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ABSTRACT Photovoltaic (PV) output is susceptible to meteorological factors, resulting in intermittency and
randomness of power generation. Accurate prediction of PV power output can not only reduce the impact
of PV power generation on the grid but also provide a reference for grid dispatching. Therefore, this paper
proposes an LSTM-attention-embedding model based on Bayesian optimization to predict the day-ahead
PV power output. The statistical features at multiple time scales, combined features, time features and wind
speed categorical features are explored for PV related meteorological factors. A deep learning model is
constructed based on an LSTM block and an embedding block with the connection of a merge layer. The
LSTM block is used to memorize and attend the historical information, and the embedding block is used to
encode the categorical features. Then, an output block is used to output the prediction results, and a residual
connection is also included in the model to mitigate the gradient transfer. Bayesian optimization is used to
select the optimal combined features. The effectiveness of the proposed model is verified on two actual PV
power plants in one area of China. The comparative experimental results show that the performance of the
proposed model has been significantly improved compared to LSTM neural networks, BPNN, SVR model
and persistence model.

INDEX TERMS LSTM-attention-embedding model, features extraction, deep learning, Bayesian optimiza-

tion, residual connection.

I. INTRODUCTION

With the global concern about environmental issues, it has
become the consensus of the world to develop renew-
able energy resources, such as wind [1], hydro [2], fuel
cell [3], photovoltaic (PV) [4], [5]. The International Energy
Agency (IEA) estimates that the proportion of new energy
resources will reach 60% in 2040, and among them, PV and
wind energy will account more than 50%. PV, also known as
solar PV, has developed from a niche market of small-scale
applications to a mainstream electricity source since 1992.
In 2017, the cumulative global PV power generation reached
nearly 460 TWh, accounting for about 2% of the total global
energy, and 60% of them is for utility-scale applications, and
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the remaining 40% is for distributed applications [6]. By the
end of 2018, the total cumulative global PV capacity reached
up to 512GW, and it is estimated to be enough to supply
2.55% of the global electricity demand [7].

However, the PV power generation is of an intermittent
nature, and considerable fluctuations will be induced due to
meteorological factors [8], such as ambient temperature, rel-
ative humidity, wind speed, and clearness index. The neural
networks have been used in [9] to verify that the PV power
output is strongly related to the temperature, wind speed
and relative humidity. It is proved that the average photon
energy (APE) and the temperature have a large influence
on the performance of PV power output [10]. Since the PV
power output is greatly affected by meteorological factors,
and strong fluctuation and intermittency will cause great
impact on the system operation and grid-connected system.
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It will cause the grid oscillation when a large proportion of
PV system is connected to the grid [11]. Therefore, accurate
prediction of PV power output can significantly improve the
operation of the power system and increase the penetration of
the PV system.

Several studies have been conducted to predict PV power
output and have achieved significant results. The methods
for PV power prediction can be summarized as physical
methods, direct prediction methods, and indirect prediction
methods. The physical methods are mainly dependent on
a physical model obtained from the theoretical analysis of
energy conversion from solar energy into electric energy. The
physical model is usually based on numerical weather predic-
tion (NWP) [12], satellite imagery TSI, and cloud movement
model [13]. These models can predict the PV power output
with high accuracy [14]. However, such prediction methods
require additional information on satellite cloud maps, result-
ing in higher operating cost and computational cost.

To address this issue, the direct prediction methods, also
known as time-series methods, are widely used in the PV pre-
diction. These methods establish a mathematical relationship
between the historical power series and the future PV power
according to the periodicity, tendency, and other properties
of PV power profiles. In [15], the rule of PV historical output
curves under different weather patterns is analyzed, and the
prediction of PV power output is realized by superimposing
fluctuations of PV power output at different scales. In [16],
the chaotic characteristics of PV power output is presented,
and RBF-based neural networks are used to fit the local
variation of the phase space trajectory of PV power output.
These methods are based on the historical PV output data,
and the PV prediction is realized by finding out the PV output
law in a certain time period. However, the meteorological
information, such as irradiation, temperature, humidity, wind
speed and wind direction are missing in such methods, and
incomplete weather information is difficult to guarantee the
accuracy of the prediction.

To improve the prediction accuracy, indirect prediction
methods, also known as regression methods, are proposed.
With consideration of meteorological factors, the prediction
performance of PV power output at certain time period has
been significantly improved. The indirect prediction methods
are divided as artificial neural networks [17], [18], support
vector machine [21], and Markov chain [22]. Due to the
obvious similarity of same weather patterns, the research on
PV power prediction based on weather type is conducted,
and the improvement has been done in [19]. The Kohonen
weather clustering model is improved to identify the weather
type of the predicted date, and the meteorological data of
the predicted date and clustering historical data are used
as the input of neural networks to predict the PV power
output. According to different weather types, Artificial neu-
ral networks are established in [20], the prediction of PV
power output at daytime shows good performance due to the
individual weather type, but the prediction performance for
time-varying weather is poor. Compared with the previous
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two methods, artificial neural networks have an advantage of
higher accuracy due to that multiple weather information is
considered. However, NWP data does not respond effectively
to meteorological factors, although further weather division
strategy has been applied, the meteorological features still
need to be further explored.

Deep learning has developed rapidly in computer vision
and natural language processing, and it is also used in the
regression and classification of one-dimensional data [23].
Deep learning is categorized as long-short term mem-
ory (LSTM) [24], convolution neural networks [25], atten-
tion [26], and embedding [27]. Several researchers have
worked on PV power prediction based on deep learning.
LSTM [28] and LSTM-based self-encoder [29] perform pre-
diction directly without considering any other additional
characteristics; although with deep belief networks used
in [30], the factors that affect PV power output have been ana-
lyzed, and the relevant meteorological characteristics are also
used, but the characteristics are not further explored. In [31],
restricted Boltzmann machine is proposed, and only origi-
nal characteristics related to PV power output are explored
with only temperature characteristics included, and no more
weather information are used; wavelet-based decomposing
CNN-LSTM [32], [33] only uses direct prediction method,
and no more additional information has been explored; and
Bayesian deep learning model [34] is a method of uncertainty
prediction. Also, recurrent neural network model is used to
learn the nonlinear characteristics of PV sequence in [35],
and the PV time-series data is divided into inter-day and
intra-day data. This model is superior to the classical persis-
tence method (Persistence), back propagation neural network
(BPNN), radial basis function (RBF) neural network and
support vector machine (SVM), and long short-term memory
(LSTM) network.

Among them, different deep learning structures have been
used, and both have improved the prediction accuracy of
PV power output and PV irradiance. In [36], the additional
meteorological information is used as the input, and nonlinear
autoregressive recurrent neural networks (NARX), a feed-
forward neural network (FFNN) based model, is proposed
to predict the solar irradiance; In [37], dry-bulb tempera-
ture, dew-point temperature, and relative humidity are used
as the characteristics, and LSTM is used as the model to
predict solar irradiance. Since the additional meteorological
information can effectively improve the prediction accuracy,
the better prediction performance is obtained compared with
FFNN network model.

To the best knowledge of the authors, the deep learning
methods can fit the PV power output very well, but the
characteristics related to PV power output needs to be further
explored, and the fitting ability of models should also be fur-
ther improved. Therefore, to make full advantages of different
deep learning models, the appropriate deep learning models
are required and combined to improve the performance of
the PV prediction. An improved deep learning model based
on LSTM-attention-embedding algorithm is proposed in
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this paper. The tendency of the meteorological factors related
to PV power output under each time window and the com-
bined features of various meteorological factors are explored.
An LSTM-attention-embedding model combined with
LSTM-attention and embedding mechanism is built up to
optimize the meteorological characteristics. The LSTM-
attention is used to learn the time-dependent meteorolog-
ical numerical characteristics, and the embedding is used
to describe the categorical features such as wind direc-
tion and time. The Bayesian optimization is used to select
the optimal combined characteristics for LSTM-attention-
embedding model.

This paper presents two original contributions that
distinguish our work from existing schemes. First, the mete-
orological information related to PV power output is fur-
ther explored, and the redundant characteristics are removed
by using Bayesian optimization. Second, the different deep
learning models are combined to better represent the corre-
lation between characteristics. In the model, LSTM extracts
the sequence information between characteristics, attention
focuses on the important information, and embedding is to
encode the categorical features.

The remainder of this paper is organized as follows.
In section II, the characteristics related to PV power out-
put are constructed, and the improved deep learning model
based on Bayesian optimization is proposed. In section III,
the prediction model of PV power output is proposed. The
experimental results are analyzed in section IV, and finally,
the conclusions are drawn in section V.

Il. FEATURES EXPLORING MODEL-BASED PREDICTION
OF PV POWER OUTPUT
A. FEATURES CONSTRUCTION
The prediction accuracy of the model is dependent on the
features of meteorological factors, and more effective mete-
orological features are required to improve the prediction
performance. For the meteorological characteristics X = [X],
X, ..., Xn1%, Xi (i=1,2,...,N) is the features at sample
time i, where X; =[xj1, Xi2, ..., Xim L, xixk (k = 1,2, ..., M)is
the k' features among samples, and M is the total numbers of
meteorological factors. The following three kinds of features
are explored.

1) The original features, that is X = [X|, X», ..

2) The statistical features

The statistical features are used to reflect the data fluctua-
tions within the time window ¢, and they can be expressed as

.,XN]T.

_ 1 <
Xikt = X(i
ikt 2%+ 1 ; (i+v)k

1
t

| ] 2
Sikt = |:2t—+1 Z (Xt — xikt)2:|

V=t

ey

Xmax kr = Max{Xyg, Xy 1, -« - Xoprk )

where, Xiir, Sikz » Xmaxks are the mean value, standard deviation,
and maximum value within the time window of [i-¢, i + t].
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3) The combined features

The combined features, including the linear-combined
features and nonlinear-combined features, are expressed
as II-B. The linear-combined features are used to explore
the linear relationship between each feature, while the
nonlinear-combined features are used to explore the nonlinear
relationship.

Zig = Xij + Xik
Zis = Xij — Xik
2

Zim = Xijj X Xik

Zid = Xij/Xik

where, zi4, Zis, Zim,» and z;4 are the additive, subtractive, multi-
plicative, and divisive features at sample time i. The original
features X and statistical features in (1) are included in x;;.
4) Time features
The time features, such as the month of the year, the day of
the week, the day of the month, the hour of the day, and the
minute of the hour are extracted.

B. IMPROVED DEEP LEARNING MODEL

1) LSTM NEURAL NETWORKS

LSTM is currently a widely-used deep learning approach in
machine learning area, and it is proposed by Hochreiter and
Schmidhuber in 1997 [24]. The LSTM can solve the long-
term dependent sequences, and the main structure is shown
in FIGURE 1.

The LSTM can be represented as a chain structure by
time expansion, LSTM-neural network architecture shows
the time expansion form of LSTM from sample time O to
sample time ¢. In the figure, A represents the LSTM unit, for
each time instance, there is one corresponding input x; and
output /,, and the output 4, at sample time ¢ will selectively
attend the input information from sample time 0 to sample
time z-1.

There are four neural network layers in the repeating
module. Neuron unit structure of LSTM shows the specific
time connection of each LSTM unit, and it transfers the state
(C;—1) and output (h;—1) of the cell at sample time ¢-1 to
LSTM unit at sample time ¢, then the state (Cy) and output
(hy) of the cell at sample time ¢ are transferred to LSTM unit
at sample time 741 in the same way until to the last sample
time.

The detailed structure of each LSTM unit is shown at
the bottom of FIGURE 1. The unit is mainly divided into
forget gate, input gate, tanh layer and output gate. The input
of each gate and layer are h;_; and x;, and the output f; of
the forget gate is obtained by the activation function o. The
output i; of the input gate is also obtained by function o, while
the output C; of the tanh layer is obtained by tanh function.
The output O; of the output gate is calculated from function
o, and the output 4; of the LSTM is calculated by ¢; and O;.

For one LSTM cell, it has four gates. The first layer of
neurons is a sigmoid control layer of the forget gate, and it
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LSTM neural network architecture
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can be expressed as
fr =0 (Wr - lhi—1, x] + by) 3)

where f; is the output of the forget gate, o is the sigmoid
activation function, Wy and by are denoted as the weight coef-
ficient and offset of the forget gate, respectively. h;_1, and x;
are the output at sample time ¢-1 and the input at sample
time ¢, respectively.

The sigmoid layer of the input gate determines which
information to update, the tanh layer is used to create a new
candidate value that might be added to the states of the cell.

The second and third layer are the input gate and tanh layer,
respectively. They can be expressed as

ir = o (Willhy—1, %] + by) 4

where i; is the output of the input gate, W; and b; are the
weight coefficient and offset of the input gate, respectively.

C; = tanh (Welh;—1, ;] + bc) &)
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FIGURE 1. LSTM structure.

‘ Hadamard product @ Vector addition @ Vector concatenate

where C; is candidate status, Wc and bc are the weight
coefficient and offset of the updated variables, respectively.
Then, the old state of the cell C,_; is updated as

G :ft G+ - &t (6)

Finally, an output gate (O, at sample time ¢) including the
sigmoid layer, shown as II-B.2, and the previous state of the
cell, shown as (6), are multiplied together through a tanh layer
to get the final output of the LSTM. The tanh layer is used to
guarantee the output of the previous state of the cell to be
bonded between -1 and 1.

O = o (Wolhi—1, x:] + bo) N
h; = O, tanh (C;) (8

2) ATTENTION MECHANISM
When a large amount of input information is input into neural
networks, the influence of the different inputs on the output
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value is different. To improve the computational efficiency of
neural networks, more computing power is allocated to the
important input information for the same output, and this is
called the attention mechanism.

The attention mechanism is calculated in two steps, the first
step is to calculate the attention distribution value «; on all
input values; and another step is to calculate the weighted
average of the input information for a single output value.
The attention mechanism is shown in FIGURE 2.

FIGURE 2. Attention structure.

where x; is the input value, q is the query vector of the
neural network, s is the score function of the attention, «; is
the attention distribution value of all input values for the query
vector q.

The score function can be expressed as

s(xi, q) = x] Wq )

where, W is neural network parameters that can be learned
autonomously. Taking the softmax value of (9), one can get
the attention distribution «;, shown as

o; = softmax (s (x;, q)) (10)

a is the weighted average of the attention distribution value «
and the input value x;, and it can be expressed as

N
a = Zaixi (11)
i=1

3) EMBEDDING

To ensure that the network can learn the categorical features
such as time and wind direction, the embedding, a widely
used structure in natural language processing, is applied here.
The embedding is used to map the discrete features, such as
the category number of the wind direction D, and a matrix
D X nemp is obtained after embedding. In the matrix, 7., is
the potential features, and the same processing is performed
for other time features.

VOLUME 7, 2019

Category features

NWP features ) . .
(time, wind direction)

LSTM-Attention block

Embedding block

Merge layer

Output block

FIGURE 3. Improved LSTM network.

4) THE IMPROVED DEEP LEARNING NETWORK

To better learn the numerical features and categorical features
for a long time, and an improved LSTM network for PV
output prediction is shown in FIGURE 3.

The improved LSTM network is made up by several
blocks, and they include continuous features (NWP features)
and categorical features (time and wind direction), LSTM-
attention block, embedding block, merge layer and the output
block. NWP features and categorical features are the input
of the improved LSTM network. LSTM-attention block is
used to memorize and attend the historical information, and
embedding block is used to encode the categorical features.
The merge layer is used to connect the LSTM-attention block
and embedding block together, and the output block is to
output the prediction results of PV power output. A detailed
connection of each block of the improved LSTM network is
shown in FIGURE 4.

1) The LSTM block consists of two layers of LSTM fol-
lowed by two layers of fully connected (FC) layers. A residual
connection is added for LSTM layer and FC layer to improve
the gradient disappearance problem in the multilayer neural
networks [35]. The attention layer is connected between the
LSTM layer and the FC layer, and it is used to focus on the
important information.

2) The embedding block is used to encode each category
feature, such as wind direction, the month of the year, and
the minute of the hour. Then, these features will be merged,
and finally they are connected to two layers of FC. A residual
connection is also added to the FC layer.

3) The output block is used to output the prediction results
with two layers of FC.

C. BAYESIAN OPTIMIZATION

Bayesian optimization is usually used to select the optimal
parameters in the machine learning process. Compared with
the grid search method, the Bayesian optimization has the
following advantages: 1) the prior distribution is continuously
updated based on the previous parameters; 2) due to the small
number of iterations, it is more efficient when the parameter
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LSTM- Attention

Embedding

Residual Connection

FIGURE 4. The detailed improved LSTM structure.

dimension is large; 3) it is robust to the non-convex problem,
while the grid search is easy to fall into the local optimal
solution.

In the process of Bayesian optimization, the loss function
of the parameter fitting model is a Gaussian process, and
parameters are updated to get the posterior probability of
this function. To reduce the computational cost of the model,
the optimal combined features are obtained in Bayesian opti-
mization where the features presented in section 1.1 are
selected as the parameters.

The following parameters, time window ¢, the number of
statistical features numl, and the number of the combined
features num?2, are optimized by Bayesian optimization.
To constrain the features dimension and optimize the model
parameters, the combined parameters of the sample is con-
structed as combined features [p1, p2, . . ., pg]. The process of
Bayesian optimization is described as

1) According to the combined parameters, the loss function
is estimated as a Gaussian process;

Part of the combined parameters [pi, p2, ..., pr] are
selected to calculate their corresponding loss functions
[L(p1), L(p2),..., L(p;)], then the parameters and the loss
functions are combined to get parameters-loss functions set.

D]rz{(pS7L(pS))7s=17"'r}

The estimated loss function obeys Gaussian distribution,
and Gaussian distribution of L(p1.-) can be expressed as

12)

L (p1.r) ~N (0, K)

k(plvpl) k(pl’pr)
. ) 13)
K =

k (pr,p1) k (pr, pr)
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where, k is the core function, and it is used to represent the
covariance.

2) Sample selection using expected improvement (EI)
function;

The new sampling point is determined by comparing the
loss function of the new sampling point with the current
sampling point, and this mathematical expectation is called
EI function. The Three-structured Parzen Estimator (TPE) is
used to establish the EI function [39], and the present p™ is
selected as the optimal combined parameters, with y*, greater
than L(p™), as the threshold value, and the EI function is
expressed as

*

Y
Ely (p) = /_ O =y ¢lp)dy
_ e ) [ p 0 dy

(14)
e+ A —-y)gp)
ey ity <y

POWI=1 0y ity =y

where, £(p) is the distribution function which is smaller than
y*, g(p) is the distribution function which is greater than y*.
The point that makes the EI function the largest is selected as
the sampling point.

Prew = argmax EI (p) (15)
p

3) Update Gaussian distribution;
After adding the new sample, the new Gaussian distribu-
tion can be expressed as

L (plzr) ~ N 0’ I/{T k/
L (Ppew) k' k (Pnew, Prew) (16)

k' = [k Pnew,P1) -+ s k (Pnew, Pr)]
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The Gaussian distribution of L(p,41) is calculated as [40]

P (L (Pnew |D1:rs Prew)) ~ N <M, 0'2)
M= KTK='L P1:r) a7
02 =k (Dnew> Pnew) — k TK?lk/

4) Loop 2) and 3) until the maximum number of the iter-

ation is reached and the optimal output point at the present
state is calculated.

NWP features

Category
features

.. . Combined Time, wind
Original features Statistical features features features
[ I i I
’ LSTM-Attention-embedding model

Bayesian optimization for ¢, num1, and num?2 ‘

No
Optimal loss function

Training out the PV output fitting model

End

FIGURE 5. The flowchart of PV power prediction.

lll. PREDICTION OF PV POWER OUTPUT

A. THE FLOWCHART OF PV PREDICITION

The flowchart of the PV prediction is shown in FIGURE 5.
According to the meteorological factors, the statistical fea-
tures and the combined features are constructed, and the
time features are also extracted. Then, the LSTM-attention-
embedding model is built up. To reduce the redundancy of the
features, the Bayesian optimization is used to optimize the
parameters. With the optimization method, the optimal time
window, the number of statistical features and the number of
the combined features are obtained. Finally, the prediction
model of the PV power output is trained based on the avail-
able data.

B. EVALUATION INDEX
To quantify how well a prediction model is, mean squared
error (MSE), mean absolute error (MAE), coefficient of
determination (R?) and root mean squared error (RMSE)
are used to analyze the experimental results. All evaluation
indexes are based on the difference between each predicted
value and the actual value.

1) Mean squared error

n

1 .
MSE = -3 (i — 51)? (18)
i=1
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2) Mean absolute error

N =
MAE (y,y) = ;Z(;b’i—}’i’ (19)
1=l
3) Coefficient of determination
n—1 2
2) (yi - yl)
2 (0 8\ 1 =
RE(nj)=1-"—— (20)

2

IV. EXPERIMENT ANALYSIS

A. DATA ACQUISITION AND SIMULATION
CONFIGURATION

The dataset used for the experiment was collected from a PV
power output dataset within 25 months (from 1% April 2016 to
301 April 2018) from two PV stations located in one
area of China, and the sampling frequency of the data is
1.1x1073 Hz (every 15min for one point). From the PV
stations, we can get day-ahead historical meteorological data,
which is same as NWP data. The information of each PV
station is shown in TABLE 1, and the sampling data of each
station includes time, irradiance, wind direction, tempera-
ture, pressure and humidity, with the resolution of 15 mins.
Detailed meteorological factors are predicted by in-house
model, which are listed as IV-B.

TABLE 1. Information of each PV station.

The number of

PV station Time window
datasets
Training set 2016/4/1 0:15:00—2017/12/12
Station 1 53488 17:00:00
Test set 2017/12/12 17:15:00—2018/4/30
13371 23:45:00
Training set 2017/1/1 0:00:00—2018/1/29
Station 2 35005 20:15:00
Test set 2018/1/29 20:30:00—2018/4/30
8750 23:45:00

Due to advantages of being easy and simple, Keras toolkit
is used to build up the deep learning network. In the network,
python is used to program, NumPy and pandas are used for
data processing, and matplotlib and seaborn are used for
drawing. Our computer resources consist of an 17-9000 CPU,
32GB RAM, and GPU 2080Tix2. The learning and exper-
imental phase of the proposed model are conducted in the
GPU environment.

B. PARAMETERS OPTIMIZATION

The detailed training parameters for the improved deep learn-
ing model is shown in TABLE 3. The method for the param-
eter initialization can be found in [32].
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TABLE 2. The detailed meteorological parameters.

Time Irradiance Wind speed Wind angle Temperature Pressure Humidity
(W/m’) (m/s) ©) (&) (kPa) (%)
2017-01-01 23:59:59.994 -1.0 -0.811321 340 -0.486869 0.393939 -0.062500
2017-01-02 00:14:59.994 -1.0 -0.811321 342 -0.490909 0.393939 -0.062500
2017-01-02 00:29:59.994 -1.0 -0.801887 346 -0.494949 0.393939 -0.041667
2017-01-02 00:44:59.994 -1.0 -0.801887 349 -0.498990 0.393939 -0.041667
2017-01-02 00:59:59.994 -1.0 -0.801887 349 -0.503030 0.393939 -0.041667
TABLE 3. Training parameters used in the model. TABLE 5. Search Space.
Parameters Value Parameter The range of
Learning rate 0.001 Parameters description arame%ers Sampling method
Batch size 100 P P
Loss Function MSE . . . .
Epoch 300 t Time window [1,96] Discrete random sampling

Optimization method Adam Optimizer

TABLE 4. Parameters for different models.

Model Parameters
LSTM [LSTM (128)-LSTM (64)-FC (32)-FC (1)]
BPNN [FC (128) FC (64)-FC (32)-FC (1)]

SVR kernel="rbf', C=100, gamma=0.01
Persistence At =96

To verify the effectiveness of the proposed model, LSTM,
BPNN, SVR, and Persistence [41] are compared. The detailed
parameters are shown in IV-C. LSTM and BPNN model
are neural networks that are used to layer stack structures,
the parameters show the connection between each layer, the
word before () represents the neural network layer, and the
number in () represents the number of neural units of one
layer.

C. DATA ANALYSIS

According to features construction method of meteorological
factors, such as irradiance, temperature, humidity, pressure
and wind speed presented in section 1.1, three statistical
features are extracted for each factor. Then the number of sta-
tistical features is 15 (5x3). Among the combined features,
2xC(215 +5) features are added due to the exchangeability of
the addition and multiplication, and 2x2xC, 215 +5) features
are added due to the unchangeability of the subtraction and
the division, an additional 5 time features and one wind
direction features are added, and the total number of features
is 54+1542x Cli5,5+2X2x Cis5 56 = 1166.

Since excessive features will significantly increase the
training time of the model, the computational cost will also
be increased. To reduce the number of features, the effective
features are selected by Bayesian optimization, and search
space is shown in TABLE 5.

In our experimental process, LSTM-attention-embedding
model needs 433s to find optimal features, while BLSTM-
attention-embedding model requires 73610s. Obviously
seeing that the time required for BLSTM-attention-
embedding model is multiplied compared to LSTM-
attention-embedding, and this is the disadvantage of the
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num] The number of statis- 1, 5]

. Di li
tical features iscrete random sampling

-~ The number of com- [2,15]

bined features Discrete random sampling

proposed method. However, the training and prediction cost
after finding the optimal features are equivalent to other
models. Also, once the optimal features are selected by
Bayesian optimization, and a more accurate prediction can
be obtained without demand to optimize features every time.
This is the advantage of BLSTM-attention-embedding.

The experimental dataset of PV station 1 is divided into
a training dataset and a test dataset in chronological order
of 8:2, and the test error is selected as the target of Bayesian
optimization. The iteration steps are 200, and the optimal
parameters appear at the step of 199, and the optimal param-
eters are {t =18, num; = 3, numpy = 12} with MSE
of 0.66MW. Compared with the model {t =48, num; =5,
numy = 15} without any optimization, the MSE is decreased
by 0.142MW, and the features dimension is also effectively
reduced. Due to the redundant features and the invalid fea-
tures are eliminated, the computational cost of the model
is significantly reduced. The joint distribution map of the
optimization process is shown in FIGURE 6. The selected
optimal features are listed in TABLE 6, and numl and
num?2 are statistical features and combined features, respec-
tively. Among them, the most important feature is the irra-
diance, and this is in line with the real situation. That is
because the fundamental of photovoltaic power generation is
to convert solar energy into electrical energy.

D. DAY-AHEAD PREDICTION RESULTS
To demonstrate the effectiveness of the proposed method,
the following models are compared.

1) Model 1: The BLSTM-attention-embedding model
is the prediction model, and the features obtained from
section 1.1 are the model input;

2) Model 2: The LSTM-attention-embedding model is the
prediction model, and the features obtained from section 1.1
are the model input;
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TABLE 6. Features selection result.

numl num?2
Irradiance Irradiance Pressure Temperature-std Irradiance-std
Temperature Humidity Wind speed Temperature-mean Irradiance-max
Pressure Temperature Wind angle Humidity-mean Pressure-std
accurate the prediction is. From FIGURE 8, we can see that
] BLSTM-attention-embedding model has the best symmetry
about the solid line, and the scatter points in LSTM-attention-
embedding model, LSTM model, BPNN model and SVR
4 . . .
. model are more biased toward true PV data, while persistence
model is symmetrical but the points spread too widely. The
S del is sy trical but the points spread t dely. Th
[Sa] < . . . . . . .
% 3 situation of station 2, shown in FIGURE 9, is similar to that
of FIGURE 8, but the overall performance is significantly
2 worse due to less training samples.
-
TABLE 7. Errors Comparison with Different Models
S Models (PV station 1) MSE MAE R RMSE
BLSTM-Attention-Embedding 1.287 0.621  0.879 1.135
FIGURE 6. Parameter of Persistence and RMSE. LSTM-Attention-Embedding 1289 0.651  0.875  1.144
LSTM 1309 0.685 0837 1.195
BPNN 1427 1002 0822 1229
SVR 1511 1.043 0812 1503
Persistence 2.259 1.022  0.780 1.503
Models (PV station 2) MSE MAE R RMSE
BLSTM-Attention-Embedding ~ 1.235 0.613 0.843  1.111
. . LSTM-Attention-Embedding ~ 1.401  0.726 0.822  1.184
0.5 LSTM 1498 1.015 0810 1.224
. BPNN 1.594  1.059 0.798 1.263
.. . o SVR 1720 1.108 0.782 1311
. Y . - Persistence 2.545 1.154 0.676 1.596
z 080 - * . . e
E ‘o . . ¢ .
L] . . .
£ oo e . e The errors of the prediction results of PV station 1 and
w o °° : e . . PV station 2 with different models are shown in TABLE 7.
o . .
. :'0 P 8, .:': ...:: “...,. It shows BLSTM-attention-embedding model has the best
L) L]
070 .‘o ;'. . ..o:- N 'v . .:;- MSE, MAE, R? and RMSE, and followed by LSTM model,
L] L] . . .
« ™ ‘:.' : K 4 .':“'.?o BPNN model, SVR, and Persistence model. The prediction
L] L) . .
nes d ot accuracy of PV power output can be effectively improved by

o 5 50 75 o0 125 150 175 200
Number of iterations

FIGURE 7. The joint distribution map of errors with the number of
iterations.

3) Model 3: The LSTM model is the prediction model, and
the original features are the model input;

4) Model 4: The BPNN model is the prediction model, and
the original features are the model input;

5) Model 5: The SVR model is the prediction model, and
the original features are the model input;

6) Model 6: The persistence model is the prediction model,
and historical time series of PV power are the model input.

FIGURE 9 compare the scatter plots of the predicted
PV data with the true data by using different models for
station 1 and station 2, respectively. The solid lines indicate a
perfect forecast, while the star-marks indicate an instance of
prediction. The closer a star-mark is to the solid line, the more
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using LSTM-attention-embedding model, and after Bayesian
optimization, the prediction accuracy can be further improved
since more diverse effective features can provide more useful
information for training the model. The proposed LSTM-
attention-embedding model can learn the long-term tendency
and short-term mutation tendency of PV power genera-
tion, and Bayesian optimization can remove the redundant
features and select the optimal effective features to improve
the prediction accuracy of PV power output.

Regarding the prediction performance between PV
station 1 and PV station 2, index R? is selected as eval-
uation index, since R? is the only index to show the fit
degree between the predicted data and the true data without
any limitations to training samples. However, index MSE,
MAE and RMSE are positively correlated with the true data,
and they are used to evaluate the prediction performance
based on the same dataset. We can see that PV station
1 has higher value on index R?, and its overall prediction
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FIGURE 8. Scatter plots of the true and predicted PV data for all models on station 1.
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FIGURE 9. Scatter plots of the true and predicted PV data for all models on station 2.

performance is better than the PV station 2 due to that
station 1 has more dataset. The prediction performance of
LSTM-attention-embedding model with Bayesian optimiza-
tion can be significantly improved compared with other mod-
els. The effectiveness of features construction and Bayesian
optimization has been verified, and both can effectively
improve the prediction accuracy of PV power output.

To further verify the superiority of the proposed model,
the prediction results of PV power output under three typ-
ical weather conditions are analyzed on two PV stations.

Since there is no PV output at night, 64-time samples at
daytime are selected as the experimental results of PV output.

1) The prediction results at sunny weather

The real-time prediction curves of the PV power output of
two stations at sunny weather are shown in FIGURE 10. The
PV output prediction of each model is relatively accurate at
sunny weather, and this is mainly because the PV power curve
at sunny days is smooth and less fluctuating. Compared with
other models, the proposed BLSTM-attention-embedding
model is closer to experimental results.
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FIGURE 10. The prediction results at sunny weather.

TABLE 8. Prediction errors at sunny weather.

Models (PV station 1) MSE MAE R’ RMSE
BLSTM-Attention-Embedding ~ 0.130  0.265 0.990  0.361
LSTM-Attention-Embedding 0.513  0.587 0.961 0.717

LSTM 0.721 0.698 0946  0.849

BPNN 0.792 0.740 0.940  0.890

SVR 0.871 0.783 0.934 0933
Persistence 1.179  0.827 00911 1.086
Models (PV station 2) MSE MAE R RMSE

BLSTM-Attention-Embedding ~ 0.221  0.258 0985  0.470
LSTM-Attention-Embedding 0.583  0.559 0.961 0.821

LSTM 0.639 0.589 0957 0.799
BPNN 0.674 0.562  0.955 0.763
SVR 0.707 0.618 0.953 0.841
Persistence 0.808 0.567 0.945 0.899

The prediction errors of different models at sunny weather
are summarized in TABLE 8. Compared to LSTM, BPNN,
SVR, and Persistence model, the prediction accuracy of
LSTM-attention-embedding model is slightly improved.
However, the performance of BLSTM-attention-embedding
model with Bayesian optimization has been significantly
improved, showing high fitting degree due to the optimal
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characteristics used. We can conclude that the proposed pre-
diction model can improve the prediction accuracy of PV
power output and can reflect the tendency of the PV power
generation at sunny weather.

2) The prediction results at cloudy weather

The real-time prediction curves of the PV power output
of two stations at cloudy weather are shown in FIGURE 10.
Since more effective features are obtained from BLSTM-
attention-embedding model and LSTM-attention-embedding
model, and these models can capture the fluctuation of
PV power output very well. BLSTM-attention-embedding
model and LSTM-attention-embedding model are closer to
experimental results compared with other models. However,
the prediction accuracy of each model at cloudy weather is
lower than that at sunny weather.

TABLE 9. Prediction errors at cloudy weather.

Models (PV station 1) MSE MAE R RMSE
BLSTM-Attention-Embedding 1.193 0.599 0.909 1.092
LSTM-Attention-Embedding 1.454 0.859 0.889 1.206

LSTM 1.332 0.827 0.898 1.154

BPNN 1.331 0.806 0.898 1.153

SVR 1.361 0.864 0.896 1.167

Persistence 1.925 0.806 0.865 1.388
Models (PV station 2) MSE MAE R RMSE
BLSTM-Attention-Embedding 1.192 0.745 0.888 1.092
LSTM-Attention-Embedding 1.279 0.87 0.880 1.131
LSTM 1.215 0.84 0.886 1.102

BPNN 1.541 0.978 0.855 1.241

SVR 1.363 0.901 0.872 1.167

Persistence 2.249 1.001 0.846 1.500

The prediction errors of different models at cloudy
weather are summarized in TABLE 9. Compared to LSTM,
BPNN, SVR, and Persistence model, the prediction accuracy
of LSTM-attention-embedding model is slightly improved.
BLSTM-attention-embedding model with Bayesian opti-
mization has a slight improvement in accuracy based on
LSTM-attention-embedding model since attention mecha-
nism in LSTM unit can capture the tendency of PV power
generation. Therefore, the proposed model can improve the
prediction accuracy of PV output at cloudy weather, but the
model has a lower accuracy than that at sunny weather.

3) The prediction results at rainy weather

The real-time prediction curves of the PV power output
of two stations at rainy weather are shown in FIGURE 12.
It is difficult to capture PV power generation due to more
fluctuate and violent at rainy weather. Therefore, the predic-
tion performance of PV power output of each model is not as
good as sunny and cloudy weather, and even the prediction
accuracy of BLSTM-attention-embedding model and LSTM-
attention-embedding model are not close to experimental
results. However, we can still see that LSTM-attention-
embedding model can represent the general tendency of PV
power generation, and BLSTM-attention-embedding model
is more easily to capture the sudden variation of the PV power,
since the features after Bayesian optimization can effectively
predict the PV power output, and it allows the model to
capture the PV power more accurately.
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FIGURE 11. The prediction results at cloudy weather.

TABLE 10. Prediction errors at RAINLY weather.

Models (PV station 1) MSE MAE R RMSE
BLSTM-Attention-Embedding 1.906 0.774 0.771 1.381
LSTM-Attention-Embedding 1.875 0.762 0.773 1.369
LST™M 2.121 0.850 0.743 1.456

BPNN 2.209 0.844 0.732 1.486

SVR 2.086 0.869 0.747 1.444

Persistence 3.099 1.322 0.438 1.760

Models (PV station 2) MSE MAE R’ RMSE

BLSTM-Attention-Embedding 1.906 0.944 0.683 1.380
LSTM-Attention-Embedding 3.195 1.221 0.468 1.787

LSTM 3.474 1.272 0.422 1.864
BPNN 3.330 1.245 0.446 1.825
SVR 3.588 1.235 0.403 1.894
Persistence 4.126 1.467 0.314 2.031

The prediction errors of different models at rainy weather
are summarized in TABLE 10. The prediction accuracy of
BLSTM-attention-embedding model and LSTM-attention-
embedding model for the PV station 1 is higher than that for
PV station 2 due to more training datasets of PV station 1.
Due to the randomness of PV power on rainy weather, the
LSTM-attention-embedding model shows better accuracy on
some individual rainy days, and this is the part that needs to
be improved in the future work. The proposed method can
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FIGURE 12. The prediction results at rainy weather.

improve the prediction accuracy of PV output on rainy days,
but the accuracy is limited. This is the present challenge in
predicting the PV power. In [33] and [42], the prediction
accuracy on rainy days is also relatively poorer than the
cloudy and sunny days.

V. CONCLUSION

PV power output is strongly related to the meteorological
factors, and it shows the intermittency and volatility. Large-
scales of PV fed to the grid will challenge the power balance
of the grid, leading to a series of disturbances. Accurate pre-
diction of PV power output is an effective way to eliminate the
problems caused by a high proportion of PV grid. Therefore,
a BLSTM-attention-embedding model is proposed for the
prediction of PV power output, with features construction of
meteorological factors.

Several blocks are included in BLSTM-attention-
embedding model, and they are: 1) LSTM, which is used to
input meteorological factors and attend historical informa-
tion; 2) Attention mechanism, which is used to focus on the
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import features; 3) Embedding, which is used to encode each
feature; 4) Bayesian optimization, which is used to remove
the redundant features and select more effective combined
features.

The prediction results show the effectiveness of the pro-
posed method. The LSTM-attention-embedding model can
effectively improve the prediction accuracy of PV power
generation, and after Bayesian optimization, the prediction
accuracy can be further improved. Due to more effective
diverse features are obtained, LSTM-attention-embedding
model can learn the long-term and short-term tendency of PV
power generation, and Bayesian optimization can optimize
combined features to improve the prediction accuracy of PV
power generation.

The proposed method in this paper shows that the forecast
performance on rainy days is relatively poorer than that on
cloudy and sunny days. Therefore, the prediction perfor-
mance of PV power on rainy days should be further improved
in the future research work.
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