352,785 research outputs found

    Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression

    Get PDF
    Adenoviruses express up to 20 distinct mRNAs from five major late transcription unit (MLTU) regions, L1 to L5, by differential splicing and polyadenylation of the primary transcript. MLTU expression is regulated at transcriptional and posttranscriptional levels. The L4-33K protein acts as a splicing factor to upregulate several MLTU splice acceptor sites as the late phase progresses. The L4 region also expresses a 22K protein whose sequence is related to the sequence of L4-33K. L4-22K is shown here also to have an important role in regulating the pattern of MLTU gene expression. An adenovirus genome containing a stop codon in the L4-22K open reading frame expressed low levels of both structural and nonstructural late proteins compared to the wild-type (wt) adenovirus genome; a decrease in intermediate proteins, IVa2 and IX, was also observed. However, early protein synthesis and replication were unaffected by the absence of L4-22K. Intermediate and late protein expression was restored to wt levels by L4-22K expressed in trans but not by L4-33K. Increased MLTU promoter activity, resulting from stabilization of the transcriptional activator IVa2 by L4-22K, made a small contribution to this restoration of late gene expression. However, the principal effect of L4-22K was on the processing of MLTU RNA into specific cytoplasmic mRNA. L4-22K selectively increased expression of penton mRNA and protein, whereas splicing to create penton mRNA is known not to be increased by L4-33K. These results indicate that L4-22K plays a key role in the early-late switch in MLTU expression, additional to and distinct from the role of L4-33K

    The human adenovirus 5 L4 promoter is activated by cellular stress response protein p53

    Get PDF
    During adenovirus infection, the emphasis of gene expression switches from early genes to late genes in a highly regulated manner. Two gene products, L4-22K and L4-33K, contribute to this switch by activating the Major Late Transcription Unit (MLTU) and regulating the splicing of its transcript. L4-22K and L4-33K expression is driven initially by a recently described L4 promoter (L4P) embedded within the MLTU that is activated by early and intermediate viral factors: E1A, E4 Orf3 and IVa2. Here we show that this promoter is also significantly activated by the cellular stress response regulator, p53. Exogenous expression of p53 activated L4P in reporter assays whilst depletion of endogenous p53 inhibited the induction of L4P by viral activators. Chromatin immunoprecipitation studies showed that p53 associates with L4P and that during adenovirus type 5 (Ad5) infection this association peaks at 12 h.p.i., coinciding with the phase of the infectious cycle when L4P is active, and is then lost as MLP activation commences. P53 activation of L4P is significant during Ad5 infection since depletion of p53 prior to infection of either immortalised or normal cells led to severely reduced late gene expression. The association of p53 with L4P is transient due to the action of products of L4P activity (L4-22K/33K), which establish a negative feedback loop that ensures the transient activity of L4P at the start of the late phase and contributes to an efficient switch from early to late phase virus gene expression

    Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex.

    Get PDF
    Monosynaptic interlaminar connections between spiny stellate cells in layer 4 (L4), the main cortical recipient layer for thalamic projections, and pyramidal cells in layer 5A (L5A), one of the main cortical output layers, were examined anatomically and functionally by paired recordings in acute brain slices. The somata of pairs forming interlaminar L4-to-L5A connections were located predominantly close to or directly under the barrel-septum wall in layer 4. Superposition of spiny stellate axon arbors and L5A pyramidal cell dendritic arbors suggested an innervation domain underneath an L4 barrel wall. Functionally, the L4-to-L5A connections were of high reliability and relatively low efficacy, with a unitary EPSP amplitude of 0.6 mV, and the connectivity was moderately high (one in seven pairs tested was connected). The EPSP amplitude was weakly depressing (paired-pulse ratio of approximately 0.8) during repetitive presynaptic action potentials at 10 Hz. The existence of Monosynaptic L4-to-L5A connections indicates that the specific 'lemniscal' thalamic input from the ventro-basal nucleus of the thalamus to the cortex and the more unspecific 'paralemniscal' afferent thalamic projections from the posterior medial nucleus of the thalamus merge already at an initial stage of cortical signal processing. These Monosynaptic connections establish a Monosynaptic coupling of the input to the cortex and its output, thereby effectively bypassing the supragranular layers

    Kl4K_{l4} - Decays Beyond One Loop

    Full text link
    The matrix elements for K\rightarrow \pi \pi \l \nu decays are described by four form factors F,G,HF,G,H and RR. We complete previous calculations by evaluating RR at next-to-leading order in the low-energy expansion. We then estimate higher order contributions using dispersion relations and determine the low-energy constants L1,L2L_1,L_2 and L3L_3 from data on Ke4K_{e4} decays and on elastic pion scattering. Finally, we present predictions for the slope of the form factor GG and for total decay rates.Comment: 31 pages, LaTex, 3 figs. (two figures appended as postscript file), BUTP-94/4,ROMF2 94/0

    Long-term deficits in cortical circuit function after asphyxial cardiac arrest and resuscitation in developing rats

    Get PDF
    AbstractCardiac arrest is a common cause of global hypoxic-ischemic brain injury. Poor neurologic outcome among cardiac arrest survivors results not only from direct cellular injury but also from subsequent long-term dysfunction of neuronal circuits. Here, we investigated the long-term impact of cardiac arrest during development on the function of cortical layer IV (L4) barrel circuits in the rat primary somatosensory cortex. We used multielectrode single-neuron recordings to examine responses of presumed excitatory L4 barrel neurons to controlled whisker stimuli in adult (8 ± 2-mo-old) rats that had undergone 9 min of asphyxial cardiac arrest and resuscitation during the third postnatal week. Results indicate that responses to deflections of the topographically appropriate principal whisker (PW) are smaller in magnitude in cardiac arrest survivors than in control rats. Responses to adjacent whisker (AW) deflections are similar in magnitude between the two groups. Because of a disproportionate decrease in PW-evoked responses, receptive fields of L4 barrel neurons are less spatially focused in cardiac arrest survivors than in control rats. In addition, spiking activity among L4 barrel neurons is more correlated in cardiac arrest survivors than in controls. Computational modeling demonstrates that experimentally observed disruptions in barrel circuit function after cardiac arrest can emerge from a balanced increase in background excitatory and inhibitory conductances in L4 neurons. Experimental and modeling data together suggest that after a hypoxic-ischemic insult, cortical sensory circuits are less responsive and less spatially tuned. Modulation of these deficits may represent a therapeutic approach to improving neurologic outcome after cardiac arrest.</jats:p

    Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep

    Get PDF
    In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep

    Generation of cell lines to complement Adenovirus vectors using recombination-mediated cassette exchange

    Get PDF
    Background Adenovirus serotype 5 (Ad5) has many favourable characteristics for development as a gene therapy vector. However, the utility of current Ad5 vectors is limited by transient transgene expression, toxicity and immunogenicity. The most promising form of vector is the high capacity type, which is deleted for all viral genes. However, these vectors can only be produced to relatively low titres and with the aid of helper virus. Therefore a continuing challenge is the generation of more effective Ad5 vectors that can still be grown to high titres. Our approach is to generate complementing cell lines to support the growth of Ad5 vectors with novel late gene deficiencies. Results We have used LoxP/Cre recombination mediated cassette exchange (RMCE) to generate cell lines expressing Ad5 proteins encoded by the L4 region of the genome, the products of which play a pivotal role in the expression of Ad5 structural proteins. A panel of LoxP parent 293 cell lines was generated, each containing a GFP expression cassette under the control of a tetracycline-regulated promoter inserted at a random genome location; the cassette also contained a LoxP site between the promoter and GFP sequence. Clones displayed a variety of patterns of regulation, stability and level of GFP expression. Clone A1 was identified as a suitable parent for creation of inducible cell lines because of the tight inducibility and stability of its GFP expression. Using LoxP-targeted, Cre recombinase-mediated insertion of an L4 cassette to displace GFP from the regulated promoter in this parent clone, cell line A1-L4 was generated. This cell line expressed L4 100K, 22K and 33K proteins at levels sufficient to complement L4-33K mutant and L4-deleted viruses. Conclusions RMCE provides a method for rapid generation of Ad5 complementing cell lines from a pre-selected parental cell line, chosen for its desirable transgene expression characteristics. Parent cell lines can be selected for high or low gene expression, and for tight regulation, allowing viral protein expression to mirror that found during infection. Cell lines derived from a single parent will allow the growth of different vectors to be assessed without the complication of varying complementing protein expression

    Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases

    Get PDF
    Background: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. Methodology/Principal Findings: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. Conclusions/Significance: The present proteomic analysis provides important information on the host-parasite interaction and the molecular of migratory stages of A. suum. In particularly, the high transcriptionally upregulated of glycosyl hydrolases from L4 onwards reveals indicate that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine
    corecore