CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Machinery Early Fault Detection Based on Dirichlet Process Mixture Model
Authors
XQ Hou
QL Jiang
+3 more
B Ma
Y Zhang
Y Zhao
Publication date
5 June 2020
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
© 2013 IEEE. The most commonly used single feature-based anomaly detection method for the complex machinery, such as large wind power equipment, steam turbine generator sets, and reciprocating compressors, exhibits a defect of low-alarm accuracy due to the non-stationary characteristic of the vibration signals. In order to improve the accuracy of fault detection, a novel method based on the Dirichlet process mixture model (DPMM) is proposed. First, the features of the mechanical vibration signals are used to construct the feature space of the equipment. The DPMM modeling method is then applied to self-learn the probabilistic mixture model of the feature space. The normal working condition model is used as the benchmark model. The early fault detection is realized by using a precise difference measurement method based on Kullback-Leibler divergence to calculate the difference between the real-time model and the benchmark model accurately, and by comparing the calculation result with a self-learned alarm threshold. The effectiveness and the adaptability of this novel early fault detection method are verified by comparing it to the single feature-based anomaly detection method and the Gaussian mixture model (GMM)-based early fault detection method
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 20/06/2020