128 research outputs found

    Big Data Management in Education Sector: an Overview

    Get PDF
    The advancement in technological innovation has given rise to a new trend known as Big Data today. Given the soaring popularity of big data technology, organisations are profoundly attracted to and interested in it to transform their organisation by improving their businesses. Big data is enabling organisations to outpace their competitors and save cost. Similarly, the application of Big Data management in Universities is an essential aspect to institutions that have Big Data to manage; as the use of Big Data in the higher education sector is increasing day by day. Many studies have been carried out on big data and analytics with little interest in its management. Big Data management is a reality that represents a set of challenges involving Big Data modeling, storage, and retrieval, analysis, and visualization for several areas in organizations. This paper introduces and contributes to the conceptual and theoretical understanding of Big Data management within higher education as it outlines its relevance to higher education institutions. It describes the opportunities this growing research area brings to higher education as well as major challenges associated with it

    Big Data Management in Education Sector: an Overview

    Get PDF
    The advancement in technological innovation has given rise to a new trend known as Big Data today. Given the soaring popularity of big data technology, organisations are profoundly attracted to and interested in it to transform their organisation by improving their businesses. Big data is enabling organisations to outpace their competitors and save cost. Similarly, the application of Big Data management in Universities is an essential aspect to institutions that have Big Data to manage; as the use of Big Data in the higher education sector is increasing day by day. Many studies have been carried out on big data and analytics with little interest in its management. Big Data management is a reality that represents a set of challenges involving Big Data modeling, storage, and retrieval, analysis, and visualization for several areas in organizations. This paper introduces and contributes to the conceptual and theoretical understanding of Big Data management within higher education as it outlines its relevance to higher education institutions. It describes the opportunities this growing research area brings to higher education as well as major challenges associated with it

    Studentsā€™ Perceptions of Their Teachersā€™ Performance in Teaching Engineering Drawing in Nigerian Tertiary Institutions

    Get PDF
    There have been concerns about the performance of Nigerian school teachersā€™ in delivering occupational related courses. However, there are currently limited empirical data on this phenomenon ā€“ in particular with respect to the teaching of engineering drawing ā€“ to justify further actions from educational managers and policy makers. The aim of this study was to assess teachersā€™ performance in teaching engineering drawing using studentsā€™ perception as indicator of teachersā€™ performance. The study utilized a cross-sectional research design method with the target population of technical education students drawn from four (4) Federal Colleges of education (Technical) in Northern Nigeria. Stratified proportionate sampling technique was used to arrive at the study sample of 253 technical education students. A specifically designed instrument, the Studentsā€™ Perceptions of Teachersā€™ Performance Scales (SPTPS) was used to gather data on the three performance dimensions namely contextual, task and adaptability performance. The exploratory factor analysis and confirmatory factor analysis methods were conducted to validate the performance constructs. The instrument has a high reliability of 0.90 based on the Cronbach Alpha method. The result of the analysis using estimation method indicates that students perceive their teachersā€™ performance to be at a slightly above average level (M= 3.51 Ā± 0.05 at the 95% confidence level). The teachersā€™ task performance, in particular, is found to be the least developed among the three dimension of performance while their adaptability performance is the highest while still being less than excellent. The data support the conclusion that there are aspects of teachersā€™ performance in teaching engineering drawing that is less than excellent and in need of further enhancements

    Studentsā€™ Perceptions of Their Teachersā€™ Performance in Teaching Engineering Drawing in Nigerian Tertiary Institutions

    Get PDF
    There have been concerns about the performance of Nigerian school teachersā€™ in delivering occupational related courses. However, there are currently limited empirical data on this phenomenon ā€“ in particular with respect to the teaching of engineering drawing ā€“ to justify further actions from educational managers and policy makers. The aim of this study was to assess teachersā€™ performance in teaching engineering drawing using studentsā€™ perception as indicator of teachersā€™ performance. The study utilized a cross-sectional research design method with the target population of technical education students drawn from four (4) Federal Colleges of education (Technical) in Northern Nigeria. Stratified proportionate sampling technique was used to arrive at the study sample of 253 technical education students. A specifically designed instrument, the Studentsā€™ Perceptions of Teachersā€™ Performance Scales (SPTPS) was used to gather data on the three performance dimensions namely contextual, task and adaptability performance. The exploratory factor analysis and confirmatory factor analysis methods were conducted to validate the performance constructs. The instrument has a high reliability of 0.90 based on the Cronbach Alpha method. The result of the analysis using estimation method indicates that students perceive their teachersā€™ performance to be at a slightly above average level (M= 3.51 Ā± 0.05 at the 95% confidence level). The teachersā€™ task performance, in particular, is found to be the least developed among the three dimension of performance while their adaptability performance is the highest while still being less than excellent. The data support the conclusion that there are aspects of teachersā€™ performance in teaching engineering drawing that is less than excellent and in need of further enhancements

    Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats.

    Get PDF
    Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants

    Generation and Characterization of an scFv Directed against Site II of Rabies Glycoprotein

    Get PDF
    Recombinant antibody phage display technology is a vital tool that facilitates identification of specific binding molecules to a target enabling the rapid generation and selection of high affinity, fully human, or mouse antibody product candidates essentially directed towards disease target appropriate for antibody therapy. In this study, a recombinant single-chain Fv antibody fragment (scFv) A11 was isolated from immune spleen cells obtained from mice immunized with inactivated rabies virus (Pasteur strain) using standard methodology and was characterized for its specificity towards the rabies virus glycoprotein. Epitope mapping using peptide libraries and truncated glycoprotein polypeptides suggested that A11 bound to the antigenic site II of rabies glycoprotein against which a majority of rabies virus neutralizing antibodies are directed. The use of the above technology could, therefore, allow development of scFvs with different specificities against the rabies glycoprotein as an alternative to the more cumbersome protocols used for the development of monoclonal antibodies

    Hannah Arendtā€™s Conceptual Framework for the Crisis in Modern Education

    Get PDF
    This work analyzes Hannah Arendt s essay The Crisis in Education published in the late 1950s intending to elucidate its central themes through the concepts presented in other works by the author This intention is a valuable initiative not only because of Arendt s qualifications who is one of the most influential thinkers of the 20th century but also because the essay has fostered research in the area of education and is frequently included in the bibliography of teacher training courses both in undergraduate and graduate levels due to the critical reflections it elaborates on the relationships between adults and children in modernity which includes the exchange between teachers and student

    Zeolite-amended backfills for enhanced metals containment via soil-bentonite vertical cutoff walls

    Get PDF
    Includes bibliographical references.2016 Summer.Low hydraulic conductivity (k), soil-bentonite (SB) vertical cutoff walls are commonly used to contain contaminated groundwater in geoenvironmental applications. The low k of the SB cutoff walls is attributed, in part, to the high swelling property of the bentonite component of the backfill. In addition, the high cation exchange capacity (CEC) of the bentonite, typically on the order of 80 to 150 cmolc/kg, imparts some intrinsic attenuation capacity to the backfill for cations (e.g., metals) via cation exchange. However, due to the low amounts of bentonite in typical SB cutoff walls (i.e., < 10 % by dry weight), this attenuation capacity is limited in traditional SB cutoff walls. Therefore, consideration has been given to amending SB backfills with zeolites to enhance the attenuation or adsorption capacity. Zeolites are naturally occurring aluminosilicates with high CEC (180 to 400 cmolc/kg) and a cage-like structure that allow the zeolites to perform as a molecular sieve and as adsorbents for ammonium, heavy metals, cations, and radioactive wastewater. In this study, three types of zeolites (two types of chabazite and a clinoptilolite) were used as amendments for SB backfills to enhance the adsorption capacity with respect to two metals, viz., potassium (K) and zinc (Zn). The results of measurements of the slump, consolidation behavior, and k of the unamended and zeolite-amended SB backfills with ā‰¤ 10 % zeolite (by dry weight) confirmed that the zeolite-amended SB backfills exhibited similar physical properties compared to those for the unamended SB backfill, including the low k (ā‰¤ 1.0Ɨ10-9 m/s) typically required for SB vertical cutoff walls. The results of batch equilibrium adsorption tests (BEATs) indicated that the added zeolite increased the adsorption capacity of the SB backfill, but the effectiveness differed for different types of zeolite and the different metals (i.e., K and Zn). The results of numerical simulations for transport of K and Zn through a hypothetical 1-m thick model cutoff wall based on the results of the BEATs indicated that the barrier containment durations increased relative to that for the unamended SB backfill by as much as 108 yr and 228 yr for backfills with 5 and 10 % zeolite amendment, respectively. Finally, the results of long-term column tests (1.05 to 3.75 yr) indicated that the retardation factor (Rd) for K with the 5 % zeolite-amended SB backfills was 2.4 to 3.2 times greater than that for the unamended SB backfill, whereas Rd for Zn was 1.4 to 2.2 times greater than that for the unamended SB backfill. Based on the results of this study, the addition of small amounts of zeolite (ā‰¤ 10 % by dry weight) to traditional SB backfills can significantly enhance the adsorption capacity of the SB backfills for metals, thereby enhancing the containment performance of vertical cutoff walls comprising zeolite-amended SB backfills. However, the magnitude of any enhanced containment is dependent on both the adsorption capacity and the adsorption behavior of the specific metal with the specific backfill, and will be dependent on both the type and amount of the added zeolite

    Use of Microorganisms for the Enrichment of Zn and Se by using Solid-state Fermentation

    Get PDF
    Zinc (Zn) and selenium (Se) are essential minerals for human health and naturally found in many food sources. However, the risk of Zn and Se deficiency has been recognized in several countries. As most people throughout the world consume rice, grains, and cereals as staple foods in their daily diet, which contain a certain amount of phytic acid (antinutrients), the phytic acid content inhibits mineral absorption (Zn and Se) by the human body. Moreover, the low levels of Zn and Se content found in the crop\u27s soil also reduce the amount of minerals in the food sources. Therefore, it is crucial to develop an effective method of naturally supplementing Zn and Se that promotes their absorption. There is yeast, bacteria, fungi, or a combination of these fermented products, enriched with Zn and Se, available in the market. In addition, the fermentation process can reduce the phytic acid content. However, there is no research or data on the application of solid-state fermentation (SSF) for the enhancement of Zn and Se. Therefore, in our study, SSF was applied to determine the amount of Zn and Se uptake by Aspergillus oryzae, Bacillus subtilis, and co-culture. The objectives of the study were to [1] determine the amount of Zn and Se uptake by A. oryzae, B. subtilis, and co-culture in sterile coarsely ground and whole sorghum grain by using solid-state fermentation and [2] measure the amount of phytic acid reduction (antinutrients) in the fermented coarsely ground biomass and whole grain samples containing Zn and Se. The sorghum grain (substrate) was treated with these organisms and supplemented with different concentrations of Zn or Se. After SSF, the samples were analyzed with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The dried substrate was used to analyze the amount of phytic acid present in the grain sorghum after the SSF. The quantification of phytic acid in the substrate was determined using UV/VIS spectroscopy. The results showed that the biological efficiency of the organisms was affected by the addition of different concentrations of Zn and Se. Considering all the concentrations, the highest level of Zn absorption was obtained by adding 50 Ī¼g/g of zinc acetate. In the Se absorption, 3.2 Ī¼g/g of selenium aspartate was efficient. The obtained data show that A. oryzae, B. subtilis and Co-culture can grow in the Zn or Se-containing substrate. SSF process with coarsely ground sorghum grain containing A. oryzae and co-culture significantly reduced the phytic acid content. The results showed that the SSF process with A.oryzae and/or Co-culture positively reduced the phytic acid content, which could help in the proper absorption of Zn and Se by the human body. The fermented biomass could be used as a Zn and Se-enriched ingredient for functional food products

    Use of Microorganisms for the Enrichment of Zn and Se by using Solid-state Fermentation

    Get PDF
    Zinc (Zn) and selenium (Se) are essential minerals for human health and naturally found in many food sources. However, the risk of Zn and Se deficiency has been recognized in several countries. As most people throughout the world consume rice, grains, and cereals as staple foods in their daily diet, which contain a certain amount of phytic acid (antinutrients), the phytic acid content inhibits mineral absorption (Zn and Se) by the human body. Moreover, the low levels of Zn and Se content found in the crop\u27s soil also reduce the amount of minerals in the food sources. Therefore, it is crucial to develop an effective method of naturally supplementing Zn and Se that promotes their absorption. There is yeast, bacteria, fungi, or a combination of these fermented products, enriched with Zn and Se, available in the market. In addition, the fermentation process can reduce the phytic acid content. However, there is no research or data on the application of solid-state fermentation (SSF) for the enhancement of Zn and Se. Therefore, in our study, SSF was applied to determine the amount of Zn and Se uptake by Aspergillus oryzae, Bacillus subtilis, and co-culture. The objectives of the study were to [1] determine the amount of Zn and Se uptake by A. oryzae, B. subtilis, and co-culture in sterile coarsely ground and whole sorghum grain by using solid-state fermentation and [2] measure the amount of phytic acid reduction (antinutrients) in the fermented coarsely ground biomass and whole grain samples containing Zn and Se. The sorghum grain (substrate) was treated with these organisms and supplemented with different concentrations of Zn or Se. After SSF, the samples were analyzed with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The dried substrate was used to analyze the amount of phytic acid present in the grain sorghum after the SSF. The quantification of phytic acid in the substrate was determined using UV/VIS spectroscopy. The results showed that the biological efficiency of the organisms was affected by the addition of different concentrations of Zn and Se. Considering all the concentrations, the highest level of Zn absorption was obtained by adding 50 Ī¼g/g of zinc acetate. In the Se absorption, 3.2 Ī¼g/g of selenium aspartate was efficient. The obtained data show that A. oryzae, B. subtilis and Co-culture can grow in the Zn or Se-containing substrate. SSF process with coarsely ground sorghum grain containing A. oryzae and co-culture significantly reduced the phytic acid content. The results showed that the SSF process with A.oryzae and/or Co-culture positively reduced the phytic acid content, which could help in the proper absorption of Zn and Se by the human body. The fermented biomass could be used as a Zn and Se-enriched ingredient for functional food products
    • ā€¦
    corecore