22 research outputs found

    Disaster debris estimation using high-resolution polarimetric stereo-SAR

    Get PDF
    AbstractThis paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Atmospheric Research 2013 Technical Highlights

    Get PDF
    Welcome to the Atmospheric Research 2013 Atmospheric Research Highlights report. This report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2013.This report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres (610AT), Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center

    Analisi di dati DInSAR in aree urbane affette da subsidenza o frane a cinematica lenta

    Get PDF
    2012 - 2013Subsidence and slow-moving landslides systematically cause social, economic and environmental impacts all over the world. For this reason studies aimed at both the characterization of subsidence and slow-moving landslides and the analysis of the consequences on the exposed elements interacting with them are of great interest for the scientific and the technical community. These studies, to be useful in land use planning and management, need a huge number of displacement measurements within and on the boundary of the affected areas. Recently the scientific community has shownan increasing interest in the potential of using satellite observation techniques and, in particular, interferometric methods of Synthetic Aperture Radar (DInSAR)image processing. The literature review on DInSAR applications highlights the possibility of further researches pursuing the exploitation of DInSAR potentiality in studies at different scales and the development of procedures for the proper use of interferometric data and their validation with reference to well documented case studies. To this end, this PhD Thesis is aimed at developing original procedures for the analysis of the interferometric measurements specifically devotedto pursue two main objectives: the characterization of the phenomena of interest and the prediction of consequences to buildings interacting with them. The conceived procedures were tested, in sample areas of the Campania region (southern Italy)following a multi-scale approach. With reference to subsidence phenomena, the studies at small-scale involved the entire region and were mainly aimedatdetecting subsiding macro-areas; within these latter, more detailed studies at medium scale were carried out and the most affected municipalities were individuated. At large scale,focusing on one of these municipalities, studies dealing with the analysis of parameters whose variation leadsto the generation of the damage were carried out. Finally, at the scale of the single building the interferometric data were interpretedaccording todamageability criteria adopted in engineering practice. As forslow-moving landslides, the joint use of interferometric measurements and damage surveysallowed the updating of landslide inventory maps at medium scale and the analysis of the consequencesthrough the generation of fragility and vulnerability curves within a test area including 21 municipalities of BeneventoProvince. At large-scale studies were performed on a landslide-affected area within the municipality of Ascea(Salerno Province) in order to follow the evolution - in space and time - of the analyzed phenomenon as well as to deepen its kinematic behavior, in turn useful for zoning purposes. The obtained results highlight that the conceived procedures can valuably integrate the current practice for land use planning and as well as for the selection of the most suitablemanagement strategy.XII n.s

    Application of DInSAR techniques to the monitoring of ground deformations

    Get PDF
    The aim of the present thesis has been to test the applicability of the innovative Advanced DInSAR techniques in the natural risk mitigation related to subsidence phenomena. In particular, two test sites have been chosen, both located within alluvial plains and affected by subsidence phenomena: Telese Terme (Italy) where no monitoring network has been installed in spite of the great amount of damaged buildings located in the urban area; Murcia city (Spain) where subsidence has caused damage to structures and infrastructures with an estimated cost of more than 50 million euros. In this second case, the institutions have required studies since '90. For this reason, 20 years of monitoring data are available which have allowed the implementation of an integrated monitoring system based upon satellite DInSAR, conventional field techniques and geotechnical data. Therefore these two areas have been chosen to test different approaches in the use of DInSAR results which can complete a monitoring network where available (as in the case of Murcia city) and replace it where it does not exist (as in the case of Telese Terme). In Murcia case study, the correlation between the temporal evolution of ground surface displacement measures (radar and in situ) and the piezometric groundwater level variation has been analysed to determine mechanisms and critical states of failure; this has permitted to implement a finite element model (FEM) of the phenomenon. Therefore, two models have been carried out: one (called "deep") up to the end of the gravel layer (where the pumping takes place) and one (called "shallow") up to the extensometers' base. The results of the deep model have been compared with DInSAR displacements time series which represent the whole deformation of the stratigraphic column. These comparisons have allowed the individuation of local anomalies of the stiffness values, and have permitted a best model calibration. Moreover, the shallow model results have been compared with the extensometers measurements. These comparisons have showed the occurrence of vertical anisotropies of the permeability. This hypothesis has been verified, analysing the available Lefranc's tests and the most detailed stratigraphic columns and a new model has been proposed. The geotechnical model results have been interpolated through the Ordinary Kriging Radar Errors (OKRE) technique. The achieved deformation maps have been used in the SAR images processing to allow the algorithm to better estimate the no-lineal part of the interferometric phase. In Telese Terme case study, radar measured displacements have allowed to understand the phenomenon spatial extension, its magnitude as same as its historical development. This has permitted the individuation of the causes which provoked damages for some "test buildings". For one of them, a structural model has been implemented; in this case, radar data have been used to verify if its structural response to the displacements detected by SAR corresponded to the overpassing of the limit states. The model results have turned out to have a good correspondence with the forensic analysis achieved in situ. All the proposed approaches could be applied to other scenarios affected by similar phenomena.El objetivo de la presente tesis ha sido probar la aplicabilidad de las técnicas innovadoras de DInSAR Advanced, en la mitigación de los riesgos naturales relacionados con fenómenos de subsidencia. En particular, se han elegido dos sitios de prueba, ambos ubicados en llanuras aluviales y afectados por fenómenos de subsidencia: Telese Terme (Italia) donde no se ha instalado red de vigilancia, a pesar de la gran cantidad de edificios dañados ubicadas en el área urbana y la ciudad de Murcia (España), donde la subsidencia ha causado daños a las estructuras e infraestructuras con un coste estimado de más de 50 millones de euros. En este segundo caso, las instituciones han requerido estudios desde los años 90.Por esta razón, se dispone de 20 años de datos monitorizados los cuales han permitido la implementación de un sistema integrado de vigilancia basado en el satélite dinSAR, técnicas de datos convencionales y datos geotécnicos. Por lo tanto, para probar diferentes enfoques en el uso de los resultados de DInSAR, se han escogidas estas dos áreas de modo que se pueda completar una red de monitoreo donde esté disponible (como en el caso de la ciudad de Murcia) y reemplazarla donde no existe (como en el caso de Telese Terme). En el caso de Murcia, se ha analizado la correlación entre la evolución temporal de las medidas de desplazamiento de la superficie del suelo (radar in situ) y la variación piezométrica del nivel de las aguas subterráneas para determinar los mecanismos y estados críticos de fracaso. Esto ha permitido poner en práctica un modelo de elementos finitos (FEM) del fenómeno. Teniendo en cuenta estos estudios, se han llevado a cabo dos modelos FEM: uno (llamado "(deep) profundo") hasta el extremo del nivel de grava (donde se lleva a cabo el bombeo) y uno (llamado "(shallow) superficial") hasta la base de los extensómetros. Los resultados del modelo de profundidad han sido comparados con las series temporales de deformación DInSAR que representan toda la deformación de la columna estratigráfica. Estas comparaciones han permitido a la individuación de las anomalías locales de los valores de rigidez, y han permitido una mejor calibración del modelo. Por otra parte, los resultados del modelo superficial (shallow), se han comparado con las mediciones extensométricas. Estas comparaciones han mostrado la ocurrencia de anisotropías verticales de la permeabilidad. Esta hipótesis ha sido verificada, analizando las pruebas disponibles de la Lefranc y las columnas estratigráficas más detalladas y se ha propuesto un nuevo modelo. Los resultados del modelo geotécnico han sido interpolados a través de la técnica "Ordinary Kriging Radar Errors" (OKRE). Los mapas de deformación obtenidos han sido utilizados en el procesado de imágenes SAR para permitir al algoritmo una mejor estimación de la parte no lineal de la fase interferométrica. En el caso de Telese Terme, los desplazamientos radar medidos han permitido comprender la extensión espacial del fenómeno, su magnitud y su desarrollo histórico. Esto ha permitido la individuación de las causas que provocaron daños en algunos edificios "de prueba". Para uno de ellos, se ha implementado un modelo estructural; en este caso, se han utilizados, los datos radar para verificar si su respuesta estructural a los desplazamientos detectados por SAR correspondían a la "superación de los estados límite". Los resultados del modelo han resultado tener una buena correspondencia con el análisis forense conseguida in situ. Todos los aproches propuestos se podrían aplicar a otros escenarios afectados por fenómenos similares

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design
    corecore