
                          Zhang, Y., Hutchinson, P., Lieven, N. A. J., & Nunez-Yanez, J. (2019).
Adaptive event-triggered anomaly detection in compressed vibration data.
Mechanical Systems and Signal Processing, 122, 480-501.
https://doi.org/10.1016/j.ymssp.2018.12.039

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.ymssp.2018.12.039

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S0888327018308161?via%3Dihub. Please refer
to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-
guides/explore-bristol-research/ebr-terms/

https://doi.org/10.1016/j.ymssp.2018.12.039
https://doi.org/10.1016/j.ymssp.2018.12.039
https://research-information.bris.ac.uk/en/publications/adaptive-eventtriggered-anomaly-detection-in-compressed-vibration-data(4372046d-6768-43ae-bb07-401f6bbd7956).html
https://research-information.bris.ac.uk/en/publications/adaptive-eventtriggered-anomaly-detection-in-compressed-vibration-data(4372046d-6768-43ae-bb07-401f6bbd7956).html


Adaptive event-triggered anomaly detection in
compressed vibration data

Yang Zhanga,b,, Paul Hutchinsonc, Nicholas A J Lievena, Jose Nunez-Yanezb

aDepartment of Aerospace Engineering, University of Bristol, Bristol, UK
bDepartment of Electrical & Electronic Engineering, University of Bristol, Bristol, UK

cBeran Instruments Limited, Hatchmoor Industrial Estate, Torrington, Devon, UK

Abstract

Anomaly detection is a crucial task in Prognostics and Condition Monitoring

(PCM) of machinery. In modern remote PCM systems, data compression tech-

niques are regularly used to reduce the need for bandwidth and storage. In these

systems the challenge arises of how the compressed (distorted) vibration data

affects the condition monitoring algorithms. This paper introduces a novel algo-

rithm that can adaptively establish normal bounds of operation from continuous

noisy vibration profiles working with compressed vibration data. The proposed

technique is based on four modules, including feature extraction, feature fu-

sion, extreme value vibration modeling and adaptive thresholding for anomaly

detection. The proposed method has been validated with experiments using

three time-series datasets. The experimental results indicate that the proposed

algorithm is able to perform detection of malfunctions in rotating machines ef-

fectively without faulty reference data. Moreover, the proposed method is able

to produce accurate early warning and alarm indications from both the raw and

compressed (distorted) datasets with equal veracity.
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1. Introduction

Prognostics and Condition Monitoring (PCM) of complex engineering sys-

tems has been proposed to evaluate the reliability of a machine within its oper-

ation conditions [1]. Failures in machine structural integrity can be a significant

contributor to increased running costs, unplanned outages and even catastrophic5

events in plants (e.g. power generation plant). The stringent safety considera-

tions together with the cost of such outages makes essential the condition mon-

itoring (CM) of all machinery vital to plant operation. PCM needs continuous

streams of raw noise and vibration data which are routinely captured by the

CM systems in a constant high precision state. The storage of high precision10

floating point vibration data is costly, and a high bandwidth network is required

to transfer the data from the sensor to the control room or monitoring station.

This is currently addressed by applying algorithms that produce low bandwidth

Condition Indicators (CI) in the process discarding raw data. However, the un-

derstanding of the failures resulting from transient events in retrospect becomes15

more difficult if the reduced sampling frequency means that valuable informa-

tion has been lost. Another approach is to apply data compression algorithms

[2] that can adapt its acquisition conditions and compression ratio without loss

of critical information.

In this paper the vibration data is collected from multiple sensors and com-20

pressed using the techniques initially presented in [2] in real-time using a low

precision base layer and high precision refinement layer. An Adaptive Event

Trigger Mechanism (AETM) system is optimized to process only the base layer

so no high precision decoding is required under nominal machine operation.

This means that in the steady nominal state the refinement layer can be ig-25

nored safely. If a trend or event is detected that triggers a requirement for more

detailed data analysis, the decompressor performs the reconstruction of the high

precision signal on the basis of the base layer elements and the superimposed

elements from the refinement layer. Event detection is performed by the AETM

algorithm that detects a change in the noise and vibration signature properties30
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in the form of a trend or a transient event. The objective of this set-up is to

obtain accurate monitoring data leading up to and during an event to enable

effective data storage, bandwidth management and robust decision making.

The main contributions of this paper are as follows:

• A novel AETM algorithm that utilizes a hybrid structure composed of35

trend estimation and health status modeling based on Principal Compo-

nent Analysis (PCA) and Multivariate Gaussian Distribution Modeling

(MGDM).

• An in depth evaluation on how the performance of the AETM algorithm is

influenced by compressed/distorted vibration signal using publicly avail-40

able data sets and realistic machinery data.

The remainder of this paper is structured as follows. Section 2 gives an

overview of the related work in PCM algorithms. Section 3 presents the pro-

posed AETM system in detail. Section 4 presents descriptions of the experimen-

tal datasets, while Section 5 presents performance results with different testing45

conditions. Finally, Section 6 concludes this study and suggests potential future

work.

2. Related work

A number of approaches have been investigated to create PCM systems in

recent years. The approaches can be generally categorized into three types:50

Physics/model-based, data-driven and hybrid [3]. The physics/model-based

approaches attempt to build mathematical or physical models based on the

characteristic of the system physics, damage mechanics and/or human expert

knowledge to describe the equipment damage or degradation process [4, 5, 6, 7].

The commonly used models include the Gaussian mixture model (GMM) [8],55

the Wiener process model [9] and Markov process model [10, 11, 12]. The data-

driven method does not use any particular physical model and mainly relies
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on measured data [13]. Hybrid approaches combine the above mentioned two

methods together to improve the performance of the prediction [14].

An important consideration in model-based methods is how to estimate60

model parameters according to the characteristics of the monitored machine

and the associated measured signals. In [15], a Bayesian-based Particle filtering

(PF) is derived from traditional Kalman filtering, which is capable of combin-

ing measured signals and expert knowledge from empirical models to evaluate

the state of the system. Zio et al. [16] employed the PF filtering algorithm65

in conjunction with a Monte Carlo estimation algorithm to perform Remaining

Useful Life (RUL) predictions. In [14], a prognostics approach based on PF for

estimation of the RUL of aluminum electrolytic capacitors has been proposed.

The proposed approach assumes that the degradation model and the values of

its parameters are known. Lei et al. [17] employed the Paris-Erdogan model to70

represent the degradation processes of rolling element bearings and employed

maximum likelihood estimation for initialization of the model parameters. Yu

[18] proposed a bearing health degradation monitoring method that was used to

calculate the similarity between probability density functions described by two

different hidden Markov models. The Wiener process has many properties, such75

as non-monotonic, infinite divisibility and a physical interpretations property,

which can be employed to characterize the dynamic characteristic of a system.

It has been widely used in various industrial applications [19, 20]. Duan et al.

proposed a CM method which incorporation of the influence of both aging and

degradation state in modeling the machine status in [21]. The proposed method80

utilized a semi-Markov decision process framework to obtain the thresholds by

formulating and analyzing the health status of the machine as an optimization

problem.

In practice, how to model the physics and principles of a system opera-

tion is not straight forward. The behaviors change differently among different85

components and machine status due to individual high dimensional diversity.

The characteristics that define the nature and the origin of the degradation of

the components/machines are usually unavailable. All of these factors make it
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difficult to build an accurate and robust model of the machinery system.

The data-driven approach is a popular alternative for PCM proposed in re-90

cent years as it monitors the degradation process of a system from the collected

data directly. The prognostic prediction of the failure progression using statisti-

cal and/or machine learning algorithms has been conducted in [22, 6, 23, 24, 25,

26, 27, 28, 29]. In general, the data-driven approaches follow a procedure com-

posed of: vibration data acquisition, time/frequency domain feature extraction,95

feature fusion, prognostic modeling and prediction.

Data-driven approaches try to utilize the statistical features that are directly

extracted from collected raw data as the indicators of PCM [30]. Each kind of

feature is susceptible to a certain kind of failure in a certain degradation stage

[31]. A robust indicator for PCM should take advantage of mutual information100

from multiple features of degradation assessment and health status prediction.

The drawback of data-driven approach is that, the accuracy of the PCM model

is highly dependent on the sensitivity and reliability of the extracted features.

However, some of these features may present redundancy, irrelevance or have

been distorted by a compression algorithm, and these kinds of features may lead105

to contradictory information and thus reduce the performance of the prognostic

modeling and prediction analysis.

To avoid this problem a systematic data fusion algorithm is necessary to

extract and select the most representative features from the statistical features.

Previous research on multiple features selection and indicator construction with110

fusion have been proposed [32, 13, 24]. Feature selection and fusion algorithms

aim at selecting a subset of the most relevant and informative features from

the original feature space [33]. Feature selection based on principal component

analysis (PCA) was investigated in [34, 35, 36]. Due to its ability to discrimi-

nate directions with the largest variance in a data set, the PCA algorithm was115

employed to identify the most representative features for defect classification in

bearing condition monitoring. Mujica et al. proposed method based on multi-

variate statistical process control techniques, which employed PCA and partial

least squares method to transform highly correlated redundant and noisy data
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Figure 1: The flowchart of proposed Adaptive Event Trigger Mechanism (AETM) system.

to a model for structural damage detection [35]. In [36], the PCA algorithm120

has been employed in conjunction with T 2 and Q-statistic measures to detect

and distinguish damages in structures. Kernel PCA (KPCA) which is a non-

linear extension of traditional PCA explores the nonlinear relationship among

variables in high-dimensional feature spaces by means of integral operator and a

nonlinear kernel function for nonlinear process monitoring [37, 38]. Kordestani125

et al. proposed a fault diagnosis and prognosis system in [39]. In order to

remove re-dundancy in the multisensory data, the feature selection has been

produced by Pearson product-moment rank correlation and SVM technique to

capture redundant information in the multisensor data.

Nowadays, industrial CM systems use multiple sensors and generate con-130

tinuous streams of raw noise and vibration data. Compression can be used to

reduce storage requirements and data transfer bandwidth to the control room

outlined in the authors’ previous work [2]. The effects of compression on the

trigger mechanism have not been previously investigated although it could have

negative effects on the accuracy and robustness of the subsequent thresholding135

and decision making processes. To address this problem we create a AETM

that follows a statistical approach for trend estimation and health degradation

modeling using compressed vibration information.
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3. Proposed Adaptive Event Trigger Mechanism (AETM) system

We create an adaptive monitoring method to quantify the operation status140

of machine health. The proposed health monitoring framework of the AETM is

shown in Fig. 1, which contains two key parts: off-line diagnostic modeling and

on-line health monitoring. The off-line diagnostic modeling employs samples of

historic signals from a normal machine to construct a “normal” model. The

samples have been compressed with the Vibration Signal Compressor (VSC)145

and directly imported to the feature extraction process. The Z-score method

has been employed for normalization of the features. The PCA is utilized to fuse

the extracted raw features from the sensor signals and compressed bit-stream

to analyze the principal components (PCs), which are used as the inputs to the

baseline modeling process. A gradient of change method in conjunction with150

a multivariate Gaussian distribution modeling constructs the diagnostic model.

The diagnostic model performs the on-line analysis and quantification of the

machine health status. The constructed diagnostic model adapts the trigger

condition dynamically guided by data changes at the diagnostic level during

machine operation.155

The VSC algorithm proposed in [2] is part of a reliable and effective health

monitoring technology for machines and civil infrastructure (e.g. power gener-

ation system), as shown in Fig. 2. The adaptive vibration signal compression

scheme is composed of a lifting discrete wavelet transform (LDWT) with set-

partitioning embedded blocks (SPECK) that sorts the wavelet coefficients by160

significance [40]. The algorithm exploits the clustering of energy found in the

transformed domain and concentrated on those areas of the set which have high

energy. This allows those signals with higher information to be encoded first

based on their energy content. The output of the SPECK module is input to

an optimized context-based arithmetic coder that generates the compressed bit-165

stream. The experimental results indicate that the VSC efficiently compresses

the vibration signal with high quality reconstruction as it will be shown in Sec-

tion 5.2.
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Figure 2: Example diagram of the signal acquisition, compression and transmission. For

more details of the operation procedure of “On set precess”(blue boxes) and “Control room

analysis” (orange boxes) can be found in Fig. 1.

3.1. Vibration Signal Compressor (VSC)

The benefit of the VSC algorithm is that a single coded bitstream can be used170

to decode the signal at any rate less than or equal to the coded rate, to provide

the best reconstruction quality [2]. The algorithm is very useful for remote

CM systems that can perform an initial base layer decoding so the AETM can

quickly inspect the vibration signal and decide if it should be fully decoded

(adding more detailed information to the base layer) for further analysis, or it175

is good enough to be categorized as normal health status signal.

In particular, the VSC algorithm [2] employs Lift Discrete Wavelet Trans-

form (LDWT) for decomposing the complex vibration signal into basis signals

of finite bandwidth, followed by Set-partitioning Embedded Blocks (SPECK)

sorting algorithm to increase the coding performance by reducing the number180

of wavelet coefcients that needs to be coded, as well as exploiting the higher

order statistical dependencies with context-based modeling and arithmetic cod-

ing. The experimental results indicate that the proposed VSC algorithm could

achieves up to 59.41% bitrate reduction with same reconstruction quality level

compare to the state-of-the-art JPEG2000 coder, while retaining the charac-185

teristics in the compressed vibration signals to ensure accurate event analysis

[2].
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3.2. Feature extraction

The vibration signal is composed of random noise and periodic fluctuations.

Due to the low signal to noise ratio of the sensing measurement, it is challenging190

to model the relationship between the captured raw vibration signal and the

health states. To tackle this problem, feature extraction methods aim to denoise

the raw signal and refine the data.

In this paper, the feature set recommended by [13, 24, 41] includes ten

features in time-domain to capture the degradation characteristics, including195

Mean, Root Mean Square (RMS), Peak-to-Peak, Square Mean Root, Standard

Deviation, Kurtosis, Skewness, Crest Factor and Entropy. RMS is a measure for

the magnitude of a varying quantity. It is also related to the energy of a signal.

Kurtosis indicates the spikiness of a signal. Additionally, features from the time-

frequency domain provide another perspective of the machinery conditions and200

reveal information that are not found in the statistical time-domain. Eleven

features in time-frequency domain have been extracted. In particular, the signal

is decomposed by a three-level lifting-based discrete wavelet transform. The

energy of the wavelet coefficients and energy ratios of nine frequency sub-bands

are also added into the feature set. The Kullback-Leibler Divergence (Div) has205

been employed as a condition feature, where ϕ denotes the sub-band of wavelet

decomposition, Eci denotes the energy of the wavelet signal in the current state,

and Ebi is the energy of the signal in the baseline state (normal health state).

The Div represents a measure of how the energy distribution of the current

state diverges from the energy distribution of the baseline state. The definition210

of these features is listed in Table 1.

3.3. Indicator matrix construction

In order to process the features extracted from the vibration signal, an in-

dicator matrix F corresponding to the monitored machine operational state is

constructed as:215

F = [f1, f2, ..., fm]T (1)
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where m denotes the number of features f (set to 21 in this study). The indi-

cator condition is organized with signal features in rows. However, the different

feature spaces are in different units and magnitudes, which causes that these

features do not have equal contributions to the PCM indicators. To solve this

problem, the vibration signal features in the indicator matrix are normalized by220

the Z-score standardizing method [42], converting all of the statistical features

to a normalized space. The standardized indicator matrix, Z, retains the sig-

nature properties (e.g. skewness and kurtosis) of the original matrix, and has

mean µ = 0 and standard deviation σ = 1.

3.4. Feature fusion225

In a multiple sensor condition monitoring system, the amount of feature data

extracted from the raw data is overwhelming. Practically, the features can be

treated as a high-dimensional multivariate indicator matrix composed of several

vectors formed by the different features. It is impracticable to import the raw

feature matrix to construct a model due to the high dimensionality and the high230

correlation between feature vectors. In order to improve the computational effi-

ciency without compromising the signature of the extracted features, Principal

component analysis (PCA) has been employed for feature fusion and eliminate

correlations between variables [43].

The key idea of the PCA algorithm is that, by calculating the eigenvectors235

of the covariance matrix of the original inputs, the PCA algorithm transforms

a high-dimensional input vector into a low-dimensional one whose components

are uncorrelated. More specifically, given the normalized indicator matrix Z =

{z1, z2, ..., zm}, where zTi = {Fi,j , j ∈ [1, d]}, can be constructed. d denotes the

number of features vectors of m samples. The corresponding covariance matrix240

RZ can be obtained as,

RZ =

m∑
j=1

(zi,j − z̄)(zi,j − z̄)T (2)

where z̄ is the mean feature vector of all samples of Z and superscript T denotes

the transportation. Accordingly, the corresponding eigenvalues of the matrix Z

10
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can be obtained by solving the following equation:

λv = RZv (3)

where λ and v denotes the eigenvalue and the eigenvector of RZ , respectively.245

Consequently, by solving (3), the largest d eigenvalues can be obtained. The

eigenvalues are usually arranged in the descending order: λ1 ≥ λ2 ≥ · · · ≥

λd. The corresponding eigenvectors are represented by, vj , j ∈ [1, d]. The jth

principal component feature of a sample zi, denoted as Pi,j , can be obtained by

projecting zi onto the direction of the eigenvector vj :250

Pi,j = vTj (zi − z̄) (4)

The eigenvectors span a d-dimensional orthogonal space and the principal com-

ponent (PC) representations can be obtained by projecting Z onto the space.

For visualization, Fig. 3 shows the three most representative PCs.

The representativeness of each PC can be calculated based on its contribu-

tion to the machine health condition. In order to represent and detect machine255

health conditions effectively, the most representative PCs are selected by re-
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ducing the computational load without compromising the characteristic of the

features. The accumulative contribution rate (ACR) method has been employed

to selects the first m PCs based on the eigenvalues. The ACR method can be

defined as,260

Rm =

∑m
i=1 λi∑d
i=1 λi

(5)

where Rm denotes the percentage of the total variance in the original feature

space F , which can been discriminated by the m PCs. A specific threshold

for the ACR method needs to be chosen depending on the specific machine

monitoring applications and dataset. Fig. 4 shows an example result of the ACR

method, which indicates that more than 85% of the information of the dataset265

can be represented by the first three principle components. Considering the

increment of the computational complexity demands and diminishing returns,

only the first three principle components have been employed to produce all the

experimental results presented in this paper.
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3.5. Data cleaning and trend detection270

A fundamental challenge in machine condition monitoring and prognostics

is the trend detection of the vibration signal. The PCA algorithm is employed

to fuse and select the most representative information from the original feature

space. However, the selected low-dimensional PCs contain noise components

which is problematic for trend prediction, as the blue line shows in Fig. 5. The275

next subsections propose filtering based on Hodrick-Prescott (HP) filter [44]

to smooth out the irregular roughness and trend estimation based on Maha-

lanobis distance adaptive thresholding method in conjunction with the Gradient

of Change method.

3.5.1. Hodrick-Prescott (HP) filtering280

The Hodrick-Prescott (HP) filter [44] is employed to obtain a smoothed vari-

ation in the principle component feature space. The HP filter is a mathematical

tool used in macroeconomics for time series data analysis. The advantage of the

HP filter is that it is suitable in filtering terms for estimating long term trends in

time series without time delay [45]. Additionally, HP filter that provide results285

which are approximately consistent under aggregation are considerably robust

with respect to the Auto Regressive Integrated Moving Average (ARIMA) model

of the time series signal and perform better for the case of temporal aggregation

than for systematic sampling [45, 46, 47]. The HP filter decomposition is nor-

mally used for estimating the up-/downward drift or trend in the non-stationary290

macroeconomic time series raw data.

Suppose the magnitude of each PC, Pt, is composed of a trend component

(τt) and a cyclical component (ct), where t denotes PC number. The magnitude

variation of the PCs can be defined as:

Pt = τt + ct, t = 1, 2, ...,M, (6)

Hodrick and Prescott in [44] suggest a way to isolate ct from Lt by following295
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minimization problem.

Min{τt}Tt=1

{
T∑
t=1

(Pt − τt)2

+ ξ

T∑
t=1

[(τt − τt−1)− (τt−1 − τt−2)]
2

} (7)

where the parameter ξ is a positive number which penalizes variability and

controls the smoothness in the trend component. The solution series becomes

smoother as ξ increases. The first term in the loss function (7) penalizes the

variance of the cyclical component ct, while the second term puts a penalty to300

the lack of smoothness in the trend component τt. The HP filter identifies the

cyclical component ct from Pt by the trade-off to the extent to which the trend

component keeps track of the variation of the Pt for good fitting against the

prescribed smoothness in τt.

Note that, as ξ approaches 0 in (7), the trend component becomes equivalent305

to the original series, while as ξ diverges to infinity, τt approaches a linear trend.

In this paper, we set ξ = 1600 based on an empirical investigation. Fig. 5 shows

the magnitude P1 of each PC with and without HP filtering, where the blue

curve represents the raw P1 values and the red curve represents the values of P1

after the temporal filtering processing.310

3.5.2. Gradient of Change (GoC) for trend detection

In this paper, we propose a Cumulative Gradient of Change (CGoC) method

to calculate and specify how the trend of the machine health state changes. The

benefit of the CGoC is the attribute that takes into consideration the short and

long term trend estimation. In practice, in order to estimate the trend in a short315

time period, the time series data has been segmented to short non-overlapping

time windows. The local trend can been estimated based on the calculation of

the derivatives of each short segment. Following the output of the H-P filtering,

suppose that the polynomial expressions, f(x), for each short time window,

shown as the colored segment lines in Fig. 6. Then, the rate at which x changes320
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can be denoted as, d
dxf(x), where

if d
dxf(x) ≤ 0, then f(x) is decreasing

if d
dxf(x) = 0,

then f(x) is at a relative

maximum or minimum

if d
dxf(x) ≥ 0, then f(x) is increasing

The instantaneous GoC (tangent line) of the expression is the first derivative at

the point. So, the trend of the segment time window can be obtained by

Tw =

W∑
x=1

d

dx
f(x)

=

W∑
x=1

limh→∞
f(x+ h)− f(x)

h

(8)

where Tw denotes the CGoC, which represents the estimated trend of the spe-

cific segment time window. W denotes the number of samples in the segment325

window. We cannot really take the limit h → ∞, as we have only a quantized

set of values to work with, as the smallest possible value is h = 1 as a division by

15
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zero occurs at the next smallest possible value h = 0. Therefore, the derivatives

are approximated by,

d

dx
f(x)

.
= (f(x+ 1)− f(x)) (9)

Fig. 6 is an enlarged visualization shows that the local trend (colored line330

segments) of each segment time window. The uphill trend between the samples

[1620 1650] can be clearly seen. The middle point value of each segment time

window of the output of the HP filter has been utilized as magnitude value of

the smoothed principal component, as shown in Fig. 5 (red curve).

The Mahalanobis distance has been employed to determine the threshold of335

the health condition states. The benefit of the Mahalanobis distance are the

properties of unitless and scale-invariant, and takes into account the correlations

of the dataset. The Mahalanobis distance (d) of the dataset, Tw, can be defined

as,

d(Tw) =
√

(Tw − µ)T Σ−1(Tw − µ), (10)
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where Tw is the vector of the CGoC with the corresponding mean µ, and Σ340

denotes the covariance matrix.

3.6. Multivariate Gaussian distribution modeling for anomaly detection

In [36], the Q-statistic and the T 2-statistic indices have been employed for

analyzing the variability of the data projection in residual- and PCA- subspace

respectively for damage detection indices. This method based on the assump-345

tion that the underlying process follows approximately a multivariate normal

distribution where the first moment vector is zero.

In this section, we present the next stage of the proposed method which

is to construct a model of normality using “healthy” training data. This is

achieved via a Multivariate Gaussian Distribution Modeling (MGDM) in con-350

junction with extreme value detection with the Mahalanobis distance algorithm.

The statistical decision process based on Gaussian probability models have low

computational intensity and often lead to good performance in the detection

task previously observed in the machine learning literature [48]. We shall model

the feature signals as multivariate normal vectors P that follow a multivariate355

normal distribution with mean vector µ and covariance matrix Σ. The probabil-

ity density function (PDF) using a multivariate Gaussian distribution is given

by,

p(P;µ,Σ) =
1

(2π)n/2 |Σ|1/2
exp(−1

2
(P− µ)TΣ−1(P− µ)) (11)

where |Σ| represents the determinant of matrix Σ, n is the dimension of the

data space P, µ and Σ can be defined as follows,360

µ =
1

m

m∑
i=1

P(i) (12)

Σ =
1

m

m∑
i=1

(P(i) − µ) (P(i) − µ)T . (13)

Anomaly detection in the health status of the PCM system can been consid-

ered as outlier analysis for statistical purposes. The statistic analysis computes

discordance measures for the signal and then compares the discordance with
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a threshold. The discordance measures are based on statistics extracted from365

healthy/normal condition signal, while the health status thresholds are derived

based on the optimal confidence region in the PDF. The probability densities

are specified by the hypotheses in (14), since we can design an adaptive health

status threshold based on the discordance between the hypotheses.

H0 : P ∼ N (µnorm,Σnorm)→ Normal condition

H1 : P ∼ N (µabnorm,Σabnorm)→ Alarm condition
(14)

where the P ∼ N (µ,Σ) represents the Health status classes follow n−dimensional370

multivariate Gaussian distribution with different mean vectors µ ∈ Rn and co-

variance matrix Σ ∈ Rn×n in multivariate PC spaces.

In univariate space, in order to evaluate the discordance between two popu-

lations, the standardized or statistical distance is examined, such as, d =
|xζ−µ|
σx

,

where xζ is the candidate outlier and µ and σx are the mean and standard de-375

viation of the data sample respectively. In the multivariate space, not only the

variances of the variables but also their covariances or correlations must be con-

sidered. Thus, the Mahalanobis distance dMah can be obtained according to the

weighting matrix S as follow,

dMah(xζ , µ) := ‖xζ − µ‖S =
√

(xζ − µ)TS−1(xζ − µ) (15)

In the multivariate (n-D) case, the Mahalanobis distance dMah provides such a380

measure. The equidensity contours of the PDF, p, characterized by constant

dMah, are ellipsoids centered at µ whose axes are aligned with the eigenvectors

of S. The specific equidensity contour that accumulates a target probability can

be found using the property that the squared Mahalanobis distance follows a

X 2 distribution, or Chi-squared distribution [49]. For the distribution N (µ,S),385

whose PDF is (11), the probability accumulated in the health region R can be

defined as follows,

R := {xζ ∈ Rn, such that dMah(xζ , µ) ≤ d} (16)

P(d) := P(‖xζ − µ‖S ≤ d) =
γ(n2 ,

d2

2 )

Γ(n2 )
, (17)
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dimensions. The three red dash lines illustrate the 68-95-99.7 rule on the curve.

where Γ(α) is the Gamma function and γ(α, β) is the lower incomplete Gamma

function. The equation (17) represents the values of the cumulative distribution390

function (CDF) of a centered chi-squared distribution with n degrees of freedom,

X 2
n , for a squared Mahalanobis distance d2, as PX 2

n(d
2). Thus, given a proba-

bility value 0 < P < 1, the threshold value dMah that specifies the equidensity

contour bounding the confidence region R for which Phealth = P(R) can be ob-

tained by inverting (17). Fig. 7 illustrates that the correspondence between the395

cumulative probability P and the probability obtained with different dimensions

n = {1, 2, ..., 10, 20, 30} for the optimal threshold of the Mahalanobis distance

dMah.
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4. Experimental Datasets

In this paper, two public and one internal datasets have been employed for400

evaluating performance of the proposed method. The data sets include the

NASA bearing dataset (NASA Bearing) [50], PRONOSTIA (PHM Bearing)

[51] and a Power Plant Turbine dataset from an industrial installation (Tur-

bine). In particular, the NASA Bearing dataset contains three sets of data

each consisting of four bearings. The vibration measurement signals provided405

for the dataset correspond to a system that was run to failure (RoF) under

constant load and running conditions. Two high sensitivity accelerometers were

installed on the bearing housing, where for each bearing [x- and y-axes] for

data set 1, one accelerometer for each bearing for data sets 2 and 3. Vibration

signals were sampled every 10 minutes, and duration of the sampling lasted 1410

second with a sampling frequency at 20kHz. The PHM Bearing dataset em-

ployed two accelerometers that were horizontally and vertically mounted on

the bearing to monitor its vibration in x- and y-axes respectively. The vibra-

tion was measured under three different operating conditions (rpm and load),

where the first set (PHM Bearing1, 7 sets) with 1800rpm and 4000N, the sec-415

ond set (PHM Bearing2, 7 sets) with 1650rpm and 4200N and the third set

(PHM Bearing3, 3 sets) with 1500rpm and 5000N. The vibration signals were

sampled every 10s, and the duration of the sampling lasted 0.1s with a sampling

frequency 25.6 kHz. The detailed information about the experimental setup of

the datasets can be found in [50, 51].420

The real vibration signals of the Turbine dataset have been collected from

a power station main turbine. The dataset includes two sets, named Turbine 1

and Turbine 2 respectively. The Turbine 1 includes 28 channels of vibration

data and for each channel are five derived ‘condition indicators’, including RMS,

Peak-to-peak, Order 1 (The vibration energy present at the turbines rotational425

frequency e.g. 50Hz or 3000rpm), Sub Sync (Vibration energy between 7% and

75% below Order 1 e.g. 3.5Hz to 37.5Hz) and Non Sync (Vibration energy

above Order 1 but minus energy at orders 2, 3 and 4.), where 1-16 channels are
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Figure 8: The example vibration signal raw data of (a) NASA Bearing, (b) PHM Bearing

and (c) Turbine dataset.

in velocity units ([mm/s]) and 17-28 channels are in displacement unit ([um]).

The Turbine 2 has 16 channels of vibration data, and with same ‘condition430

indicators’ as in Turbine 1. The vibration signals have been measured as the

main turbine was operating with range of 2950 - 3050rpm and different loads.

Fig. 8 shows an example of the raw vibration signal contained in the tested

datasets.
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5. Experimental results435

5.1. Health condition indicator construction

According to the construction procedure of the proposed PCM system, 21

features are extracted from the raw vibration signal to construct a raw fea-

ture matrix for the NASA Bearing and PHM Bearing dataset. For the Turbine

dataset, a total of 5 condition indicators are available to construct the feature440

set in this experiment, which have been mentioned in Sec. 4. Then, the con-

structed feature matrix is used as the input into the features selection and fusion

procedure using the PCA algorithm. Finally, the H-P filtered PCs are used as

the input to the proposed CGoC and the MGDM algorithm.

5.2. Performance evaluation445

5.2.1. Evaluations on Raw signal

To evaluate the performance of the proposed PCM algorithm, the experi-

ments use the raw vibration signal. In Fig. 9(a), (c) and (e), the first three

principle components of each dataset and the results of the CGoC algorithm

are shown, where green, yellow and red colored region indicates the Normal,450

Warning and Alarm operating status respectively. The results of the proposed

MGDM algorithm are shown in Fig. 9(b), (d) and (f). For visualization, the

first three PCs are plotted in 3D space, and the thresholds (dMah) for each sta-

tus are chosen based on the equation (17) with n = 3 in this case. For example,

during the estimation of the changes and the trend of the health status, the455

proposed CGoC algorithm is able to detect the vibration signal changes that

occurred momentarily (e.g. the samples of NASA Bearing 1st test set ranging

between samples {140, 157} in Fig. 9 (a)) or continuously for a period of the

time (e.g. the samples of NASA Bearing 1st test set ranging between {1604,

2156}).460

Additionally, the proposed MGDM algorithm models the health status with

corresponding thresholds (dMah). The thresholds have been obtained based on

the n-dimensional probability distribution model of the vibration data and the
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Figure 9: Experimental results of the Cumulative Gradient of Change (CGoC) algorithm ((a),

(c) and (e)) and the Multivariate Gaussian Distribution Modeling (MGDM) algorithm ((b),

(d) and (f)) on raw vibration signal of “NASA Bearing 1st test”, “PHM Bearing2 1” and

“Turbine 1” datasets.
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squared Mahalanobis distance that follows a X 2 distribution (as discussed in

Sec. 3.6). For this reason, the corresponding thresholds of the health conditions465

can be obtained adaptively based on the probability distribution of the new

vibration signal and the dimensions of the data.

5.2.2. Evaluations on Compressed signal

In order to evaluate the reliability and robustness of the proposed PCM al-

gorithm in a modern practical scenario - the bandwidth and storage requirement470

are reduced using the state-of-the-art vibration signal encoder [2] compressing

the raw vibration signal. Seven different distortion levels have been generated by

compressing the vibration signal with different bitdepth representations, rang-

ing from 4- to 16-bitdepth. All of the compression parameters and conditions

have been set as same as which presented in [2]. For the Turbine dataset, 5475

condition indicators raw signal have been compressed accordingly.

Fig. 10 shows the Signal to Noise Ratio corresponding to the compression

ratio results of the three evaluated datasets respectively. As shown in the results,

the higher bitdepth obtains better precision in the vibration signal, thus the 16

bitdepth compressor achieves more than 80 dB reconstruction accuracy, but480

with lower compression ratio. In contrast the 4 bitdepth compressor achieves

less than 20 dB reconstruction accuracy, but compresses the vibration signal

significantly, achieving more than 100:1 compression ratio on Turbine 2 dataset.

We have selected the graphs for raw signal (Fig. 9), 6 bitdepth (Fig. 11)

and 4 bitdepth (Fig. 12) compressor, and one set from each test dataset. In485

particular, Fig. 11 shows the performance evaluation on the vibration signal

compressed by the 6 bitdepth compressor. As shown in the figure, the proposed

algorithm achieves very similar trend prediction and health status modeling

results on the distorted dataset compare to the performance on the raw signal

in Fig. 9. It is worth noting that, the 6 bitdepth compression result in Fig. 10490

shows that, the reconstructed vibration signal has 26.5 dB signal to noise ratio

(SNR) with 14.7:1 compression ratio on average. This means that the proposed

method can estimate the trends and model the health status based on distorted
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Figure 10: The rate-distortion performance (Compression Ratio vs. Signal to Noise Ratio

(SNR)) of three test datasets: (a) NASA Bearing, (b) PHM Bearing and (c) Turbine dataset.

vibration accurately. This approach dramatically reduces the bandwidth and

storage requirement for the condition monitoring system without compromising495

the condition monitoring performance.

In order to illustrate the performance limitation of the proposed method

affected by the compressed and distorted vibration signal, Fig. 12 shows the

experimental results of the proposed method evaluated on the vibration signal

which have been compressed by the 4 bitdepth compressor. As shown in Fig.500

10, the 4 bitdepth compressor achieves approximately 24.1:1 compression ratio
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and 16.3 SNR on average. Under this high compression ratio scenario, the high

frequency information contained by the principle components has been distorted

significantly, as shown in Fig. 12 (a), (c) and (e). Compare to the results eval-

uated on the raw and 6 bitdepth signals, the proposed method apply to the505

4 bitdepth compressed data shows an observable degradation in performance.

In particular, the results of the CGoC algorithm indicate that the “Warning”

signals has been triggered at the marginal time compare to the raw and 6 bit-

depth results. However, the “Alarm” for the early faults with the 4 bitdepth

compressed signal is not triggered correctly as can be seen during the samples510

between samples {200, 300} in Fig. 12 (e). Nevertheless, the “Alarm” sig-

nals have been triggered correctly for the actual faults. The MGDM algorithm

achieves reasonable results, and the “Alarm” samples have been highlighted

effectively.

6. Discussion and conclusion515

In this paper, we have proposed a hybrid data-driven approach for trend

estimation and health status modeling to perform machine health prognostic

and condition monitoring (PCM). The proposed method addresses the open

challenges in the area of condition based maintenance of rotational machines.

Firstly, as the vibration signal collected from the rotational machines contains520

noise this could result in false negative estimations. The proposed method is

able to isolate and fuse the most representative features from the 21 time- and

frequency-domain features extracted from the noisy vibration signal. Secondly,

the proposed method only employs “normal” signals for the parameters’ initial-

ization, but does not require faulty reference data. Therefore, this method can525

be implemented in a wide range of rotational machine systems where fault data

cannot be easily collected, such as a nuclear power plant. Thirdly, the exper-

imental results indicate that the proposed method is capable of detecting and

diagnosing intermittent and degradation faults. This capability enables early

detection and trend prediction of the fault. Fourthly, the proposed method530
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Figure 11: Experimental results of the CGoC ((a), (c) and (e)) and MGDM algorithm ((b),

(d) and (f)) on compressed vibration signal of “NASA Bearing 1st test”, “PHM Bearing2 1”

and “Turbine 1” datasets (6 bitdepth).
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Figure 12: Experimental results of the CGoC ((a), (c) and (e)) and MGDM algorithm ((b),

(d) and (f)) on compressed vibration signal of “NASA Bearing 1st test”, “PHM Bearing2 1”

and “Turbine 1” datasets (4 bitdepth).
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is capable of achieving robust estimation and modeling results on the raw and

compressed vibration signal. Particularly, the experimental results indicate that

the proposed method can estimate the trends and model the health status accu-

rately with the distorted/compressed vibration signal which has 26.5 dB signal

to noise ratio (SNR) with 14.7:1 compression ratio on average. This enables535

remote prognostic and condition monitoring applications to be deployed with

lower bandwidth and storage requirements. Future work involves the integration

of the proposed PCM algorithm in a power generation plant and the extension

of the diagnostic algorithm to perform fault classification.
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Table 1: Features extraction

Feature Name Formula

T
im

e-
d
om

ai
n

Maximum xmax = max(xt)

Mean µx =
1

T

T∑
t=0

xt

RMS x
RMS

=

[
1

T

T∑
t=0

x2t

]1/2

Peak-to-peak value xp = max(xt)−min(xt)

Square mean root xr =

[
1

T

T∑
t=0

[|xt|]1/2
]2

Standard deviation σx =

[
1

T

T∑
t=0

[
xt − µx

]2]1/2

Kurtosis βx =
1

T

T∑
t=0

[
xt − µx

]4
Skewness S = E

[
(
xt − µx
σx

)3
]

Crest factor C =
xp
x

RMS

Entropy H = −
T∑
t=0

p(xt) log10p(xt)

T
im

e-
F

re
q
u
en

cy
d
om

ai
n

Wavelet energy E
WT

=
1

T

T∑
i=0

wt2i (t)

Wavelet energy ratio R
WT

= E
WTϕ

/E
WTLL

(9 features)

Relative entropy Div(Ec ‖ Eb) =

ϕ∑
i=1

Eci log
Eci
Ebi

where xt, wt, ϕ, E
WT

and Div denotes the sampled point in raw vibration

signal series, the wavelet coefficients, the wavelet sub-band, wavelet energy and

the Kullback-Leibler Divergence for representing the relative entropy of different

wavelet sub-bands, respectively.
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