165 research outputs found

    Kullback-Leibler divergence based wind turbine fault feature extraction

    Get PDF
    In this paper, a multivariate statistical technique combined with a machine learning algorithm is proposed to provide a fault classification and feature extraction approach for the wind turbines. As the probability density distributions (PDDs) of the monitoring variables can illustrate the inner correlations among variables, the dominant factors causing the failure are figured out, with the comparison of PDD of the variables under the healthy and unhealthy scenarios. Then the selected variables are used for fault feature extraction by using kernel support vector machine (KSVM). The presented algorithms are implemented and assessed based on the supervisory control and data acquisition (SCADA) data acquired from an operational wind farm. The results show the features relating specifically to the faults are extracted to be able to identify and analyse different faults for the wind turbines

    Machinery Early Fault Detection Based on Dirichlet Process Mixture Model

    Full text link
    © 2013 IEEE. The most commonly used single feature-based anomaly detection method for the complex machinery, such as large wind power equipment, steam turbine generator sets, and reciprocating compressors, exhibits a defect of low-alarm accuracy due to the non-stationary characteristic of the vibration signals. In order to improve the accuracy of fault detection, a novel method based on the Dirichlet process mixture model (DPMM) is proposed. First, the features of the mechanical vibration signals are used to construct the feature space of the equipment. The DPMM modeling method is then applied to self-learn the probabilistic mixture model of the feature space. The normal working condition model is used as the benchmark model. The early fault detection is realized by using a precise difference measurement method based on Kullback-Leibler divergence to calculate the difference between the real-time model and the benchmark model accurately, and by comparing the calculation result with a self-learned alarm threshold. The effectiveness and the adaptability of this novel early fault detection method are verified by comparing it to the single feature-based anomaly detection method and the Gaussian mixture model (GMM)-based early fault detection method

    Low Latency Anomaly Detection with Imperfect Models

    Get PDF
    The problem of anomaly detection deals with detecting abrupt changes/anomalies in the distribution of sequentially observed data in a stochastic system. This problem applies to many applications, such as signal processing, intrusion detection, quality control, medical diagnosis, etc. A low latency anomaly detection algorithm, which is based on the framework of quickest change detection (QCD), aims at minimizing the detection delay of anomalies in the sequentially observed data while ensuring satisfactory detection accuracy. Moreover, in many practical applications, complete knowledge of the post-change distribution model might not be available due to the unexpected nature of the change. Hence, the objective of this dissertation is to study low latency anomaly detection or QCD algorithms for systems with imperfect models such that any type of abnormality in the system can be detected as quickly as possible for reliable and secured system operations. This dissertation includes the theoretical foundations behind these low latency anomaly detection algorithms along with real-world applications. First, QCD algorithms are designed for detecting changes in systems with multiple post-change models under both Bayesian and non-Bayesian settings. Next, a QCD algorithm is studied for real-time detection of false data injection attacks in smart grids with dynamic models. Finally, a QCD algorithm for detecting wind turbine bearing faults is developed by analyzing the statistical behaviors of stator currents generated by the turbines. For all the proposed algorithms, analytical bounds of the system performance metrics are derived using asymptotic analysis and the simulation results show that the proposed algorithms outperform existing algorithms

    Partly Duffing Oscillator Stochastic Resonance Method and Its Application on Mechanical Fault Diagnosis

    Get PDF

    Fault diagnosis for electromechanical drivetrains using a joint distribution optimal deep domain adaptation approach

    Get PDF
    Robust and reliable drivetrain is important for preventing electromechanical (e.g., wind turbine) downtime. In recent years, advanced machine learning (ML) techniques including deep learning have been introduced to improve fault diagnosis performance for electromechanical systems. However, electromechanical systems (e.g., wind turbine) operate in varying working conditions, meaning that the distribution of the test data (in the target domain) is different from the training data used for model training, and the diagnosis performance of an ML method may become downgraded for practical applications. This paper proposes a joint distribution optimal deep domain adaptation approach (called JDDA) based auto-encoder deep classifier for fault diagnosis of electromechanical drivetrains under the varying working conditions. First, the representative features are extracted by the deep auto-encoder. Then, the joint distribution adaptation is used to implement the domain adaptation, so the classifier trained with the source domain features can be used to classify the target domain data. Lastly, the classification performance of the proposed JDDA is tested using two test-rig datasets, compared with three traditional machine learning methods and two domain adaptation approaches. Experimental results show that the JDDA can achieve better performance compared with the reference machine learning, deep learning and domain adaptation approaches

    Addressing Complexity and Intelligence in Systems Dependability Evaluation

    Get PDF
    Engineering and computing systems are increasingly complex, intelligent, and open adaptive. When it comes to the dependability evaluation of such systems, there are certain challenges posed by the characteristics of “complexity” and “intelligence”. The first aspect of complexity is the dependability modelling of large systems with many interconnected components and dynamic behaviours such as Priority, Sequencing and Repairs. To address this, the thesis proposes a novel hierarchical solution to dynamic fault tree analysis using Semi-Markov Processes. A second aspect of complexity is the environmental conditions that may impact dependability and their modelling. For instance, weather and logistics can influence maintenance actions and hence dependability of an offshore wind farm. The thesis proposes a semi-Markov-based maintenance model called “Butterfly Maintenance Model (BMM)” to model this complexity and accommodate it in dependability evaluation. A third aspect of complexity is the open nature of system of systems like swarms of drones which makes complete design-time dependability analysis infeasible. To address this aspect, the thesis proposes a dynamic dependability evaluation method using Fault Trees and Markov-Models at runtime.The challenge of “intelligence” arises because Machine Learning (ML) components do not exhibit programmed behaviour; their behaviour is learned from data. However, in traditional dependability analysis, systems are assumed to be programmed or designed. When a system has learned from data, then a distributional shift of operational data from training data may cause ML to behave incorrectly, e.g., misclassify objects. To address this, a new approach called SafeML is developed that uses statistical distance measures for monitoring the performance of ML against such distributional shifts. The thesis develops the proposed models, and evaluates them on case studies, highlighting improvements to the state-of-the-art, limitations and future work
    • …
    corecore