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Fault Diagnosis for Electromechanical Drivetrains 
Using a Joint Distribution Optimal Deep Domain 

Adaptation Approach 
Zhao-Hua Liu, Member, IEEE, Bi-Liang Lu, Hua-Liang Wei, Xiao-Hua Li, and Lei Chen  

Abstract: Robust and reliable drivetrain is important for 
preventing electromechanical (e.g., wind turbine) 
downtime. In recent years, advanced machine learning 
(ML) techniques including deep learning have been 
introduced to improve fault diagnosis performance for 
electromechanical systems. However, electromechanical 
systems (e.g., wind turbine) operate in varying working 
conditions, meaning that the distribution of the test data 
(in the target domain) is different from the training data 
used for model training, and the diagnosis performance of 
an ML method may become downgraded for practical 
applications. This paper proposes a joint distribution 
optimal deep domain adaptation approach (called JDDA) 
based auto-encoder deep classifier for fault diagnosis of 
electromechanical drivetrains under the varying working 
conditions. First, the representative features are extracted 
by the deep auto-encoder. Then, the joint distribution 
adaptation is used to implement the domain adaptation, 
so the classifier trained with the source domain features 
can be used to classify the target domain data. Lastly, the 
classification performance of the proposed JDDA is tested 
using two test-rig datasets, compared with three 
traditional machine learning methods and two domain 
adaptation approaches. Experimental results show that 
the JDDA can achieve better performance compared with 
the reference machine learning, deep learning and 
domain adaptation approaches. 

Index Terms—fault diagnosis, electromechanical drivetrain, 
deep neural network, deep learning, domain adaptation (DA), 
joint distribution optimal, auto-encoder(AE), machine 
learning, artificial intelligence, bearing, gearboxes, wind 
turbine, varying working conditions. 

I. INTRODUCTION1 

Electromechanical systems (e.g., wind turbine) play an 
important role in industrial systems [1], [2]. However, 
electromechanical drivetrains are typically exposed to 
invariable and harsh environments, and usually suffer from 
high failure rate. It is prone to failure due to the some severe 
operating environment and the wide range of load 
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fluctuations. Drivetrain failures can cause serious damage to 
the whole equipment, so it is necessary to discover potential 
faults in drivetrain system as early as possible. Usually, the 
failures of bearing, gearboxes, and other drivetrain 
components can usually result in long downtime, thus can 
cause considerable drivetrain maintenance costs [3]. 
Therefore, fault diagnosis for bearing and gearboxes 
components in drivetrain is one of the most important parts in 
the condition monitoring systems. In fact, in order to monitor 
the bearing and gearboxes conditions, many useful fault 
diagnosis methods were proposed, such as wavelet transforms 
[4], time-frequency manifold [5], and Morphological 
Hilbert-Huang (MH) technique [6]. The implementation of 
the fault diagnosis process using these methods usually need 
expert manual intervention. However, methods with expert 
manual intervention usually cannot provide easily-understood 
diagnosis results, therefore, a more convenient algorithm is 
necessary to solve fault diagnosis problems.  

In recent years, machine learning and deep learning 
technologies have attracted the attention of many researchers 
to deal with the fault classification problems [7]. Commonly 
used machine learning (ML) methods include logistic 
regression (LR) [8], Naive Bayes classifier [9], SVM [10] and 
neural networks [11]. Although these ML methods can work 
well for most fault diagnosis problems without expert manual 
intervention as required by traditional approaches, they need 
sufficient prior knowledge and large labeled training samples. 
However, it is difficult to collect sufficient labeled data and 
then train a reliable diagnosis model in most engineering 
scenarios. 

There is a similar situation in the deep learning networks 
(DLN) [12], such as recurrent neural networks (RNN) [13], 
convolutional neural network (CNN) [14] and deep brief 
networks (DBN) [15]. More specifically, Sun et al. [16] 
proposed an intelligent bearing fault diagnosis method, 
combining compressed data acquisition and deep learning, 
and including a sparse auto-encoder (SAE) as the DLN 
infrastructure. Of course, due to the structural advantages of 
DLN, these methods not only automatically extract the 
features, but also the extracted features can represent the 
original data well. So the classifier trained with those features 
would normally have an outstanding performance. However, 
the good performance of DLN is based on a hypothetical 
condition – the training data and test data have the same 
distribution. 

Inevitably, electromechanical systems usually work in 
varying conditions due to the changeable working conditions, 
environmental noise and product quality etc., so data sets 
from a same process may have different distributions in 
practical application. Moreover, the lack of labeled training 
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data makes it necessary to use historical labeled data (source 
domain) to achieve correct label prediction of new data 
(target domain), and such knowledge transfer can cause a 
distribution discrepancy between training data (source 
domain) and testing samples (target domain), which leads to 
significant diagnosis performance deterioration. In short, it is 
a challenging task for existing ML and DLN based fault 
diagnosis methods: How to overcome the data disparity issue 
(e.g. between training and test data) to achieve good 
performance for fault diagnosis? In other words, how to 
achieve a good diagnosis model with insufficient labeled 
training data for engineering problems?  

Recently, a useful method based on domain adaptation 
(DA) [17] has been introduced into the ML and DLN. DA 
strategies can be roughly summarized into two categories: 
instance reweighting and feature extraction [18], [19]—the 
former re-adjusts the training set on the basis of the common 
knowledge contained in the test set, and then further analyzes 
the reweighted training set, while the latter aims to detects a 
shared subspace and draws the distance between training data 
(source domain) and testing samples (target domain). The DA 
approach considered in this study belongs to the latter one. In 
fact the training data space and their distribution used for 
building the fault diagnosis model is defined as the source 
domain, the test data space and their distribution for model 
application is defined as the target domain, and the problem 
that we are eager to solve is the cross-domain learning 
problem[17]-[19]. 

Due to the existence of cross-domain learning problem, the 
performance of the ML and DLN based classifiers may not be 
satisfactory, meaning that the classifier trained with the 
source domain may not work well for classification in the 
target domain. In many real applications, it is very expensive 
or difficult, if not possible; to collect test data that has the 
same distribution as the training set. To overcome such an 
issue, Lu et al. [20] proposed a novel deep model in which 
the DLN was combined with domain adaptation. Wen et al. 
[21] proposed a new deep transfer learning approach based on 
Sparse Auto-Encoder (SAE) in which the DLN utilizes the 
maximum mean discrepancy (MMD) measure [22] to 
minimize the distance between two distributions, so the 
classification of the target domain can make use of the 
common knowledge in the source domain. However, these 
two methods just optimize the difference of the marginal 
distribution, in other words, they only use a part of 
distribution information based on the original data. 

In this paper, we put forward a different model from 
previous studies in which the advantage of DLN can be 
further exploited, and the DA [23] technique can be used to 
reveal and take advantage of data distribution information. 
Combining the DA strategies and the DLN, a novel approach 
using joint distribution adaptation for a deep learning model 
(JDDA), in which representative features of source domain 
and target domain are extracted by the DLN, and then, by 
making use DA, the distance between the two domains is 
narrowed, so the model trained in the source domain can be 
directly applied to the classification of the target domain 
through the classification hyper-plane. As far as we know, 
this is a novel work in the literature on such a method based 
on DA to solve fault diagnosis problems with large 

complicated fault data. The main contributions of the paper 
are summarized as follows: 

1) A novel deep domain adaptation learning architecture 
based on DA techniques is proposed for fault diagnosis under 
variable working conditions. The proposed JDDA integrates 
deep learning, DA and machine learning in one model, where 
representative features can be easily extracted by the DLN. 
Afterwards, the representative features distance of source 
domain and target domain is decreased through the DA 
algorithm. Therefore, a classifier trained with the 
representative features of source domain can be used for fault 
prediction of the target domain. 
2) A domain-adaptation fault diagnosis algorithm for 
electromechanical systems (wind turbine) based on joint 
distribution optimization is proposed and its performance is 
tested on actual device data. Besides, the joint distribution 
adaptation algorithm has been improved in the terms of 
labeled samples acquisition. 
3) Empirical analysis is performed on the hyper-parameters 
of the domain-adaptation algorithm, aiming to facilitate the 
determination of important parameters of DA.  

II. RELATED WORK 

This section describes the related work on fault diagnosis of 
electromechanical drivetrains and DA.  

A. Fault Diagnosis of electromechanical drivetrains 
The failures of bearing, gearboxes, and other drivetrain 

components can usually result in long downtime, thus can 
cause considerable drivetrain maintenance costs. Similar 
approaches have been reported in the literature, for example, 
Zheng et al. [24] proposed a fault diagnosis method based on 
support vector machine for a rolling element bearing system 
fault detection; Li  et al. [25] proposed a fault diagnosis 
method for motor rolling bearing using a neural network 
classifier. However, these methods need to manually 
determine a representative feature of the original data, but it 
often is very difficult or impossible to properly define the 
most representative feature when data is big. LeCun, Bengio 
and Hinton [12] proposed the concept of DLN, introducing 
the pre-training skill and minimizing the network’s 
reconstruction error, so it can get a good representation of the 
original data automatically. Recently, some fault diagnosis 
methods [26] established on deep learning technology has 
been proposed. Comparing with traditional machine learning 
methods, the classification accuracy of these deep learning 
approaches has been significantly improved. 

B. Domain Adaptation 
Domain adaptation (DA), as a transfer learning method, 

utilizes a different but related source domain to solve the 
problem of the target domain. It is inspired by the idea that 
people can apply past experiences to new things. In the early 
stages, most of the domain adaptation strategies are coupled 
with machine learning [27]-[30]. But gradually DA has been 
integrated with deep learning in many applications, and an 
excellent achievement has been achieved in the field of 
computer vision [31], [32].  

Broadly speaking, there are two types of feature extraction 
methods with DA: transfer subspace learning [33]-[35] and 



transfer classifier induction [36]-[38], the DA is the part of 
the former one, and the DA has several ways to get it. 

1) Marginal distribution adaptation, which aims to make 
the distance between the source domain and the target domain 
as close as possible, and a way to get closer is to minimize 
the predefined distance, e.g., maximum mean discrepancy 
(MMD), Kullback–Leibler divergence or Bregman 
divergence. 

2) Conditional distribution adaptation, which estimates the 
effect of DA by shortening the distance between conditional 
distributions, and the detailed information can be found in 
[19]. 
3) Joint distribution adaptation (JDA), which combines the 
two methods mentioned above [39], [40]. Normally, the 
smaller the distance between two domains, the more robust of 
the JDA embedded models. More information about JDA is 
given in Section III-2. 

Deep learning with DA opens a new door for the problem 
of electromechanical device fault diagnosis. The deep 
learning method usually needs enough training data, so it 
would be challenging and difficult for fault diagnosis using 
machine learning methods if there is only a small data set. 
But now the issue can be alleviated by means of DA. The DA 
can use similar but not identical source domain to solve 
classification problems in target domain. Pan et al. [28] 
proposed a Transfer Component Analysis (TCA) technique to 
map features (data) in two domains (source and target 
domains) to a Reproducing Kernel Hilbert Space (RKHS) 
using Maximum Mean Discrepancy (MMD). Long et al. [27] 
devised a transfer learning framework, called Adaptation 
Regularization Based Transfer Learning Framework (ARTL), 
by incorporating MMD into the machine learning. The major 
difference between our proposed model and these methods 
discussed above is that a deep learning scheme (i.e. deep 
learning network) is introduced in our model and used to 
extract features automatically, the transfer learning scheme 
(i.e. joint distribution adaptation) is embedded in the DLN, 
and in this way a robust and high-performance model can be 
acquired. 

III. THE PROPOSED JDDA FOR FAULT DIAGNOSIS 

OF ELECTROMECHANICAL DRIVETRAINS 

This section introduces a joint distribution optimal deep 
domain adaptation approach (JDDA), and the JDDA 
framework is showed in Fig.1. 

1. Problem Definition 

Definition 1 (Domain). Given a sample set X and the 

feature space , where X = 1 2 3, , ,......, nx x x x    , let P(X) 

be a marginal probability distribution.  A domain, 
designated by , is a set that consists of the feature space
and a marginal probability distribution P(X). Note that two 
domains S and T are said to be different if their feature 

space or the marginal distribution P(X) are different, or 

simply, S T  or ( ) ( )S TP X P X . In this paper, the source 

domain is defined as the training data space and their 

distribution which used for building the fault diagnosis model. 
Correspondingly, the target domain is composed of the test 
data space and the associated distribution, where the 
diagnosis model is applied to.   

Definition 2 (Task). A task  is made up of the label 
spaces Y and the conditional probability distribution( )P Y X . 

Consider two different tasks S  and T , which possess 

different characteristics in two different domains S and T . 

Two tasks S  and T  are said to be different, if the 

associated label spaces Y or the conditional distributions
( )P Y X are different.  

  In this paper, to bridge the gap between the source domain 
and the target domain, it is assumed that the label spaces are 
the same, but the conditional distributions( )P Y X are different. 

In other words, the types of failures between the source 
domain and the target domain are overlapping, but the 
probability of failure occurrence is different in the changeable 
engineering environments. In short, it is assumed that

S T
,

( ) ( )P Y X P Y Xs s t t . 

Definition 3 (Motivation). Given the source domain 
containing n samples, that is,

1 1 2 2{( , ),( , ),......,( , )}S n nx y x y x y (n is large enough), and a 

target domain containing m samples, that is,

1 1 2 2 3{( , ),( , ), ......, }T n n n n n n mx y x y x x      (m is much 

smaller than n, i.e., m<<n) . The objective is to find a 
conversion functionF , such that the labeled data of two 
domains have the following property:( ( )) ( ( ))S TP F X P F X ,

( ( )) ( ( ))S S T TP Y F X P Y F X . In this paper, the former 

corresponds to the maximum mean discrepancy, while the 
latter uses the conditional distribution adaptation to match the 
difference. Therefore, a classification hyper-plane co-trained 
by the source domain S and the smaller labeled data set of 

the target domainT  can be used to predict the unlabeled 

samples in T . 

2. Deep Learning Network  

In this paper, taking into account the good feature 
extraction performance of auto-encoder (AE), it is introduced 
for feature extraction, and it is the basis of the proposed 
JDDA. The key idea of AE is that the reconstruction of the 
original data in one layer [21], to achieve such a goal, AE is 
designed to consist of two parts: coding part and decoding 
part. On the one hand, the function of the coding part is to 
extract feature of the original data, and the procedure that 
extracts feature of the original data X can be defined as

C( )h f Z , CZ  . On the other hand, the decoding part is to 

restore the extracted features back to a set of data that 
possesses the same latitude with the original data, the process 

of decoding part can be defined as 
^

( )dX f Z , '( )dZ h ,and

(.) 1/1 exp(.)f   , which are parameterized respectively as 

follows: C CX b   , ' d dh b   , where  ,  C Cb   and 

 ' ,  d db   are the weight and bias matrixes of the encoder 



and decoder, respectively, so the basic structural loss function 
is defined as: 

2^

,
1

^

1
min ( )

2

. .   Z ,  ( ),  Z ', ( ).

m

i ib
i F

C C d d

X X
m

s t h f Z X f Z



 





   



 

(1) 

 
Fig. 1. The proposed fault diagnosis framework based on joint distribution 
adaptation. 

The symbol F represents a symbolic notation of the 

Frobenius norm, ˆ
iX and iX individually represent the single 

sample from the feature of decoding part and the sample set 
X. 

3. Joint Distribution Optimal Deep Domain Adaptation 
Architecture for Fault Diagnosis 

The JDA is designed to find the best path to minimize the 
distance between two domains, integrating marginal 
distribution and conditional distribution is performed through 
the JDA term function in which the distance between the 
marginal distributions and the distance between the 

conditional distributions could be shorten in , and this can 
be formulated as follows:    庁 嵶順牒盤諜濡┸超縄匪岷繋岫隙聴┸ 桁聴岻峅 伐 順牒岫諜畷┸超畷岻岷繋岫隙脹 ┸ 桁脹岻嵶態

 蛤 舗順牒岫諜縄岻岷繋岫隙聴岻峅 伐 順牒岫諜畷岻岷繋岫隙脹岻峅舗態            (2) 
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where 順 represents mathematical expectation. 

JDA utilizes the convenience of the Maximum Mean 
Discrepancy (MMD), the discrepancy of two distributions is 
aligned by the MMD term in which the sample mean from the 
two domains is subtracted in the reproducing kernel Hilbert 
space (RKHS), and the calculation form can be written as: 

1 1 1

11 11 1

1 1
MMD( , ) ( ) ( )

n n m

S T i j
i j n

X X x x
n m

 


  

  
            

(3) 

where 1n is the number of samples in the source domain and

1m is the number of samples in the target domain. 

: X   is the mapping function of the original feature 

space mapped to RKHS. In this study we fine-tune the MMD 
form to be: 

1 1 1

1

1 1 1 1 1 1

2

2

1 11 1

2 2
1 1 1 1 1 11 1 1 1

1 1
( , ) MMD ( , )= ( ) ( )

1 1 2
( , ) ( , ) ( , )

n n m

M S T S T i j
i j n

n n m m n m
s s t t s t
i j i j i j

i j i j i j

J X X X X x x
n m

k x x k x x k x x
n m n m

 


  

     

 

  

 

    

(4) 

where subscriptM indicates that this objective function to be 
optimized is the marginal distribution, and 

2 2( , ) exp( / 2 )k x y x y   . By minimizing (4), the marginal 

distributions between domains are drawn closeˈ and this 
only takes advantage of the differences in the marginal 
distributions. In order to get a high classification accuracy 
model, the discrepancy between the conditional distributions 

Fig. 2. The fault diagnosis algorithm for electromechanical drivetrain based on the JDDA. 



( ) ( )P Y X P Y Xs s t t of the two domains S and T  is 

another optimization objective. Long et al. [19] proposed the 
transfer feature learning with joint distribution adaptation 
(JDA) in which the representation feature is designed to 
optimize this discrepancy by using pseudo target labels, and 
the pseudo target labels are predicted by the supervised 
classification hyper-plane (SVM) trained on the source 
domain labeled data. So the difference between the two 
distributions of features inS and T can be reduced as much 

as possible under knowing the pseudo target labels

( ( )) ( ( ))P Y F X P Y F Xs s t t . In particular, we can calculate 

the distance of the average for normal type of samples by 
applying the real label directly by assuming that

( ( )) ( ( ))S SP Y F X P Y F Xt t= , so that a high classification 

accuracy model can be achieved. The specific details are 
computed as follows: 

2 2

2 2 2 2 2 2

2

1 12 2

1 1 1 1 1 12 2 2 2

1 1
( , ) ( ) ( )

1 1 2
= ( , ) ( , ) ( , )

k k

k k k k k k

n m

C S T i jk k
i j

n n m m n m
s s t t s t
i j i j i jk k k k

i j i j i j

J X X x x
n m

k x x k x x k x x
n m n m

 
 

     

 

 

 

    

(5) 

where : X  is the mapping function of the original 

feature space mapped to RKHS; and 
2 2( , ) exp( / 2 )k x y x y   .  2 = ( )k

i in x y x ks   is 

the set of samples belonging to class k in the target domain 
that fall into the common subset, and

 2 = ( )k

j t jm x y x k    is the set of samples belonging 

to class k in the target domain that fall into the common 
subset. 

  By minimizing (5), the conditional distributions between 
domains are drawn close. In fact, combining (4) and (5), it 
leads to the following JDA optimization problem as follows: 

1

0

       =

K

JDA M C
k

K

C
k

J J J

J

 







  

˄ ˅

              (6) 

Note that the MMD can be viewed as a special case of 
JDA with 0k  , we can simultaneously adapt both the 
marginal distributions and conditional distributions between 
domains. 

4. The Proposed JDDA for Drivetrain Fault Diagnosis 

This section proposes a fault diagnosis framework, which 
is shown in Fig.2. Taking into account the existing computing 
power, the JDDA is designed to include only one hidden 
layer in this study, and the main data processing is as below. 
Data from the source and target domains go through the AE 
network to get associate features, so all data is pulled into a 
same feature space (RKHS), then, the key step of the 
JDDA—JDA term is used as a tool to narrow the features 
distance of both domains in the RKHS, the SVM 
classification hyper-plane trained by labeled data of the 
source domain can be applied to the classification of the 

unlabeled data of the target domain. According to the 
structure of the JDDA, the cost function of the JDDA can be 
expressed as in equation (7). 

2^

,
1 0

^

1
min  ( )

2

. .   Z ,  ( ),  Z ', ( )

m K

i i Cb
i kF

C C d d

X X J
m

s t h f Z X f Z




 

 

 

   

 ˄ ˅
     (7) 

where  is the trade-off parameter of the JDA term, the 

MMD can be viewed as a special case of JDA with 

0k  .There are a total of K samples in the common subset 

that belongs to both of the two domains. 

This cost function contains the two parts mentioned in III-2, 
namely, deep learning network and joint distribution based 
deep domain adaptation architecture. The former comes from 
the direct loss of reconstruction error, and another is used to 
reduce the distance between two different domains in the 
same feature space. Another implementation aspect of the 
JDDA is the learning algorithm. The decoding layer is not 
shown in Fig. 2, because we use the features in the previous 
layer directly as the input to the next layer. In fact, the 
decoding layer still exists. The process of the learning 
algorithm is summarized below.  

Learning Algorithm: A Joint Distribution Optimal Deep 
Domain Adaptation Method for Fault Diagnosis 

Begin: 

Step 1: Randomly initialize the parameter of AE network 
Building a basic AE network structure, and the corresponding 

parameters C , d , Cb , db  needs to initialize by following 

the structural loss function in (1) with the labeled data. 
Step 2: Pre-train the AE network 

The raw data is made up of the unlabeled data from S and

T , and it will be used to pre-train the JDDA, the iteration 

process of solving the parameters can be written as: 

cos
1

t
C C

C

J  



 


 
(8)

                   
cos

2
t

d d
d

J  
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cos

3
t

C C
C

J
b b
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cos

4
t

d d
d

J
b b

b
 

 


 
(11) 

where ( 1,2,3,4)i i  is the learning rate. 

Step 3: Establishing the JDDA network 
Those parametersC , d , Cb , db are used to build the JDDA 

based on the AE structure. Meanwhile, M CJ J  has been 

inserted into the loss of AE, and the final loss function (6) is 
optimized by retraining the labeled data from the two domain. 
Step 4: Training joint distribution adaptation classifier 

At this step, the classification hyper-plane of SVM is only 
determined by features ( )Sx from S . Due to the role of JDA 

term, the T  features ( )Tx can be directly separated by 

trained classifier. 
Step 5: Output classification results 



The classification results of the T  features ( )Sx are 

generated from the SVM. 
End 

Č. EXPERIMENT TEST 

We consider two test-rig systems, which are shown in Fig. 3. 
Two simulation datasets were used to test the performance of 
the proposed method. The two experiment datasets were 
acquired in two places: ball bearing test data from Case 
Western Reserve University Bearing Data Center (CWRU) 
[41], and a gearbox fault data from the prognostics and health 
management society (PHM Society) [42]. 
 

 
(a) Bearing test rig [41]               (b) Gearbox test rig [42] 

Fig.3. Experiment setup for drivetrain fault diagnosis 

 

A. Data Description 
1) Ball Bearing Test Data: experiments data was from the 
single-point drive end of the bearing in which the 
accelerometer was used to get the normal and fault data, 
and the fault data contain defects in the inner race (IN), the 
outer race (OU) and the ball (BA). Of course, the 
mentioned three kinds of fault data have four fault 
diameters (0.007, 0.014, 0.021, and 0.028), respectively. In 
addition, the motor load was set in four stages (0, 1, 2 and 
3hp), and the sampling frequency was 12 kHz. In this part, 
we used data selected from the four to create six DA 
condition (0-1hp, 0-2hp, 0-3hp, 1-2hp, 1-3hp, 2-3hp) to 
verify the performance of the model.  Taking 0-3hp as an 
example, the form of the problem definition in  section 
III -1 can be specifically designed as: 

a) Source Domain: The source domain contains 
normal and defect data from a 0hp motor load, in this 
paper, the fault diameters are selected as 0.007 and 
0.014.So

 0 0 0 0
0.007,0.014 0.007,0.014 0.007,0.014, , ,S normal IN OU BA  . 

b) Target Domain: Similar to the source domain, the 
target domain contains a lot of normal and defect data 
from 3hp motor loads, but a different place is that there 
is only the normal data for labeled samples, so the 

available target domain  3T normal  . 

c) Task: The task is categorizing the unlabeled data 
in the target domain into 

 3 3 3 3
0.007,0.014 0.007,0.014 0.007,0.014, , , .normal IN OU BA  

2) Gearbox fault dataset: This is a compound fault data. In 
order to maximize the use of this data, the tachometer 

information of helical is chosen with the accelerometers 
mounted on both the input and output shaft retaining plates, 
three kinds of data– normal gear, chipped gear (CG) and 
broken gear (BG) are included in tachometer information, 
and this fault data is collected under both high and low 
load conditions, in addition, five different (30Hz, 35Hz, 
40Hz, 45Hz, 50Hz) shaft speed have also been set. To the 
convenience of experimental data recording, several 
abbreviations are used to represent specific data, for 
example, 45L, meaning that the load condition for this data 
is low, and its shaft speed is 45Hz.For the sake of creating 
a TL situation, the problem definition in the part III-1 can 
be specifically designed as: 

a) Source Domain: In gearbox fault dataset, the 
source domain is composed of the three kinds of data of 
45L and the normal data of the target area.

 , ,S normal CG BG  . 

b) Target Domain: As same as source domain, the 
source domain contains five different shaft speed data 
with high load condition (30H, 35H, 40H, 45H, 50H), 
but the only data that can be labeled is normal data. 

 T normal  . 

c) Task: The task of this part is deal with the 
unlabeled data in the target domain, this unlabeled data 
which can be classified into , ,normal CG BG . 

3) Data preprocessing: the Ball Bearing Test Data needs to 
be pre-processed. Firstly, a total of 1200 data points 
(samples) were chosen from the two domains, with 80% 
overlap. Then, due to the presence of noise, Fast Fourier 
Transform (FFT) is used to reduce effect of noise on model 
training. Next, the value of the data after FFT is magnified 
10 times, because it becomes too small. For Gearbox Fault 
Dataset, in order to remove noise interference, we assign a 
value of 0 to the value less than zero in the original data. 

B.  Experimental Results 

1) Methods Used 

For comparison purpose, the JDDA, along with several 
state-of-the-art machine learning and TL methods, are used: 
including SVM [10], [43] Logistic Regression (LR) [8], 
Back-propagation neural network (BP) [11], Transfer 
Component Analysis (TCA) [28], deep model based domain 
adaptation for fault diagnosis (DAFD) [20], and without the 
JDA term of the JDDA that we proposed (JDDA-R). The first 
3 approaches are traditional machine learning methods, the 
fourth and fifth approaches are DA methods which have been 
successively applied to fault diagnosis. The last one is a 
comparison method of JDDA and it is also a deep learning 
method (AE). 

2) Experimental Details  
For the first three methods, the source domain data is used 

to train the associated machine learning models. After the 
training is completed, unlabeled data from the target domain 
is used to test the classification accuracy of the model, but the 
training data includes not only label data from the source area 
but also normal label data from the target domain. Data 
normalization is performed for the fourth method. 



TABLE ĉ 
CLASSIFICATION ACCURACY FOR THE DRIVETRAIN BEARING DATA  

Without distribution adaptation technology 

Trial number 1 2 3 4 5 6 
 

Methods 0-1HP 0-2HP 0-3HP  1-2HP 1-3HP 2-3HP  avg. 

LR 88.8% 74.9% 79.4% 75.0% 72.5% 77.8% 78.1% 

svm 93.9% 87.7% 83.1% 74.7% 77.9% 97.8% 85.9% 

BP  74.8% 72.1% 73.7% 65.7% 89.2% 84.6% 76.7% 

JDDA-R  78.6% 74.1% 80.1% 74.9% 80.2% 75.6% 77.3% 

With distribution adaptation technology 

TCA    97.8% 75.0% 86.9% 80.1% 99.7% 80.4% 86.7% 

DAFD    96.7% 92.3% 93.6% 86.4% 93.2% 92.5% 92.5% 

JDDA 99.6% 98.6% 99.6% 97.4% 97.8% 100.0% 98.8% 

 

In terms of parameter adjustment, an empirical search 

approach is used to find the optimal parameters for the six 

comparative methods. For SVM, the LIBSVM package is 

used for classification [43], the kernel function is set to 

Gaussian kernel, and the value of the trade-off parameter is 

set to 1.5. For LR, the trade-off parameter is selected from

 0.002,0.02,0.2,2,20. For BP, the number of hidden layer is 

set to 2, the number of hidden neurons of each layer is 1000, 

and the learning rate is set to 0.1. For JDDA-R, it means that 

the parameter   is set to 0, so only auto-encoder is used for 

feature extraction without domain adaptation term. For TCA, 

the kernel type is selected as Radical Basis Function (RBF), 

and the optimized subspaces for the processed features can 

choose from8,16,32,64,128.For DAFD, as it uses of a back 

propagation algorithm, the reconstruction error is gradually 

reduced, and three main adjustable parameters are:

1, 1000, 0.001and     , more details can be found in 

[20]. 

For all the DA methods considered in this study, the 

method designed for the SVM method can be used to find the 

associated optimal model parameters. For JDDA, the number 

of hidden layer is set to one and the numbers of hidden units 

are set to 1000. For the convenience of the experiments, the 

value of the model's regularization parameter is set to two. 

At last, the classification accuracy of each method is 

defined as: 

( ) ( )
( %)

n

label x k predict x k
accuracy C

x

  


    
(12) 

where nx  is the total number of test samples, andk  is the 

true label value that a classifier correctly identified. 

 

 

 
Fig.4. Fault diagnosis accuracy of each method on drivetrain bearing data. 

3) Results of Bearing Case Study 

As shown in TABLE ĉ and Fig. 4, for the methods 

without distribution adaptation, it is generally lower than the 

method that with distribution adaptation. In the trial number 3, 

the classification accuracy of JDDA-R is 16.5% lower than 

the novel JDDA. For the methods with distribution adaptation, 

the classification accuracy is also lower than that of JDDA, 

for example, the accuracy of DAFD is 6% lower than that of 

JDDA. It is worth mentioning that the classification accuracy 

of BP is the lowest among all methods. This may be 

explained from two aspects. First, we can only empirically 

find the best hidden layer and learning rate for BP, it uses a 

semi-supervised approach, and the experiment data contains 

part of the data from the target area, which affects the 

classification accuracy of the BP network.  



TABLE Ċ 
CLASSIFICATION ACCURACY FOR THE GEARBOX DATASET  

Without distribution adaptation technology 

Methods 45L-30H 45L-35H 45L-40H 45L-45H 45L-50H avg. 

LR 50.0% 48.5% 49.8% 52.3% 51.6% 50.4% 

svm 50.0% 50.0% 49.5% 50.4% 50.4% 50.1% 

BP  46.9% 33.9% 38.1% 28.9% 34.0% 36.4% 

JDDA-R  48.5% 46.0% 48.2% 62.3% 53.6% 51.7% 

With distribution adaptation technology 

TCA    50.8% 52.5% 60.3% 60.8% 60.1% 56.9% 

DAFD    53.8% 54.6% 57.4% 72.5% 65.1% 60.7% 

JDDA 57.9% 61.6% 69.5% 80.3% 70.4% 67.9% 

4) Results of Gearbox Case Study 

The results of the five different TL circumstances are listed in 
Table ċ, where 45L-30H means that the S is the data 

from 45L, and the T is the data from 30H. Although the 

average accuracy of the model in all methods is high, the 
accuracy of the model is even lower than the supervised 
learning algorithm in some papers. The main reasons are as 
follows, unlike this supervised learning algorithm, the 
experimental data of the JDDA is performed under the 
condition that the train data and the test data are subject to 
different distributions.  

5) Results Summary  

As we expect, the excellent results of novel model has 
achieved when it is used to deal with the classification 
problem in the test of two actual data, the proposed method 
can indeed improve the classification accuracy of TL 
situation. 

C  Results Analysis 

In order to further explore why the performance of JDDA is 
good, the t-distributed stochastic neighbor embedding 
(t-SNE), as a dimension reduction visualization method, is 
used to reduce the dimension of features involved in both 
JDDA-R and JDDA. The reason for choosing t-SNE is that 
high dimensional data can be well visualized at 
low-dimensional space, as shown in Fig. 5(a)–(d), where the 
normal features of the two models are clearly observed and 
each fault feature is rendered in a two-dimensional map after 
dimensionality reduction. More details about the t-SNE 
application can be found in [44].  

The visualization of the JDDA features is used for reference 
purpose. For example, in Fig. 5(a), the distance between two 
domains features of the JDDA(green and blue cross marker) 
is smaller than the distance between S and T  features of 

the JDDA-R  (green and blue point marker). This 
characteristic proves that our model can make the distance 
between S and T closer in the Reproducing Kernel 

Hilbert Space (RKHS), so a high-performance SVM classifier 
is available by training with the labeled features of the JDDA. 

 

 
Fig.5. The features of JDDA and JDDA-R are displayed by t-sne in a 
reduced-dimensional dimension. The bracketed symbol S represents the 
source domain Ds and symbol T represents the target domain DT, in particular, 
the number ĉ represents the fault diameter value is 0.007, the number Ċ 
means the fault diameter value is 0.014. 
 

D  Empirical Analysis of Parameters 
In this section, the effect of the trade-off parameters of the 

JDA term on the accuracy of model classification for the 
CWRU Bearing Data is analyzed. As the mentioned above, 
the classification accuracy is a standard measure to evaluate a 
classifier’s performance. Let  be a trade-off parameter, we 
use 10log   as the abscissa to show the effect of the change 

of   on the classification accuracy. As shown in Fig.6, in 
phase 1, 10log [ 2,0.4] . With the increasing of  , the 

performance of the JDDA becomes better and better. In phase 
2, 10log [0.4,3.5] . The JDDA maintains a good 

performance for the test data, which means that the JDDA has 
a robust classification effect. In phase 3,10log [3.5,4] . 

The classification accuracy of JDDA drops rapidly. 



 
Fig. 6. The trade-off parameter ( ) influence for the JDDA. 

č. CONCLUSION 
A novel deep domain adaptation learning architecture, 

combined with deep learning model and joint distribution 
adaptation (JDA), is proposed for fault diagnosis of 
electromechanical drivetrains system. The performance of the 
proposed JDDA method is tested using simulation datasets 
for bearing and gearbox, and compared with other five 
state-of-the-art methods. The main contribution of this paper 
is that a novel method of domain adaptation has been 
explored in which the distance of the representative features 
of the source domain and target domain is reduced through 
the RKHS, and the JDDA can not only be applied to fault 
diagnosis of variable working conditions, but also to other 
fields. An explanation of the better performance of JDDA is 
presented using the t-SNE. The analysis of the impact of the 
trade-off parameter on the classification accuracy of the 
JDDA provides some useful information for further 
development and improvement of the JDDA. 

In future work, we would consider the following two topics. 
Firstly, we would apply the method to more real scenario 
datasets to further test its performance, and then applied to 
real electromechanical drivetrains problem solution. So, it can 
reduce the downtime of electromechanical drivetrains (wind 
turbines, high-speed railway, etc.), save maintenance costs, 
increase power generation rate and economic benefits. 
Secondly, the distributed parallelism approach will be further 
explored and enhanced to improve the real-time performance. 

We will carry out the proposed method to the reality wind 
farm in our future work. 
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