].

All these investigations add new knowledge about the influence of external conditions on solar
modules built with different semiconductor materials and allow for selecting the best technology type
in the given location. At present, there are no published results of this kind of comparative study
carried out in the Polish climate. Thus, the goal of this work is to characterize the solar conditions in
Poland and evaluate the outdoor performance of three different PV technologies at the same location.
This paper presents the comparison of traditional polycrystalline silicon (pc-Si) PV technology and
two thin film technologies: cadmium telluride (CdTe) and copper-indium-gallium-diselenide (CIGS).

Monthly solar irradiation at the given location has been calculated and the energy yield for
each type of PV technology has been compared. Daily efficiency and average yield, as well as direct
current (DC) performance ratio, have been calculated and analyzed. The effects of the temperature
on performance of different studied PV technologies have been also investigated, since the relevance
of temperature as the parameter affecting modules efficiency depends on the type of semiconductor
materials used. The attempt has been made to discuss the obtained results with research performed in
other places under similar climate conditions.

2. Methodology

2.1. Experimental Photovoltaic Installation

The experimental PV installation consisted of different, fully commercial modules located in
the East of Poland (Latitude 51 ◦51 and Longitude 23 ◦10) is shown in Figure 1. Technologies of
the modules used in the analysis and their nominal power were as follows: cadmium telluride
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(3.3 kWp), copper-indium-gallium-diselenide (3.72 kWp), and polycrystalline silicon (17 kWp).
Detailed specification of each kind of module based on the PV manufacturer data sheet is presented in
Table 1. The modules are oriented to the south and tilted at the optimum angle for the given latitude
equal to 34◦. The installation is connected to the grid using the inverters. Both thin film installations
are connected with the use of inverters with one maximum power point tracker (MPPT), while for
pc-Si PV string the inverter equipped with two MPPT systems is used. The distance between the rows
of panels equals to 6.3 m.

 
Figure 1. Experimental installation consisting of different PV (photovoltaic) module technologies.

Table 1. PV modules specification data.

PV Technology Pmax [W] Area [m2]
Temp. Coefficient
of Pmax, β [%/◦C]

Efficiency ηr [%]

Cadmium telluride (CdTe) 75 0.72 −0.25 10.6
Copper indium gallium

diselenide (CIGS) 155 1.25 −0.31 12.6

Polycrystalline silicon (pc-Si) 250 1.55 −0.4 15.4

At the location of the experimental system, solar radiation intensity on PV module plane, as well as
the temperature of the modules, were measured. A solar radiation sensor based on the monocrystalline
silicon solar cell is located in the centre of the installation and tilted at the same angle as the modules.
Pt1000 resistance temperature detectors are attached to the back of the module. Detailed specification
of the devices used is listed in Table 2.

Table 2. Specification of the devices used for irradiance and temperature measurements.

Solar Radiation Sensor Temperature Sensor

Monocrystalline silicon cell (5 × 3.3 cm)
Temperature range: −20 ◦C to +70 ◦C
Radiation range: 0 to max. 1400 W/m2

Tolerance of the irradiance sensor: +/−5%

Range: −40 ◦C–70 ◦C

Inverters, as well as both mentioned sensors, were connected to the central data-logging computer
system for synchronous data collection. All parameters, such as solar irradiance, DC generated electric
power, and module temperature of each PV technology studied were measured at each 5 min during
the considered year of 2015 and stored for the analysis. All necessary computations were carried out
with the use of Matlab/Simulink software (MathWorks, Natick, MA, USA).

213



Appl. Sci. 2019, 9, 141

2.2. Methods of Experimental Data Analysis

Calculations for performance evaluation of PV modules were carried out according to the
International Electrotechnical Commission standard IEC 61724-1 [32]. The daily energy (Ed

DC) produced
by each technology PV array was calculated from the following equation:

Ed
DC =

sunset

∑
sunrise

Pd
DC(t)·Δt, (1)

where: Δt—time step of measurements (5 min), Pd
DC(t)—power generated at a particular time of the

day measured as a product between the current and the voltage at the inverter inlet.
Daily irradiation was calculated on the basis of irradiance G (W/m2) according to the formula:

Hd
(

kWh
m2·day

)
=

sunset

∑
sunrise

G(t)·Δt, (2)

where G(t)—irradiance measured at a particular time t of the day.
The effect of the differences in energy production caused by different size of installation of each

technology array was eliminated by dividing the daily DC energy production (Ed
DC) by the nominal

power output of the installation at STC (PSTC
M ). The daily yield is given by the ratio between daily

energy produced by each technology PV array and output peak power PSTC
M of the modules under STC:

Yd(kWh/kWp) =
Ed

DC

PSTC
M

. (3)

The effect of insolation can be expressed by reference yield Yd
R, which is defined as the ratio of

daily irradiation and irradiance at STC according to the formula:

Yd
R =

Hd

GSTC , (4)

where: Hd—daily irradiation expressed in kWh/m2, GSTC—irradiance under standard test conditions
(in kW/m2).

For an ideal PV system operating under STC, the calculations based on the Equations (3) and
(4) should provide the same results. Nonetheless, the power losses in the PV system (modules and
other particular components) lead to lowering of the Yd value in comparison with Yd

R. In order to
evaluate real energy production relation to the ideal scenario, performance ratio (PR) of the system
was calculated:

PR =
Yd

Yd
R

. (5)

Another parameter used for the assessment of real performance of the modules was efficiency,
defined as a quotient between the energy production in reference period and solar irradiation received
by the module:

η =
Ed

DC
Hd·Area

·100%, (6)

where Area is the total area of the modules.

3. Results

Monthly irradiation on the module plane at the considered location, in a warm summer continental
climate according to Köppen’s climate classification, is shown in Figure 2. As can be seen, the most
sunny period, beneficial for energy production from photovoltaics, was June to August in 2015. There
are significant differences in the irradiation level in plane of module during the year: from a minimum

214



Appl. Sci. 2019, 9, 141

of 20 kWh/m2 in January to a maximum of 191 kWh/m2 registered in August. The monthly average
daily irradiation on module plane ranged from only 0.67 kWh/m2 in January to 6.18 kWh/m2 in
August. In general, about 80% of yearly solar irradiation in Poland is received during the sunny and
warm half of the year, from April to August.

Figure 2. Monthly irradiation on module plane measured in 2015.

In order to better explain the on-site solar irradiance conditions, Figure 3 shows the accumulated
irradiance distribution of incident global irradiation measured for period under study. As can be seen,
irradiance conditions characterized by low values were the most frequent ones, resulting in median
equal to 193 W/m2. About 36% of the measurements have an irradiance lower than 100 W/m2

and almost 98% of registered values are below 1000 W/m2, however, about 17% of the results
were characterized by a good or very good irradiance conditions, which varied from 700 W/m2

to 1200 W/m2.

Figure 3. Accumulated percentage of collected incident global irradiation distribution according to
irradiance levels measured in 2015.

Simultaneously to irradiance measurements, the temperature of the modules was monitored in the
given location (Figure 4). The values of temperature of the modules depend mainly on the irradiation
and ambient temperature and have a great impact on the efficiency of the modules. Registered values
of the modules temperature varied from about 0 ◦C in cloudy winter days to 60 ◦C in summer sunny
days. The median of the module temperature for the studied period is equal to 30 ◦C.
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Figure 4. Percentage distribution of module temperature measured in 2015.

The obtained results (Figures 2–4) indicate that due to seasonal variations, in considered location
under moderate climate, STC used by manufacturers are rarely met. Only a small portion of
instantaneous irradiance measurements are around 1000 W/m2 and module temperature values
quite often reach 15–48 ◦C in the analyzed period.

An example of a hot sunny day, characterized by the high solar irradiance level reaching
1000 W/m2 when the modules are heated by solar radiation up to 55 ◦C, shows that under this
kind of real conditions, the power generated by pc-Si installation is lower compared to thin film
technologies (Figure 5).

Figure 5. Normalized DC power generated by the PV systems of each studied technology. Maximum
irradiance and temperature recorded for that day were 1000 W/m2 and 55 ◦C, respectively.

For different analyzed PV technologies, the dependency of daily energy output as a function
of daily average module temperature was shown in Figure 6. The increase of modules temperature
caused by high incident solar irradiance during sunny days results in the decrease of energy production
for all investigated technologies. As can be seen, thin film modules exhibit higher energy yield values
than polycrystalline silicon ones. In particular, CIGS modules were characterized by the highest energy
production in these specific—high temperature—conditions. The difference in daily energy production
between CIGS and pc-Si modules during summer sunny days varies from 3.7% to 8.4%, while the
CdTe modules produced from 1.7% to 6.1% more energy than pc-Si modules. The reason why CIGS
installation exhibits better performance on sunny days can be explained as a result of double effect.
Firstly, the temperature coefficient of power is lower than in case of pc-Si modules. Secondly, power
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gains due to spectral effects reported in the literature, being those gains for CIGS technology more
remarkable at high latitudes in the north Hemisphere, as in the case of Reference [31].

Figure 6. Daily energy yield vs. daily average temperature of the different technology modules
calculated for sunny summer days of 2015 with similar solar irradiation levels.

Furthermore, CdTe modules, because of the lower power temperature coefficient and characteristic
for this technology in high latitudes spectral gain in summer, have a better response than pc-Si,
as shown in Figure 6 [31,33]. Nevertheless, the efficiency of CdTe modules is lower, and, finally,
their yield is not as good as CIGS technology but better than pc-Si.

Experimental efficiency of each studied PV technology calculated as the average of daily
efficiencies (Equation (6)) measured over the period February 2015–November 2015 can be seen
in Figure 7. Efficiencies of pc-Si, CIGS and CdTe technologies were found to be 14.5%, 11.0%, and 8.7%,
respectively. The results of calculations based on experimental data indicate lower efficiency values for
all considered PV technologies in comparison to those obtained under STC presented in manufacturer
datasheet (Table 1). The highest difference (17.9%) was noted for CdTe technology. In the case of CIGS
and pc-Si technologies, these differences were found to be 12.7% and 5.8% respectively.

Figure 7. Comparison of the photovoltaic (PV) modules’ efficiencies presented in manufacturer
datasheet with the efficiencies obtained experimentally over the period February 2015–November 2015.

Analysis of daily energy efficiency calculated for chosen sunny days of 2015 with relatively high
solar irradiation level (winter sunny days are characterized by lower values of solar irradiation in
comparison with summer sunny days), presented in Figure 8, shows the linear decrease of daily
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efficiency with the increase of the daily average modules temperature. Temperature coefficients of
efficiency for studied types of PV technology were derived from experimental data according to the
following equation [34]:

η = ηr − μ(Tc − Tr), (7)

in which: ηr—reference module efficiency at reference temperature Tr = 25 ◦C, μ—temperature
coefficient, Tc—measured temperature of the module. The temperature coefficient value is a slope of a
line that represents the efficiency changes for each module type in Figure 8. The values of temperature
coefficient, both obtained from experimental data and calculated based on manufacturer information
(Table 1) as μ = βηr, are presented in Table 3.

Figure 8. Effect of the module temperature on daily efficiency of each PV technology calculated for a
chosen sunny day of 2015.

Table 3. Calculated and experimental values of the modules temperature coefficient.

Photovoltaic (PV) Technology

Temperature Coefficients
Calculated According to

Manufacturer Data
[%/◦C]

Temperature Coefficients
Obtained Basing on
Experimental Data

[%/◦C]

Cadmium telluride (CdTe) 0.0265 0.0152
Copper indium gallium diselenide (CIGS) 0.0391 0.0102

Polycrystalline silicon (pc-Si) 0.0616 0.0728

The comparison of the data obtained by two methods shows that the temperature coefficient
resulting from experimental data exhibits a higher value for pc-Si modules than the value calculated
according to the datasheet. The experimentally estimated value of pc-Si modules temperature
coefficient is the highest compared to other technologies, which is directly connected to the strong
influence of temperature on pc-Si energy production (Figure 6). The temperature coefficients of
both thin film technologies are lower than these for pc-Si. In realistic operational conditions, their
temperature coefficients achieve even lower values than the values determined from the datasheet,
which is favorable and confirms the observations of high energy production by these technologies
presented in Figure 6.

Figure 9 shows the dependency of DC output power on the PV modules temperature under real
outdoor conditions for selected sunny days of 2015. The effect was determined by measuring DC
output power and instantaneous module temperature at incident solar irradiance equal to 1000 W/m2

(+/−0.6%). The lowest module temperature at irradiance of 1000 W/m2 was found to be 28 ◦C
(registered at 11.18 on 23rd of March 2015). The highest value was equal to 49 ◦C (registered at 12.09 on
2nd of July 2015). Experimentally obtained power was compared with the maximum power point
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(MPP) value at 25 ◦C, taken from the manufacturer datasheet. Calculated results depict a strong
dependency of output power on the temperature only for pc-Si modules. The variation of output
power for pc-Si technology modules is around 18 W (7%) with the increase of temperature from 28 ◦C
to almost 50 ◦C. In terms of thin film modules, the decrease of power with temperature is much smaller
(0.2–2.0 %).

Figure 9. Photovoltaic (PV) output power of the different technology modules measured at 1000 W/m2

vs. instantaneous temperature of the module.

The daily average energy yield of 1 kWp of each technology is presented in Figure 10. The shape
of the energy yield profile is similar to the shape of irradiation profile for the studied year, as shown in
Figure 2. The highest energy production was noticed in summer months for all technologies due to
the best irradiance conditions. During the summer period (June–August) CIGS modules produced
about 3% more energy than polycrystalline Si modules, which is in agreement with observations of
temperature influence in this period. CdTe modules exhibit the lowest energy production, even
in summer, in spite of the small value of temperature coefficient. Energy production by CdTe
technology is lower in comparison with pc-Si of 1.1–8.9% which is probably caused by its small
efficiency. An exception is June, when CdTe produced 0.2% more energy per kWp than pc-Si.

Figure 10. Comparison of daily average energy yield of each technology modules in 2015.

Monthly performance ratio (PR) calculated for each studied module technology is shown in
Figure 11. PR values of CIGS array were found to be higher than that of pc-Si (from 2.5% in June to
3.5% in August). Higher energy yield and performance ratio of pc-Si modules were noticed in colder
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period of the year, i.e., from March to May (up to 4.8%), and from October to November (up to 4.6%).
In terms of CdTe modules, lower monthly PR values were noticed in comparison to pc-Si technology
for the whole year (from about 1% in May to even 14% in October), with the exception of June.
During winter (December–February) PR values drop significantly due to occurrence of snow cover
and decrease of inverters’ efficiency at low input power levels. These two problems make it difficult to
interpret the PR results obtained in winter, and thereby to assess the particular PV technologies in this
period. Most of the months (March–October) are characterized by better insolation (Figure 2) and PR
value above 80% (even 90% for pc-Si)

Figure 11. Comparison of calculated monthly performance ratio (PR) of each technology of the modules.

4. Discussion

The performance of solar modules depends on real external conditions, which is clearly visible
in the results presented in this work, based on the measurements collected under temperate climate
which is characterized by significant changes in both daily and yearly insolation and temperature.
The role of solar radiation intensity on charge carriers generation and parameters of PV cells is direct
and obvious. Nonetheless, it is worth remembering that most of the radiation absorbed by the cells is
not converted into electricity, but it increases their temperature, thereby reducing the efficiency.

The influence of the temperature on the performance of solar modules, revealed in the presented
experimental results, is different for various types of modules, since they are built with different
semiconductors materials. In general, the semiconductor bandgap should correlate well with the solar
radiation spectrum to achieve its maximum absorption. The optimum value of the bandgap, within
the range of 1.0–1.6 eV results in good efficiency, which is observed even for single solar cells [35].
Temperature increase leads to narrowing of the semiconductor bandgap and also the intensification of
recombination processes, in which current carriers disappear.

The bandgaps of the semiconductors used in the studied modules were different: 1.1 eV for
polycrystalline silicon, the material with a crystalline fraction of over 95%, and 1.45–1.5 eV in case of
cadmium telluride [36–38]. Copper indium gallium selenide (CIGS) is a solid solution characterized
by a higher bandgap value of around 1.04–1.68 eV, which depends on the exact composition of the
material [39]. In the presented investigations, the role of the bandgap value is thus visible since the use
of wider bandgap semiconductors extend their operational temperature [40]. The broader bandgap of
CIGS may result in better resistance of this material to temperature increase.

The comparison of the presented results with studies conducted by other authors is rather difficult,
even taking into account investigations performed at similar latitude, since the technical parameters
of the modules and other devices differ, as do weather conditions in summer and winter. Exemplary
studies performed in the UK show better performance of CIGS in winter due to the spectrum [11].
The investigations focused on the assessment of the spectral impact on different PV technologies,
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performed in Germany [31], indicate spectral gains of 2.4% for CdTe, 1.1% for c-Si (that can be compared
with pc-Si), and 0.6% for CIGS during the entire year. Temperature coefficients of power estimated
in the Netherlands for different PV technologies are higher than technical data for CdTe and CIGS
and similar for poly-Si [20]. Considering the results of the investigations in the mentioned countries,
it is worth remembering that the weather conditions in both winter and summer differ from those in
Poland in spite of similar latitude.

In general, all kinds of modules in the analyzed solar plant of the whole nominal power of
1.4 MWp produced 1530.23 MWh in the entire 2015 year. This achieved result is remarkable, considering
the role of the climatic zone in which the PV plant is situated, however, further long-term measurements
are necessary. The degradation process of modules has to be observed and taken into account in long
term comprehensive assessment. All kinds of modules are sensitive to some external factors, such
as humidity that leads to the failure of electric parts, snow, dust and other pollutions that cause hot
spot appearance, and even damage of the modules [41,42]. However, it is also worth emphasizing that
external conditions influence particular types of modules in different ways, since the construction of
the traditional and thin film modules is not the same. Internal processes in various semiconductor
materials also contribute to the degradation.

5. Conclusions

The performance of three different PV technologies was characterized under moderate climate of
Eastern Europe, in which about 80% of irradiation in plane of module is received in the warm half
of the year. In this kind of climate, both standard test conditions (STC) and nominal operating cell
temperature (NOCT) are not met, since only a small portion of irradiance achieves values within the
range 800–1000 W/m2. Module temperature is distributed around 30 ◦C.

Under this kind of external conditions, daily and monthly energy efficiency calculations
revealed its lower values in comparison to efficiency measured under STC for each type of modules.
The difference in normalized energy production among three studied PV technologies as well as the
decrease of energy output with the increase of module temperature were shown. The highest impact
of the temperature on generated power was registered in the case of pc-Si installation compared to
thin film. CIGS and CdTe modules exhibit high resistance to temperature rise, which is indicated
by temperature coefficients whose experimentally obtained values are even lower than the values
based on the manufacturer data. On hot summer days, CIGS installation produced more energy than
the polycrystalline one. Daily average yield, as well as the performance ratio of each technology
installation, also indicated better performance of CIGS technology during summer months.

The presented results thus indicate that under temperate climate operating conditions, CIGS thin
film technology is a valuable alternative to popular pc-Si.
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Abstract: The increase of solar energy production has become a solution to meet the demand of
electricity and reduce the greenhouse effect worldwide. This paper aims to determine the performance
and viability of direct normal irradiation of three solar tower power plants in Algeria, to be installed
in the highlands and the Sahara (Béchar, El Oued, and Djelfa regions). The performance of the plants
was obtained through a system advisor model simulator. It used real data gathered from appropriate
meteorological files. A relationship between the solar multiple (SM), power generation, and thermal
energy storage (TES) hours was observed. The results showed that the optimal heliostat field
corresponds to 1.8 SM and 2 TES hours in Béchar, 1.2 SM and 2 TES hours for El Oued, and 1.5 SM
and 4 TES hours for Djelfa. This study shows that there is an interesting relationship between the
solar multiple, power generation, and storage capacity.

Keywords: solar tower power plants; direct normal irradiation; energy projects; system advisor model

1. Introduction

Algeria highlighted its solar potential where as of the most important heritages in the
World, because more than 2 million km2 receive an annual insulation of about 2.5 kWh/m2 [1,2].
The renewable energy program involves the installation of renewable power of the order of 22 GW
by the year 2030 for the national market (i.e., more than 37% of national electricity production with
maintaining the export option as a strategic objective) [3].

The world market for solar thermodynamics (CSP) is estimated at 14 GW in 2020 and 72 GW on
the horizon of 2035 in very strong growth compared to the capacity installed in 2012 which amounts to
2.8 GW [4]. This strategic choice is motivated by the potential of solar energy from the “Sahara and
High Plateau”. This energy constitutes the major axis of the program which is devoted to solar thermal
energy [5,6].

The geographic location of Algeria has several advantages to using solar energy. Algeria is
situated in the center of North Africa between the 38–35◦ of latitude north and 8–128◦ longitude east,
and it has an area of 2,381,741 km2. The Sahara represents 86% of the area of the country. The climate
is transitional between maritime (north) and semi-arid to arid (middle and south).

Solar power systems have a quasi-zero proportional cost: there is no fuel, only expenses
(maintenance, guarding, repairs, etc.) which depend very little on the production. However, it is
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necessary to take into account its investment costs [7] which are much higher compared to fossil
techniques or other renewable energies [8].

In solar tower power plants, since the solar energy is insufficiently dense, it is necessary to
concentrate it by means of reflecting mirrors in order to obtain operating temperatures for the
production of electricity. The solar radiation can be concentrated on a linear or point receiver.
The receiver absorbs the energy reflected by the mirror and transfers it to a thermodynamic heat
transfer fluid [9,10].

The performance of the solar system is characterized by its concentration factor. This coefficient
makes it possible to evaluate the intensity of the solar concentration [11]. Whenever the concentration
factor is high, the temperature reached will be high. Online concentration systems generally have a
lower concentration factor less than that of point concentrators [12].

Ho et al. [13] reviewed central receiver designs for concentrating solar power applications with
high-temperature power cycles. Boudaoud et al. [14] carried out a technical and economic analysis of
electricity costs and the economic feasibility of solar tower power plants in Algeria. Behar et al. [15]
evaluated a wide range of clear sky solar radiation models based on theoretical input parameters for the
Algerian climate in order to estimate the performance of solar energy projects for which meteorological
and radiometric measurement stations are not available. Mihoub et al. [16] proposed a methodology
to have an optimal design with a better configuration of the future Algerian solar tower power plants
with objectives, the minimization of the electricity costs (LCOE), and the maximization of annual
production of electricity.

Quaschning [17] realized a technical and economic system comparison of photovoltaic and
concentrating solar thermal power systems depending on annual global irradiation. He concluded that
the electricity generation cost much below 0.10 €/kWh for solar thermal systems and about 0.12 €/kWh
for solar photovoltaic can be expected in 10 years in North Africa. In addition, Zhu et al. [18] concluded
that introduction of a solar tower field increasing leveled cost of electricity; it contributes to the
reduction of CO2 capture cost compared to the case of standard coal-fired power plants.

Toro et al. [19] studied the thermo-economic design evaluation and optimization of the Central
Receiver Concentrated Solar Plants, allowing for improvement of the thermodynamic and economic
efficiency of the systems, as well as decreasing the exergy and exergy-economic cost of their products.

Eddine Boukelia et al. [20] made a review of considerations on the assessments for concentrating
solar power potential of Algeria. The analysis showed the competitive viability of CSP plants.
Algeria has the key prerequisites to make economical CSP power generation, including high-quality
insolation and appropriate land, in addition to water availability and extensive transmission and
power grid.

Boudaoud et al. performed a technic economic assessment of a solar tower power pilot plant
located in Tipaza, near Algiers. Using the economical, technical, meteorological, and radiometric data,
they have carried a simulation of the solar tower power plants (STPP). The results showed that for a
net annual energy of about 1 MW, the leveled cost of electricity is about 0.1/kWh, which is relatively
high in comparison with the leveled cost of fossil power plant (0.04/kWh) [21].

Larbi et al. [22] showed that solar chimney power plants can produce from 140 to 200 kW of
electricity on a site like Adrar (Algeria) during the year, according to an estimate made on the monthly
average of sunning. This production is sufficient for the needs of the isolated areas.

Viebahn et al. studied two virtual sites in Algeria and in Spain; they showed a long-term reduction
of electricity generating costs to figures between 4 and 6 ct/kWh in 2050. Although the greenhouse gas
emissions of current CSP systems showed a good performance (31 g CO2-equivalents/kWh) compared
with fossil-fired systems (130–900 CO2-eq/kWh), they could further be reduced to 18 g CO2-eq/kWh
in 2050 [23].

Abbas et al. performed a techno-economic assessment of 100 MW of three types of concentrating
solar thermal power plants for electricity generation located in one typical site of the Saharan
environment of Algeria (Tamanrasset) [24].
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The exploitation of Algeria’s solar potential complements rural electrification programs. Currently,
the use of renewable energies can reach regions far from the national electricity grid.

The parameters and performance of the solar tower power plants of molten salt external receivers
to be installed in the North of Algeria are currently not defined. The savings potential is very high and
it is planned to install several plants, without the location yet being defined. Most of the studies focus
on the south of Algeria, whose solar radiation is higher than the north.

The aim of this paper is to analyze direct normal irradiation on the performance of solar tower
power plants of molten salt external receivers in the North of Algeria to optimize the configuration of
concentrating solar power (CSP). A comparison study between the three power stations located in the
Algerian regions of Béchar, El Oued, and Djelfa, was presented. Each plant is equipped with a molten
salt storage mode, the receiver is of external type and the implantation of the field of heliostats that
has been defined for an annual production of 20 MW.

This research is useful for prioritizing, sizing, and locating new installations and for determining
the technical parameters to be used in the construction projects of solar tower power plants of molten
salt external receivers. It will also be useful to define the ideal location based on the solar radiation
that maximizes the yield of the CSP plant.

2. Methodology

A numerical simulation under a system advisor model (SAM) based on direct normal irradiance
(DNI) with real and satellite data was carried out to optimize the parameters characterizing these
performances. The influence of these parameters on each other made it possible to choose an optimal
CSP configuration.

In the research, SAM software (Version 2017.9.5, National Renewable Energy Laboratory. Golden,
CO, USA, 2017) was used. The SAM is a software to model and simulate the performance of energy
parameters and the economics of systems to facilitate the decision-making process in the field of
renewable energies [25].

The solar radiation intensity is an important factor in the evaluation of CSP plants. Direct normal
irradiance is the amount of direct normal solar radiation received per unit area. There are three
techniques to assess the evolution of DNI over time for a given location [26,27].

Optimization of the design of the heliostats field is a trade-off between optical performance
and cost, so this process includes both optical and economic analysis. This implantation can be
performed by determining the optimum values of the radial spacing ΔR and the azimuth spacing ΔAZ.

There are various optimization procedures to establish these two geometric position parameters.
One of the most effective procedures is the radial offset arrangement [28]. The evaluation of the radial
and azimuthally distance can be evaluated by empirical Equations (1) and (2) [29]. These parameters also
depend on the angle (α) between the heliostat, the ground, and the tower, as shown in Figure 1 [30,31].

ΔRHM = 63.0093 − 0.587313·θ + 0.018423909·θ2 +
(

2.808733 − 0.1480498·θ + 0.001489201·θ2
)
· cos α (1)

ΔAZWM = 2.46812 − 0.0401054·θ + 0.000923594·θ2 +
(

0.17344593 − 0.009112590·θ + 0.00012761·θ2
)
· cos α (2)

where ΔR is the radial distance between heliostats (m), HM is the heliostat height meters, θ is the
receiver elevation angle from heliostat, α is the heliostat loft angle in degree, ΔAZ is the azimuthal
distance between heliostats (m), and WM is the heliostat width meters (m).
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Figure 1. Implementation of the heliostats field. Representation of the optical angle α.

Table 1 shows the location parameters for different regions.

Table 1. Location parameters for different regions.

Parameter
Design

Parameters
Djelfa El Oued Béchar

Location

DNI (W/m2) 1050.00 750.00 700.00
Latitude (◦) 34.68 33.50 31.50

Longitude (◦) 3.25 6.78 −2.25
Elevation (m) 1144.00 69.00 816.00

The size of the heliostat field influences the optical performance and depends on the desired
power and temperature of the heat transfer fluid at the output. The total incident thermal energy is
given by the following Equation (3):

Qh = Id· Ah·Nh (3)

where Id is the direct normal irradiation, Ah is the surface of the heliostat, and Nh is the number of the
heliostat, and 144 m2 was considered the surface of the heliostat field.

The efficiency of the field ηh is defined by the following Equation (4):

ηh =
Qrec

Qinc
=

Qrec

Id × Ah × Nh
(4)

where Qrec is the heat flow of the receiver and Qinc is heat flow of the incident.
The efficiency is calculated considering losses due to different effects (cosine, shading, blocking,

overflow, reflection, dispersion) and it is given by the following Equation (5) [32]:

ηh = ηcos·ηomb·ηbloc·ηdeb·ηre f ·ηdisp (5)

where ηcos is the losses due to cosine effect, ηomb is the losses due to shading effect, ηbloc is the losses
due to blocking effect, ηdeb is the losses due to overflow; ηre f is the losses due to reflection and ηdisp is
the losses due to dispersion.

The model of the receiver of the present study is an external type. It consists of a large number
of vertically disposed pipes through which a heat transfer fluid is pumped in the vertical direction.
Inside the pipe three types of heat transfer are identified (convection, conduction, and radiation) and
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the exchange with the outside by radiation (solar and radiation losses), by convection (losses at the
body of the receiver) and by conduction (losses through thermal bridges). Figure 2 shows the different
heat exchanges of the receiver with the external environment.

Figure 2. Energy balance of the external receiver.

The heat flux of the receiver can be expressed by Equation (6):

Qrec = qht f + qconv + qrad + qre f (6)

Qrec = Si·Id (7)

where qht f is the heat flow of molten salt; qconv: loss of convection heat flow; qrad: loss of radiation
heat flux; qre f : loss of reflection flux; Si: total surface.

The incidence of solar radiation Id on the receiver is evaluated by the flux map radiation model.
The distribution of the radiation flux is integrated by combining the effect of the different
losses occurring in a heliostats filed layout (cosine effect, shadowing effect, blocking effect,
atmospheric attenuation, spillage and flux image profile), based on direct radiation from
950 W/m2 [26,33]. The energy absorbed by the heat transfer fluid (qht f ) is given by the following
Equation (8):

qht f = mht f ·Cht f ·
(

Tht f (x+dx) − Tht f (x)

)
= USi·

(
Tst − Tht f

)
(8)

USi =
1

Rcond + Rconv
(9)

Rcond =
ln Dot

Dit

2·π·Lt·Kt·Nt
(10)

Rconv =
2

π·hht f ·Lt·Dt·Nt
(11)

where qhtf is the heat flow of molten salt (W), mhtf is the molten salt flow rate (kg/s), Chtf is the
heat capacity of the molten salt fluid (kJ/kg·K), Thtf is the inlet temperature of the molten salt at x
position (K), USi is heat transfer conductance coefficient (W/K), Tst is receiver temperature at the
surface (K), Rcond is heat transfer resistance by conduction (K/W), Rconv is heat transfer resistance by
convection (K/W), Dot is outer diameter of the tube (m), Dit is the inner diameter of the tube (m), Lt is
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length of the tube (m), Kt is thermal conductivity of the receiver tube (W/m·K), Nt is total number of
the receiver tube, and Dt diameter of the tube (m).

The losses by convection are given by Equation (12):

qconv = Si·hconv·(Tst − Tic−air) (12)

where qconv is the loss of convection heat flux (W), Si is total surface/Surface total (m2), hconv is
the convective heat losses from each receiver tube (W/m2·K), Tst is the receiver temperature at the
surface (K), and Tic-air is the temperature of the air in the inner cavity (K).

The radiation losses qrad have a negligible value because the absorber has a high absorption of
short waves of solar radiation and the same for losses by reflection qre f due to the less emissivity of the
long thermal waves.

The performance of a good configuration of the solar tower system is based on several parameters
such as power generation injected to the grid, incident solar radiation, and storage capacity.
The capacity factor and the multiple solar characterizing the performance of a central solar
tower system.

The ratio of the energy generated by the system in partial time Egp and the energy generated in
full-time Eg f determines the capacity factor [27] and is given by Equation (13):

CF =
Egp

365.24·Eg f
(13)

where CF is capacity factor, Egp is the energy generated in part-time (W), and Egf is the energy generated
in full-time (W)

The ratio of energy to design point (thermal power produced by the field of heliostats qs f for
different DNI values), and the thermal power required by the power block under nominal conditions
qpb determines the solar multiple (SM). It is expressed by Equation (14), [34].

SM =
qs f

qpb
(14)

where SM is solar multiple factor, qsf is the energy generated by the field of heliostats (W), and qpb is
the energy required by the power block (W). For a system without a storage mode, SM = 1.

Table 2 shows component characteristics and design parameters of the solar tower system used in
the research.

Annual meteorological database that known as the reference year test (TRY) or typical
meteorological year (TMY) was used. It consists of measured values, which are statistically
selected from the annual individual values measured over a long period. The file formats used
are file extensions: TMY2, TMY3, EPW, and CSV. To optimize the performance of the solar tower
system of different regions, one needs to optimize the solar fields by the variation of the solar multiple
(SM) in function of thermal energy storage (TES) hours, in order to optimize the dimensions of the
system and maximize the production of electricity and the capacity factor of the solar tower system.
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Table 2. Characteristics of the components of the solar tower system.

Parameter Design Parameters Value

Field of heliostats Surface of the heliostat (m2) 144.00

Tower and receiver
Diameter of pipes (mm)
Thickness of pipes (mm)

Type of pipe material (stainless steel)

60.00
1.25

Fluid Heat transfer fluid (HTF) type 60% NaNO3, 40% KNO3

Coolant Input temperature (◦C)
Output temperature (◦C)

565.00
290.00

Power block

Design turbine output (MWe)
Thermodynamic cycle efficiency (%)

Operating pressure of the boiler
(bar)

Type of cooling capacitor

820.00
37.00

100.00
Air

Energy storage Type of storage
Load storage in full hours

2 tanks
0–12 h

3. Results

The results obtained in the research, grouped according to the regions analyzed, are as follows.

3.1. Region of Béchar

In Figure 3a, it can be observed that the electrical production per square meter of heliostats
increase proportionally with the SM except the decrease recorded in the interval (1.4–1.5) due to
the increase in the surfaces of the heliostats mirrors and the decrease in the length of the tower,
which are influenced by the losses due to the effects of the heliostat field as indicated in Figure 3b.
Beyond SM = 1.6, the increase in the solar field area has no influence on the evolution of electrical
production which converges and increases slightly due to the effects corresponding to the enormous
expansion of the solar field and atmospheric attenuation.

 
(a) (b) 

Figure 3. (a) Solar multiple effect (SM) on electrical production/surface heliostats under different
values of TES (Béchar). (b) Solar multiple effect on the surface of the heliostats mirrors and length of
the tower (Béchar).

For SM values of 2.0, 2.2, and 2.4, the electrical production per m2 increases until the peak values:
42.53 W/m2, 47.07 W/m2, and 48.55 W/m2 for TES = 2 h, then it decreases as explained in Figure 4.
The configuration of the plant in these values requires a large area, which is not profitable. Therefore,
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the electrical production at the start of the system for SM = 1.8 is larger, lowers slightly to TES = 2 h,
and then coincides with the curve corresponding to SM = 1.6.

 
(a) (b) 

Figure 4. (a) Effect of Thermal Energy Storage (TES) on electrical production/m2 (surface heliostats)
under different values of solar multiple (Béchar). (b) Solar multiple effect on capacity factor (CF) under
different TES values (Béchar).

3.2. Region of El Oued

The capacity factor CF evolves proportionally with the SM. The graphs converge towards
close values as shown in Figure 5. Except for the graph corresponding to TES = 0 h and SM = 2.2,
which begins to descend slightly, this decrease is due to the loss of excess of the non-stored energy
received by the receiver. From above, it can be concluded that the optimal point of operation of the
system corresponds to the following coordinates: SM = 1.8, TES = 2 h, and the electrical production is
11.44 GWh/year.

 
(a) (b) 

Figure 5. (a) Solar multiple effect (SM) on electrical production per surface heliostats under different
values of TES. (b) Solar multiple effect on the surface of heliostats mirrors (m2) and length of the
tower (m).

In Figure 5a, it can be seen that the electrical production per square meter of heliostats increase
proportionally with the SM, except that there is a decrease recorded in the interval (1.2–1.4), where the
length of the tower has exceeded the surface of the corresponding heliostat mirrors and then decreases
to the value of 80 m, to resume the increase in electrical production in the interval (1.4–1.5), as shown
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in Figure 5b. Beyond SM = 1.5, the curves of electrical production continue parallel to their growth
but it keeps constant the value of the electrical output at SM = 1.2 and view the optimal surface of the
solar field.

For SM = 2.0, 2.2, and 2.4, the electrical production per m2 increases until to peak values:
45.07 W/m2, 45.18 W/m2, and 44.79 W/m2 for TES = 2 h then it drops as explained in Figure 6a.
The configuration of the plant in these values requires a large area of the heliostat field, which is not
profitable. Consequently, the electrical production at the start of the system for SM = 1.2 is greater,
drops slightly up to TES = 2 h and then coincides with the curve corresponding to SM = 1.8.

 
(a) (b) 

Figure 6. (a) The effect of Thermal Energy Storage (TES) on electrical production/m2 (surface heliostats)
under different values of solar multiple. (b) The solar multiple effect on capacity factor (CF) under
different TES values.

The capacity factor (CF) evolves proportionally with the solar multiple (SM), the curves increase
in parallel and tend towards close values as shown in Figure 6b, except for the curve corresponding to
TES = 0 h and SM = 2.2 which begins to descend slightly; this decrease is due to the loss of excess of
the non-stored energy received by the receiver.

From above, it can be concluded that the optimal point of operation of the system corresponds to
the following coordinates SM = 1.2, TES = 2 h and the electrical production is 7.4 GWh per year.

3.3. Region of Djelfa

In Figure 7, the following variations can be distinguished. For TES = 0 h to 4 h, the electrical
production per square meter of the heliostats increase respectively with the values SM = 1.2, SM = 1.6,
and SM = 2, and then it decreases; for TES = 6 h to 12 h, the electrical production per square meter of the
heliostats increase proportionally with to a converging value; for SM = 2.0, 2.2, and 2.4, the electricity
production per m2 of heliostat’s increases proportionally with the TES. For the other SM, the electrical
production increases until TES = 2 h, then it decreases. Except for SM = 1.8, the electrical production is
interesting as TES exceeds 4 h. The configuration of the system becomes unprofitable (a large area,
large dimensioning of the tower). On the other hand, the starting power of the plant is much better for
SM = 1.5 and remains almost stable from TES = 4 h.
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(a) (b) 

Figure 7. (a) Solar multiple effect (SM) on electrical production by surface heliostats under different
values of TES. (b) Solar multiple effect on the surface of the heliostats mirrors (m2) and the length of
the tower (m).

The capacity factor (CF) evolves proportionally with the solar multiple (SM), the curves increase
proportionally and tend towards close values except for TES = 0 h, 2 h and 4 h as shown in Figure 8.

 
(a) (b) 

Figure 8. (a) Effect of Thermal Energy Storage (TES) on electrical production/m2 (surface heliostats)
under different values of solar multiple (Djelfa). (b) The solar multiple effect on capacity factor (CF)
under different TES values (Djelfa).

From above, it can conclude that the optimal point of operation of the system corresponds to the
following coordinates SM = 1.5, TES = 4 h, and the electrical production is 18.45 GWh/year. Table 3
shows the model validation parameters simulated in Djelfa and Batna.

Table 3. Parameters of the model validation.

Type of Parameter
Simulated Case,
Scenario 1 [14]

Simulated Case,
Scenario 2 [14]

Simulated Case, Study

Annual DNI (kWh/m2) 1907.30 1907.30 2416.30
Hybridization (%) 0.00 15.00 0.00

Net energy production (GWh/year) 18.15 44.40 18.45
Net energy production difference (%) 1.60 (scenario 1.00 and study)

Annual capacity factor (%) 10.60 26.00 10.50
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3.4. Optimization of the Field of Heliostats

From the above, for the optimal points of operation of CSP system of the three regions, it can
conclude that the optimal heliostat field corresponds to the solar multiple and storage hours: SM = 1.8,
TES = 2 h for Béchar region; SM = 1.2, TES = 2 h for El Oued region; and SM = 1.5, TES = 4 h for Djelfa
region. The simulation results are shown in Figure 9.

 
(a) (b) 

(c) 

Figure 9. (a) Concentrated Solar Power (CSP) heliostats field configuration of Béchar region. (b) CSP
heliostats field configuration of El Oued region. (c) CSP heliostats field configuration of Djelfa region.

Figure 9 shows how the largest STE was produced in the Djelfa region, although the highest SM
was found in the CSP heliostat field configuration of Béchar region.

4. Discussion

Algeria is one of the most suitable countries for the cheap production of electricity from solar
energy sources, especially from solar thermal concentration technology. Despite the great virtues of
solar energy, the development of technologies that allow its use has been gradually slowed down by
its disadvantages, including its high investment costs and the impossibility of generating energy at
times when there is no solar radiation or it is intermittent due to the passage of clouds.

This study researches the influence of solar normal irradiation on solar power plants and
its efficiency. It simulates the electricity production, capacity factors, and surface area required
for solar field versus solar multiples considering the effect of TES at different capacities. The study
focuses on optimization of CSP heliostat field configuration. Prediction of the field area and solar
multiple can directly increase the efficiency of the solar power plant and power production rate. Also,
the accumulation of energy through molten salt systems is an adequate solution to promote the use of
solar energy.

According to study of the German Aerospace Centre (DLR), Algeria has with 1,787,000 km2

of Sahara desert, the largest long-term land potential for concentrating solar thermal power plants.
The insolation time over the quasi-totality of the national territory exceeds 2000 h annually, and may

235



Appl. Sci. 2018, 8, 1221

reach 3900 h (High Plains and Sahara) [35]. The daily obtained energy on a horizontal surface of 1 m2

is of 5 kWh over the major part of the national territory, or about 1700 kWh/m2 per year for the north
and 2263 kWh/m2 per year for the south of the country [36].

The solar thermal power plant is one of the promising renewable energy options to substitute the
increasing demand of conventional energy [37]. The design of the solar towers allows the collector to
reach a higher temperature than the cylindrical-parabolic ones. This higher temperature allows for
more efficient conversion to electricity, as well as cheaper storage of thermal energy for later use.

The position of heating head is an important factor for power collection. If the sunlight can be
concentrated to completely cover the heating head with small heat loss, it can obtain the maximum
temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can
be higher than 1000 ◦C on a sunny day [38].

The choice of the solar field is a difficult exercise, for example, a choice of solar multiples between
1.4 and 1.6 is suitable for high-optical performance with a lower surface of the field, and the starting
arrangement must be very close to the optimum configuration, based on the experience obtained from
the plants already in operation [39]. The thermal energy storage capacity is insufficient for the whole
night, it covers between two and four hours hence the obligation to use an auxiliary energy source.

The starting layout must be very close to the optimum configuration (length of the tower, surface of
the mirrors, dimension of the receiver), it is important therefore looking to design a cheaper and better
performing heliostat concentrator.

In terms of direct solar irradiance, a measure of the gross energy received per unit area,
Algeria is one of the most suitable countries for the cheap production of electricity from solar sources,
especially from solar thermal concentration technology [40]. On the other hand, a reduction of taxes
decreases leveled cost of electricity generated by CSP solar technologies [41].

However, it should be borne in mind that the type of geometry used in the construction of the
reflective surface of a heliostat has a significant influence on the shape and size of the image generated
in the plane of the receiver, and therefore on the energy density and the amount of energy intercepted
by this element [42].

Concentrating solar power is clean and reliable, can be produced during high demand, and has the
potential to meet a country’s growing needs in the future. In addition, thermal storage systems prevent
fluctuations in supply, allow production to continue in the absence of solar radiation, when direct
generation is not possible, and allow production peaks to be transferred in accordance with demand
requirements [43].

The research carried out in this work will be useful to optimize the performance of solar tower
power plants of molten salt external receivers and to plan its design properly [44]. The results can
hopefully help the Algerian government to decide on policies related to performance of solar tower
power plants of molten salt external technologies. It has been proven that although energy production
is lower in the northern regions of Algeria, it is profitable and allows for the efficient supply of
electricity to regions that do not currently have electricity grids.

As prospects for future research, it will use the performance of the solar advisor model for
integrating financial modeling into project models. It is also advisable to evaluate the incorporation of
a wind barrier in the perimeter of the CSP in order to protect the components from high wind levels
and the dust it carries. The barrier protects the heliostats from bursts and prevents the continuous
movement of sand that may enter the solar field and deposit on the components.

5. Conclusions

A comparison study between three power stations located in the Algerian regions of Béchar,
El Oued, and Djelfa was developed. Each plant is equipped with a molten salt storage mode,
the receiver is of external type, and the implantation of the field of heliostats which have been
defined for an annual production of 20 MW. It became evident that the regions in Northern Algeria are
suitable for the production of concentrated solar energy,
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It was found that the system advisor model software is a suitable tool to calculate normal direct
irradiation on the performance of solar tower power plants of molten salt external receivers. The use
of this software was very interesting in the study. It was observed that direct normal irradiation
is a fundamental factor in order to choose an adequate region. High values correspond to a high
performance of the solar power plant, resulting in high production and storage capacity.

The results showed that the optimal heliostat field corresponds to 1.8 SM and 2 TES hours
in Béchar, 1.2 SM and 2 TES hours for El Oued, and 1.5 SM and 4 TES hours for Djelfa. Therefore,
thermodynamic plants should be studied through their direct normal irradiation instead of global
horizontal irradiation and diffuse horizontal irradiation.

Finally, this study shows that there is a strong and direct relationship between SM,
power generation, and storage capacity hours. The higher value of SM corresponds to higher values of
production and storage capacity. Since the storage hours do not cover the whole night, it is essential
either to increase the number of heliostats, and therefore factor SM, or provide an auxiliary source of
energy to guarantee permanent activity for 24 h.

As lessons learned, it became evident that satellite meteorological data give better results
compared to actual data, as electricity production can be twice as high as actual data because the latter
take into account atmospheric conditions (clouds, wind, pollution, etc.).

It was found that the system advisor model software is a suitable tool to calculate normal direct
irradiation on the performance of solar tower power plants of molten salt external receivers. The use
of this software was very interesting in the study. It is observed that direct normal irradiation is
a fundamental factor in order to choose an adequate region. High values correspond to a high
performance of the solar power plant, resulting in high production and storage capacity.
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Nomenclature

STPP Solar tower power plants
DNI Direct normal irradiation
DHI Diffuse horizontal irradiation
GHI Global horizontal irradiation
SAM System advisor module
SM Solar multiple
TES Thermal energy storage (h)
CSP Concentrated solar power
ΔR Radial distance between heliostats (m)
ΔAZ Azimuthal distance between heliostats (m)
θ Receiver elevation angle from heliostat (◦)
α Heliostat loft angle in degree (◦)
Ah Surface heliostat (m2)
Id Irradiation direct normal (W/m2)
Nh Number of heliostats.
ηh Efficiency of the solar field
ηcos Loss due to cosine effect
ηomb Loss due to shading effect
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Nt Total number of the receiver tube
ηbloc Loss due to blocking effect
ηdeb Loss due to overflow
ηre f Loss due to reflection
ηdisp Losses due to dispersal

CF Capacity factor
Egp Energy generated in part-time (W)
Egf Energy generated in full-time (W)
TMY Typical Meteorological Year
Qréc Heat flow of the receiver (W)
Qinc Incident heat flow (W)
qra Loss of radiant heat flux (W)
qconv Loss of convection heat flux (W)
qref Loss of reflection flow (W)
qsf Energy generated by the field of heliostats (W)
qpb Energy required by the power block (W)
Qh Heat flow of molten salt (W)
Si Total surface/Surface total (m2)
USi Heat transfer conductance coefficient (W/K)
mhtf Molten salt flow rate (kg/s)
Chtf Heat capacity of the molten salt fluid (kJ/kg·K)
Tst Receiver temperature at the surface (K)
Thtf Inlet temperature of the molten salt at x position (K)
Tic-air Temperature of the air in the inner cavity (K)
Rconv Heat transfer resistance by convection (K/W)
Rcond Heat transfer resistance by conduction (K/W)
Dit Inner diameter of the tube (m)
Dot Outer diameter of the tube (m)
hhtf Convection heat transfer of the molten salt (W/m2·K)
hconv Convective heat losses from receiver tube (W/m2·K)
Kt Thermal conductivity of the receiver tube (W/m·K)
Lt Length of the tube (m)
TRY Test Reference Year
EPW Energy Plus Weather
CSV Comma Separated Value
WM Heliostat width meters
HM Heliostat height meters
HTF Heat transfer fluid
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Abstract: Due to the existing large-scale grid-connected photovoltaic (PV) power generation
installations, accurate PV power forecasting is critical to the safe and economical operation of electric
power systems. In this study, a hybrid short-term forecasting method based on the Variational Mode
Decomposition (VMD) technique, the Deep Belief Network (DBN) and the Auto-Regressive Moving
Average Model (ARMA) is proposed to deal with the problem of forecasting accuracy. The DBN
model combines a forward unsupervised greedy layer-by-layer training algorithm with a reverse
Back-Projection (BP) fine-tuning algorithm, making full use of feature extraction advantages of the
deep architecture and showing good performance in generalized predictive analysis. To better analyze
the time series of historical data, VMD decomposes time series data into an ensemble of components
with different frequencies; this improves the shortcomings of decomposition from Empirical
Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) processes.
Classification is achieved via the spectrum characteristics of modal components, the high-frequency
Intrinsic Mode Functions (IMFs) components are predicted using the DBN, and the low-frequency
IMFs components are predicted using the ARMA. Eventually, the forecasting result is generated by
reconstructing the predicted component values. To demonstrate the effectiveness of the proposed
method, it is tested based on the practical information of PV power generation data from a real
case study in Yunnan. The proposed approach is compared, respectively, with the single prediction
models and the decomposition-combined prediction models. The evaluation of the forecasting
performance is carried out with the normalized absolute average error, normalized root-mean-square
error and Hill inequality coefficient; the results are subsequently compared with real-world scenarios.
The proposed approach outperforms the single prediction models and the combined forecasting
methods, demonstrating its favorable accuracy and reliability.

Keywords: solar output power forecasting; combined prediction model; variational model decomposition;
deep belief networks; auto-regressive and moving average model

1. Introduction

To promote sustainable economic and social development, energy sources such as solar energy
and wind power need to be leveraged to counteract the rapidly growing energy consumption and
deteriorating environment caused by climate change. To promote increased solar energy utilization,
photovoltaic (PV) power generation has been rapidly developed worldwide [1]. PV power generation
is affected by solar radiation, temperature and other factors. It also has strong intermittency and
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volatility. Grid access by large-scale distributed PV power introduces significant obstacles to the
planning, operation, scheduling and control of power systems. Accurate PV power prediction not
only provides the basis for grid dispatch decision-making behavior, but also provides support for
multiple power source space-time complementarity and coordinated control; this reduces pre-existing
rotating reserve capacity and operating costs, which ensures the safety and stability of the system and
promotes the optimal operation of the power grid [2].

According to the timescale, PV power forecasting can be divided into long-term, short-term,
and ultra-short-term forecasts [3]. A medium-long-term forecast (i.e., with a prediction scale of several
months) can provide support for power grid planning; Short-term prediction (i.e., with a prediction
scale of one to four days in advance) can assist the dispatching department in formulating generator
set start-stop plans. Super short-term forecast (i.e., with a prediction scale of 15 min in advance)
can achieve a real-time rolling correction of the output plan curve and can provide early warning
information to the dispatcher. The shorter the time scale, the more favorable the management
of preventative situations and emergencies. Most of the existing literature describes short-term
forecasting research with an hourly cycle. There are few reports on the ultra-short-term prediction of
PV power generation [4–6]. In addition, in the previous research, PV power prediction methods mainly
include the following: physical methods, statistical methods, machine learning methods, and hybrid
integration methods.

(1) In physical methods, numerical weather prediction (NWP) is the most widely used
method, which involves more input data such as solar radiation, temperature, and other
meteorological information.

(2) As for the statistical approaches, their main purpose is to establish a long-term PV
output prediction model. In literature [7–10], the auto-regressive, auto-regressive moving average,
auto-regressive integral moving average and Kalman filtering model of short-term PV prediction are
respectively established based on the time series, and obtain good prediction results. The above model
is mainly based on a linear model, which only requires historical PV data and does not require more
meteorological factors. In addition, the time series methods can only capture linear relationships and
require stationary input data or stationary differencing data.

(3) Along with the rapid update of computer hardware and the development of data mining,
prediction methods based on machine learning have been successfully applied in many fields.
Machine learning models that have been widely applied in PV output prediction models are nonlinear
regression models such as the Deep Neural Network (DNN), the Recurrent Neural Network (RNN), the
Convolutional Neural Network (CNN), the Deep Belief Network (DBN) and so forth. Literature [11,12]
establishes output prediction models based on the neural network, which can consider multiple
input influencing factors at the same time. The only drawback is that the network structure and
parameter settings will have a great impact on the performance of the models, which limits the
application of neural networks. Literature [13,14] has analyzed various factors affecting PV power
and established support vector machine (SVM) prediction models facing PV prediction. The results
show that the SVM adopts the principle of structural risk minimization to replace the principle
of empirical risk minimization of traditional neural networks; thus, it has a better generalization
ability. To effectively enhance the reliability and accuracy of PV prediction results, related literature
proposes the use of intelligent optimization algorithms to estimate model parameters; some examples
of intelligent optimization algorithms include the gray wolf algorithm, the similar day analysis method
and the particle swarm algorithm [15–17]. The example analysis illustrates the effectiveness of the
optimization algorithm.

(4) In recent years, decomposition-refactoring prediction models based on signal analysis
methods have attracted more and more attention from scholars. Relevant research shows that
using signal analysis methods to preprocess data on PV power series can reduce the influence
of non-stationary meteorological external factors on the prediction results and improve prediction
accuracy. The decomposition methods of PV power output data mainly include wavelet analysis and
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wavelet packet transform [18,19], empirical mode decomposition (EMD) [20], ensemble empirical
mode decomposition (EEMD) [21] and local mean decomposition (LMD) [22]. Among them, wavelet
analysis has good time-frequency localization characteristics, but the decomposition effect depends on
the choice of basic function and the self-adaptability is poor [23]. EMD has strong self-adaptability,
but there are problems such as end-effects and over-enveloping [24]. LMD has fewer iterations and
lighter end-effects. However, judging the condition of purely FM signals requires trial and error. If the
sliding span is not properly selected, the function will not converge, resulting in excessive smoothness,
which affects algorithmic accuracy [25]. EEMD is the improved EMD method; the analysis of the
signal is made via a noise-assisted, weakened influence of modal aliasing. However, this method has
a large amount of computation and more modal components than the true value [26]. Variational
mode decomposition (VMD) is a relatively new signal decomposition method. Compared to the
recursive screening mode of EMD, EEMD, and LMD, by controlling the modal center frequency K,
the VMD transforms the estimation of the sequence signal modality into a non-recursive variational
modal problem to be solved, which can well express and separate the weak detail signal and the
approximate signal in the signal. It is essentially a set of adaptive Wiener filters with a mature
theoretical basis. In addition, the non-recursive method adopted does not transmit errors, and solves
the modal aliasing phenomenon of EMD, EEDM and other methods appeared in the background of
bad noise, and effectively weakens the degree of end-effect [27]. Literature [28] used this method for
fault diagnoses and achieved good results.

Through the above literature research, we find that the previous prediction methods using
traditional neural network models and single machine learning models cannot meet the performance
requirements of local solar irradiance prediction scenarios with complex fluctuations. To further
improve the prediction accuracy of PV output, this work proposes a new and innovative hybrid
prediction method that can improve prediction performance. This method is a hybrid of variational
mode decomposition (VMD), the deep belief network (DBN), and the auto-regressive moving average
model (ARMA); it combines these prediction techniques adaptively. Different from the traditional
PV output prediction model, the key features of the VMD-ARMA-DBN prediction model are the
perfect combination of the following parts: (1) VMD-based solar radiation sequence decomposition;
(2) ARMA-based low-frequency component sequence prediction model; and (3) DBN-based
high-frequency component sequence prediction model. The original photovoltaic output sequences
are decomposed into multiple controllable subsequences of different frequencies by using the VMD
methods. Then, based on the frequency characteristics of each subsequence, the subsequence prediction
is performed by using the advantages of ARMA and DBN, respectively. Finally, the subsequences
are reorganized, and the final PV output prediction value is obtained. The main contributions of this
article are as follows:

(1) To reduce the complexity and non-stationarity of the PV output data series, the VMD
decomposition is used for the first time to preprocess the PV data sequence and decompose it into
a series of IMF component sequences with good characteristics, achieving an effective extraction of
advanced nonlinear features and hidden structures in PV output data sequences.

(2) An innovative method for predicting PV output based on VMD-DBM-ARMA is proposed.
According to the characteristics of the IMF component sequence decomposed by the VMD, DBN and
ARMA models are used to improve predictions of the high- and low-frequency component sequences,
respectively. Based on this, the DBN is used for feature extraction and structural learning of the
prediction results of each component sequence. Finally, the PV output predictive value is obtained.

(3) Taking the actual measured data of a PV power plant in China-Yunnan for application,
the short-term PV output predictions of ARMA, DBN, EMD-ARMA-DBN, EEMD-ARMA-DBN,
and VMD-ARMA-DBN were conducted and three prediction precisions were introduced, respectively.
The evaluation indicators perform a statistical analysis on the prediction effect of each model.
The results show that the proposed method can guarantee the stability of the prediction error and
further improve the PV prediction accuracy.
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The remainder of this paper is organized as follows: Section 2 describes our proposed approach:
A Hybrid Forecasting Method for Solar Output Power Based on VMD-DBN-ARMA; experimental
results are presented in Section 3; and the experimental comparison and conclusion are given in
Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Variational Mode Decomposition (VMD)

VMD is a new non-stationary, signal-adaptive decomposition estimation method. It was proposed
by Konstantin Dragomiretskiy in 2014. The purpose of VMD is to decompose the original complex
signal into K amplitude and frequency modulation sub-signals. Because K can be preset, and with
a proper value of K, modal aliasing can be effectively suppressed [29]. VMD assumes that each
“mode” has a finite bandwidth with unique center frequencies. The main process of this method is to:
(1) use Wiener filtering to de-noise the signal; (2) obtain the K-estimated center angular frequency by
initializing the finite bandwidth parameters and the central angular frequency; (3) use the alternating
direction method of multipliers to update each modal function and its center frequency; (4) demodulate
each modal function to the corresponding baseband; and (5) minimize the sum of each modal
estimation bandwidth. The algorithm can be divided into the construction of a variational problem,
subsequently obtaining the solution to the variation problem. The algorithm is described in detail in
Sections 2.1.1–2.1.4.

2.1.1. The Construction of the Variational Problem

Assume that each mode has a finite bandwidth and a pre-defined center frequency. The variational
problem is described as a problem that seeks K modal functions uk(t)(k = 1, 2, . . . , K) such that the
sum of the estimated bandwidths of each mode is minimized subject to the constraint that the sum of
each mode is equal to the input signal f . The specific construction steps are as follows:

(1) Apply a Hilbert transform to the analytical signal of each modal function uk(t). Then, obtain its
single-side spectrum (

δ(t) + j
πt

)
∗ uk(t)

δ(t) =

{
0
∞

t �= 0
t = 0

,
+∞∫
−∞

δ(t)dt = 1
, (1)

where δ(t) is the Dirac distribution.
(2) Modulate the spectrum of each mode to be the corresponding baseband based on the

mixed-estimated center frequency e−jωkt of various modal analysis signals[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt, (2)

where e−jωkt is the phasor description of the center frequency of the modal function in the complex
plane and ωK is the center frequency of each modal function.

(3) Calculate the square of the norm of the gradient of the analytical signal and estimate the
bandwidth of each modal signal. The constrained variational problem is expressed as⎧⎪⎪⎨⎪⎪⎩

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
⊗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

, (3)
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where {uk} = {u1, u2, · · · , uK} is the set of modal functions, {ωk} = {ω1, ω2, · · · , ωK} is the set of
center frequencies that correspond to the modal functions, ⊗ is the convolution operation, and K is the
total number of modal functions.

2.1.2. Solve the Variational Problem

(1) Introduce the second-level penalty factor C and the Lagrange multiplication operator θ(t)
to change the constraint variational problem into a non-binding variational problem. Among them,
C guarantees the reconstruction precision of the signal and θ(t) maintains the strictness of the constraint
condition. The expanded Lagrange expression is characterized by

L({uk}, {ωk}, θ) = C
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

+‖ f (t)− K
∑

k=1
uk(t)‖

2

2
+

〈
θ(t), f (t)− K

∑
k=1

uk(t)
〉

,
(4)

(2) VMD uses the alternating direction multiplication operator method to solve Equation (4)
(the variational problem). In the expanded Lagrange expression, the “saddle point” is found by
alternately updating un+1

k , ωn+1
k and θn+1, where n denotes the number of iterations and where un+1

k
can be transformed into the frequency domain using the Fourier isometric transformation

ûn+1
k = argmin

ûk ,uk∈X

{
C‖jω{[1 + sgn(ω + ωk)]ûk(ω + ωk)}‖2

2

+‖ f̂ (ω)− K
∑

k=1
ûk(ω) + θ̂(ω)

2 ‖
2

2

} , (5)

where ω is the random frequency and X contains all desirable sets of uk. Replace ω with ω − ωk,
and the non-negative frequency interval integral form is

ûn+1
k = argmin

ûk ,uk∈X

⎧⎨⎩
∫ ∞

0

⎡⎣4C(ω − ωk)
2|ûk(ω)|2 + 2

∣∣∣∣∣ f̂ (ω)−
K

∑
k=1

ûk(ω) +
θ̂(ω)

2

∣∣∣∣∣
2
⎤⎦dω

⎫⎬⎭. (6)

Thus, the solution to the quadratic optimization problem is

ûn+1
k (ω) =

f̂ (ω)− K
∑

k=1
ûk(ω) + θ̂(ω)

2

1 + 2C(ω − ωk)
2 . (7)

According to the same process, the method for updating the center frequency is solved via

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (8)

Among them, ûn+1
k (ω) is equivalent to the Wiener filter of the current residual quantity and

f̂ (ω) − K
∑

k=1
ûk(ω); ωn+1

k is the barycenter of the power spectrum of the current modal function.

When an inverse Fourier transform is applied, we end up with ûk(ω), where its real-part is {uk(t)}.

2.1.3. VMD Algorithm Flow

• Step 1: Initialize parameters
{

u1
k
}

,
{

ω1
k
}

, θ̂1 and n. Set the number of iterations to be n to 1.
• Step 2: Update uk and ωk according to Equations (7) and (8).
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• Step 3: Update θ via

θ̂n+1(ω) ← θ̂n(ω) + τ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

]
. (9)

• Step 4: If the discrimination precision e > 0 and
K
∑

k=1

‖ûn+1
k −ûn

k ‖
2
2

‖ûn
k ‖2

2
< e are satisfied, the iteration ends

and Step 2 is returned.
• Step 5: Obtain the corresponding modal subsequences based on the given mode number.

2.1.4. Determine VMD Parameters

(1) Determine the number of modes

VMD needs to determine the number of K modalities before decomposing the signal. Study [29]
found that if the K value is too small, multiple components of the signal in one modality may appear
at the same time, or a component cannot be estimated. Conversely, the same component appears in
multiple mode, and the modal center frequency obtained iteratively will overlap.

Considering these problems, this paper uses a simple and effective modal fluctuation method to
determine the number of K modes. The algorithm flow is as follows [30]:

• Step 1: Estimate the initial value of the modal number k through the spectrum diagram of
the signal;

• Step 2: The modal number is k, whether the modal center frequencies overlap;
• Step 3: If the center frequency overlaps, reduce the number of modalities for VMD decomposition

until no center frequency overlap occurs, and output is K;
• Step 4: If there is no overlap in the center frequency, increase the number of modalities for VMD

decomposition, until the center frequency overlaps and output is K − 1.

(2) Penalty factor

The introduction of the penalty factor changes the constraint variational problem into
a non-binding variational problem. In the operation of the VMD program, only the modal bandwidth
and convergence speed (after decomposition) are affected. To avoid modal aliasing and guaranteeing
a certain convergence speed, the standard VMD has a strong adaptability with a penalty factor of 2000.
In this work, the penalty factor adopts a default value of 2000 during the VMD decomposition [31].

2.2. Deep Belief Network (DBN)

The deep belief network (DBN) is an in-depth network efficient learning algorithm proposed by
Hinton et al.; it processes high-dimensional and large-scale data problems [32] such as image feature
extraction and collaborative filtering. DBN essentially consists of multiple Restricted Boltzmann
Machine (RBM) networks and a supervised Back Propagation (BP) Network. The lower layer represents
the details of the original data. The higher layer represents the data attribute categories or the
characteristics, from a low-level to high-level layer-by-layer abstraction; it has the characteristics of
gradually tapping deep data features. The specific structure is shown in Figure 1.
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Figure 1. Deep belief network structure. RBM: Restricted Boltzmann Machine; BP: Back-Projection.

The DBN training process includes two stages: forward stack RBM pre-training and reverse
BP fine-tuning. The pre-training phase initializes the parameters of the entire DBN model.
The unsupervised learning of forward stacking is used to train each layer of RBM. The output of the
previous RBM hidden layer could be used as the input of the next RBM visible layer. Since the RBM
network can only ensure that the feature mapping in each layer of the DBN model is optimal, it cannot
guarantee that the feature mapping can be optimized in the entire DBN model. Therefore, we need to
enter the fine-tuning phase to optimize the parameters of the entire network. During the fine-tuning
phase, supervised learning methods are used to further optimize and adjust the relevant parameters of
the cyberspace. The errors resulting from the actual output and standard annotation information are
propagated backward layer by layer, and the entire DBN weights and offsets are fine-tuned from the
top to bottom.

2.2.1. Forward RBM Pre-Training

The Boltzmann machine (BM) is a probabilistic modeling method based on an energy function.
It has a strong unsupervised learning ability. In theory, it can learn arbitrarily complex rules and apply
the rules to the data. Inter-unit connections of the inner- and inter-layer are complex, so there are also
disadvantages such as a long training time, a large number of calculations, and difficulty in obtaining
the probability distribution [33].

RBM is an improvement over BM. It is a two-layer recursive neural network. Random binary input
and random binary output are connected via symmetrical weights, as shown in Figure 2. The two-layer
system consists of n dominant neurons (corresponding to the visible variable) and m recessive neurons
(corresponding to the hidden variable h), where the v and h elements are binary variables whose state
is 0 or 1. There is a weight value connection between the cell layer and the hidden cell layer, but there
is no connection between the cells in the layer.

RBM is an energy-based model. For a given set of states (v, h), the joint configuration energy
function [34] of the visible and hidden units is

E(v, h|θ) = −
n

∑
i=1

m

∑
j=1

wijhjvi −
m

∑
j=1

cjhj −
n

∑
i=1

bivi. (10)
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where θ = (ω, b, c) is the parameter of the RBM model; vi, bi are the respective states and offsets of the
i-th visible unit; hj, cj are the respective states and offsets of the j-th hidden unit; ωij is the i-th visible
unit and the connection weight between the j-th hidden units. The structure of the RBM model is very
special. There are no connections within the layers and all the layers are fully connected. When the
activation state of each visible layer unit is given, the activation states of the neurons in the hidden
layer are independent of each other, and σ(x) = 1

1+exp(−x) is a sigmoid activation function. Therefore,
the activation probability of the j-th neuron in the hidden layer is

p(hj = 1
∣∣v, θ) = σ(bj + ∑

i
viwij) (11)

 

…

…

Figure 2. RBM structure diagram (V stands for the display element and h stands for the hidden element).

Similarly, when the state h of the hidden unit is given, the active states vi of the visible units are
also mutually independent, and the activation probability of the i-th visible unit is

p(vi = 1|h, θ) = σ(ci + ∑
j

hjwij) (12)

RBM is a stable network structure. By maximizing the log likelihood function L(θ) of the RBM on
the input training set to obtain the model parameter θ, the training data set can be fitted. The hidden
layer can subsequently be used as the characteristics of the visible layer data.

θ̂ = argmax
θ

L(θ) = argmax
θ

N

∑
t=1

lg P(v(t)
∣∣∣h, θ) (13)

To quickly train a log likelihood gradient of an RBM, the data distribution of Gibbs sampling [35]
can be used as the RBM definition expectation, and then the weight and offset parameter update
criteria can be obtained: ⎧⎪⎨⎪⎩

wk+1
ij = wk

ij + ε(< vihj >data − < vihj >recon)

ak+1
i = ak

i + ε(< vi >data − < vi >recon)

bk+1
j = bk

j + ε(< hj >data − < hj >recon)

(14)

where ε is the learning rate, taking any value in the interval [0,1]; the data are the expectation of
the distribution of the original observation data; recon is the desired distribution defined by the
RBM model.
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2.2.2. Reverse Back-Projection (BP) Trimming Phase

After pre-training, the DBN network is fine-tuned. This phase is achieved via reverse supervised
learning. The BP network is set to be the last layer of the DBN, the output of the last layer of RBM is
taken as the input of the BP, and supervised training is performed from top to bottom to optimize the
parameters generated in the pre-training stage to optimize the prediction ability of the DBN. Unlike
an unsupervised DBN training process that considers one RBM at a time, the reverse-trimmed DBN
training process considers all DBN layers at the same time and uses the model output and target tag
data to calculate training errors; it also updates DBN classifier model parameters to minimize training
errors. In the process of backward BP propagation, the sensitivity of each layer needs to be calculated.
The sensitivity calculation is described in [36].

2.3. Auto-Regressive and Moving Average Model (ARMA)

The auto-regressive moving average model is an important method for studying time series.
It uses an auto-regressive model (referred to as the AR model) and a moving average model (referred to
as the MA model) as a basis for “mixing”. It uses modern statistics and information-processing
techniques to investigate time series law, which is a group of powerful tools for solving practical
problems. Time series laws have been widely used in many fields such as finance, economy,
meteorology, hydrology, and signal processing. Based on the historical data of the sequence, this
reveals the structure and regularity of the dynamic data, and quantitatively understands the linear
correlation between observable data. Time laws use mathematical statistics to process and predict
its future value. The ARMA model is used as a predictive model and its basic principles are as
follows [37–39]:

Let X(t) = {Xt, t = 0,±1, · · ·} be a 0-mean stationary random sequence and satisfy for any t

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · ·+ θqεt−q, (15)

where p, q is the ARMA model order; ε = {εt, t = 0,±1, · · ·} is the white noise sequence with variance
σ2; φ, θ is a non-zero undetermined coefficient; and {Xt} is the ARMA (p, q) process with mean u [40].

2.3.1. Model Ordering

The ARMA model is the system’s memory of its past self-state and noise of entering the system.
Determining the order of the model and the value of the unknown parameter according to a set of
observation data is the model order. Firstly, through the correlation analysis, the autocorrelation
function (ACF) and partial autocorrelation function (PACF) of the sample are calculated, then the order
of the model is preliminarily judged by the trailing nature or censored nature of the ACF and PACF,
as shown in Table 1.

Table 1. Sequence characteristics table of ARMA (p, q) model. ARMA: Auto-Regressive Moving
Average; ACF: autocorrelation function; PACF: partial autocorrelation function; AR: Auto-regressive;
MA: Moving Average.

Model Type AR(p) MA(q) ARMA(p, q)

ACF trailing censored trailing
PACF censored trailing trailing

It can be seen that the PACF of AR(p) is censored at point p, while the ACF of MA(q) is censored
at point q. The p can also be determined by observing the oscillation period of the PACF. In this
way, the order of AR(p) or MA(q) can be preliminary determined while the model is being identified.
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The Akaike Information Criterion (AIC) [41] is used as the ARMA model ordering criterion. The AIC
function is:

AIC(p, q) = min
0≤p,q≤L

(p, q)

= min
0≤p,q≤L

{
ln σ̂2 + 2(p+q)

N

} . (16)

Among them, σ̂2 is the estimation of the variance of the noise term, N is the known observation
data sample size, and L is the highest order given in advance. The use of the AIC criterion to determine
the order refers to the points p and q that seek to minimize the statistic AIC (p, q) within a certain
range of p, q, which is used as an estimate of (p, q) [42]. Theoretically, the larger the L, the higher the
prediction accuracy. However, considering the calculation time, and the increase in L, the prediction
accuracy is not significantly improved. In general, the value is N/10, ln N, or

√
N.

From Equation (16), when the model parameter N is gradually increased, the fitting error is
improved significantly and the AIC (p, q) value will show a downward trend. As the model order
increases, the fitting residual improves a little. The AIC value also increases gradually; when the AIC
(p, q) obtains the minimum, the corresponding p, q is the ideal order of the model.

2.3.2. Parameter Estimation

There are many methods for estimating the parameters of the ARMA model. The Least Squares
Estimation method is used in this work. See Reference [43] for the specific parameters. After each
parameter is calculated, it is substituted into ARMA (p, q) to forecast each reconstructed component to
obtain the predicted value X̂ and the fitted value ĉk of the modeling data. The residual γ = ck − ĉk
between the measured data and the fitted value of the model data is calculated. Then, γ is used to
describe the modeling data and to obtain the residual forecast γ̂. After that, the revised forecast value is

X̃t = γ̂ + X̂t (17)

In the formula, γ is the residual value of the observed value and the forecasted value;
ck(k = 1, 2, · · · ) is the observation value of the modeling data; X̃t is the prediction value after the
prediction residual correction; and X̂t and γ̂ are the ARMA model prediction values and their
corresponding residual values, respectively.

2.4. Combination Forecasting Model Based on VMD-ARMA-DBN

Considering the nonlinear, non-stationary, and periodic characteristics of PV output data, and
considering that the time series ARMA (p, q) is a linear model, the prediction effect on non-stationary
data is not good; however, the better-trained neural network has higher accuracy for non-stationary
data prediction. Therefore, in this work, PV prediction based on the VMD-ARMA-DBN model is used
to decompose the PV output time series into multiple IMFs with different frequencies. The predictive
models for different IMFs sequences are established (respectively) to reduce the interaction between
varying characteristics. Finally, DBN is used to reconstruct the prediction components to obtain the
predicted value of the original sequence. The specific process is shown in Figure 3.
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Figure 3. Combination Forecasting Model Based on VMD-ARMA-DBN. PV: photovoltaic; IMF: Intrinsic
Mode Function; VMD: Variational Mode Decomposition; DBN: Deep Belief Network.

2.5. Data Model Accuracy Evaluation Index

To evaluate the predictive performance of the prediction model, the normalized mean absolute
error eNMAE, normalized mean-square-error eNRMSE, and Theil coefficient (TIC) are used as the
performance evaluation indicators of the prediction model.

eNMAE =
1
Pr

1
n

n

∑
i=1

|ŷi − yi| × 100%, (18)

eNRMSE =
1
Pr

√
1
n

n

∑
i=1

(ŷi − yi)
2 × 100%, (19)

Theil IC =

√
1
n

n
∑

i=1
(yi − ŷi)

2

√
1
n

n
∑

i=1
y2

i +

√
1
n

n
∑

i=1
ŷ2

i

. (20)

where yi is the actual observed value, ŷi is the predicted value, yi is the total average of the observed
values, n is the number of samples, and Pr is the rated installed capacity of the PV power plant. The Hill
unequal coefficient is always between 0 and 1. The smaller the value, the smaller the difference between
the fitted value and the true value, which means the prediction accuracy is higher. When it is equal to
0, it means a 100% fit.
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3. Results

Based on the multi-frequency combination forecasting model, this work selected the recorded data
of a 50 MW PV power station monitoring platform in Yunnan Province in 2016 to conduct an empirical
study of PV output forecasting. Since there are 96 load points in the output sample of the PV power
plant every day, the data entries are numerous and the change is complex. Therefore, this work selected
35,040 output data entries from 1 January 2016 to 30 December 2016 and from 1 January to 23 December
2016 as research samples, which suggests that a total of 34,368 output data entries were used as sample
points for model fitting and the basis for the selection parameters. This model was then used to make
predictions for 768 loads for the period between 24 December 2016 and 30 December 2016.

3.1. Training Sample Construction Based on VMD

3.1.1. Initial Determination of VMD Mode

According to the decomposition principle of VMD in Section 2.1, the number of modalities is
determined by studying the series of PV output samples. Figure 4a shows a sequence diagram of
the PV output. Figure 4b shows the frequency spectrum after the PV output sequence is through the
Fast Fourier Transform (FFT). Because there are many data, the full spectrum diagram is not easy to
observe, while the spectrum diagram is symmetrical. Therefore, when analyzing, half of the spectrum
diagram is to be taken for analysis.

Figure 4. Photovoltaic output sample sequence.

As we can see from Figure 4b, the spectrum of the sample sequence contains three major frequency
band components, and the symmetry of the spectrogram and the initial value of the modal number are
taken as six. When K = 5, K = 6, and K = 7, the load data are separately decomposed via VMD to obtain
an iterative curve of each modal center frequency under different K values, as shown in Figure 5.

Figure 5. Sample center frequency iteration curves in different modes.

From the comparison of Figure 5, it can be found that when K = 7, the ends of the two
iterative curves of the label are very close; in other words, central frequency aliasing appears.
Therefore, the mode number was finally determined to be six.
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3.1.2. Decomposition of Solar Output Power Data

The VMD decomposition method effectively improves modal aliasing and false components
that appear in decomposition when the EMD and EEMD are decomposed. From a mathematical
point-of-view, the phenomenon of mode mixing is that the components of each mode are intercoupling,
which does not satisfy the orthogonality requirement. False components, as the name suggests,
imply that they are mathematically calculated modal components. Modal aliasing leads directly to the
appearance of false components. As demonstrated above, the number of modalities here is K = 6 and
the original load is decomposed. The modal decomposition diagrams and spectrograms are shown in
Figure 6.

Figure 6. VMD decomposition diagram and spectrum diagram. (a) Modal components, (b) Frequency.

As in the spectrogram shown in Figure 6b, the spectral distributions of each modal component
do not appear to be coupled with one another, satisfying the requirement of orthogonality.
Therefore, no modal aliasing phenomenon occurs and the false component due to modal aliasing is
also greatly improved (reduced). According to the spectrum period size of each modal component,
the modes found via VMD decomposition are divided into two categories: the first three cycle short
modal components IMF1, IMF2 and IMF3 are classified as high-frequency data, while the longer
periods IMF4, IMF5 and IMF6 are used as low-frequency data.

3.2. Prediction of VMD Components

3.2.1. Rolling Prediction of High-Frequency Components Based on DBN Model

As described above, the DBN is used to predict high-frequency components. First, the DBN
network is trained. Because the number of hidden layers of the DBN network and the number of
cells in each hidden layer have a great influence on the prediction accuracy and computation time,
this work focuses on the selection for these two parameters. The weight of the DBN model is initialized
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via a normal random distribution. The threshold of the DBN model is initialized at 0, the maximum
number of iterations of the RBM is 100, the learning rate is 0.1, the momentum parameter is 0.9, and
the model parameters are set as in Reference [44,45]. In the training model, the rolling prediction
model with eight inputs and one output is adopted, i.e., the number of input layer nodes are the
data from the first 2 h before the predicted time (eight nodes). The output layer consists of the
predicted time for one node. The enumeration method is used to select the number of hidden units,
layer by layer, to verify the influence of the deep network structure on the prediction effect and time
consumption. First, we determine the optimal number of hidden units in the RBM1 layer and fix them;
then, we add a hidden layer to determine the optimal value of the number of hidden units in the
RBM2 layer. This continues until the prediction accuracy is no longer improved. The output error and
time spent are obtained by changing the number of hidden layers and the number of nodes. Since the
corresponding weight and threshold are automatically initialized during each training, the number
of hidden cells in each layer is set to four to 32 (the interval is four), which is a total of eight levels.
The number of layers of the hidden layer is sequentially set to the RBM1, RBM2, and RBM3 layers.
IMF1 is taken as an illustration example, and the others will not be described again. The specific DBN
parameters are shown in Table 2.

Table 2. Training times and output errors of IMF1 hidden layer nodes. IMF1: Intrinsic Mode Function 1.

Hidden Layer RBM1

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 2.7427 2.1418 1.6717 1.2419 1.0242 1.3237 1.5517 1.8152
Training time/s 13.27 13.36 13.21 13.53 13.47 14.18 19.97 24.41

Hidden Layer RBM2

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 1.5024 1.3024 1.2124 1.9122 2.0038 2.1522 2.0155 2.0014
Training time/s 15.18 15.94 16.47 17.08 21.78 28.15 30.32 37.77

Hidden Layer RBM3

Number of hidden nodes 4 8 12 16 20 24 28 32
Output error/% 4.5174 4.2415 3.7791 2.8172 3.4014 3.1179 3.1563 4.7791
Training time/s 22.47 25.78 30.11 33.91 55.78 80.14 117.35 135.88

Table 2 shows that when the number of neurons in the hidden layer RBM1 is 20, the output error
reaches a minimum of 1.0242%, which takes 13.47 s; the average output error of its two neighboring
neurons is 1.28281. When the number of neurons in the hidden layer RBM2 is 12, the output error
reaches a minimum of 1.21242%, which takes 15.94 s; the output error is smaller than the average
output errors of neurons that are adjacent to the optimal neurons in the RBM1 layer. When the
number of neurons in the hidden layer RBM3 is 16, the output error reaches the minimum value of
2.81824%, which takes 33.91 s; both the output error and the training time of RBM3 are higher than the
average output errors of neurons that are adjacent to the optimal neurons in the RBM2 layer. For the
IMF1 component data set, the DBN prediction model has better effects when it adopts a four-layer
structure of “8-20-12-1” (that is, the numbers of hidden units of RBM1 and RBM2 are 20 and 12,
respectively, which are marked in red in the table). By using this method, the DBN model structure of
the high-frequency components of IMF2 and IMF3 and the number of nodes of each hidden layer are
obtained, as shown in Table 3.

Table 3. Variational Mode Decomposition (VMD) decomposition high-frequency components’ Deep
Belief Network (DBN) structure.

VMD Decomposition High-Frequency IMF1 IMF2 IMF3

DBN structure 8-20-12-1 8-16-12-4-1 8-12-8-1
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Through the analysis above, the IMF1-IMF3 components are predicted using the trained model,
as shown in Figure 7.

Figure 7. Prediction of IMF1-IMF3 component.

Figure 7 shows that the high-frequency components IMF1 and IMF2 have strong volatility,
their prediction errors are larger than other components, the IMF3 components fluctuate less than
the previous ones, and the error is reduced. Overall, the high self-learning and adaptive capabilities
of the DBN model are suitable for predicting high-frequency components with strong volatility and
short periods.

3.2.2. Prediction of Low-Frequency Components Based on ARMA Model

Thus, the low-frequency components are predicted via the ARMA model. First, the sample’s
autocorrelation function (ACF) and partial autocorrelation function (PACF) are obtained to determine
the initial order of the model. This work uses IMF4 as the example to illustrate, and other low-frequency
components are not described again. The ACF and PACF of IMF4, respectively, are shown in Figure 8.

According to the AIC order code determined in Reference [41] and the above figure, both the
autocorrelation and the partial autocorrelation plots of the IMF4 component have tailing characteristics.
Also, the autocorrelation coefficient is not zero when the lag order is 3, and the trailing characteristic
is apparent when the lag order is greater than 3. The partial autocorrelation coefficient is not zero
when the lag order is 6, but the trailing characteristic is obvious after the lag order is greater than 6.
Thus, we can initially determine that p = 6 and q = 3. To make the model more accurate, the values of
p and q can be relaxed. Using the AIC criterion, the minimum value is taken as the optimal model.
The AIC values under the various model orders are shown in Table 4.

Table 4. The Akaike Information Criterion (AIC) values of different order models.

Order ARMA(6, 3) ARMA(6, 4) ARMA(7, 3) ARMA(7, 4) ARMA(8, 3) ARMA(8, 4)

The value of AIC −2.902 −2.869 −2.609 −2.823 −2.807 −2.817

From the above table, the optimal model of IMF4 is ARMA(7, 3). Then, using the above method,
the components IMF5 and IMF6 are ordered. The specific situation is shown in Table 5.
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Table 5. Orders of VMD low-frequency components.

Component IMF4 IMF5 IMF6

Order ARMA(7, 3) ARMA(8, 4) ARMA(6, 4)

Figure 8. The autocorrelation function (ACF) and partial autocorrelation function (PACF) of
IMF4 decomposed.

Through the above analysis, the components IMF4 to IMF6 were predicted using the trained
model, which is shown in Figure 9.

Figure 9. IMF4-IMF6 component prediction.

From Figure 9, we can see that using the ARMA model to predict low-frequency components,
with relatively gentle fluctuations, results in a small error. ARMA has strong nonlinear fluctuation
data learning ability, which is suitable for low-frequency component prediction.

3.2.3. Combination Prediction Based on VMD-ARMA-DBN Model

In this work, DBN is used for the combined reconstruction of the prediction value of each
component (IMF1 to IMF6). Taking each IMF sample data as input, the actual PV output sample value
is used as an output to train the model. Then, the prediction value of each component is taken as
input, and the prediction value of each component, that is, the final load prediction value, is obtained.
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Among them, the DBN model is a five-layer implicit structure “12-24-16-8-1”. The final PV output
forecasting chart is shown in Figure 10.

Figure 10. VMD-ARMA-DBN combination forecast results.

4. Discussions and Comparison

To test the prediction effect of the model proposed in this paper, we compared the results of
the following prediction models: (1) the single prediction models (ARMA, DBN) used in this paper;
(2) the common neural network prediction model, RNN and Gradient Boost Decision Tree (GBDT) in
literature [46,47], used on a representative basis; (3) the combined prediction model, Discrete Wavelet
Transformation (DWT) in literature [48] and traditional EMD and EEMD are used on a representative
basis. The prediction results for each model are shown in Figure 11.

(a) 

(b) 

Figure 11. Cont.
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(c) 

(d) 

(e) 

(f) 

Figure 11. Cont.
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(g) 

Figure 11. Prediction results for multiple models. (a) ARMA model prediction results; (b) DBN
model prediction results; (c) RNN model prediction results; (d) GBDT model prediction results;
(e) EMD-ARMA-DBN model prediction results; (f) EEMD-ARMA-DBN model prediction results;
(g) DWT-RNN-LSTM model prediction results. RNN: Recurrent Neural Network; GBDT: Gradient
Boost Decision Tree; EEMD: Ensemble Empirical Mode Decomposition; DWT: Discrete Wavelet
Transformation; LSTM: Long Short-Term Memory.

From the simulation results shown in Figures 10 and 11, the VMD-ARMA-DBN combined models
have a better tracking and fitting ability for the PV output curve. Compared to the single models,
the combined model prediction accuracy (after using the modal decomposition technique) shows
different degrees of improvement. Figure 12 is a bar graph demonstrating the absolute error of
prediction in each model.

Figure 12. Simulation results of each model: absolute error box plot.

From the perspective of the absolute error distribution of the prediction results, the stability
of the prediction accuracy for the single models is poor, and the error distribution interval is large.
Among them, the absolute error distribution interval of each model is [0, 24.7821], [0.0051, 22.2464],
[0.0082, 22.3289], [0.0363, 22.6686], [0.0005, 8.8306], [0.0018, 8.7955], [0.0008, 10.5322], and [0.0017,
6.6526], respectively, and the prediction error median is 0.1692, 0.2791, 0.2708, 0.4523, 0.5926, 0.3078,
0.0351, and 0.1414, respectively. The absolute error distribution of the VMD-ARMA-DBN model is
more concentrated and the median of the error is the smallest, which is the most ideal of the eight
groups of prediction models. In summary, the VMD-based multi-frequency combined forecasting
model presented in this paper is superior to other models. To compare the prediction effects of each
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model more intuitively, we used quantitative evaluation indicators. Table 6 shows the evaluation
results for each model.

Table 6. Forecast results for each model.

Evaluation Index eNMAE eNRMSE TIC

ARMA 3.74146 7.17435 0.11359
DBN 3.19754 6.43502 0.10139
RNN 3.21145 6.548871 0.10328
GBDT 3.27612 6.434691 0.10812

EMD-ARMA-DBN 2.11062 3.49985 0.05456
EEMD-ARMA-DBN 1.35409 2.67181 0.04171
DWT-RNN-LSTM 1.48241 2.74976 0.04265
VMD-ARMA-DBN 1.03374 2.05776 0.03201

First, it can be concluded from Figure 12 and Table 6 that, compared with the single prediction
models containing ARMA, DBN, RNN, and GBDT, the introduction of the modal decomposition
method has a great influence on the accuracy of the prediction results. The modal decomposition
method is used to effectively decompose the original PV output, and the prediction method is selected
according to the characteristics of different modal vectors, which can make the prediction result
more accurate and stable, and the result can be anticipated. The PV system power output has high
volatility, variability, and randomness; through modal decomposition it can effectively eliminate the
unrelated noise components to make each component easier to predict. In the single prediction models,
the error of the ARMA prediction model is the largest, which is not suitable for effectively tracking the
undecomposed solar PV output; DBN, RNN and GBDT belong to machine learning, and the prediction
error is essentially the same. However, the parameters of the RNN prediction model are more difficult
to choose and more easily fall into the local optimum, and GBDT is easy to over-fit for complex models.
However, combined prediction methods can effectively avoid these problems.

Second, the proposed VMD-ARMA-DBN model prediction results are always better than those of
other combined prediction models (such as EMD, EEMD, and DWT). This is mainly because different
decomposition methods have different ways of controlling the modal number, affecting the size of the
prediction error. The center frequency of the VMD modal decomposition is controllable, which can
effectively avoid modal aliasing compared with other modal decomposition models. The original
sequences are decomposed according to the frequency components, and different prediction models
are used for fitting purposes. According to the prediction results in Table 6, this kind of combined
prediction method significantly improves the prediction accuracy.

Finally, it should be noted that the prediction results of the VMD-ARMA-DBN models are different
under different modal center frequencies K. Specifically, when K is too large, it is easy to cause excessive
frequency decomposition, which increases the degree of complexity of the model prediction; when K is
too small, it will cause modal overlapping, and the single frequency components cannot be effectively
predicted, so only the appropriate K can be used to make an effective prediction. Moreover, this will
be an important problem that must be overcome in the next research stage.

5. Conclusions

The short-term prediction accuracy of the nonlinear PV power time series in this work
proposes a multi-frequency combined prediction model based on VMD mode decomposition.
Specifically, the following was observed:

(1) For the first time, this paper introduces the VMD method into PV power plant output
forecasting, decomposes the unstable PV output sequence, and conducts in-depth research on
the characteristics of VMD. When traditional decomposition methods deal with sequences that
contain both trend and wave terms, accurately extracting the shortcomings of the trend items is
impossible. A combination method based on VMD-ARMA-DBN is proposed, which not only reflects
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the development trend of the size of PV output, but also decomposes the fluctuation series into a set of
less complex and some strong periodical parameters, which greatly reduced the difficulty of prediction.

(2) If the VMD cannot restore the original sequence completely, and cannot determine the number
of decomposition layers automatically, we propose a method to determine the number of VMD
decomposition layers via a spectrum analysis, which can restore the original sequence to a large extent
and ensure the stability of the component. First, according to the spectrum diagram of the sample
data, we determined the number of modal components. If the overlapping phenomenon occurred in
the center frequency iteration curve, the number of decompositions was selected and divided into
high- and low-frequency components according to the characteristics of the different components.
ARMA and DBN were used to simulate and predict high-frequency and low-frequency components.
Then, the predictive value of each component was determined using DBN. Each one had a strong
nonlinear mapping ability, and high self-learning ability and self-adaptive capability. The sample data
of each component was taken as input, and the actual PV sample value was used as an output to
train the model. Then, the predicted value of each component was used as input for the prediction.
Finally, the PV output predicted value was obtained.

(3) To test the prediction effect of the VMD combinatorial model, the normalized absolute mean
error, normalized root-mean-square error, and the Hill inequality coefficient were used to compare the
single prediction models with the combined prediction models. The simulation results show that the
different decomposition methods have been improved to varying degrees in terms of forecast accuracy.
Thus, the VMD-ARMA-DBN model proposed in this work offers better accuracy and stability than the
single prediction methods and the combined prediction models.

In the prediction process, we found that although the VMD improved the phenomenon of modal
aliasing and false components, it was not eliminated. In addition, the DBN’s component–RBM needs
to be further improved. The weight and offset of each layer of RBM are initialized during training.
Therefore, even if the number of hidden layer nodes is compared and selected, the optimal model
cannot be obtained, and the final prediction result will show diversification; that is, the same model
yields different results, and to obtain optimal results, it is necessary to train the model multiple times,
which makes the workload cumbersome. The above deficiencies inevitably increase the errors in the
prediction process of each component and affect the final prediction results.
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Nomenclature

ACF autocorrelation function
AIC Akaike Information Criterion
AR Auto-Regressive Model
ARMA Auto-Regressive Moving Average Model
BM Boltzmann machine
BP Back-Projection
CNN Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network
DWT Discrete Wavelet Transformation
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
FFT Fast Fourier Transform
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GBDT Gradient Boost Decision Tree
IMFs Intrinsic Mode Functions
LMD Local mean decomposition
LSTM Long Short-Term Memory
MA Moving-Average Model
NWP numerical weather prediction
PACF Partial autocorrelation function
PV Photovoltaic
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SVM Support vector machine
VMD Variational Mode Decomposition
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Abstract: Recently, a large number of distributed photovoltaic (PV) power generations have
been connected to the power grid, which resulted in an increased fluctuation of the net load.
Therefore, load forecasting has become more difficult. Considering the characteristics of the net load,
an ultrashort-term forecasting model based on phase space reconstruction and deep neural network
(DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the
net load time series data is performed using the C-C method. Second, the reconstructed data is fitted
by the DNN to obtain the predicted value of the net load. The performance of this model is verified
using real data. The accuracy is high in forecasting the net load under high PV penetration rate and
different weather conditions.

Keywords: net load forecasting; phase space reconstruction; deep neural network

1. Introduction

In recent years, an increasing number of photovoltaic (PV) power generations have been
connected to the distribution network. The use of new energy brings huge benefits to human beings.
However, it also has negative impacts on the power grid while improving the environment. The PV
power is greatly influenced by weather conditions and fluctuates with the change in irradiance.
To ensure the quality of the power supply and safe operation of the power system, it is necessary to
maintain equal amounts of power generation and power consumption in the power system. The power
load forecasting is an indispensable mean of maintaining this dynamic balance. In addition, power
load forecasting is also of great significance for the planning and scheduling of power systems and the
planning of power maintenance. However, the fluctuations in PV power can cause fluctuations in the
load when many PV systems are connected. Therefore, load forecasting will become more difficult.

Generally, load forecasting can be divided into long-term forecasting, medium-term forecasting,
short-term forecasting, and ultrashort-term forecasting [1]. Recently, many systematic and fruitful
studies on traditional load forecasting have been conducted. The load forecasting methods mainly
include the similar day prediction method [2,3], time series prediction method [4,5], expert system [6,7],
and regression analysis method [8,9]. Artificial intelligence and machine learning algorithm are
types of prediction methods that have rapidly developed in recent years. Support vector regression
(SVR) [10], relevance vector regression (RVR) [11], artificial neural network (ANN) [12], deep neural
network (DNN) [13], and their improved hybrid algorithms [14] have been applied in the field of
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load forecasting. In Moon et al. [15], the random forest and multilayer perceptron are combined to
predict the daily electrical load. In Nazar et al. [16], the wavelet and Kalman machines, Kohonen
self-organizing map (SOM), multi-layer perceptron artificial neural network (MLP-ANN) and adaptive
neuro-fuzzy inference system (ANFIS) are used to establish a hybrid three-stage forecasting model.
In Zhang et al. [17], a short-term power load forecasting method with wavelet neural network (WNN)
and an adaptive mutation bat optimization algorithm (AMBA) are proposed. Liang et al. [18] propose a
hybrid model that combines the empirical mode decomposition (EMD), minimal redundancy maximal
relevance (mRMR), general regression neural network (GRNN), and fruit fly optimization algorithm
(FOA). In Dai et al. [19], a load forecasting model is proposed based on the complete ensemble
empirical mode decomposition (EEMD) with adaptive noise and support vector machine (SVM),
which is optimized by the modified grey wolf optimization (MGWO) algorithm.

Since traditional load data are typically in hours as the smallest unit, short-term and
ultrashort-term forecasts are often not strictly distinguished. With the large-scale access of distributed
PV, the short-term load forecasting usually in hours cannot satisfy the requirements of the real-time
safety analysis. For the real-time safety analysis of power systems and the reliable operation of
economic dispatch, a more detailed ultrashort-term prediction is required. Considering the volatility of
the distributed PV power generation and the real-time requirements of the ultrashort-term prediction,
the PV power should also be considered a load and merged with the traditional load to form a net
load [20–22]. Because the net load is a set of nonlinear time series with large volatility, in this paper,
the phase space reconstruction of net load data is first performed to project the data into the moving
point with certain regularity of the trajectory in the phase space. Then, the excellent nonlinear fitting
ability of the deep neural network is used to fit the moving point trajectory to obtain the final prediction
value. Finally, the actually measured load data is applied to verify the prediction effectiveness and
prediction effect of the model under different weather conditions. The phase space is a tool to feature
a dynamic system that is reconstructed from a univariate or multivariate time series [23], which is
widely used in forecasting models. The DNN is the development of the traditional ANN and suitable
for net load forecasting because the nonlinear fitting ability is strengthened [24]. The high accuracy in
forecasting the net load under high PV penetration rate and different weather conditions is verified
using real data. The contribution of this paper can be summarized as follows:

• The bus load prediction model is established considering distributed PV power supply.
The prediction results are necessary guidance for the power grid dispatching, which is conducive
to the improvement of PV consumption.

• The phase space reconstruction is used to process bus load data, and one-dimensional time series
data are inversely constructed into the phase space structure of the original system, which can
better describe the dynamic characteristics and adapt to the strong fluctuation of the bus load.

• Levenberg-Marquardt back propagation (LMBP) algorithm is used to train DNN, which
accelerates the training speed. Compared with the single hidden layer neural network, DNN
can fit the historical data better and significantly improve the accuracy of ultrashort-term
load forecasting.

2. Fundamental of Phase Space Reconstruction and Deep Neural Network

2.1. Phase Space Reconstruction

Phase space reconstruction is a method proposed by Takens to analyze the time series. The basic
idea of the phase space reconstruction is to regard the time series as a component produced by a certain
nonlinear dynamic system. The equivalent high-dimensional phase space of the power system can
be reconstructed by the variation law of the component. Among them, the key to reconstruction is to
determine the optimal embedding dimension mopt and delay topt.

In this paper, the optimal embedding dimension mopt and delay topt are simultaneously obtained
by the C-C method. If a set of time series is x = {x1, x2 · · · xN}, the embedding dimension is m,
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and the time delay is t, then the set of points in the reconstructed phase space can be expressed by
Formula (1), where M = N − (m − 1)t [25].⎡⎢⎢⎢⎢⎣

X1

X2
...

XM

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x1 x1+t · · · x1+(m−1)t
x2 x2+t · · · x2+(m−1)t
...

... · · · ...
xM xM+t · · · xN

⎤⎥⎥⎥⎥⎦. (1)

At this time, the correlation integral is Formula (2), where θ(x) =

{
0 x < 0
1 x ≥ 0

. According to

the statistical conclusion of BDS, the range of M and rk can be obtained when N > 3000; m ∈ {2, 3, 4, 5},
and rk = k × 0.5σ which is a real number representing a given range of distances. σ is the standard
deviation of time series, and k ∈ {1, 2, 3, 4}. Correlation integral indicates the probability that the
distance between any two points in the phase space is less than rk.

C(m, N, rk, t) =
2

M(M − 1) ∑
1≤i<j≤M

θ
(
rk − ‖Xi − Xj‖

)
. (2)

We define the test statistic S and ΔS, and use the block averaging strategy, as shown in Formula (3).⎧⎨⎩ S(m, N, rk, t) = 1
t

M
∑

i = 1
Ci

(
m, N

t , rk, t
)
− Cm

i

(
m, N

t , rk, t
)

ΔS(m, N, t) = max[S(m, N, rk, t)]− min[S(m, N, rk, t)]
. (3)

Formula (4) is the average of S and ΔS. Rounding the t value of the first zero of S or the first
minimum of ΔS is the optimal delay topt.⎧⎪⎪⎨⎪⎪⎩

S(t) = 1
4×4

5
∑

m = 2

4
∑

k = 1
S(m, N, rk, t)

ΔS(t) = 1
4

5
∑

m = 2
ΔS(m, N, t)

. (4)

Formula (5) is the test statistic. The global minimum of Scor(t) is the optimal embedded window tω.

Scor(t) = ΔS(t) +
∣∣S(t)∣∣. (5)

Then:
tω = (mopt − 1)topt. (6)

Therefore, the optimal delay topt determined by Equation (4) and the optimal embedded window
tω determined by Equation (5) can be substituted into Formula (6) and rounded to obtain the optimal
embedding dimension mopt.

2.2. Deep Neural Network

A neural network generally consists of three layers: An input layer, a hidden layer, and an output
layer. As shown in Figure 1, it is a simple neural network with three inputs and two outputs and four
neurons in a single hidden layer. The neurons between layers are connected by weight ω. The DNN
contains multiple hidden layers, which has a significant improvement in the nonlinear fitting ability
of the DNN compared with the single hidden layer. However, too many hidden layers are likely to
cause over-fitting. The learning process of the network is the process of adjusting and determining the
connection weights ω of each neuron through training samples.
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Figure 1. Single-hidden-layer neural network.

In this paper, the LMBP algorithm is used to train DNN. Compared with the traditional back
propagation (BP) algorithm, the LMBP algorithm has faster convergence speed and higher convergence
reliability. It is more suitable for training the DNN and can also satisfy the requirements of real-time
ultrashort-term prediction. Unlike the traditional BP algorithm, which uses a gradient descent,
the LMBP algorithm is based on the Gauss-Newton method of the least squares solution and takes the
square of error v as the objective function.

E(ω) = vT(ω)v(ω). (7)

The second-order Taylor expansion and derivation of the objective function of Equations (2)–(7)
can obtain the change of weight ω as follows:

Δω = −
[
∇2E(ω)

]−1∇E(ω). (8)

where: {
∇E(ω) = 2JT(ω)v(ω)

∇2E(ω) = 2JT(ω)J(ω) + 2∇2vT(ω)v(ω)
. (9)

J(ω) is the Jacobian matrix of v(ω). If v(ω) consists of a elements, J(ω) can be written as follows:

J(ω) =

⎡⎢⎢⎢⎢⎢⎣
∂v1
∂ω1

∂v1
∂ω2

· · · ∂v1
∂ωa

∂v2
∂ω1

∂v2
∂ω2

· · · ∂v2
∂ωa

...
...

. . .
...

∂va
∂ω1

∂va
∂ω2

· · · ∂va
∂ωa

⎤⎥⎥⎥⎥⎥⎦. (10)

Since 2∇2vT(ω)v(ω) is usually negligible, Formula (8) can be rewritten as follows:

Δω = −
[
JT(ω)J(ω)

]−1
JT(ω)v(ω). (11)

Considering that JT(ω)J(ω) may be irreversible, Formula (11) is modified by adding the correction
coefficient μ, where I is the unit matrix.

Δω = −
[
JT(ω)J(ω) + μI

]−1
JT(ω)v(ω). (12)
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Similar to the BP algorithm, the modification of weight ω(k+1) in the kth iteration is shown in
Formula (13). Δω(k) can be obtained by Formula (12). When E

(
ω(k+1)

)
< ε, the algorithm has

converged, where ε is the given error limit.

ω(k+1) = ω(k) + Δω(k). (13)

The initial value of μ generally takes a small positive number such as 0.001. If the objective
function E

(
ω(k)

)
becomes lower in the kth iteration, μ(k) is divided by a factor θ as μ(k+1) of the next

iteration. If the objective function E
(

ω(k)
)

becomes higher in the kth iteration, the iteration will be

restarted and multiply μ(k) by the factor xxx as θ of this iteration. θ generally takes a number greater
than 1, such as 4.

3. Ultrashort-Term Load Forecasting Model Based on Phase Space Reconstruction and Deep
Neural Network

The traditional load fluctuation is mainly caused by user fluctuations in power usage.
Although the electricity consumption of the user is uncertain, there are certain rules in general,
and the fluctuation range is not large. For ultrashort-term prediction, linear extrapolation, time series
prediction, and other methods can usually achieve the required accuracy. With the massive access
of distributed energy sources such as PV power plants, the net load can be expressed by Formula
(14). pt is the actual net load, p′ is the user’s electricity load, and pPV

t is the opposite number of PV
power generation.

pt = p′t + pPV
t . (14)

Since the amount of PV power generation is as uncertain as the power load and different from the
traditional power supply with a known power output, the PV power generation can be considered
a load, which reduces the dispatching burden of the system. As a result, the uncertainty of load
increases, and the range of fluctuation enlarges, even the situation of power reversal will occur at noon
on sunny days. If the traditional forecasting method is also used, it will produce larger errors and
cannot accurately predict the load.

Since the load is a non-linear time series with large fluctuations after the distributed energy access,
it is difficult to directly predict. Therefore, the complex short-term prediction model may not satisfy
the real-time requirements. In this paper, the phase space reconstruction is used to project the load
time series into a time-varying and short-term regularity point in the high-dimensional phase space.
Then, the non-linear fitting ability and fast convergence speed of LMBP DNN are used to fit and
predict the locus of the points in the phase space to realize the ultrashort-term prediction of the load
considering the distributed energy.

3.1. Modelling Steps of Prediction Model

For a series of net load time series p = {p1, p2 · · · pN} considering the PV power generation,
the modelling, and forecasting steps of ultrashort-term forecasting model based on phase space
reconstruction and DNN are as follows:

• Step 1: The load time series is linearly normalized to facilitate the training of DNN. The maximum
and minimum values of the data are saved for the reverse normalization of the load forecasting
value to restore the actual value.

• Step 2: The C-C method is used to process the load time series, and the optimal embedded
dimension mopt and optimal delay topt of the time series are obtained.
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• Step 3: The load time series are reconstructed according to the embedding dimension m and delay
t obtained in Step 2. The phase space matrix of the reconstructed load time series is as follows.
In Formula (15), M = N − (m − 1)t.⎡⎢⎢⎢⎢⎣

p1
p2
...

pM

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
p1 p1+t · · · p1+(m−1)t
p2 p2+t · · · p2+(m−1)t
...

... · · · ...
pM pM+t · · · pN

⎤⎥⎥⎥⎥⎦. (15)

• Step 4: The p neural network is constructed, and the phase space matrix of load time series
reconstructed in Step 3 is used as the training set to train the DNN. The trained DNN is used to
predict the load value immediately after training.

• Step 5: Using the maximum and minimum values stored in Step 1, the load prediction values
returned by the DNN are inverse-normalized to obtain the actual load prediction values.

• The model workflow chart is shown in Figure 2.

Figure 2. Forecasting model flow chart.

3.2. Determination of the Structure of Deep Neural Networks

The determination of the structure of the DNN is a link of the neural network hyper-parameter
adjustment. An unreasonable structure can make the prediction results of the DNN seriously deviate.
If the training time is too long, the work is half the effort. The specific method of determination is
as follows:

• Input layer

If the DNN is directly trained using the original load data, the determination of the number of
neurons in the input layer can be very difficult and requires a lot of debugging to obtain the optimal
value. Moreover, when the training set data changes, previous optimal values may no longer be
applicable, and the structure of the input layer must be re-debugged. In this model, the input data of
the DNN is the phase space reconstructed matrix. Therefore, the number of neurons in the input layer
is directly determined by the embedding dimension m obtained by the C-C method without artificial
designation or after debugging to select the optimal value.

• Hidden layer

The number of hidden layers can be heuristically determined. When there are few hidden
layers, the model will have an under-fitting and cause a large deviation in the predicted value.
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Conversely, too many hidden layers can cause a model overfitting. The number of hidden layers
can be gradually increased during the trial until the predicted value shows a significant over-fitting.
Then, we gradually reduce the number of hidden layers so that the predicted value and true value of
the model are as similar as possible on the verification set to determine the optimal number of hidden
layers. The number of neurons in each hidden layer can be taken as 75% of the number of neurons in
the upper layer but generally more than the number of neurons in the output layer. The activation
function of the hidden layer neurons usually uses the tanh function and rectified linear unit (ReLU)
function. The tanh function is used in this paper.

• Output Layer

The prediction model in this paper adopts the one-step prediction. Only the load value at the next
moment is predicted at a given time. Therefore, after the load time series is projected to the moving
point in the phase space, the model must output the position vector of the point in the phase space
of the next time. In fact, if the input of the model is pi(1 ≤ i ≤ M) in the phase space reconstruction
matrix of Formula (15), only pi+1+(m−1)t is unknown in position vector pi+1 at the next moment.
Therefore, the output layer must only output the predicted value of load p̂i+1+(m−1)t. If i + 1 > M,
the phase space reconstruction matrix of Formula (15) must be extended downward, and pi+1 is added
as a new line. The expression of pi+1 is shown in Formula (16), where pi+1+(m−1)t is the true value of
the newly measured load.

pi+1 =
[

pi+1 pi+1+t · · · pi+1+(m−1)t

]
(16)

pi+1 is used as the input of the model to obtain the predicted value of pi+2+(m−1)t; then, the matrix
is augmented, and the predicted value of pi+3+(m−1)t is obtained, and the process continues until
the end of the prediction. The activation function of the output layer is a linear function. The DNN
structure is shown in Figure 3.

pi pi+t pi+(m-1)t

pi+1+(m-1)t

}

Figure 3. Deep neural network structure.

DNN can be widely used in different areas. In addition to load forecasting, DNN can also
solve the problems including image processing, speech recognition, and fault diagnosis. The training
method and network structure are basically the same. The difference is the training data. For the
prediction of time series load data, the output layer is the actual load data. For the image processing
and fault diagnosis, the output layer is the data label. The structure of DNN is basically the same as
the traditional ANN, but the training method is improved which make it have better performance.
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4. Analysis of Prediction Results

To verify the validity of the model, the proposed model was validated in MATLAB R2018a. In this
paper, the net load data of the upper bus of a city’s PV substation in the first 15 days of May 2017 were
used. The sampling interval of the net load data is 5 min, and the installed capacity of the distributed
PV power station is approximately 50 MW. The data from 1–11 May were selected as the training set
to model the prediction model, and the parameters of the model were adjusted by cross-validation.
The data from 12–15 May were selected as the samples of the prediction test, where 12 May was sunny,
and 13–15 May were cloudy.

4.1. Result of the Phase Space Reconstruction by the C-C Method

The net load data from 1–11 May were processed by the C-C method. The corresponding statistics
of ΔS(t) and Scor(t) are shown in Figure 4. The first extremum point of ΔS(t) was t = 7. Scor(t) had
no obvious minimum point, and the optimal embedded window tω was not obtained. According to
the BDS statistics, when N > 3000, m ∈ {2, 3, 4, 5}, so the maximum value of m could only take
5. According to Formula (6), the final optimal embedding dimension mopt = 5 and optimal delay
topt = 7 were obtained.

(a) 

(b) 

Figure 4. Curves of ΔS(t) and Scor(t). (a) Curve of statistic ΔS(t); (b) Curve of statistic Scor(t).

4.2. Prediction Results of the Deep Neural Network

Since the embedding dimension is m = 5 as determined by the C-C method, there were five
input neurons in the DNN. The cross-validation shows that when the number of layers in the hidden
layer was 5, the predicted value showed a significant over-fitting. Therefore, the number of layers of
the hidden layer was taken as 4, and the neurons of each hidden layer were taken as 5, 4, 3, and 2.
The DNN used the single-step prediction and only predicted the next 5 min load value at a time.
The predicted result is shown in Figure 5. The black solid line is the actual net load, the red solid line is
the ultrashort-term prediction value based on the phase space reconstruction and DNN, and the blue
dotted line is the ultrashort-term prediction value based on the traditional BP neural network.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Load forecasting results based on different models: (a) 12 May; (b) 13 May; (c) 14 May;
(d) 15 May.

In Figure 5, at approximately 12:00 noon on a clear day (12th), a negative power was present in
the payload due to an increase in the amount of PV power generation. The prediction results based on
the phase space reconstruction and DNN were closer to the actual net load value, which was obviously
better than the prediction results using the traditional BP neural network.

On cloudy days (13–15 May), when the net load sharply fluctuated due to the fluctuation of the PV
output, although the actual net load value was stable, the predicted value of the traditional BP neural
network still had large fluctuations, which resulted in a large deviation. However, the prediction
results based on the phase space and DNN did not strongly deviate and basically conformed to the
actual trend of the net load.

To accurately evaluate the accuracy of the model prediction and the accuracy of prediction,
the mean absolute percentage error (MAPE) and root mean square error (RMSE) were used as
evaluation indicators. In Formulas (17) and (18), n is the number of predicted samples, pi is the
actual value of the net load at time i, and p̂i is the predicted value of the net load at time i.

MAPE =
1
n

n

∑
i = 1

∣∣∣∣ pi − p̂i
pi

∣∣∣∣× 100% (17)

RMSE =

√
1
n

n

∑
i = 1

(pi − p̂i)
2 (18)

The prediction accuracy is shown in Table 1. Compared with the prediction model based on the
traditional BP neural network, the forecasting scheme proposed in this paper improved the accuracy
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of net load forecasting under different weather conditions. On a cloudy day (15 May), the power of
PV power generation was very small. The accuracy of the prediction model based on the phase space
reconstruction and the deep neural network was basically identical to that based on the traditional
BP neural network. However, on a sunny day (12 May), the PV power was relatively high, and the
difference of MAPE between the two models was nearly 10%. The predictive models based on the
phase space reconstruction and DNN still had higher prediction accuracy even in the case of large
distributed PV power access and large power fluctuation.

Table 1. Prediction accuracy of different models.

Date
MAPE (%) RMSE

C-C DNN BPNN C-C DNN BPNN

12 May (Sunny) 8.8838 18.3725 0.8973 1.3327
13 May (Cloudy) 9.9978 17.6827 1.3970 1.8242
14 May (Cloudy) 15.4156 17.6415 1.1193 1.3648
15 May (Sunny) 4.0648 4.6388 1.0972 1.1916

5. Conclusions

• A large amount of access to the distributed PV power generation results in the increasing
fluctuation of the net load power, which challenges the ultrashort-term load forecasting.
Considering this phenomenon and the characteristics of ultrashort-term load forecasting, this
paper presents a model of ultrashort-term load forecasting based on the phase space reconstruction
and DNN. Based on the phase space reconstruction, the time series is projected into a moving
point in the phase space, and the DNN is subsequently used to fit the trajectory to realize the
load forecasting.

• The prediction of the actual load data and a comparison experiment with the BP neural network
prediction model have verified that the proposed model has higher prediction accuracy even in
the case of large distributed PV power fluctuations and different weather conditions. In particular,
when there is a large amount of PV power access and high penetration, there is also an ideal
predictive performance.
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Abstract: International policies mainly that are focused on energy-dependence reduction and climate
change objectives have been widely proposed by most developed countries over the last years.
These actions aim to promote the integration of renewables and the reduction of emissions in all
sectors. Among the different sectors, agriculture emerges as a remarkable opportunity to integrate
these proposals. Indeed, this sector accounts for 10% of the total greenhouse gas (GHG) emissions in
the EU, representing 1.5% of gross domestic product (GDP) in 2016. Within the agriculture sector,
current solutions for groundwater pumping purposes are mainly based on diesel technologies,
leading to a remarkable fossil fuel dependence and emissions that must be reduced to fulfill both
energy and environmental requirements. Relevant actions must be proposed that are focused on
sustainable strategies and initiatives. Under this scenario, the integration of photovoltaic (PV) power
plants into groundwater pumping installations has recently been considered as a suitable solution.
However, this approach requires a more extended analysis, including different risks and impacts
related to sustainability from the economic and energy points of view, and by considering other
relevant aspects such as environmental consequences. In addition, PV solar power systems connected
to the grid for groundwater pumping purposes provide a relevant opportunity to optimize the
power supplied by these installations in terms of self-consumption and net-metering advantages.
Actually, the excess PV power might be injected to the grid, with potential profits and benefits for
the agriculture sector. Under this scenario, the present paper gives a multidimensional analysis
of PV solar power systems connected to the grid for groundwater pumping solutions, including
net-metering conditions and benefit estimations that are focused on a Spanish case study. Extensive
results based on a real aquifer (Aquifer 23) located in Castilla La Mancha (Spain) are included and
discussed in detail.

Keywords: economic–energy–environment (3E) analysis; solar pumping; renewable energy source
(RES) integration; net-metering; sustainable rural development

1. Introduction

Presently, the sustainability of the globalized society is at potential risk because of climate
change, involving an important level of atmospheric pollution. These environmental effects have been
evidenced in the climate and in the availability of natural resources, mainly water. With respect to this
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resource, the growing water demand requires government support to avoid undesired overexploitation.
In addition, climate change can affect all sectors of society. In fact, certain effects are beginning to
cause concern in the agricultural sector, such as minor rainfalls and increasing temperatures. These
impacts also affect the sustainability of this sector as well as other dimensions, such as energy and
productivity, and finally end up affecting the social and economic global structure, especially in rural
areas and areas with water scarcity. To overcome these negative impacts, international organizations
have promoted several agreements as global strategies, such as the Kyoto Protocol and the COP21
Conference of the Parties on Climate Change held in Paris in 2015 [1], aiming to reduce the impacts
of those climate changes. At this last event, it was agreed to contain the increase in global average
temperature below 2 ◦C at the end of the current century. To fulfill this objective, different actions were
proposed, mainly focused on (i) reducing dependence on fossil fuels; (ii) increasing the integration of
renewable energy sources [2]; and (iii) decreasing CO2 emissions into the atmosphere. The change in
the energy model toward a major use of renewable energy resources within a framework of sustainable
development in all economic sectors of society implies the need for a firm Research and Development
and Innovation (R+D+i) strategy. Although solutions to achieve these targets in the domestic, industrial,
and transport sectors have been widely studied, there is a lack of contributions for the agriculture
sector, which requires a more detailed and multidimensional analysis. Actually, from an agro-energy
perspective, this issue must be studied widely in a global analysis on the environmental, hydrological,
and socioeconomic effects that have certain influences on pumping irrigation. Therefore, the energy
demand and proposals for renewable energy alternatives must be considered in all applications
of agriculture, and specifically in pumping facilities. Villamayor-Tomas affirms that remaining
institutional challenges must include an important water rights reform, including the promotion
of a distributed energy network and irrigation modernization within Spain and at the European
level [3]. The change in the energy model of pumping agriculture thus represents a strategy to reduce
dependence on fossil fuels, creates wealth in rural areas, settles employment, and allows participation
in the reduction of CO2 emissions. Photovoltaic (PV) solutions for agriculture pumping present a viable
and profitable alternative to replacing diesel generators in isolated and individual installations [4–6].
This has mainly been motivated by high fuel costs and easily amortized investment costs. In fact,
Cuadros et al. defines ’photoirrigation’ as a procedure to estimate PV installations for irrigation
pumping purposes [7]. Some significant agriculture–energy synergy studies have been conducted
by different authors [8–10]. However, most contributions in the agricultural sector are focused on
standalone solutions without considering distributed generation purposes. In this way, battery and
water tanks are proposed in [11] to store energy obtained from solar panels increasing the system
stability. Mohana Rao et al evaluate PV-based water pumping system for agricultural sector under
standalone conditions [12]. Similar analysis can be found in [13,14], where standalone PV water
pumping systems described and evaluated. Binshad et al. investigates the operation and analysis
of the photovoltaic water pumping system without considering grid connection requirements [15].
A grid-connected hybrid renewable energy system example is described in [16], consisting of PV
and wind power technologies applied on rural township in the Mediterranean climate region of
central Catalonia (Spain). Therefore, there is a lack of contributions focusing on grid-connected
PV pumping systems for water supplies and human consumption where self-consumption and
net-metering schemes are evaluated. This lack of contributions thus implies that (i) analysis of global
irrigation pumping is not available in the specific literature; (ii) these solutions depend on different
variables that must be evaluated accordingly; and (iii) PV pumping solutions need to be analyzed
annually to include the problem of low use of these PV installations depending on the crops. In fact,
optimal use and exploitation of the facility should be properly evaluated. Moreover, it is necessary
to analyze energy generated in periods when irrigation is not demanded by crops and periods when
an excess of PV generation power is provided by the installation. Some studies confirm that PV
installations are usually oversized for individual PV solar pumping solutions [17], which are used
for irrigation purposes only 180–200 h per year. In most cases, for the rest of the potential PV solar
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hours, when energy is available from their locations, PV power plants are disconnected from the
grid and this additional energy is not used as a potential resource. For this reason, the use of this
surplus energy, which in some cases could reach 80–90% of the annual potential energy generated
by the PV system, must be analyzed in detail. In this way, Langarita et al. affirm that in irrigated
agriculture, a producer-consumer can be systematically exposed to energy shortfalls and surpluses [18].
An example of hybrid power plant with wind turbines, photovoltaic panels, and compressed air energy
storage is described in [19], where positive income due to sale of surplus energy to the national power
grid is analyzed.

Presently, the idea of systems organized in agro-smart grids or rural smart grids, conceived
as distributed generation in rural areas, has been widely studied [20–23]. This organizational
structure represents an alternative way of carrying out energy development integration, energy
storage, automation, measurement systems, information, and communication related to power
generation/demand. In addition, it provides not only better and more efficient distribution/production
energy management [24], but also an optimal localized use of resources [25,26]. This concept also
includes efficient water management, automation, and precision agriculture, and generation/demand
balance in rural areas. Figure 1 summarizes schematically the integration of the agricultural sector into
a smart grid. However, one of the main limitations of these solutions is the power line construction
cost and the auxiliary elements to inject the power from those PV power plants to the grid. Moreover,
Bassi affirms that it is difficult to connect millions of scattered wells, fitted with solar pumps (earlier
operating with diesel pumps), to the power grid [27]. Another important drawback of these systems
in general—including other sectors such as the residential sector [28]—is the current legislation and
requirements on distributed generation and net-metering policies. Christoforidis et al. affirm that
there is a lack of a universal policy harmonizing the respective legislations of the EU member countries
in terms of net-metering schemes [29]. Nevertheless, there is a favorable legislative framework for
this type of facility in some countries such as Belgium and Denmark, in other countries, such as
Spain, there is currently no advantageous regulation for net-metering implementation [30]. For the
Spanish case, and after a long series of changes in the regulatory and legal framework of renewable
energy installations in Spain (RD1699/2011, RDL 1/2012, L15/2012, OM1491/2013, RD413/2014),
the regulation of self-consumption and net-metering facilities through RD900/2015 [31] implies a
series of taxes that must be paid by the facilities connected to the grid when they inject power into the
grid. Further information focused on self-supply and net-balance Spanish policies can be found in [32].

Figure 1. Integration of the agricultural sector into a smart grid: supply and demand-side active roles.
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By considering previous contributions and the lack of analysis from a multidimensional
perspective regarding PV power plants connected to the grid for groundwater pumping solutions,
this paper aims to:

• Analyze and identify, from a socioeconomic, environmental, and energy perspective, the problems
of current agriculture groundwater pumping systems based on fossil fuel technologies.

• Propose and analyze PV solar pumping alternatives connected to the grid by including surplus
energy and its injection into the grid, evaluating the possible economic profits from the sector.

• Evaluate a case study based on including this alternative in a real environment and crops located
in the southeast of Spain (Castilla La Mancha Region).

The rest of the paper is structured as follows: Section 2 discusses the methodology, focused on
a global analysis of the problem in agriculture, describing the problems and their most important
impacts, as well as the process of determining the surplus energy and the possible economic return
from the sale of such additional energy. Section 3 describes the case study. Results are given in
Section 4, including estimations of the surplus energy and the potential economic benefits of the sale
of energy. In addition, benefits provided to the agriculture sector with the integration of this solar
resource are also included. Finally, conclusions are given in Section 5.

2. Multifocused Analysis Methodology

The proposed methodology can be divided into two parts. The first part is a preliminary approach
focused on analyzing, from a multidimensional perspective, the energy problem of groundwater
pumping for agriculture. In this way, a study that considers a relevant number of specific factors,
derived in part from the current use of fossil fuel–based solutions usually implemented for irrigation
purposes, is conducted by the authors. We analyze how future changes related to an upcoming
energy model, through the implementation of renewable resources (mainly PV technology as proposed
this work), can address relevant positive impacts on the agriculture sector. The second part of the
methodology describes a process for characterizing the energy alternative of PV pumping installations
connected to the grid, identifying and quantifying the benefits provided by this solution [33]. Figure 2
schematically summarizes the proposed methodology.

Figure 2. Description of the proposed methodology.
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2.1. Groundwater Agriculture Problem: Multifocused Analysis

A multidimensional analysis is proposed by the authors to characterize groundwater pumping
in agriculture. With this aim, the problem is analyzed considering: (i) an environmental problem
(climate change, rainfall, temperature); (ii) a water scarcity problem (decreased aquifer phreatic level,
among others); (iii) an energy problem; and (iv) a socioeconomic problem. Figure 3 shows this
multidimensional analysis and the relationships among the different points of view. This methodology
is in line with other contributions. Moreover, the proposed methodology considers some aspects that
have been neglected or not considered in other works. Actually, the problem of sustainability related
to water and aquifer resource exploitation as well as PV solar installation analysis has been previously
considered in [34–37]. Figure 3 summarizes the dependencies and influences among the different
approaches, which are discussed in detail below.

Figure 3. Multifocused analysis for agriculture groundwater pumping purposes.

2.1.1. Environmental Analysis

The environmental problem emerges as one of the most crucial impacts. In fact, this issue can
involve important problems for the agricultural sector and its irrigation requirements, especially
for groundwater irrigation proposals. In an arid climate, climate change can lead to a decrease in
precipitation, consequently reducing the natural recharge of aquifers. These negative conditions are
a limiting factor for agricultural development in those areas of the world [38]. Reduced rainfall as
a result of climate change is not the only environmental impact, but also rising temperatures and
other collateral effects. In fact, some analyses and studies focused on climate forecasting suggest a
gradual temperature increase, with warmer and drier summer periods. Therefore, water reservoirs
and lakes exposed to solar radiation can lose more water by evaporation, and crops will demand
greater amounts of water. From a climate perspective, analysis of these data shows a clear tendency
from semiarid areas to severely arid conditions, almost becoming desertified areas.

Water resource management in the agriculture sector emerges as a crucial and relevant factor,
affecting irrigation and slightly increasing crop water requirements. Desertification and soil erosion
are then collateral problems as a result of poor agricultural practices and inefficient use of irrigation
strategies, leading to the loss of soil moisture in semiarid areas. Presently, the climate change problem
is leading to unsustainability due to the overexploitation of some aquifers. Other physicochemical
problems have also been identified as a consequence of such overexploitation. Leachates, pesticides,
and inorganic fertilizers can come into contact with the aquifer and produce a contaminated
environment. As an additional drawback to the overexploitation problem, groundwater salinization
is becoming extreme. Consequently, water is unusable for either agriculture or human consumption
unless highly expensive pretreatment is carried out. Finally, CO2 emissions produced by pumping
irrigation in agriculture must be also estimated and analyzed. Traditional agriculture has mostly been
based on diesel equipment. Obviously, these systems do not contribute to mitigating climate change
effects, but increase emissions. Therefore, alternative solutions based on clean and renewable energy
technologies in the agriculture sector can promote the reduction of emissions.
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2.1.2. Water Analysis

As previously discussed, climate change has an important impact on pumping solutions and it
must be considered for irrigation groundwater purposes. In fact, well-irrigated areas have increased
rapidly over the last century thanks to a large investment in pumping technology. Thanks to advances
in irrigation technology, farmers have changed their agricultural models from rainfed lands (with a
low agricultural productivity ratio) to high-yield irrigated crops. Indeed, some of these crops have a
very high water demand, such as maize, beets, and rice. Therefore, these advances have given farmers
a remarkable opportunity to diversify their crops for greater economic value but also higher water
demand value, by increasing pressure on aquifers [39].

Concerns about groundwater sustainability became relevant when many aquifers reached
overexploitation and encountered emergency situations [40]. Overexploitation of aquifers also involves
direct environmental impacts on discharges or sources [41,42]. Indeed, sources and rivers dependent
on aquifers have considerably reduced their flows, generating problems downstream of the aquifers,
for both irrigation and human consumption purposes. At the same time, lake and fluvial aquatic
ecosystems have been degraded, depending on maintenance of the phreatic level. Examples of these
situations can be found in the Tables of Daimiel (Spain), the Saiss plain (Morocco), the flow losses of
the Mikkes River, and other sources [43]. Overexploitation and other water problems are transformed
into greater energy demands. Irrigation methods present different efficiency values, with significant
discrepancies among them. For example, methods based on gravity, furrows, or flooding are the
most inefficient irrigation solutions (50%). Apart from water inefficiency, their use can bring serious
consequences to underground aquifers [44]. To achieve suitable crop maintenance, a more efficient
use of water resources should be proposed, such as localized irrigation (90% efficiency) or irrigation
by spraying (70–80%) [45]. In addition to the previous problems, which are easily discernible by
their immediate impact on the agricultural economy, other problems associated with the continuous
depletion of aquifer resources can be identified, such as the problematic subsidence of the terrain due
to different pressures of water storage inside [46].

2.1.3. Energy Analysis

The environmental issues not only affect the water balance of the river basins, but are also
involved in one of the main water problems in agriculture: aquifer overexploitation with high energy
consumption [47]. Once a well is built, the energy required to raise water to the surface is the most
relevant annual cost for these systems. This cost depends mainly on: (i) the unit price of energy, (ii) the
depth of the phreatic level, (iii) the generator-pump system efficiency, and (iv) the hydrogeological
characteristics of the aquifer. The high energy dependence of fossil fuels poses an international
problem for any sector, and it usually involves high costs. The agriculture sector also suffers from
these consequences, as it is a demanding sector of fossil fuels. To solve this, geopolitical and economic
factors must be considered to find a suitable solution. For a specific crop, a decreasing phreatic level is
closely related to the corresponding energy requirements. Indeed, proper hydric maintenance requires
pumping from a deeper source of water and thus more energy is required in the process. Reducing
the phreatic level requires a large amount of energy to raise, transport, and distribute water to crops.
Increased energy demand involves major production costs for farmers, regardless of their country.
This is a difficult problem to be borne by farmers, since it implies more economic effort to pay for
fuel for pumping. Different contributions have been devoted to solving this energy problem [48].
The different solutions depend on proper water management to meet high energy demands at low
cost [49]. Other inefficiencies, such as poorly performing irrigation methods, a lack of maintenance,
or oversized facilities, can mean an excess of energy demand and high economic costs. To solve these
problems, some countries have developed different energy policies for agriculture, aiming to reduce
the cost of energy production. In some cases, national policies advocate the subsidization of fossil fuels
for any sector or exclusively focused on agricultural use. Other policies are based on fiscal subsidies
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of hydrocarbon taxes on farmers and ranchers, whereas in other countries, the price of fuel is totally
regulated by the government.

2.1.4. Socioeconomic Analysis

The problems mentioned above usually imply an increasing price of fuels to meet the relevant
energy demand. Because of this, small plots with wells are disappearing and the current tendency is to
aggregate larger areas able to decrease the costs associated with pumping maintenance at very deep
groundwater levels. This effect is the complete opposite of maintaining traditional agriculture and land
democratization [50]. The typical way of dealing with this problem is to raise food prices by farmers;
usually prices at the farmer level are then increased to improve their profit margin. This option reduces
the competitiveness of their products compared to similar and cheaper products from other countries
where the costs of production are considerably lower [50]. A more drastic option is to give up crops
or plots, which results in poor economic benefits and does not allow this solution to continue over
time. This last option generates depopulation in agricultural and rural areas, where the opportunities
and jobs could decrease drastically [50]. Both options have a great impact on the agricultural sector,
involving a loss of economic value in the sector, a loss of competitiveness for national products,
a reduction in investment, and a subsequent loss of plot value in rural areas. In addition, there is
a loss of social value, such as loss of employment in the countryside, loss of traditional agriculture,
and depopulation of rural areas. These situations mean that governments, including international
associations such as the European Union and the United Nations Organization, must offer alternative
actions, strategies, and energy policies to provide solutions to these problems. These strategies are
intended to help or subsidize the agricultural sector, such as the Community Agricultural Policy (CAP),
which subsidizes, with nuances, such loss of competitiveness of European products directly to farmers.
In other cases, there is protectionism toward national agriculture, such as an agrarian policy.

2.2. PV System Configuration and Surplus Energy Estimation

Presently, customers of electricity that have installed energy sources at their households are
transformed into ’prosumers’ [51]. As was previously discussed, different countries use diverse
schemes of support for ’prosumers’ [52]. In fact, diverse mechanisms supporting the self-consumption
of electricity in key countries all over the world and to highlight the challenges and opportunities
associated with their developments have been recently discussed by the IEA [53]. Under this
framework, the present section characterizes the sale of energy from PV installations, which supplies
energy for agricultural irrigation by groundwater. This characterization process starts with an initial
database, where the energy demanded by the irrigated area and the energy-demanding facilities are
estimated. Subsequently, a preliminary configuration of the PV facility is determined by including the
type of technology (Mono-Si, Te-Cd. . . ), solar tracking options, connection to the grid, and injection of
surplus energy to the grid. Other parameters such as depth of the aquifer, plot grouping, and water
needs of crops are also taken into account [9]. It is then possible to estimate the rate power of the
PV installation under different groundwater pumping scenarios, which depend on the depth of the
aquifer level, the averaged crop water demand, and the hydraulic system pressure. For the purpose of
comparing different alternatives, the rate power required by the pump is first estimated (Pp) [54]:

Pp =
Ht · Qmx · ρ · g

νMP
→ Pd =

Pp · Kd

νd
→ Pg = Pd · Kg (1)

where Ht is the total dynamic head (m), Qmx is the maximum flow rate (m3/s), r is the water density
(kg/m3), g is the earth’s gravitational acceleration (m/s2), and νMP is the pump efficiency (%). For PV
solar power estimations (PPV), the following expression is proposed [55]:

PPV =
Edem

E(α,β) · PR
(2)
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where Edem is the expected averaged energy consumption (kWh/day) by considering the crop water
need, E(α,β) is the expected averaged energy production of a PV power plant from an average monthly
value of a typical daily irradiation on the horizontal surface (kWh/m2·day) and PR is the performance
ratio of the PV installation. The surplus energy from the PV pumping system can be then determined
from the global PV-generated power and the global crop water need:

Se(x,y,z) =
k=8760

∑
k=1

Egen(k)− Edem(k)
1000

(3)

where Se(x,y,z) is the surplus annual energy (MWh/year), x is the aggregated areas (ha), y is the
phreatic level of groundwater depth (m), z the global crop water need (m3), k is hours in a year,
Egen is the energy produced in a specific k-hour (kWh), and Edem is the energy demanded in a specific
k-hour (kWh).

The next step is to apply the rules and requirements to enable pouring surplus energy into the
electricity grid, determining the economic values to consider possible economic retribution. At this
point, as discussed in the introduction, the net-metering is differentiated by applying the prices of
the electricity market and self-consumption defined and regulated by the corresponding national
authorities. The following section describes the case study, which focuses on current Spanish legislation.
Nevertheless, the proposed methodology can also be applied to other legislative frameworks under
different national authority requirements.

3. Case Study

3.1. Preliminaries

Recently, Barbel affirms that in Spain, irrigated agriculture accounts for 20% of the total
agricultural area, consumes 75% of total water resources, and generates 60% of the total agricultural
production and 80% of agricultural exports [56]. Under these circumstances, Aquifer 23 located in
Castilla La Mancha, Spain, is considered for the case study. Figure 4 shows the location of this aquifer
and the agricultural area that depends on this water resource. The area is basically a sedimentary
basin immersed in a karstic system. This aquifer varies in depth between 10 and 70 m, occupying
an area of 5500 km2. Recently, it has been declared an overexploited aquifer as a consequence of not
only poor management and a lack of environmental and water control, but also a lack of planning of
water resources. Indeed, it has reached drops of 2.3 m/year over several years of severe extraction.
Over the last decade, it has been considered as a remarkable resource recovery example, increasing
the groundwater level of the aquifer, as depicted in Figure 5. Presently, this aquifer is still considered
overexploited, mainly due to high influence of recent periods of low rainfall. The recovery process is a
consequence of the awareness of this situation and farmers’ economic dependence on the aquifer [57].
Irrigation is one of the main economic drivers and sources of sustenance of the rural society in this
area [58]. Regarding the climate in the area, it can be classified as continental Mediterranean with
dry and hot summers with high solar irradiance levels, and cold winters with certain frost periods.
Spring and autumn are characterized by soft and humid periods. Annual rainfall is a determining
factor, which in the study area presents relevant oscillations between wetter periods and drier periods,
accounting for 350–400 mm per year. However, with the conditions imposed by climate change in
recent decades, average annual temperatures are slightly rising while rainfall is being partially reduced,
posing a serious risk of desertification. Solar resource has high average potential during sunshine
hours, with more than 4900 sunshine hours per year. Figure 6 depicts solar irradiance levels and
aquifer depth for the case study.
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Figure 4. Location of study area and aquifer.

Figure 5. Satellite image of regime of exploitation of water resources and chronological graph of
groundwater aquifer level. Source: Authors’ elaboration through Google Earth images and CHG data.

Figure 6. Irradiance solar resource and groundwater depth level: case study. Description of Z1 and Z2.

3.2. Crop Water Need

According to Figure 6, the central band of the aquifer (labelled as Z1) has the highest concentration
of irrigation plots: 79% of the irrigation surface of the entire aquifer. This part accounts for 257,456 ha
and 58% of this surface (149,647 ha) has irrigated crops. In other areas, labelled as Z2, groups of plots
have an irrigated vs. unirrigated ratio of around 75%, accounting for around 15% of the agricultural
surface on the global aquifer. In addition, the average depth of the aquifer estimated in 2016 was
29.41 m, according to reference piezometers used by the Guadiana Hydrographic Confederation (Spain)
and data from the SIG maps. Due to the initial conditions related to the present case study, two levels
of crop water need are considered: 1500 m3/ha per year and 3000 m 3/ha per year. Both values are
the result of water constraints on crop irrigation with the aim of preserving the aquifer. Although
there are crops that have higher water requirements, most crops in the study area (mainly vineyards)
currently have an average water requirement within the selected range, by considering usual and real
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grouping plots. Subsequently, both crop water need values (1500 m3/ha and 3000 m3/ha per year) are
representative of averaged crop irrigation necessities.

3.3. PV Power Plant Configuration

As was previously described in Section 2.2, the rate power of the PV installation can be estimated
by considering the depth of the aquifer level, the averaged crop water demand and the aggregated crop
area. Under these requirements, the specific PV power plant configuration is not in line with usual
individual installations, mainly promoted in the agricultural sector and based on isolated pumping
systems. In our case, we propose an aggregated PV pumping solution without accumulation, directly
connected to the grid and excluding any water reservoir facility. The proposed pumping solution thus
requires more power, but lower annual maintenance. Therefore, PV power plant solutions with PV
modules based on mono-silicon PV technology in fixed installations is considered for the analysis,
being the rate PV power estimated to cover the average daily demand according to a specific crop water
need. From the aquifer characteristics, ranges to be considered for the study can be then summarized
as follows: groups from 1 to 2000 ha, groundwater pumping levels between 10 and 55 m of aquifer
depth; and two representative crop water need: 1500 m3/ha and 3000 m3/ha—discussed in Section 3.2.
Different PV power plant solutions are determined based on the different configurations assumed
in the case study. In this way, Figure 7 summarizes the PV solutions (in kWp power capacity) for
the different scenarios. In all cases, PV power plant is determined to supply the averaged power
demand according to the crop water need, the aggregated area (ha) and groundwater pumping level
(m). Therefore, the PV power plants to be installed (in kWp) would provide power enough to supply
the corresponding pumping groundwater requirements.

Figure 7. PV power plant capacities for self-consumption scenarios: 1500 m3/ha and 3000 m3/ha.

3.4. Self-Consumption: Spanish Legislative Framework

As previously discussed, the proposed methodology can be applied to any legislative framework
and according to the corresponding different national authority requirements. In our case, the aquifer
is in Spain (Aquifer 23), and thus, the Spanish legislation based on RD 900/2015 is applied [31].
Through this directive, two types of self-consumption are defined: (i) Type 1, lower than 100 kW of
rate power; most individual pumping irrigation facilities can be classified as Type 1; and (ii) Type
2, self-consumption with more than 100 kW rate power, injected into the grid at a price established
by the electricity market pool. In line with the PV power plant capacities estimated and summarized
in Figure 7, most communities of solar pumping irrigators would be considered as Type 2. In the
case of Spain, taxes and fees that would reduce the final remuneration for the sale of energy must be
imposed. These conditions represent a burden at a time of encouraging the implementation of solar
solutions—mainly in this case that PV power plants connected to the grid cannot be amortized in a
relatively short period of time. Indeed, the costs include a variable charges component associated
with the system costs and determined from the variable terms, and a capacity payment component to
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compensate for system support, compensation to the market and system operators, and interrupted
service and adjusted service. It is also necessary to add the recent 7% tax on electricity generation
(in September 2018 this was removed by the Spanish government) and the value added tax (VAT)
of 21%. Tables 1–3 summarize the representative Spanish fixed, variable, and additional costs to be
currently considered for the sale of energy.

Table 1. Spanish fixed fees and taxes applied to the sale of surplus energy through self-consumption:
requirements according to RD900/2015 [31].

Annual Fixed Tax (Euro/kWh)

Access Cost Period 1 Period 2 Period 3 Period 4 Period 5 Period 6
P1 P2 P3 P4 P5 P6

2.0 (P ≤ 10 kW) 8.682019
2.1 (10 ≤ P ≤ 15 kW) 15.083303
3.0 A (P > 15 kW) 32.083923 6.212601 14.245468
3.1 A (1 kV to 36 kV) 35.952537 6.717794 4.985851
6.1 A (1 kV to 30 kV) 22.169359 7.844864 9.790954 11.926548 14.278122 4.882162
6.1 B (30 kV to 36 kV) 14.050921 3.782129 6.817708 8.953302 11.304876 3.525577
6.2 (36 kV to 72.5 kV) 9.082012 1.409534 4.372144 6.352856 8.073738 2.442188
6.3 (72.5 kV to 145 kV) 9.279523 2.525841 3.909548 5.479569 6.893947 1.911493
6.4 (≥145 kV) 2.815509 0.000000 1.718359 3.457606 4.990376 0.970612

Table 2. Spanish variable fees and taxes applied to the sale of surplus energy through self-consumption:
requirements according to RD900/2015 [31].

Annual Variable Tax (Euro/kWh)

Access Cost Period 1 Period 2 Period 3 Period 4 Period 5 Period 6
P1 P2 P3 P4 P5 P6

2.0 A (P ≤ 10 kW) 0.043187
2.0 DHA (P ≤ 10 kW) 0.057144 0.006148
2.0 DHS (P ≤ 10 kW) 0.057938 0.006430 0.006112
2.1 A (10 ≤ P ≤ 15 kW) 0.054883
2.1 DHA (10 ≤ P ≤ 15 kW) 0.068081 0.015450
2.1 DHS (10 ≤ P ≤ 15 kW) 0.068875 0.018220 0.011370
3.0 A (P > 15 kW) 0.020568 0.013696 0.008951
3.1 A (1 kV to 36 kV) 0.015301 0.009998 0.012035
6.1 A (1 kV to 30 kV) 0.011775 0.011336 0.007602 0.009164 0.009986 0.006720
6.1 B (30 kV to 36 kV) 0.011775 0.008312 0.007322 0.008260 0.009403 0.006349
6.2 (36 kV to 72.5 kV) 0.012669 0.011554 0.007881 0.008377 0.008716 0.006245
6.3 (72.5 kV to 145 kV) 0.015106 0.012816 0.008530 0.008510 0.008673 0.006278
6.4 (≥145 kV) 0.011775 0.008531 0.007322 0.007788 0.008257 0.006104

Table 3. Spanish additional fees and taxes applied to the sale of surplus energy through
self-consumption: requirements according to RD900/2015 [31].

Annual Additional Tax (Euro/kWh)

Electricity market operation 0.000025
Power system operation 0.000109
Interruptibility service 0.002000
Provision of adjustment services 0.003210

In Spain, the times of reduced power are usually distributed in three periods. However, for power
higher than 450 kW, the Spanish electricity market offer six time periods (P1, P2, P3, P4, P5, P6). Figure 8
shows the electricity rates for the different time periods under the Spanish electricity system legislation.
As an example, and for the systems described in this case study (direct PV solar pumping installations)
and the selected crop water-need values—1500 m3/ha and 3000 m3/ha, the typical periods for this
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type of facility are the following: P5 in May, P3 and P4 in June, P1 in the rest of June and July, and P6
in August. Irrigation is not usual in September for the considered crops, but it would be framed in
periods P3 and P4. To clarify the Spanish electricity market, in terms of selling the excess energy to
the grid at a price determined by such electricity market, Figure 9 shows an example for an 870 kWp
PV installation, 1000 ha aggregated crop area, 40 m aquifer depth and 1500 m3/ha crop water need.
Energy demanded by the crop, surplus of energy and estimated benefits—excluding and including
Spanish taxes—are determined by the different months. Time periods to be applied according to the
Spanish electricity market, see Figure 8, are also included.

Figure 8. Description of electricity rates for different time periods in the Spanish electricity system.

Figure 9. Example of PV generation and surplus of energy. Costs and benefits for the Spanish
electricity system.

4. Results and Discussion

According to the proposed methodology described in Section 2, the case study is analyzed from
a multidimensional perspective with the goals of reducing the intense dependence on fossil fuels,
increasing the integration of solar solutions and preserving the aquifer to avoid future lower phreatic
levels that would require more energy resources and thus relevant economic efforts. Furthermore,
PV power plants connected to the grid can give farmers additional benefits through net-metering
scenarios and annual energy surpluses.

4.1. PV Installations Connected to the Grid: Surplus of Annual Energy

Depending on the agronomic management of irrigation, the amount of water demanded by
certain crops, the climatic conditions, and the state of the soil, the energy required by crops can vary
considerably. As previously discussed, most crops require irrigation during specific periods of the
year and their demand can be considered as seasonal. For example, for the case study, the months
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are limited to May, June, July, August, and September. Therefore, an important part of the potentially
generated annual power is initially wasted. Under this hypothesis, the energy generated for the
case study has been quantified-based on the selected PV configuration and the corresponding 1500
and 3000 m3/ha crop water needs, which represents vineyard crops and a mosaic of vegetation and
vineyard for typical areas of the case study. Figure 10 shows the surplus energy gradient based on the
surface in hectares and the aquifer depth for the different PV configurations summarized in Figure 7.
As shown in these results, greater depth aquifer and greater crop water need would imply more power
required by the system, and consequently, the potential annual generated energy will be higher. This is
due to the fact that both parameters have a relevant influence on the preliminary estimation of the PV
solar pumping installation. Nevertheless, the investments are related to size of the PV power plant,
and subsequently, the higher the PV system the higher the annual profits. A more detailed economic
analysis, including investments, should be conducted to estimate the best solution. A recent detailed
economic analysis carried out by the authors can be found in [59].

Figure 10. PV installation connected to the grid: annual surplus energy estimation examples
(1500 m3/ha and 3000 m3/ha).

4.2. Grid Injection from PV Systems into the Grid: Net-Metering Schemes

Firstly, and from the annual surplus energy estimation examples depicted in Figure 10,
a preliminary estimation of annual benefits can be determined by considering the current Spanish
legislation—aimed at promoting net-metering policies—but excluding current taxes on electrical
generation summarized in Tables 1–3. With this aim, Figure 11 shows annual estimated economic
returns provided by the corresponding PV installations previously determined and summarized in
Figure 7. It is important to point out that these benefits are highly dependent on the irrigation profiles
required by the crops, and subsequently, they could be different when considering other crops and
water needs. Nevertheless, the proposed can be applied to other legislative scenarios.

From these preliminary analyses, the following results estimate the economic compensation of PV
facilities under the current Spanish legislation. Figure 12 gives the benefits under the legislation
defined in RD900/2015 and the application of the corresponding taxes and charges. The final
economic compensation, compared to Figure 11, is reduced for both 1500 m3/ha and 3000 m3/ha
cases. The analysis of the results and the comparison between economic return on surplus energy
for 1500 m3/ha and 3000 m3/ha, with a law aimed at developing renewable energy and Spanish
legislation defined by RD 900/2015, means that only between 40% and 60% of economic compensation
for the sale of energy is obtained with application of this legislation regarding a net-metering scheme
excluding taxes and fees. Subsequently, a PV solar configuration for 3000 m3/ha allows us to provide
between 1.6 and 1.8 times more surplus energy than the 1500 m3/ha-based solution. For example,
an area of 1000 hectares with an aquifer depth of 30 m and a vineyard crop of 1500 m3/ha of annual
water requirements is estimated to cost 180 Euro/ha (per year) for the sale of energy. The same
solution under current Spanish self-consumption legislation would be significantly reduced by up to
81 Euro/ha (per year).
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Figure 11. PV installation connected to the grid: annual benefit estimation examples excluding taxes
and fees (1500 m3/ha and 3000 m3/ha).

Figure 12. PV installation connected to the grid: annual benefit estimation examples including taxes
and fees (1500 m3/ha and 3000 m3/ha).

4.3. PV Integration into Net-Metering Schemes: Aquifer 23 Discussion

By considering that PV solar installations for pumping groundwater purposes can be used more
efficiently under net-metering schemes, significant economic benefits and environmental profits can be
provided by these facilities. The proposed PV configurations allow reduction in the energy costs and
subsequently the production costs, becoming more competitive without changing the profit margin.
In addition, these solutions give rural areas an opportunity to maintain their population and, at the
same time, reduce their economic dependency mainly based on subsidies. A remarkable reduction of
emissions in the agricultural sector can also be achieved. According to the annual benefit estimation
for the self-consumption and net-metering schemes previously described are summarized in Figure 12,
it is possible to extrapolate the data to the rest of the aquifer (Aquifer 23). In this way, we consider the
point where the concentration of wells is larger: within zones Z1 and Z2, accounting for 58% of the
wells. If communities of irrigators of 800 ha, such as an existing one of this size, were connected to the
grid, considering the average aquifer depth in those zones, emissions would be reduced in a more than
relevant way. As previously discussed, after implementing a PV power plant connected to the grid in
a community of irrigators, the economic benefits are highly dependent on the specific crop water need
and the aquifer depth, which corresponds to 50,000 to 90,000 Euro in Z1 and 100,000 to 140,000 Euro in
Z2, based on a net-metering scheme excluding taxes and fees; and from 28,000 to 50,000 euros in Z1
and 40,000 to 90,000 euros in Z2 according to current legislation in Spain (RD900/2015). Extrapolating
the economic benefits for the entire aquifer, direct benefits to farmers of between 8 and 13 million Euro
could be achieved in Z1, and between 3 and 4 million Euro in Z2, in accordance with a preliminary
net-metering scheme without taxes and fees. However, with the current legislation in Spain regarding
self-consumption and net-metering, between 4 and 8 million Euro in Z1 and between 1 and 2.5 million
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Euro in Z2 would be estimated annually. Tables 4 and 5 summarizes the economic benefits from the
corresponding net-metering schemes by Z1 and Z2 zones, respectively.

Finally, Figure 13 summarizes the analyzed approaches considered in this work and the
corresponding advantages from these different perspectives. Presently, to undertake projects and
design aid for the promotion of new renewable technologies and energy efficiency in agriculture,
the European Union promotes several programs along this line under the European Agricultural
Fund for Rural Development (EAFRD), to which is added the Green Fund for Climate [60] for
other countries.

Figure 13. Integrating renewables into net-metering: advantages and multifocused approach.

Table 4. Economic benefits: Z1 zone (159 communities, 800 ha/community).

Crop Water Need

(m3/ha)
Area
(ha)

Economic Benefit Excluding

Taxes (Euro)

Economic Benefit Including

Taxes (Euro)

1500 440 (Aggregated Area) 52,800 26,800
127,200 (Global Area) 8,395,134 4,547,364

3000 440 (Aggregated Area) 88,000 50,600
127,200 (Global Area) 13,991,890 8,045,337
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Table 5. Economic benefits: Z2 zone (28 communities, 800 ha/community).

Crop Water Need

(m3/ha)
Area
(ha)

Economic Benefit Excluding

Taxes (Euro)

Economic Benefit Including

Taxes (Euro)

1500 Community Area (616) 105,336 47,432
Global Area (27,400) 2,955,596 1,330,883

3000 Community Area (616) 142,912 94,248
Global Area (27,400) 4,009,932 2,644,481

5. Conclusions

The integration of PV solar installations connected to the grid into the agriculture sector is
proposed and evaluated under net-metering and self-consumption scenarios. This solar resource
allows us to decrease emissions and fossil fuel dependence and improve economic benefits from a
surplus energy sale standpoint. This multifocused analysis is an exportable and scalable solution that
can be applied in different locations depending on different parameters, such as crop water need,
aquifer depth, and grouped crop areas. A Spanish aquifer highly overexploited over the decades is
used to evaluate the proposed methodology. Different surplus energy sale scenarios are analyzed
according to the typical crops in this location and the corresponding annual water requirements
and common grouping areas. In this way, relevant annual benefits are estimated in grouped areas
of 800 ha, accounting for 50,000 to 140,000 euros/year in a net-metering situation excluding taxes
and fees; and 28,000 to 90,000 euros under current Spanish regulations. Regardless of the level of
grouped areas, PV power plants interconnected with the grid for the use of surplus energy could
generate nonnegligible global revenues: between 10 and 18 million euros/year with a legislation prone
to net-metering and between 5 and 10 million euros/year under the current Spanish legislation
framework. Therefore, global policies focused on water management and efficient agricultural
objectives should be promoted for massive integration of such renewables into the agriculture sector.
More specifically, energy policies in terms of net-metering and/or self-consumption schemes that
provide regulatory stability to this energy model in agriculture are required by the sector.
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