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Fault Diagnosis for Electromechanical Drivetrains
Using a Joint Distribution Optimal Deep Domain
Adaptation Approach

Zhao-Hua Liu, Member, IEEBi-Liang Lu, Hua-Liang Wei, Xiao-Hua Li, and Lei Chen

Abstract: Robust and reliable drivetrain is important for
preventing electromechanical (e.g., wind turbine)
downtime. In recent years, advanced machine learning
(ML) techniques including deep learning have been
introduced to improve fault diagnosis performance for
electromechanical systems. However, electromechanical
systems (e.g., wind turbine) operate in varying working
conditions, meaning that the distribution of the test data
(in the target domain) is different from the training data
used for model training, and the diagnosis per for mance of
an ML method may become downgraded for practical
applications. This paper proposes a joint distribution
optimal deep domain adaptation approach (called JDDA)
based auto-encoder deep classifier for fault diagnosis of
electromechanical drivetrains under the varying working
conditions. First, the representative features are extracted
by the deep auto-encoder. Then, the joint distribution
adaptation is used to implement the domain adaptation,
so the classifier trained with the source domain features
can be used to classify the target domain data. Lastly, the
classification performance of the proposed JDDA istested
using two test-rig datasets, compared with three
traditional machine learning methods and two domain
adaptation approaches. Experimental results show that
the JDDA can achieve better performance compared with
the reference machine learning, deep learning and
domain adaptation approaches.

Index Terms—fault diagnosis, electromechanical drivetrain,
deep neural network, deep learning, domain adaptation (DA),
joint distribution optimal, auto-encoder(AE), machine
learning, artificial intelligence, bearing, gearboxes, wind
turbine, varying working conditions.

[ INTRODUCTION!

Electromechanical system(e.g., wind turbine) play an

fluctuations. Drivetrain failures can cause serious damage to
the whole equipment, so it is necessary to discover potential
faults in drivetrain system as early as possible. Usually, the
failures of bearing, gearboxes, and other drivetrain
components can usually result in long downtime, thus can
cause considerable drivetrain maintenance costs [3].
Therefore, fault diagnosis for bearing and gearboxes
components in drivetrain is one of the most important parts in
the condition monitoring systems. In fact, in order to monitor
the bearing and gearboxes conditiomsany useful fault
diagnosis methods were proposed, such as wavelet transforms
[4], time-frequency manifold [5 and Morphological
Hilbert-Huang (MH) technique [6]The implementation of
the fault diagnosis process using these methods usually need
expert manual intervention. Howeyenethods with expert
manual intervention usually cannot provide easily-understood
diagnosis resulisherefore, a more convenient algorithm is
necessary to solve fault diagnosis problems

In recent years, machine learning and deep learning
technologies have attracted the attention of many researchers
to deal with the fault classification problems [7]. Commonly
used machine learning (ML) methods include logistic
regression (LR) [8], Naive Bayes classifier [9], SVM] and
neural networks][1]. Although these ML methods can work
well for most fault diagnosis problems without expert manual
intervention as required by traditional approaches, they need
sufficient prior knowledge and large labeled training samples
However, it is difficult to collect sufficient labeled data and
then train a reliable diagnosis model in most engineering
scenarios.

There is a similar situation in the deep learning network
(DLN) [12], such as recurrent neural networks (RNN) [13],
convolutional neural network (CNN) [14] and deep brief

important role in industrial systems [1], [2]. However, -ouiorks (DBN) [15]. More specifically, Sun et al. [16]

electromechanical drivetrains are typically exposed

proposed an intelligent bearing fault diagnosis method,

invariable and harsh environments, and usually suffer fromynhining compressed data acquisition and deep learning,
high failure rate. It is prone to failure due to the some severe,4 including a sparse auto-encoder (SAE) as the DLN

operating environment and the wide range of
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infrastructure. Of course, due to the structural advantages of
DLN, these methods not only automatically extract the
features, but also the extracted features can represent the
original data well. So the classifier trained with those features
would normally have an outstanding performaridewever,

the good performance of DLN is based on a hypothetical
condition — the training data and test data have the same
distribution.

Inevitably, electromechanical systems usually work in
varying conditions du& the changeable working conditions
environmental noise and product quality etc., so data sets
from a same process may have different distributions in
practical applicationMoreover, the lack of labeled training


mailto:lixiaohua_0227@163.com

data makes it necessary to use historical labeled data (sourcemplicated fault data. The main contributions of the paper
domain) to achieve correct label prediction of new dataare summarized as follows:

(target domain), and such knowledge transfer can cause a . . . .
distribution discrepancy between training data (sourcel) A novel deep domain adaptation learing architecture
domain) and testing samples (target domain), which leads t§@5€d on DA techniques is proposed for fault diagnosis under
significant diagnosis performance deterioratibnshort it is ~ variable working conditionsThe proposed JDDA integrates
a challenging task for existing ML and DLN based fault deep Iearnlng, DA and machine Iear.nlng in one model, where
diagnosis method$How to overcome the data disparity issue representative features can .be easily extre_tcted by the DLN.
(e.g. between training and test data) to achieve good\ftervyards, the representative features distance of source
performance for fault diagnosis? In other words, how todomain and target domain is decreased throughDhe
achieve a good diagnosis model with insufficient ladel @lgorithm.  Therefore, a classifier trained with the
training data for engineering probletns representative features of source domain can be used for fault
Recently, a useful method based on domain adaptatiofrédiction of the target domain.
(DA) [17] has been introduced into the ML aBd.N. DA 2) A domain-adaptation fault diagnosis algorithm for
strategies can be roughly summarized into two categories€lectromechanical system(wind turbine) based on joint
instance reweighting and feature extractids][ [19]—the distribution optimization is proposed and its performance is
former re-adjusts the training set on the basis of the commo#tested on actual device dataesides the joint distribution
knowledge contained in the test set, and then further analyzeddaptation algorithm has been improved in the terms of
the reweighted training set, while the latter aims to detects 4beled samples acquisition.
shared subspace and draws the distance between training da¥a Empirical analysis is performed on the hyper-parameters
(source domain) and testing samples (target domain). The DAf the domain-adaptation algorithm, aiming to facilitate the
approach considered in this study belongs to the latter one. Idetermination of important parameters of DA.
fact the trainig data space and their distribution used for
building the fault diagnosis model is defined as the source”' RELATED WORK
domain, the test data space and their distribution for modeThis section describes the related work on fault diagnosis of
application is defined as the target domain, and the problenglectromechanical drivetrains abe\.

that we are eager to solve is the cross-domain learning\, Fault Diagnosis of electromechanical drivetrains

problem{17]-[19]. The failures of bearinggearboxes, and other drivetrain

Due to the existence of cross-domain learning problem th% : ;
o ' omponents can usually result in long downtime, thus can
performance of the ML and DLN based classifiers may not be P y d

tisfact ; h h lassif ined with th tause considerable drivetrain maintenance cadStmilar
satistactory meaning that the classifier trained with the ,,,55ches have been reported in the literature, for example,

source domain may not work well for classification in the Zheng et al. [24] proposed a fault diagnosis method based on

target domain. In many real applications, it is very expensiveg, nnqrt vector machine for a rolling element bearing system
or difficult, if not possible; to collect test data that has thefault detection:Li et al. [25] proposed a fault diagnosis

same distribution as the training &b overcome suc_h an  method for motor rolling bearing using a neural network
issue, Lu et al. [20] proposed a novel deep model in whiCly qgifier.  However, these methods need to manually

the DLN was combined with domain adaptation. Wen et al.yetermine a representative feature of the original data, but it
[21] proposed a new deep transfer learning approach based Qfyon, js very difficult or impossible to properly define the

Sparse Auto-Encoder (SAE) in which the DLN utilizes the ot representative feature when data is big. LeCun, Bengio
maximum mean discrepancy (MMD) _measure [22] to and Hinton 2] proposed the concept of DLN, introducing
minimize .the distance between two distributions, so thethe pretraining  skill and minimizing the network’s
classification of the target domain can _make use of thereconstruction error, so it can get a good representation of the
common knovv_ledge in t_he source domain. However, thes%riginal data automatically. Recently, some fault diagnosis
two methods just optimize the difference of the marginal o5 [26] established on deep learning technology has
distribution, "in other words, they only use a part of yeon nronosed. Comparing with traditional machine learning

dis|tr:ik)tlrJ]tii:npi;;gzrrm?,\t,i:npz?sfeodrvegr(tjheao:ji?fifg?ér?tats{o del from Methods, the classification accuracy of these deep learning
: N . approaches has be ignificantly i d.
previous studies in which the advantage of DLN can be PP en Sighimcantly improve

further exploited, and the DA [23] technique can be used toB' Domam Adaptz_atlon )

reveal and take advantage of data distribution information. Domain adaptation (DA), as a transfer learning method
Combining the DA strategies and the DLanovel approach utilizes a different but relat_ed source (_jomam to s_olve the
using joint distribution adaptation for a deep learning modelProblem of the target domain. It is inspired by the idea that
(JDDA), in which representative features of source domainP€0ple can apply past experiences to new things. In the early
and target domain are extracted by the DLN, and then, byt@ges, most of the_ domain adaptation strategies are coupled
making useDA, the distance between the two domains is With machine learning [27]-[30]. But gradually DA has been
narrowed, so the model trained in the source domain can b#tegrated with deep learning in many applications, and an
directly applied to the classification of the target domain €xcellent achievement has been achieved in the field of
through the classification hyper-plane. As far as we know,Computer vision [31], [32]

this is a novel wd in the literature on such a method based Broadly speaking, there are two types of feature extraction
on DA to solve fault diagnosis problems with large methods with DA: transfer subspace learning [33]-[35] and



transfer classifier induction [36]-[38], the DA is the part of distribution which used for building the fault diagnosis model.
the former one, and the DA has several ways to get it. Correspondingly, the target domain is composed of the test

1) Marginal distribution adaptation, which aims to make data space and the associated distribution, where the
the distance between the source domain and the targetrdomafliagnosis model is applied to.
as close as possible, and a way to get closer is to minimize Definition 2 (Task). A task7 is made up of the label

the predefined distance, e.g., maximum mean discrepancypacesy and the conditional probability distributi®gY|X).
(MMD), Kullback-Leibler divergence or Bregman

divergence. Consider two different taskg; and 7; , which possess

2) Conditional distribution adaptation, which estimates the different characteristics in two different domairi; andD: .
effect of DA by shortening the distance between conditionalTwo tasks 73 and 7; are said to be different, if the
distributions, and the detailed information can be found inassociated label spacés or the conditional distributions
(e _ , _ P(Y|X)are different.

3) Joint distribution adaptation (JDA), which combines the

two methods mentioned above [39], [40]. Normally, the In this paper, to bridge the gap between the source domain
smaller the distance between two domains, the more robust @nd the target domain, it is assumed that the label spazes ar
the JDA embedded models. More information about JDA isthe same, but the conditional distributignsg| x) are different.

given in Section Ill-2. In other words, the types of failures between the source
Deep learning with DA opens a new door for the problemdomain and the target domain are overlapping, but the
of electromechanical device fault diagnosis. The deepprobability of failure occurrence is different in the changeable
learning method usually needs enough training data, so igngineering environments. In short, it is assumedythaty ,
would be challenging and difficult for fault diagnosis using
machine learning methods if there is only a small data set.P(YSP(S)I P(\ﬂxt)'
But now the issue can be alleviated by means of DA. The DA pefinition 3 (Motivation). Given the source domain
clan l_Jf_se t_S|m|lar SIUt not |dtent|c?l dsourc_e dPomamt t(aJB]sFlvecomammg n samples, that is,
classification problems in target domain. Pan e _ i
proposed a Transfer Component Analysis (TCA) technique toDS =% y]),(&, Yoo '(.X“.'y” J}(n Is large enough), and a
map features (data) in two domains (source and targe&arget domain  containing  m samples., that s,
domains) to a Reproducing Kernel Hilbert Space (RKHS) Pr ={(X02 Youdh (X2 Yo s Xy g X - (M IS much
using Maximum Mean Discrepancy (MMD). Long et al. [27] smaller than n, i.e., m<<n) . The objective is to find a
devised a transfer learning framework, called Adaptationconversion functiof, such that the labeled data of two
Regularization Based Transfer Learning Framework (ARTL),domains have the following properf(F( X)) = B(H X)),
by incorporatingMMD into the machine learning. The major _ ;
difference between our proposed model and these methodsP(YS‘F(XS))_ PO XT)). - In- this péper the form(.ar
discussed above is that a deep learning scheme (i.e. de€g'responds to the maximum mean discrepancy, while the
learning network) is introduced in our model and used tolqtter uses the conditional dlstrlbutlpn adaptation to match the
extract features automatically, the transfer learning schem@ifference. Therefore, a classification hyper-plane co-trained
(i.e. joint distribution adaptation) is embedded in the DLN, by the source domairDs and the smaller labeled data set of

and in this way a robust and high-performance model can behe target domai®, can be used to predict the unlabeled
acquired. samples inD; .
I1l. THE PROPOSED JDDA FOR FAULT DIAGNOSIS 2. Deep Learning Network

OF ELECTROMECHANICAL DRIVETRAINS In this paper, taking into account the good feature

. L - o . extraction performance of auto-encoder (AE), it is introduced
This section introduces a joint distribution optimal deep ¢y, feature extraction, and it is the basis of the proposed

domain adaptatlon .app.roach (JDDA), and theDAD  jppa. The key idea ofAE is that the reconstruction of the
framework is showed in Fig.1. original data in one layeR]], to achieve such a god\E is
designed to consist of two parts: coding part and decoding
part. On the pe hand, the function of the coding part is to

Definition 1 (Domain). Given a sample set X and the extract feature of the original data, and the procedure that
— extracts feature of the original data X can be defined as
feature spacg , whereX ={X,%,X;...%,} € ¥, let P(X)

. o oo ’ h= f(Z.),Z. =6 . On the other hand, the decoding part is to
be a marginal probability distribution. A domain,

. . . restore the extracted features back to a set of data that
designated b, is a set that consists of the feature space . . .
. R possesses the same latitude with the original data, the process
and a marginal probability distribution P(X). Note that two

domains D;and D, are said to be different if their feature of decoding part can- be defined a&fa?), 2o =0 .,and
spacey or the marginal distribution P(X) are different, or f()=1/1+ exp(), which are parameterized respectively as

1. Problem Definition

. . follows: 0=w.X +b. , 0'=w;h+b, , whered={a., b.} and
simply, xs # xr or R(X)#R(X). In this paper, the source @ e @t {e, b}

domain is defined as the training data space and theirglé{wd'bd} are the weight and bias matrixes of the encoder



and decoder, respectivebo the basic structural loss function conditional distributions could be shorten #f, and this can

is defined as: be formulated as follows:
2

m A 2 . _
min—L > (X~ X,) min | p ) UF s, Y91 = Bptegn [F G 1) |
e i=1 F 2

R ) ~ ”IEP(XS) [F(Xs)] — IEP(XT) [F(XT)]” 2
_ _ —0N'¥X — 2
Z.=0,h=1Z) 2,=0"'X=1€,) +||IEP(Y5|XS) [Ys|F(Xs)] — ]EP(YTIXT) [YT|F(XT)]”

N whereE represents mathematical expectation.
TN ., = JDA utilizes the convenience of the Maximum Mean
P 5 mof'ﬁ - = Knowledse Discrepancy (MMD), the discrepancy of two distributions is
& = e— Rilowr—as i = aligned by the MMD term in which the sample mean from the

Fedtues eatiing e _ two domains is subtracted in the reproducing kernel Hilbert
=;“ZJ | space (RKHS), and the calculation form can be written as:
mm— ‘
Labeled | || @b 2m< " 0l g g omim
bl ||y 7 <on=pz,),| | InfKeXr)= Z”“ o, Z ﬂ" | MMD( X, X 1) Z¢(X) m Z #x;) 3)
A i=1 j=n+1
I e TS 14 -ﬁzﬂm . . .
o S Gl wherel, is the number of samples in the source domain and

Target Domain

; = Deep ; Unlabeled Data . . )
g | ‘,Lleming -- Classifie M is the number of samples in the target domain.

i o ¢: X > H is the mapping function of the original feature
Fig. 1. The proposed fault diagnosis framework basgdiondistribution space mapped to RKHS. In this study we fine-tune the MMD
adaptation. form to be: '

The symbol| |. represents a symbolic notation of the

Jmﬁl

Frobenius norm X, andX, individually represent the single Ju (%, X) = MMD*(Xg, X ;)= Z¢(X)—f S, )

H
sample from the feature of decoding part and the sample set 4 “)

X :rfzm)ik(x XS)+—ZZK(>$ &)——sz(x ")

i=l j=1 Iljl |111

3. Joint Distribution Optimal Deep Domain Adaptation where subscripé indicates that this objective function to be
Architecture for Fault Diagnosis optimized is the marginal distribution, and
The JDA is designed to find the best path to minimize the k(x, y) = exp(x— sz /Z?). By minimizing (4), the marginal

distance between two domains, integrating marg'naldlstrlbutlons between domains are drawn closand this
distribution and conditional distribution is performed through only takes advantage of the differences in the marginal
the JDA term function in which the distance between thedistributior:s. In order to get a high classification accuracy

marginal - distributions  and the distance between themodel,the discrepancy between the conditional distributions

Sample signal acquisition Collected data -
= © Nommal | NSNS por e
X \ i
= == w6 : 4@) (Slegmere
IR, D - : Encoder Uf (0, X;%b,)
| R
: Faut2 | WMWY | | o< B oo O
‘ W ‘ f 1 tese Xy +be J} Encoder Eneoder {3 (e X, +b)

The pre-train of Model I pre-training the proposed model
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Fig. 2. The fault diagnosis algorithm for electrometbal drivetrain based on t®DA.




P(Ys\xs)ip(ﬂxt) of the two domainsD, and D, is unlabeled data of the target domain. According to the
structure of thelDDA, the cost function of thdDDA can be

another optimization objective. Long et al. [19] proposed theexpressed as in equation.(7

transfer feature learning with joint distribution adaptation
(JDA) in which the representation feature is designed to min L ZM(ZK:J )
optimize this discrepancy hysng pseudo target labels, and ob 2miF e

the pseudo target labels are predicted by the supervised L
classification hyper-plane (SVM) trained on the source St Z=0.h=1(Z). 2=0"X=1¢)
domain labeled data. So the diffecenbetween the two whereA isthe trade-off parameter of the JDA termme
distributions of features iP; andD; can be reduced as much 1o can be viewed as a special case of JDA with

prlgf;'bl)e ;(ndle:z I;;lovlvmg thel pseudo tarth lla:belﬁ( 0.There are a total of K samples in the common subset
~ n particular, we can calculate
S‘ J \ﬂ Xt P that belongs to both of the two domains.

the distance of the average for normal type of samples by _, . . . . .
applying the real label directly by assuming that This cost function contains the two parts mentioned in,llI-2

()

namely, deep learning network and joint distribution based
P(\@,|F(Xs))=P(Y|F(Xt)), so that a high classification deep domain adaptation architecture. The former comes from
accuracy model can be achieved. The specific details arthe direct loss of reconstruction error, and another is used to
computed as follows: reduce the distance between two different domains in the
same feature space. Another implementation aspect of the

Jo(Xe, X;) = ki¢(x) Z¢(X) JDDA is the learning algorithm. The decoding layer is not
m i E= shown in Fig. 2, because we use the features in the previous
12 ®) layer directly as the input to the next layer. In fact, the
"2 2 KO X)) +— ZZk(x x')— sz(x %) decoding layer still exists. The process of the learning
j=1 Ilj 1 i=1j=1

algorithm is summarized below.

whereg: X — H is the mapping function of the original - - - — -

feature space mapped to RKHS: and Learning Algorl_thm: A Joint Dlstrlbu_tlon thlmal Deep
5 . t Domain Adaptation Method for Fault Diagnosis

k(x y)=exp(x-y| /Z*). n :{)g eDg A Y(%)= k} is Begin:

the set of samples belonging to class k in the target domaigye 1: Randomly initialize the parameter of AE network

that fall into the common subset and Building a basic AE network structure, and the correspont

mZ:{x €D n y(x )= } is the set of samples belonging parameterg., @,, b., b, needs to initialize by following

to class k in the target domain that fall into the commonthe structural loss function in (1) with the labeled data.

subset. Step 2: Pre-train the AE network

The raw data is made up of thelabeled data fromDg and

By minimizing (5), the conditional distributions between o _ . ‘
domains are drawn close. In fact, combining (4) andi(5), D, and it will be used to pre-train the JDDA, the iterat

leads to the following JDA optimization probleaafollows: process of solving the parameters can be written as:
K
‘]JDAz/lJM_{—/uZ‘lZ o=@ al
k=1
K (6) @y =wy— a2 — 9
IO Oa’u
- _ b =b -, =t (10)
Note that the MMD can be viewed as a special case of bc
JDA withk=0, we can simultaneously adapt both the b = b — g Peos (11)
marginal distributions and conditional distributions between T on,
domains. whereg, (i =1,2,3,4is the learning rate.
4. The Proposed JDDA for Drivetrain Fault Diagnosis Step 3: Establishing the JDDA network

This section proposes a fault diagnosis framework, which Those parameters., @, , b, b, are used to build the JDD:
is shown in Fig.2. Taking into account the existing computingbased on the AE structure. Meanwhild,, + J. has been
power, the JDDA is designed to include only one hidden jnserted into the loss of AE, and the final loss function (6
layer in this study, and the main data processing is as belowptimized by retraining the labeled data from the two domain
Data from the source and target domains go through the ABtep 4: Training joint distribution adaptation classifier
network to get associate features, so all data is pulled into a At this step, the classification hyper-plane of SVM is o
same feature space (RKHS), then, the key step of theletermined by featureg(x)sfrom D, . Due to the role of JDA
JDDA—JDA termis used as a tool to narrow the features ;
distance of both domains in the RKHS, the SVM term, the DT.. features §(X)y can be directly separated t
classification hyper-plane trained by labeled data of thelrained classifier.
source domain can be applied to the classification of the Step 5: Output classification results




The classification results of theD, features ¢(x), are

generated from the SVM.
End

IV.EXPERIMENT TEST

We consider two test-rig systems, which are shown in Fig. 3.
Two simulation datasets were used to test the perforn@nce

the proposed method. The two experiment datasets were

acquired in two places: ball bearing test data from Case
Western Reserve University Bearing Data Center (CWRU)
[41], and a gearbox fault data from the prognostics and health
management society (PHM Society) [42].

—_—

(a) Bearing test rig4[1]

(b) Gearbox test rig [42]

Fig.3. Experiment setup for drivetrain fault diagnosis

A. Data Description
1) Ball Bearing Test Data: experiments data was from the
single-point drive end of the bearing in which the

accelerometer was used to get the normal and fault data,

and the fault data contain defects in the inner race (IN), the
outer race (OU) and the ball (BA). Of course, the
mentioned three kinds of fault data have four fault
diameters (0.007, 0.014, 0.021, and 0.028), respectively. In
addition, the motor load was set in four stages (0, 1, 2 an

3hp), and the sampling frequency was 12 kHz. In this part
1) Methods Used

2-3hp) to For comparison purpose, the JDDA, along with several
stateef-the-art machine learning and TL methods, are used:

we used data selected from the four to create D#x
condition (0-1hp, 0-2hp, 0-3hp, 1-2hp, 1-3hp,
verify the performance of the modelTaking 0-3hp asn

information of helical is chosen with the accelerometers
mounted on both the input and output shaft retaining plates,
three kinds of datanormal gear, chipped gear (CG) and
broken gear (BG) are included in tachometer information
and this fault data is collected under both high and low
load conditions, in addition, five different (30Hz, 35Hz,
40Hz, 45Hz, 50Hz) shaft speed have also beenTsethe
convenience of experimental data recording, several
abbreviations are used to represent specific data, for
example, 45L, meaning that the load condition for this data
is low, and its shaft speed is 45Hz.For the sake of creating
a TL situation, the problem definition in the part IlI-1 can
be specifically designed as:
a) Source Domain: In gearbox fault dataset, the
source domain is composed of the three kinds of data of
45L and the normal data of the target area.
Qg ={normal CG BG.

b) Target Domain: As same as source domain, the
source domain contains five different shaft speed data
with high load condition (30H, 35H, 40H, 45H, 50H),
but the only data that can be labeled is normal.data

Q; ={normal} .

c) Task: The task of this part is deal with the
unlabeled data in the target domain, this unlabeled data
which can be classified infaormal CG BG .

3) Data preprocessing: the Ball Bearing Test Data needs to
be pre-processed. Firstly, a total of 1200 data points
(samples) were chosen from the two domains, with 80%
overlap. Then, due to the presence of noise, Fast Fourier
Transform (FFT) is used to reduce effect of naisenodel
training. Next, the value of the data after FFT is magnified
10 times, because becomes too small. For Gearbox Fault
Dataset, in order to remove noise interference, we assign a
value of 0 to the value less than zero in the original data.

Experimental Results

example, the form of the problem definition in section including SVM [L0], [43] Logistic Regression (LR) [8

Il -1 can be specifically designed as:

Back-propagation neural

network (BP]11], Transfer

a) Source Domain: The source domain cont_ains_ Component Analysis (TCA) [28], deep model based domain
normal and defect_data from a Ohp motor load, in this daptation for fault diagnosis (DAFD2(], and without the
paper, the fault diameters are selected as 0.007 angpa term of the JDDA that we proposed (JDDA-R). The first

0.0145S0
Qs = {normap! ”\g).oozo.om OU%.oozo.om BAOo.oom.o}u-

b) Target Domain: Similar to the source domain, the

target domain contains a lot of normal and defect data®

from 3hp motor loads, but a different place is that there

3 approaches are traditional machine learning methods, the
fourth and fifth approaches are DA methods which have been
successively applied to fault diagnosis. The last one is a
omparison method of JDDA and it is also a deep learning
method (AE).

is only the normal data for labeled samples, so the2) Experimental Details

available target domairf); = {normaF} .
c) Task: The task is categorizing the unlabeled data

For the first three methods, the source domain data is used

to train the associated machine learning models. After the

in the target domain into _training is completed, u.nllabgaled data from the target domain

5 is used to test the classification accuracy of the model, but the

{normaF, IN 607,0.010 OU o.oozo.omBAeo.om,o.c}m training data includes not only label data from the source area

2) Gearbox fault dataseThis is a compound fault data. In but also normal label data from the target domain. Data
order to maximize the use of this data, the tachometefnormalization is performed for the fourth method.



TABLE [
CLASSIFICATION ACCURACY FOR THE DRIVETRAIN BEARING DATA

Without distribution adaptation technology

Trial number 1 2 3 4 5 6
Methods 0-1HP 0-2HP 0-3HP 1-2HP 1-3HP 2-3HP avg.
LR 88.8% 74.9% 79.4% 75.0% 72.5% 77.8% 78.1%
svm 93.9% 87.7% 83.1% 74.7% 77.9% 97.8% 85.9%
BP 74.8% 72.1% 73.7% 65.7% 89.2% 84.6% 76.7%
JDDAR 78.6% 74.1% 80.1% 74.9% 80.2% 75.6% 77.3%
With distribution adaptation technology

TCA 97.8% 75.0% 86.9% 80.1% 99.7% 80.4% 86.7%
DAFD 96.7% 92.3% 93.6% 86.4% 93.2% 92.5% 92.5%
JDDA 99.6% 98.6% 99.6% 97.4% 97.8% 100.0% 98.8%

In terms of parameter adjustment, an empirical searc

approach is used to find the optimal parameters for the siy WLR ®SVM ®mBP = JDDA-R & TCA & DAFD ® JDDA

comparative methods. For SVM, the LIBSVM package is 100%

used for classification [43], the kernel function is set to 95% l
Gaussian kernel, and the value of the trade-off parameter i  90% -
set to 1.5. For LR, the trade-off parameter is selected fromr E 85%
{0.002,0.02,0.2,2,2 For BP, the number of hidden layer is E 80%
set to 2, the number of hidden neurons of each layer is 100(C ft 75% -
and the learning rate is set to 0.1. For JDDAtRjeans that 70%
the parameterd is set to 0, so only auto-encoder is used for f;::f’f‘
\J o

feature extraction without domain adaptation term. For TCA, { 5 3 4 : 6

the kernel type is selected as Radical Basis Function (RBF) Trial Number

and the optimized subspaces for the processed features Carl:igA. Fault diagnosis accuracy of each method aretldin bearing data.
choose from8,16,32,64,128.For DAFD, as it uses of a back
propagation algorithm, the reconstruction error is gradually

reduced, and three main adjustable parameters are: As shown in TABLE 1 and Fig. 4, for the methods
without distribution adaptation, it is generally lower than the

method that with distribution adaptation. In the trial numher 3

3) Results of Bearing Case Study

A=1,14=1000ando = 0.001 , more details can be found in
[20].

For all the DA methods considered in this study, the
method designed for the SVM method can be used to find th
associated optimal model parameters. For JDDA, the numbetthe classification accuracy is also lower than that of JDDA,
of hidden layer is set to one and the numbers of hidden unitgor example, the accuracy of DAFD is 6% lower than that of

are set to 1000. For the convenience of the experiments, th‘%\DDA' It is worth mentioning that the classification accuracy
of BP is the lowest among all methods. This may be

the classification accuracy of JDDA-R is 16.5% lower than
éhe novel JDDA. For the methods with distribution adaptation,

value of the model's regularization parameter is set to two.

At last, the classification accuracy of each method iSexplained from two aspects. First, we can only empirically

defined as: find the best hidden layer and learning rate for BP, it uses a

label( X = k predict X= k semi-supervised approach, and the experiment data contains
X
wherex, is the total number of test samples, knik the

true label value that a classifier correctly identified.

(12)

accuracy Gb) = part of the data from the target area, which affects the

classification accuracy of the BP network.



TABLE II
CLASSIFICATION ACCURACY FOR THE GEARBOX DATASET

Without distribution adaptation technology

Methods  45L-30H  45L-35H  45L-40H  45L-45H  45L-50H avg.
LR 50.0% 48.5% 49.8% 52.3% 51.6% 50.4%
svm 50.0% 50.0% 49.5% 50.4% 50.4% 50.1%
BP 46.9% 33.9% 38.1% 28.9% 34.0% 36.4%
JDDA-R 48.5% 46.0% 48.2% 62.3% 53.6% 51.7%
With distribution adaptation technology
TCA 50.8% 52.5% 60.3% 60.8% 60.1% 56.9%
DAFD 53.8% 54.6% 57.4% 72.5% 65.1% 60.7%
JDDA 57.9% 61.6% 69.5% 80.3% 70.4% 67.9%
4) Results of Gearbox Case Study 8 100
The results of the five different TL circumstances are listed in ¢ .
Table I1I, where 45L-30H means that theD,is the data o e ? '
from 45L, and theD; is the data from 30H. Although the . ' E i 3 P
average accuracy of the model in all methods is high, the : > =

accuracy of the model is even lower than the supervisec

learning algorithm in some papers. The main reasons are 8

follows, unlike this supervised learning algorithmthe - 5 = T e a—— 5 = i
experimental data of the JDDA is performed under the (a) Normal features (b) IN features
condition that the train data and the test data are subject t 10 % - 100
different distributions. e

50 50
5) Results Summary : " i

As we expect, the excellent results of novel model has ° 5 O e L

achieved when it is used to deal with the classification : * @
problem in the test of two actual data, the proposed methoc *° s % : ‘

can indeed improve the classification accuracy of TL
situation. %00 50 0 50

C Results AnaIySI S (c) OU features

-100
100 -100 -50 0 50 100
(d) BA features

JDDA features (1, S) JDDA features (I, T) @ JDDA-R features (1, S) ® JDDA-R features (I, T)

In Order to furth_er _explore Why the _perfor_mance Of ‘]DDAIS JDDA features ( 11, S) IDDA features ( I1, T) JDDA-R features (11, S)  JDDA-R features ( 1, T)
good, the t-distributed stochastic neighbor embeddingrig.s. The features of JDDA and JDDA-R are displayedtispe in a
(t-SNE), as a dimension reduction visualization method, isreduced-dimensional dimension. The bracketed symbolpSgents the
d d he di . £ f . lved in b source domain [and symbol T represents the target domainimparticular,
used to reduce the dimension of features involved in Othhe number I represents the fault diameter value is 0.007, thebeurfi
JDDA-R and JDDA. The reason for choosing t-SNE is thatmeans the fault diameter value is 0.014.
high dimensional data can be well Vvisualized at
low-dimensional space, as shown in Fig. 5(d), where the p
normal features of the two models are clearly observed and
each fault feature is rendered in a two-dimensional map afte5

dimensionality reduction. More details about the t-SNECWRU Bearing Data is analyzed. As the mentioned above,

appllclatlon. Cah be found ir4]. ) the classification accuracy is a standard measure to evaluate a
The visualization of the JDDA features is used for reference.|,ssifier’s performance. Let A be a trade-off parameter, we

purpose. For example, in Fig. 5(a), the distance between tw se log,, A as the abscissa to show the effect of the change
domains features of the JDDA(green and blue cross marker Yo 9

is smaller than the distance betwe@h and D, features of of 4 on the classification accuracy. As shown in Fig.6, in
the JDDA-R (green and blue point marker). This phase 1,log,, A € [-2,0.4]. With the increasing of1 , the

characteristic proves that our model can make the distancBerformance of the JDDA becomes better and better. In phase
between D, and D, closer in the Reproducing Kernel 2 109,04€[0.4,3.5]. The JDDA maintains a good

Hilbert Space (RKHS), so a high-performance SVM classifierPerformance for .the_test data, which means that the JDDA has
is available by training with the labeled features of the JDDA.@ robust classification effect. In phaselddy, 4 €[3.5,4].
The classification accuracy of JDDA drops rapidly.

Empirical Analysis of Parameters

In this section, the effect of the trade-off parameters of the
DA term on the accuracy of model classification for the
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