344 research outputs found

    POLYNOMIAL STATIC OUTPUT FEEDBACK H ∞ CONTROL FOR CONTINUOUS-TIME LINEAR SYSTEMS VIA DESCRIPTOR APPROACH

    Get PDF
    International audienceThis paper deals with the problem of the robust static output feedback H ∞ control (SOFC) for continuous linear systems with polytopic uncertainties. The controller has been gotten by the use of descriptor redundancy. Under this approach a sufficient condition is provided for the existence of a solution to the problem. Thus, the advantage of this method is to obtain more free matrices in the design condition, also the polynomial approach helps to have a less conservative result. In the end, the performance of the method is shown by several examples

    Complexity Reduction for Parameter-Dependent Linear Systems

    Full text link
    We present a complexity reduction algorithm for a family of parameter-dependent linear systems when the system parameters belong to a compact semi-algebraic set. This algorithm potentially describes the underlying dynamical system with fewer parameters or state variables. To do so, it minimizes the distance (i.e., H-infinity-norm of the difference) between the original system and its reduced version. We present a sub-optimal solution to this problem using sum-of-squares optimization methods. We present the results for both continuous-time and discrete-time systems. Lastly, we illustrate the applicability of our proposed algorithm on numerical examples

    Sufficient and Necessary LMI Conditions for Robust Stability of Rationally Time-Varying Uncertain Systems

    Get PDF
    published_or_final_versio

    LMI techniques for optimization over polynomials in control: A survey

    Get PDF
    Numerous tasks in control systems involve optimization problems over polynomials, and unfortunately these problems are in general nonconvex. In order to cope with this difficulty, linear matrix inequality (LMI) techniques have been introduced because they allow one to obtain bounds to the sought solution by solving convex optimization problems and because the conservatism of these bounds can be decreased in general by suitably increasing the size of the problems. This survey aims to provide the reader with a significant overview of the LMI techniques that are used in control systems for tackling optimization problems over polynomials, describing approaches such as decomposition in sum of squares, Positivstellensatz, theory of moments, Plya's theorem, and matrix dilation. Moreover, it aims to provide a collection of the essential problems in control systems where these LMI techniques are used, such as stability and performance investigations in nonlinear systems, uncertain systems, time-delay systems, and genetic regulatory networks. It is expected that this survey may be a concise useful reference for all readers. © 2006 IEEE.published_or_final_versio

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Establishing robust stability of discrete-time systems with time-varying uncertainty: the Gram-SOS Approach

    Get PDF
    This paper addresses the problem of establishing robust asymptotical stability of discrete-time linear systems polynomially affected by time-varying uncertainty confined into a polytope. A linear matrix inequality (LMI) condition for establishing robust asymptotical stability is proposed by introducing a novel approach for establishing the existence of a common homogeneous polynomial Lyapunov function (HPLF). This approach consists, firstly, of introducing a Gram matrix built with respect to the state and parametrized by an arbitrary vector function of the uncertainty, and secondly, of requiring that a transformation of the introduced Gram matrix is a sum of squares (SOS) of matrix polynomials. The approach, hence, is referred to as a Gram-SOS approach. It is shown that the proposed LMI condition is sufficient for any degree of the HPLF candidate, that includes quadratic robust stability as a special case, and that is also necessary for a sufficiently large degree of the HPLF candidate. Numerical examples also show that the proposed LMI condition can outperform alternative ones in terms of conservatism and computational burden. © 2014 Elsevier Ltd.postprin

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Optimum Multiobjective Regulator with Variable Gain Matrix Applied to an Industrial Process

    Get PDF
    In this paper, it is presented the design and tuning of a robust multi-objective regulator, with variable gain matrix through Linear Matrix Inequalities (LMI). The tuning presented here guarantees for an uncertain model under polytopic representation to satisfy simultaneously multiple objectives such as, asymptotic stability, minimization of the H2-norm, robustness and restrictions imposed on the manipulated variable. Finally, as an application example, this tuning is applied to a Continuous Stirred Tank Reactor (CSTR) typical of the chemical industry.Fil: Cappelletti Carlos A. Universidad Tecnológica Nacional, Facultad Regional Paraná, Entre Ríos, Argentina.Fil: Adam, Eduardo J. (1); Bernardi, Emanuel (2); Pipino, Hugo (2) (1) Facultad de Ingenierı́a Quı́mica, Universidad Nacional del Litoral, Santa Fe, Argentina. (2) Universidad Tecnológica Nacional, Facultad Regional San Francisco, Argentina.Peer Reviewe
    corecore