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Sufficient and Necessary LMI Conditions for Robust
Stability of Rationally Time-Varying Uncertain Systems

Graziano Chesi, Senior Member, IEEE

Abstract—This technical note addresses robust stability of uncertain
systems with rational dependence on unknown time-varying parameters
constrained in a polytope. First, the technical note proves that a sufficient
linear matrix inequality (LMI) condition that we previously proposed,
based on homogeneous polynomial Lyapunov functions (HPLFs) and on
the introduction of an extended version of Polya’s theorem, is also neces-
sary. Second, the technical note proposes a new sufficient and necessary
LMI condition by exploiting properties of the simplex and sum-of-squares
(SOS) parameter-dependent polynomials. Lastly, the technical note in-
vestigates relationships among these conditions and conditions based on
the linear fractional representation (LFR). It is worth remarking that
sufficient and necessary LMI conditions for this problem have not been
proposed yet in the literature.

Index Terms—Lyapunov function, rational dependence, time-varying,
uncertain system.

I. INTRODUCTION

Studying robust stability is a fundamental problem in systems with
uncertainty that basically amounts to establishing whether an equilib-
rium point is stable for all the admissible values of the uncertainty.
Several frameworks have been proposed for addressing this problem,
in particular based on Lyapunov functions (LFs). For instance, in [1],
[2] robust stability conditions are obtained based on the existence of
parameter-dependent LFs for time-invariant uncertainty and common
LFs for time-varying uncertainty. LMI conditions for robust stability
are introduced in the pioneering book [3] and successively extended
in numerous directions, in particular by exploiting SOS polynomials,
see e.g. [4] which reviews relaxations based on the S-procedure and
addresses the construction of asymptotically exact relaxations, and [5]
which proposes a framework for robustness analysis of polytopic sys-
tems with time-invariant and time-varying uncertainties. See also [6]
and references therein for pioneering studies in the field of SOS poly-
nomials, and [7] for a survey of techniques based on SOS polynomials
in control systems.
Concerning uncertain systems affected by time-varying uncertainty,

existing works typically consider the case of systems linearly depen-
dent on an uncertain vector constrained into a polytope. Pioneering
works have investigated the existence of quadratic LFs, see e.g. [8]. In
order to reduce the conservatism, methods based on nonquadratic LFs
have been proposed. In particular, necessary and sufficient conditions
for asymptotic stability of a class of differential inclusions are provided
in [9]. The construction of piecewise quadratic LFs is proposed in [10]
for two-term LFs by using the S-procedure, in [11] for nonlinear and
hybrid systems providing connections with frequency domain methods
such as the circle and Popov criteria, in [12] by combining genetic al-
gorithms with LMIs for addressing robust control design, and in [13]
by introducing the class of composite LFs for studying systems with
input and state constraints. Conditions based on polyhedral LFs are
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considered in [14] which provides a constructive approach for the case
of complex matrices, in [15] which proves non-conservatism of this
class for linear systems with time-varying uncertainties and input dis-
turbances, and in [16] which provides a universal class of LFs in the
form of powers of norms by smoothing polyhedral LFs. The con-
struction of HPLFs is addressed in [17] which provides sufficient con-
ditions based on convex optimization, in [18] which proposes the use
of SOS polynomials, and in [19] which proves that the conditions in
[18] are not only sufficient but also necessary. Some of these methods
have been extended to address the case of rational dependence on the
uncertainty. For instance, [20] investigates the existence of quadratic
LFs through the LFR, [21] extends this method to establish the exis-
tence of HPLFs through the LFR, and [22] investigates the existence
of HPLFs through the introduction of an extended version of Polya’s
theorem.
This technical note addresses robust stability of uncertain systems

with rational dependence on unknown time-varying parameters con-
strained in a polytope. First, the technical note proves that the suffi-
cient LMI condition that we previously proposed in [22] is also nec-
essary for a sufficiently large degree of the HPLF. Second, the tech-
nical note proposes a new sufficient and necessary LMI condition via
HPLFs by exploiting properties of the simplex and SOS parameter-de-
pendent polynomials. Lastly, the technical note investigates relation-
ships among these conditions and conditions based on the LFR, in par-
ticular showing that the proposed conditions are not more conservative
than the conditions in [20] (based on quadratic LFs) and [21] (based on
HPLFs). Some numerical examples illustrate the proposed results. A
preliminary version of this technical note (where necessity of the con-
ditions is proved only for second-order systems) appeared in [23].
The technical note is organized as follows. Section II introduces

the problem formulation and some preliminaries on the representation
of polynomials. Section III provides the proposed results. Section IV
presents some illustrative examples. Lastly, Section V concludes the
technical note with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

Notation: : natural and real number sets; : origin of ;
: ; identity matrix; : transpose of ;

: symmetric positive definite (semidefinite) matrix
; ; : first derivative row vector of the

function ; : convex hull of vectors ;
: block diagonal matrix with blocks ; :

corresponding block in symmetric matrices.
We consider the system

(1)

where is the state vector, is the time-varying
uncertain vector, is a matrix rational function, and

is a bounded convex polytope expressed as

(2)

where are given vectors. The matrix rational func-
tion is expressed as

(3)
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where is a matrix polynomial and is a
polynomial. Throughout the technical note we assume that ensures
the existence of the solution of (1), and that

(4)

Let us observe that (4) ensures that is bounded for all admis-
sible values of , which is reasonable especially when repre-
sents a real system.
Problem. The problem that we consider in this technical note con-

sists of establishing whether the origin is a robustly asymptotically
stable equilibrium point of (1), i.e.

(5)

B. Gram Matrix Method

For , let be a homogeneous polynomial of degree .
Let be a vector containing all monomials of degree
equal to , where

(6)

Then, can be written as

(7)

where is a symmetric matrix such that
, is a linear

parametrization of the linear subspace

(8)

and is a free vector with

(9)

The representation (7) is known as Gram matrix method and square
matricial representation (SMR), and allows one to establish whether a
polynomial is SOS via an LMI. Indeed, is SOS if and only if there
exists such that . See, e.g., [7] for details.

III. ROBUST STABILITY ANALYSIS

A. Equivalent Models

First of all, let us observe that (1) can be equivalently represented
with other models. A well-known one exploits the LFR, see e.g. [20].
With the LFR model, (1) can be rewritten as

(10)

where , and are as in (1), are auxiliary vec-
tors with for some nonnegative integers ,
and , , , and are appro-
priate matrices. Indeed, in (1) is related to the matrices in (10)
by

(11)

Consequently, the LFR is said well-posed if

(12)

It is useful to observe that, since in (3) can be selected equal to
, assumption (4) coincides with (12). For (10) the LFR

degree is defined as . As varies in ,
describes a polytope of matrices, whose vertices are given by

(13)

Another model for representing (1) consists of adopting a canonical
set for the uncertain vectors, in particular the simplex. Indeed, (1) can
be rewritten as

(14)

where is the simplex

(15)

is a new time-varying uncertain vector, and
is a matrix rational function that we express as

(16)

where is a matrix homogeneous polynomial and
is a homogeneous polynomial. The original uncertain

vector in (1) is related to by where

(17)

Thus, one has

(18)

B. Conditions for Robust Stability

One can establish robust stability of (1) by looking for a continuous
function such that

(19)

where and are the time derivatives of along the
trajectories of the systems (1) and (10), respectively. If such a function

exists, then is said a common LF.
Since the system is linear in the state, the candidate LF can

be chosen homogeneous in . Let us consider the case where such a
homogeneous function is polynomial. We can write the candidate
HPLF according to Section II-B as

(20)

where defines the degree of , which is equal to , and
.

Amethod for investigating robust stability of (1) throughHPLFswas
proposed in [5], [21] by exploiting the LFR model (10). Specifically,
for let be the matrix defined by

(21)
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The matrix is known as extended matrix of and can be calculated
via the formula

(22)

where is the matrix satisfying

(23)

and denotes the -th Kronecker power of . Define

(24)

Define also

(25)

where

(26)

Theorem 1 ([5], [21]): Let be an integer, and let be a
linear parametrization of in (25). The origin of (10) is robustly
asymptotically stable if there exist a symmetric matrix , matrices
and , and vectors satisfying the following system of
LMIs:

(27)

Moreover, if the LFR degree is , a less conservative con-
dition is obtained by requiring that there exist matrices and (in
place of and ) such that

(28)

Theorem 1 provides a condition for establishing whether there exists
a HPLF for (1) by exploiting its equivalent LFR model (10). This
condition has the advantage that the negative definiteness of for
all is investigated by checking only the vertices of . In fact, by
exploiting (10), it follows that is a homogeneous polynomial
in and that depends affine linearly on . One has that can
be written as where
satisfies , introduces some degrees
of freedom as given by the relationship be-
tween and in (10), and introduces other degrees of freedom
as given by the presence of monomials in

. Therefore, by imposing (27), (28), one imposes that and
have positive definite Gram matrices at the vertices of ,

hence implying (19). Theorem 1 includes for the conditions
proposed in [20] based on quadratic LFs, see [5], [21].
Another method for investigating robust asymptotical stability of (1)

through HPLFs was proposed in [22] together with an extension of
Polya’s theorem to the case of structured matrix polynomials. Specifi-
cally, for a nonnegative integer define

(29)

and express as

(30)

where , , and is the
degree of in (3).
Theorem 2 ([22]): Let and be integers, and let

be a linear parametrization of in (8). The origin of (1) is robustly
asymptotically stable if there exist a symmetric matrix and vectors

satisfying the following system of LMIs:

(31)

Theorem 2 provides a condition for establishing whether there exists
a HPLF for (1) by exploiting its equivalent model (14). This con-
dition is built by introducing an extension of Polya’s theorem, which
allows one to establish whether a homogeneous polynomial is
positive for all by requiring that has positive
coefficients for some integer . The extension of Polya’s theorem in-
troduced in Theorem 2 investigates whether is negative defi-
nite for all . This is done by requiring that the coefficients of

with respect to , which are homogeneous polyno-
mials in , have negative definite Gram matrices ,
hence implying that such coefficients are negative definite. This has
the advantage of providing a condition that is not only sufficient but
also necessary as it will be shown in Theorem 3. The disadvantage is
that, depending on the system under investigation, the computational
burden required by this condition can be large.
The first contribution of the technical note is to prove that the condi-

tion of Theorem 2 is not only sufficient but also necessary as explained
in the following result.
Theorem 3: The origin of (1) is robustly asymptotically stable if and

only if there exist and such that the condition of Theorem 2 holds.
Proof: Let the origin of (1) be robustly asymptotically stable.

From [16] a LF for (1) can be chosen as for some
full column rank matrix and some integer . This implies that one
can choose the LF where is any integer such that

. The time derivative of is given by

Since is a HPLF, there exists such that

From [24] this implies that there exists a sufficiently large (denoted
as ) such that, for any fixed , is positive definite and
SOS in . Let be replaced by , and define . Then, let us
observe that one can write where . Since

, it follows that can be chosen positive definite.
Similarly, one can write where
for all . Moreover, one can write for
some . Since , it follows
that can be chosen negative definite for all (just observe
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that with for all ). Summarizing,
one has that

Observe that satisfies

for some function , where is a linear
parametrization of the set in (8). Since is compact,
continuous, and for all , it follows that there exists a
homogeneous polynomial such that

Let be a homogeneous matrix polynomial satisfying

It follows that for all if and only if there exists an
integer such that

has negative definite matrix coefficients, see e.g. [7]. Let us define
, where is the degree of . We have that the -th matrix

coefficient of is given by

where is defined as in (30), and is a suitable vector. Therefore,
for all , and hence the condition of Theorem 2

holds.
The second contribution of the technical note is to propose a new

condition for investigating robust stability of (1), whose sufficiency and
necessity will be proved in Theorem 4 and Corollary 1, respectively.
Specifically, let us define the notation

(32)

and introduce the function

(33)

where is given by (29). We have that is a homogeneous
polynomial of degree in and in .We can express
as

(34)

where

(35)

and . Define also the linear subspace

(36)

whose dimension is given by

(37)

Theorem 4: Let and be integers, and let be
a linear parametrization of in (36). The origin of (1) is robustly
asymptotically stable if there exist a symmetric matrix and a vector
satisfying the following system of LMIs:

(38)

Proof: Suppose that (38) holds. Pre- and post-multiplying the first
LMI by and , respectively, we obtain that

which implies that is positive definite since for all
. Then, pre- and post-multiplying the first LMI by and
, respectively, we obtain that

which implies that for all since in such a case
. Let us define

where

First, observe that is a homogeneous polynomial since
is a homogeneous polynomial whose monomials have even degrees in
all entries of . Then, observe that for all if and
only if

Lastly, observe that

which implies that for all if and only if

and hence the theorem holds.
Theorem 4 provides a condition for establishing whether there exists

a HPLF for (1) by exploiting its equivalent model (14). This con-
dition investigates negative definiteness of for all , firstly,
by investigating such definiteness for . Then, the
constraint is eliminated through a transformation on , specifi-
cally by replacing with . Lastly, the negative definiteness of the
obtained homogeneous polynomial is investigated by requiring that its
Grammatrix (a Grammatrix for parameter-dependent poly-
nomials built according to the vector of monomials in (34)) is
negative definite. Similarly to Theorem 2, this has the advantage of
providing a condition that is not only sufficient but also necessary as it
will be shown in Corollary 1.
The third contribution of the technical note is to show an equivalence

result for the conditions of Theorems 2 and 4.
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TABLE I
EXAMPLE 1: LOWER BOUNDS OF PROVIDED BY THEOREMS 2 (A) AND 4 (B)

TABLE II
EXAMPLE 2: LOWER BOUNDS OF PROVIDED BY THEOREMS 2 (A) AND 4 (B)

Theorem 5: Let be an integer. Then, the condition of The-
orem 2 holds for some integer if and only if the condition of
Theorem 4 holds for some integer (with ).

Proof: Suppose that the condition of Theorem 2 holds for some
integer . Then, observe that the matrix can be obtained as

where . Hence, the condition of Theorem 4
holds with for some integer , in particular .
Then, suppose that the condition of Theorem 4 holds for some in-

teger . This implies that is positive definite and SOS.
Consequently, one has that

By proceeding as in the proof of Theorem 3, this implies that the con-
dition of Theorem 2 holds for some integer .
As a result, the condition of Theorem 4 enjoys the same nonconser-

vatism result of Theorem 2 according to the following corollary.
Corollary 1: The origin of (1) is robustly asymptotically stable if

and only if there exist and such that the condition of Theorem 4
holds.

Proof: Direct consequence of Theorems 3 and 5.
Lastly, the following corollary states that the conditions of Theorems

2 and 4 are not more conservative than the conditions of Theorem 1,
and hence not more conservative than the conditions in [20] which are
recovered in Theorem 1 for .
Corollary 2: Let be an integer, and suppose that at least one

of the conditions of Theorem 1 holds. Then, there exists such that the
conditions of Theorems 2 and 4 hold.

Proof: Direct consequence of Theorem 4 in [22] and Theorem 5
in the technical note.
Although both Theorems 2 and 4 provide sufficient and necessary

conditions, their computational burden can be significantly different
depending on the system under investigation. For instance, Section IV
shows some cases where, for the same degree of the HPLF, Theorem

4 allows one to ensure robust asymptotical stability with while
Theorem 2 fails even for (the computational time for the latter
is significantly larger than that of the former).

IV. ILLUSTRATIVE EXAMPLES

A. Example 1

Let us consider the uncertain system

where is an uncertain time-varying parameter constrained ac-
cording to . The problem consists of determining the
maximum , denoted by , for which the origin is robustly asymptot-
ically stable. Let us express the system as in (14). We have that ,

, and . The matrix homogeneous polynomial can
be expressed as in (16) with

and

Table I shows the lower bounds of provided by Theorems 2 and 4.
These lower bounds are found through a line search over performed
via a bisection algorithm.

B. Example 2

Here we consider the uncertain system (see the equation at the
bottom of the page). where is an uncertain time-varying param-
eter constrained according to . The problem consists of
determining the maximum , denoted by , for which the origin is
robustly asymptotically stable. In this case we have , ,
and . Table II shows the lower bounds provided by Theorems
2 and 4.

V. CONCLUSION

This technical note has proved that a sufficient LMI condition that we
previously proposed for robust stability of uncertain systems with ra-
tional dependence on unknown time-varying parameters constrained in
a polytope, through the introduction of an extended version of Polya’s
theorem, is also necessary. Second, the technical note has proposed a
new sufficient and necessary LMI condition by exploiting properties
of the simplex and SOS parameter-dependent polynomials. Lastly, the
technical note has investigated relationships among these conditions
and conditions based on the LFR.
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Optimal Linear Filters for Discrete-Time Systems
With Randomly Delayed and Lost Measurements

With/Without Time Stamps

Shuli Sun, Senior Member, IEEE

Abstract—A novel model is developed to describe possible random de-
lays and losses of measurements transmitted from a sensor to a filter by
a group of Bernoulli distributed random variables. Based on the new de-
veloped model, an optimal linear filter dependent on the probabilities is
presented in the linear minimum variance sense by the innovation analysis
approach when packets are not time-stamped. The solution to the optimal
linear filter is given in terms of a Riccati difference equation and a Lya-
punov difference equation. A sufficient condition for the existence of the
steady-state filter is given. At last, the optimal filter is given by Kalman
filter when packets are time-stamped.

Index Terms—Optimal linear filter, packet dropout, random delay,
steady-state filter.

I. INTRODUCTION

In recent years, the estimation problems for networked control sys-
tems and sensor networks have attracted a lot of attention due to the
wide applications in sensor positioning, signal processing and control
[1], [2]. In networked systems, random delays and packet dropouts al-
most exist in data transmission by unreliable communications. So, the
research on estimation problems over networks is significant [3], [4].
In networked systems, the phenomena of random delays and packet

dropouts can be described by stochastic parameters [5]–[18]. For sys-
tems with one-step random delay, Ray et al. [5] present a full-order
linear filter in the least-mean-square sense. However, it is suboptimal
by fixing it as the Kalman-like form. Yaz et al. [6] design a subop-
timal filter by treating a colored noise as a white noise. Based on the
covariance information approach, a recursive least-square linear esti-
mator is solved [7]. Moreover, the robust filter is also studied in [8].
For systems with multiple random delays, two filters dependent on
time stamps and probabilities are designed, respectively [9]. Recently, a
steady-state filter for systems with one-step random delay or packet
dropouts is proposed based on a unified stochastic parameterizedmodel
by the linear matrix inequality [10]. For a system with possible infinite
packet dropouts, the optimal linear estimators in the linear minimum
variance sense are presented by the innovation analysis approach [11],
and the full- and reduced-order linear estimators are also designed by
completing square [12]. Moreover, the filter for systems with bounded
consecutive packet dropouts is also developed [13]. However, the mul-
tiple random delays are not taken into account in [10]–[13]. So far,
the results above are focused on random delays or packet dropouts,
respectively. In [14], [15], the optimal linear estimators are presented
for systems with both random delays and packet dropouts, however,
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