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Abstract

The problem of anomaly detection deals with detecting abrupt changes/anomalies in the

distribution of sequentially observed data in a stochastic system. This problem applies to

many applications, such as signal processing, intrusion detection, quality control, medical

diagnosis, etc. A low latency anomaly detection algorithm, which is based on the framework

of quickest change detection (QCD), aims at minimizing the detection delay of anomalies

in the sequentially observed data while ensuring satisfactory detection accuracy. Moreover,

in many practical applications, complete knowledge of the post-change distribution model

might not be available due to the unexpected nature of the change. Hence, the objective of

this dissertation is to study low latency anomaly detection or QCD algorithms for systems

with imperfect models such that any type of abnormality in the system can be detected as

quickly as possible for reliable and secured system operations. This dissertation includes the

theoretical foundations behind these low latency anomaly detection algorithms along with

real-world applications. First, QCD algorithms are designed for detecting changes in systems

with multiple post-change models under both Bayesian and non-Bayesian settings. Next,

a QCD algorithm is studied for real-time detection of false data injection attacks in smart

grids with dynamic models. Finally, a QCD algorithm for detecting wind turbine bearing

faults is developed by analyzing the statistical behaviors of stator currents generated by the

turbines. For all the proposed algorithms, analytical bounds of the system performance met-

rics are derived using asymptotic analysis and the simulation results show that the proposed

algorithms outperform existing algorithms.
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Chapter 1

Introduction

1.1 Background and Motivation

Anomaly detection simply refers to the problem of detecting anomalies in sequentially ob-

served data of a stochastic system. Anomaly detection is considered as an application of

change detection problem, which is defined as the process of detecting the time instants at

which the distribution of a stochastic process changes, i.e., an anomaly occurs in the sys-

tem. The problem of anomaly/change detection arises in various branches of science and

engineering. Change detection methods can be classified into two categories, offline and

online change detection. In offline change detection, algorithms consider the entire data set

at once, and estimate the change points retrospectively [1]. Usually, offline methods need

to find the number of change points before estimating the location of each change point.

On the contrary, online or real-time methods run simultaneously with the system process

which is being monitored and use sequential analysis on currently observed samples to detect

whether a change point has happened before the current time [2–7]. Online methods usually

need to make tradeoff among various performance metrics such as average detection delay

(ADD), probability of false alarm (PFA), and average run length (ARL) to false alarm, etc.

The problem of low latency anomaly detection can be studied under the quickest change

detection (QCD) framework. QCD is an online change detection method, which aims to

minimize the detection delay of a change point subject to constraints of an upper bound on

PFA or a lower bound on ARL. The change point itself can be modeled as a random variable
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with prior distributions. Based on the availability of information about the prior, change

point detection methods can be classified into two categories, Bayesian and non-Bayesian

(minimax) methods. If the prior probability of the change point is known, then Bayesian

procedures, such as the well-known Shiryaev procedure [2], can be applied to minimize

the ADD, under the constraints of an upper bound on PFA. It is shown in [3] that the

Shiryaev procedure is asymptotically optimum when the PFA upper bound is small. When

the prior probability of the change point is unknown, the non-Bayesian procedures, such

as the cumulative sum (CUSUM) [4] method and the Shiryaev-Roberts (SR) procedure [5],

perform detection under the minimax criterion, which aims at minimizing the expected delay

with the worst-case change point distribution, under the constraint of a lower bound of ARL.

The asymptotic optimality of the CUSUM and SR procedures are discussed in [6] and [7],

respectively.

All the above-mentioned procedures require precise knowledge of the distribution func-

tions of the stochastic process before and after the change point. In many applications, such

as anomaly detection, it is relatively easier to obtain the prior-change distribution model

from data collected through normal operation conditions. In contrast, it is usually difficult

to obtain an accurate estimate of the post-change distribution model, especially for QCD

where a decision needs to be made as soon as possible with a limited number of obser-

vations from the post-change distribution. In [8], a modified generalized likelihood ratio

test (GLRT) is developed to take into consideration of some unknown parameters in the

post-change distribution, and it is shown that the modified procedure can attain the same

asymptotic lower bound of detection delay as the case of known post-change distribution.

However, this algorithm is computationally very expensive, thus making it infeasible for
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real-time implementation. In [9], a non-parametric quickest detection method that does not

require prior knowledge of the distributions is proposed.

1.2 Applications

The topic of QCD has a wide range of applications in various fields, such as quality control,

anomaly detection, intrusion detection [10], financial market analysis [11], medical diagnosis

[12], climate change detection [13], speech and image analysis [14, 15] , etc.

Many practical problems related to power system applications can be modeled as the

change detection problem, where real-time detection of any change in the system’s operating

conditions is very crucial. For example, in [16–18], the problem of detecting and/or iden-

tifying power system transmission line outages is studied by utilizing measurements from

phasor measurement units (PMUs). Different types of wind-turbine bearing fault diagnosis

methods have been developed in the literature using various techniques, such as wavelet,

maximum likelihood, Markov process, artificial neural networks (ANN) and support vector

machine (SVM), etc. [19–23]. False data injection attack (FDIA) in power systems is another

example, where an adversary can launch cyber-attacks by compromising the measurements

obtained by the supervisory control and data acquisition (SCADA) system or PMUs and

thus cause significant damages to power grids. In [24–26], FDIA detection algorithms for

power systems with dynamic models are studied.

Most of the above-mentioned works focus on the accuracy of change detection, and they

seldom consider the detection delay. A small detection delay can result in timely remedial

actions, thus prevent catastrophic results due to extended damages and reduce economic

loss. Therefore, detection delay is an essential design parameter for QCD algorithm.
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Moreover, some of the methods require extensive training before actual detection in

order to estimate the unknown post-change parameters, and in practice, there might not be

sufficient data for training purpose. For some applications, the post-change model might be

from a finite set of possible models, that is, there are multiple hypotheses of the post-change

models. For example, for the detection of wind turbine (WT) bearing fault, the fault could

be caused by a finite number of defects, such as inner race fault, outer race fault, cage fault,

and roller defect [27]. Also, in some cases, the post-change model might not have a finite

support. For example, for the detection of false data injection attack in power system buses,

the attack location and parameters are completely unknown [28]. Thus, there exists an

impetus to develop efficient and robust online QCD algorithms to detect changes in systems

with imperfect post-change models for ensuring reliable and secure operation.

1.3 Objectives

The goal of this dissertation is to develop new QCD algorithms that enhance the operation

stability and security in various system applications where complete knowledge about the

post-change regime is not available. This is achieved by detecting any kind of change in the

system’s normal operation mode as quickly as possible in real-time. These algorithms are

developed in three folds.

First, QCD algorithms are designed in order to detect changes in systems with multiple

post-change models under both Bayesian and non-Bayesian settings. The post-change model

is considered to be from a finite set of possible models. In the Bayesian setting, the prior

probability distribution of change point and the prior probabilities of post-change models are

known, whereas in the non-Bayesian setting these probabilities are unknown. The algorithms

4



aim to minimize the ADD, subject to upper bounds on the PFA. The objectives are to derive

theoretical bounds on ADD using asymptotic analysis and to compare the performance of

proposed algorithms against other existing algorithms through simulation.

Second, a QCD algorithm is discussed with an objective of real-time detection of false

data injection attacks in smart grids with dynamic models to improve the cyber-security.

The algorithm aims to minimize the worst-case detection delays of cyber-attacks, subject

to an upper bound of the false alarm rate. Unlike the previous two cases, here the post-

change model i.e. post-attack model is not from a finite discrete set of models. Instead,

the unknown post-change parameter has continuous support space. Furthermore, a dynamic

state estimation algorithm needs to be developed in order to estimate and track the time-

varying and non-stationary power grid states. The QCD algorithm is to be developed by

analyzing the statistical properties of the results obtained from dynamic state estimations,

such that the algorithm minimizes the detection delay while accurately distinguishing FDIA

from sudden system changes.

Third, a QCD algorithm is developed with an objective of real-time detection of bearing

faults of direct-drive wind turbines by analyzing the statistical behaviors of stator currents

generated by the WT. In this case, the amplitude of stator current follows the Gamma

distribution at a given frequency, and the presence of fault changes the parameters of the

Gamma distribution. Since the signature of a fault can appear in one of the multiple possible

frequencies, this problem also assumes post-change model to be from a finite set of possible

models similarly as the first case. Based on the unique properties of WT bearing faults, the

aim is to develop a new multi-candidate QCD algorithm that can combine the statistics of

signals from multiple candidate frequencies.
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These objectives exhibit scopes for improvement over existing algorithms in related works

and provide a good foundation for future works.

1.4 Dissertation Outline

The outline of the rest of the dissertation is given as follows.

• Chapter 2: In this chapter, the topic of quickest change point detection for systems

with multiple post-change models under Bayesian setting is studied. The post-change model

is considered to be from a finite set of possible models. The objective is to minimize the

ADD, subject to upper bounds on the PFA. With asymptotic analysis, the theoretical ADD

of the proposed algorithm under Bayesian setting is expressed as closed-form functions of the

PFA upper bound, prior probabilities of change points and models, and the Kullback-Leibler

divergence among various models. The proposed algorithm is shown to be asymptotically

optimum in terms of ADD. The algorithm is simulated in order to analyze their performances

and compare them against other existing algorithms.

• Chapter 3: This chapter is the non-Bayesian counterpart of the topic studied in Chap-

ter 2. The problem is formulated with the same objective of minimizing the ADD, sub-

ject to upper bounds on the PFA. Under non-Bayesian setting, the asymptotic theoretical

ADD depends on the PFA upper bound, number of post-change models, mean of the prior

distribution of change-point, and the Kullback-Leibler divergence among various models.

The asymptotic analysis proves that the proposed algorithm is optimum in terms of ADD.

Simulation results are illustrated to analyze and compare the performance of the proposed

algorithm against other existing algorithms.

• Chapter 4: In this chapter, a quickest intrusion detection algorithm is studied in order

6



to detect FDIA in smart grids with time-varying dynamic models. The QCD algorithm

aims at minimizing the worst-case detection delays of cyber-attacks, subject to an upper

bound of the false alarm rate. Since power grid state transitions could be caused by either

cyber-attacks or sudden change in loads or grid configurations, we propose to distinguish

between FDIA and sudden system change by using a time-varying dynamic model, which can

accurately capture the dynamic state transitions due to changes in system configurations.

A dynamic state estimation algorithm is developed to estimate and track the time-varying

and non-stationary power grid states. The quickest detection algorithm is developed by

analyzing the statistical properties of dynamic state estimations, such that the algorithm

minimizes the worst-case detection delay while accurately distinguishing FDIA from sudden

system changes. A Markov-chain-based analytical model is used to identify the detector’s

parameter and quantify its performance. Simulation results are demonstrated in order to

analyze the FDIA detection performance of the proposed algorithm.

• Chapter 5: This chapter builds on the theoretical background of Chapter 3 to study

the quickest detection of bearing faults of direct-drive WTs, by analyzing the statistical

behaviors of stator currents generated by the WT in real time. At a given frequency, the

amplitude of stator current follows the Gamma distribution, and the presence of fault will

affect the parameters of the Gamma distribution. Since the signature of a fault can appear

in one of the multiple possible frequencies, the signals on each possible frequency candidate

are monitored simultaneously. Based on the unique properties of WT bearing faults, a new

multi-candidate quickest detection algorithm is developed that can combine the statistics of

signals from multiple candidate frequencies. The new algorithm can perform online detection

of various possible bearing faults without requiring a separate training phase. The theoretical
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performance of the proposed algorithm is analytically identified in the form of upper bounds

of the PFA and ADD. Numerical results are shown in order to analyze the fault detection

performance of the proposed algorithm.

• Chapter 6: Concluding remarks are drawn in this chapter by summarizing the major

contributions of this dissertation and future research directions.
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Chapter 2

Bayesian Quickest Change Point Detection with Multiple Post-change Models

Samrat Nath, Jingxian Wu

2.1 Abstract

We study the quickest change point detection for systems with multiple possible post-change

models. A change point is the time instant at which the distribution of a random process

changes. We consider the case that the post-change model is from a finite set of possible

models. Under the Bayesian setting, the objective is to minimize the average detection delay

(ADD), subject to upper bounds on the probability of false alarm (PFA). The proposed

algorithm is a threshold-based sequential test. With asymptotic analysis, the analytical ADD

of the proposed algorithm is expressed as closed-form functions of the PFA, prior probabilities

of change points and models, and the Kullback-Leibler divergences among various models.

The proposed algorithm is shown to be asymptotically optimum in terms of ADD when the

PFA tends to zero.

2.2 Introduction

Change point detection is the process of detecting the time instants at which the distribution

of a random process changes [1]. It has a wide spectrum of applications in various science

and engineering fields, such as quality control, anomaly detection, and seismology, etc. [2]. In

many applications, it is relatively easier to obtain the distribution model before the change

point, which usually corresponds to normal system operations. The post-change model, on
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the other hand, might not be readily available due to the unexpected nature of the change.

This problem is exacerbated for quickest change detection (QCD), which aims at minimizing

the detection delay with only a small amount of post-change data for training post-change

models [3, 4]. For many applications, the post-change model might be from a finite set

of possible models, that is, there are multiple hypotheses of the post-change models. For

example, for the detection of wind turbine bearing fault, the fault could be caused by a finite

number of defects, such as inner race fault, outer race fault, cage fault, and roller defect [5].

Quickest change point detection methods attempt to detect the change point in real

time by sequentially updating a test statistics with recently observed data. They are usually

designed based on the tradeoff among several metrics, such as average detection delay (ADD),

probability of false alarm (PFA), false alarm rate (FAR), and average run length (ARL) to

false alarms, etc. Existing sequential change point detection methods can be classified into

two categories, Bayesian and non-Bayesian (Minimax) methods. If the prior probability

of the change point is known, then Bayesian procedures, such as the well-known Shiryaev

procedure [6], can be applied to minimize the ADD, under the constraint of an upper bound

on the PFA. [7] showed that the Shiryaev procedure is asymptotically optimal when the

PFA upper bound is small. When the prior probability of the change point is unknown, non-

Bayesian procedures, such as the cumulative sum (CUSUM) [8] method and the Shiryaev-

Roberts (SR) procedure [9], aim at minimizing the delay with the worst-case change point

distribution, under the constraint of a lower bound of ARL. The asymptotic optimality of

the CUSUM and SR procedures are discussed in [10,11]. The problem of QCD is studied in

different fields of science and technology. In [12], a Bayesian QCD is formulated over wireless

fading channels with energy constraints as a partially observable Markov decision problem
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(POMDP) and the optimal stopping rules are shown to have weak threshold structure. The

QCD problem to detect a point of disruption in centralized multi-sensor network is studied

in [13]. A QCD algorithm is proposed in order to detect false data injection attacks (FDIA)

in smart grids with time-varying dynamic models in [14].

All the above procedures are developed for binary hypothesis testing, i.e. for systems

with single pre-change and single post-change model, and they require precise knowledge

about the distribution models before and after the change. There are limited works with

unknown or uncertain post-change models. A Bayesian QCD algorithm for system with

multiple candidates of post-change models is developed in [15]. The author in [16] proposed

two methods for detecting a post-change distribution with an unknown parameter. In the

first method, the detection is performed by using a mixture post-change distribution, which

is obtained by averaging the set of possible post-change distributions with prior distributions

of the unknown parameter. The second method is based on the generalized likelihood ratio

test (GLRT), where the unknown parameter of the post-change model is estimated by max-

imizing the likelihood ratio. The GLRT-based method still requires a generous amount of

post-change training data to tune the unknown parameter for the GLRT. A low-complexity

adaptive-CUSUM method is presented in [14] for estimating unknown statistics of post-

change distributions by using a normalized Rao test statistic [17].

The objective of this chapter is to design sequential quickest change detection algorithms

for systems with multiple possible post-change models under Bayesian setting. The algo-

rithms are developed to minimize the average detection delay (ADD), under the constraint

on the upper bounds of the probability of false alarm (PFA). Under the Bayesian setting,
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the algorithm is developed by analyzing the likelihood ratio of the change point, the com-

putation of which relies on the prior probabilities of change point and prior probabilities of

different post-change models. The performances of the proposed algorithms are analytically

quantified in terms of exact or asymptotic bounds on PFA and ADD. It is shown that when

the PFA is small, the proposed algorithms are asymptotically optimal in terms of ADD

minimization under a certain PFA upper bound. Numerical results demonstrate that the

proposed algorithms outperform existing algorithms in the literature.

The rest of this chapter is organized as follows. Section 2.3 presents the assumptions and

problem formulation. The Bayesian detection algorithm, along with the corresponding theo-

retical analysis, are given in details in Section 2.4. Section 2.5 demonstrates the performance

of the algorithms through numerical results, and Section 2.6 concludes the chapter.

2.3 Problem Formulation

Consider a sequentially observed random sequence, Xn, n = 1, 2, · · · . Let FX
n = σ(X1:n) be

the σ-algebra generated by X1:n. Assume there is an unknown change point θ, such that the

distributions of the random sequence are different before and after θ. Denote the probability

density function (PDF) of the random sequence before the change point as f0,n(Xn|X1:n−1)

for n < θ. The distribution after the change point could be one of a finite number of possible

distribution models, denoted as fi,n(Xn|X1:n−1), for n ≥ θ and i = 1, 2, · · · ,M , withM < ∞.

Denote the index of true post-change distribution as β, where β ∈ {1, · · · ,M} is unknown.

In a Bayesian setting, the change point θ is random with prior probability mass function

(PMF) P(θ = k) = πk, for k = 1, 2, · · · . The post-change model index is random with prior

PMF P(β = i) = ωi, for i = 1, · · · ,M .
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Let Pk,i and Ek,i denote the probability measure and the corresponding expectation

operator when the change occurs at θ = k < ∞ and the post-change model index is β = i.

Under Pk,i, the conditional PDF of Xn is f0,n(Xn|X1:n−1) for n < k, and it is fi,n(Xn|X1:n−1)

for n ≥ k. For any k < ∞, we have Pk =
∑M

i=1 ωiPk,i and Ek =
∑M

i=1 ωiEk,i. Denote P∞

and E∞ as the probability measure and expectation operator for the data sequence before

the change point, that is, under P∞, the conditional PDF of Xn is f0,n(Xn|X1:n−1).

We need to design a test in order to detect the change point θ based on the sequentially

observed data Xn. Denote θ̂ as the estimated value of θ. A sequential test δ can be defined as

a mapping from FX
n to θ̂ ∈ {1, · · · , n}, such that δ(FX

n ) = θ̂. The test needs to be designed

by optimizing with respect to two performance metrics, the PFA and ADD.

For a given test δ, the PFA and ADD are defined, respectively, as

PFA(δ) = P(θ̂ < θ|FX
n ) (2.1)

ADD(δ) = E[θ̂ − θ|θ̂ ≥ θ] (2.2)

The objective is to minimize the ADD, subject to a constraint on the PFA. The problem

can thus be formulated as

(P1) minimize ADD(δ)

subject to PFA(δ) < α

We propose the solution to this problem under Bayesian setting in the following section.

2.4 Quickest Change Detection Algorithm for Bayesian Setting

In this section, we develop the algorithm that can detect the change point with minimum

delay under the Bayesian setting.
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2.4.1 Detection Algorithm

At any moment n, the detector needs to make a decision between two hypotheses

H1 : θ ≤ n

H0 : θ > n

Define the ratio of the posterior probabilities as

∆(n) =
P(H1|FX

n )

P(H0|FX
n )

. (2.3)

Based on Bayes’ rule, we have

∆(n) =

∑n
k=1 πk · dP(x1:n|θ = k)

Ωn · dP(x1:n|θ > n)
=
∑M

i=1
ωi

∑n

k=1

πk

Ωn

∏n

t=k

fi,t(Xt|X1:t−1)

f0,t(Xt|X1:t−1)
(2.4)

where, Ωn = P(θ > n) =
∑∞

k=n+1 πk.

Define

Zk:n
i =

∑n

t=k
log

fi,t(Xt|X1:t−1)

f0,t(Xt|X1:t−1)
(2.5)

and

∆i(n) =
∑n

k=1

πk

Ωn

exp
(

Zk:n
i

)

. (2.6)

Then ∆(n) defined in (2.3) can be written as

∆(n) =
∑M

i=1
ωi∆i(n) (2.7)

With ∆(n) defined in (2.7), the proposed quickest change detection algorithm is a

threshold-based sequential test given as follows.
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Definition 2.1 : (Bayesian Quickest Change Detection) For a given PFA upper bound α,

the change point is detected as

δ1 : θ̂1 = inf

{

n ≥ 1 : ∆(n) ≥ 1− α

α

}

(2.8)

It should be noted that the proposed algorithm in (2.8) can be considered as an extension

of the well-known Shiryaev procedure [6], which only considers the case of one known post-

change model. We will show next that the above algorithm is asymptotically optimal with

respect to (P1).

2.4.2 Probability of False Alarm

We first study the PFA of the detection procedure defined in Definition 2.1.

Lemma 2.1 : For the quickest change detection algorithm in Definition 2.1, the probability

of false alarm is upper bounded by α.

Proof: Let p(n) = P(H1|FX
n ) = P(θ ≤ n|FX

n ). From (2.3), we have ∆(n) =
pn

1− pn
, or

equivalently,

p(n) =
∆(n)

∆(n) + 1
= 1− 1

∆(n) + 1
(2.9)

It is apparent that pn is an increasing function in ∆(n). From (2.8), we have

∆(θ̂1) ≥
1− α

α
=⇒ p(θ̂1) ≥ 1− α. (2.10)

From (2.1) and the definition of p(n), the PFA can be calculated as

PFA(δ1) = P(θ̂1 < θ|FX
n ) = 1− p(θ̂1) (2.11)

Combining (2.11) with (2.10) completes the proof.
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2.4.3 Average Detection Delay

In the Bayesian setting, the ADD defined in (2.2) can be computed as follows

ADD(δ) =
E(θ̂ − θ)+

P(θ̂ ≥ θ)
=

1

P(θ̂ ≥ θ)

∑∞

k=1
πk Pk(θ̂ ≥ k) Ek(θ̂ − k|θ̂ ≥ k) (2.12)

where x+ = max(0, x).

To facilitate the ADD analysis, it is assumed that 1
n
Zk:k+n

i almost surely converges in

probability Pi to a positive finite number Di [7], that is,

1

n
Zk:k+n−1

i

Pi−a.s.−−−−→
n→∞

Di ∀ k < ∞ (2.13)

In the case of identically and independently distributed (i.i.d.) data models, we have

fi,t(Xt|X1:t−1) = fi(Xt), and Di = E

[

log fi(X)
f0(X)

]

is the Kullback-Leibler (KL) divergence

between fi(X) and f0(X). Furthermore, similar to many studies in the literature [1, 3, 4, 7],

we assume that the change point follows geometric distribution with parameter ρ ∈ (0, 1),

i.e., the PMF of change point is πk = (1− ρ)k−1ρ.

The following asymptotic notations are used in the analysis. Consider two continuous

functions f(x) and g(x) where limx→x0 f(x) = limx→x0 g(x) = ∞. We have the following

notations.

f(x) �
x→x0

g(x) ⇐⇒ lim
x→x0

f(x)

g(x)
≤ 1 (2.14)

If both f(x) �
x→x0

g(x) and g(x) �
x→x0

f(x), then the two functions are called asymptoti-

cally equivalent as x → x0, and it is denoted as

f(x) ≍
x→x0

g(x) ⇐⇒ lim
x→x0

f(x)

g(x)
= 1 (2.15)
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Theorem 2.1 : Assume the condition (2.13) holds and πk = (1 − ρ)k−1ρ. As the PFA

upper bound α → 0, we have

Ek[(θ̂1 − k)+] �
α→0

min
i

[

log
(

1−α
α

)

− log ωi

Di + | log(1− ρ)|

]

Proof: To facilitate analysis, we first introduce a new stopping time with respect to

each individual post-change distribution model as follows

θ̂1,i = inf

{

n ≥ 1 : ωi∆i(n) ≥
1− α

α

}

(2.16)

From the definition of ∆(n) in (2.7), it is evident that ∆(n) ≥ ωi∆i(n) for all i. Consequently,

θ̂1 ≤ min
i=1,2,...,M

θ̂1,i (2.17)

The stopping time in (2.16) can be alternatively represented by

θ̂1,i = inf

{

n ≥ 1 : log∆i(n) ≥ log

(

1− α

α

)

− log ωi

}

(2.18)

Based on the definition of ∆i(n) in (2.6), it is easy to show that

log∆i(n) ≥ Zk:n
i + log

(

πk

Ωn

)

, V k:n
i (2.19)

Define a new stopping time

ζ1,i = inf

{

n ≥ 1 : V k:n
i ≥ log

(

1− α

α

)

− log ωi

}

(2.20)

From (2.18)-(2.20), it is apparent that θ̂1,i ≤ ζ1,i, thus

θ̂1 ≤ min
i=1,2,...,M

θ̂1,i ≤ min
i=1,2,...,M

ζ1,i (2.21)

For geometric pirors, we have

lim
n→∞

1

n
log

(

πk

Ωk+n−1

)

= | log(1− ρ)|. (2.22)
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Combining (2.13) with (2.22) yields

1

n
V k:k+n−1
i

Pi−a.s.−−−−→
n→∞

Di + | log(1− ρ)| , qi. (2.23)

Define

Tk = sup

{

n ≥ 1 :

∣

∣

∣

∣

1

n
V k:k+n−1
i − qi

∣

∣

∣

∣

> ǫ

}

. (2.24)

If ζ1,i − k > Tk, then from (2.24) we have

∣

∣

∣

∣

1

ζ1,i − k
V

k:ζ1,i−1
i − qi

∣

∣

∣

∣

≤ ǫ, if ζ1,i − k > Tk (2.25)

which implies

ζ1,i − k ≤ V
k:ζ1,i−1
i

qi − ǫ
, if ζ1,i − k > Tk (2.26)

Based on the definition of ζ1,i in (2.20), we have

V
k:ζ1,i−1
i < log

(

1− α

α

)

− logωi (2.27)

Combining (2.26) and (2.27) results in

ζ1,i − k ≤ log
(

1−α
α

)

− logωi

qi − ǫ
, if ζ1,i − k > Tk (2.28)

When α < 0.5 and ǫ < qi, we always have
log( 1−α

α )−logωi

qi−ǫ
> 0. Therefore the following

inequality is true for both ζ1,i − k > Tk and ζ1,i − k ≤ Tk

ζ1,i − k ≤ log
(

1−α
α

)

− logωi

qi − ǫ
+ Tk, if α < 0.5 and ǫ < qi (2.29)

Given the convergence condition in (2.23), we have E(Tk) < ∞. Since ǫ can be arbitrarily

small, we can let ǫ → 0. Thus when α → 0,

E[ζ1,i − k] �
α→0

log
(

1−α
α

)

− logωi

Di + | log(1− ρ)| . (2.30)
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Since θ̂1 is a lower bound of ζ1,i as in (2.21), we have

E[θ̂1 − k] �
α→0

min
i

[

log
(

1−α
α

)

− log ωi

Di + | log(1− ρ)|

]

. (2.31)

When α → 0, the right hand side of (2.31) is always positive. Thus the inequality in

(2.31) still holds if we replace θ̂1 − k by (θ̂1 − k)+. This completes the proof.

From the results in Theorem 2.1, it can be seen the prior probability ωi and the constant

Di plays an important role in determining the ADD upper bound. If ωi is very small, that is,

the i-th post-change model is very unlikely, the value of − log ωi will be very large, and it will

not affect the delay upper bound because the minimum is performed over all M post-change

models. Similarly, if Di is very small, that is, the difference between the i-th post-change

model and the pre-change model is small, then the minimum operator will exclude its impact

on the delay upper bound. Consequently, the delay upper bound is dominated by the post-

change models that have large ωi and/or large Di, that is, those models that are likely to

appear and have a big difference with the pre-change model.

In addition to the asymptotic upper bound in Theorem 2.1, we also have the asymptotic

lower bound for the detection delay.

Theorem 2.2 : Assume the condition (2.13) holds and πk = (1 − ρ)k−1ρ. As the PFA

upper bound α → 0, we have

Ek[(θ̂1 − k)+] �
α→0

min
i

[

log
(

1−α
α

)

− log ωi

Di + | log(1− ρ)|

]

Proof: To simplify notation, define

Liα =
log
(

1−α
α

)

− logωi

Di + | log(1− ρ)| , (2.32)

Lα = min
i

Liα (2.33)
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Also, define the following events and their probabilities,

Ci,k : {k ≤ θ̂1 ≤ k + (1− ǫ)Liα} and γǫ
i,k(θ̂1) = Pk{Ci,k}

Ck : {k ≤ θ̂1 ≤ k + (1− ǫ)Lα} and γǫ
k(θ̂1) = Pk{Ck}

where 0 ≤ ǫ < 1 is a constant.

Since Lα = mini Liα, it can be easily shown that Ck = ∩i Ci,k. Thus

γǫ
k(θ̂1) = Pk{C1,k ∩ C2,k ∩ . . . ∩ CM,k} ≤ min

i
γǫ
i,k(θ̂1) (2.34)

where the last inequality follows from the fact that for any events Y and Z, P(Y ∩ Z) =

P(Y ) ·P(Z|Y ) ≤ P(Y ).

Given the convergence condition in (2.13), it can be proven that

lim
α→0

γǫ
i,k(θ̂1) = 0 ∀ i = 1, . . . ,M, 0 < ǫ < 1 and k ≥ 1 (2.35)

The above equation can be proved by following a similar procedure for the proof of equation

(3.31) in [7, Lemma 2]. Combining (2.34) with (2.35) yields

lim
α→0

γǫ
k(θ̂1) = 0 ∀ i = 1, . . . ,M, 0 < ǫ < 1 and k ≥ 1 (2.36)

Based on the Chebyshev inequality, for any 0 ≤ ǫ < 1, we have

Ek[(θ̂1 − k)+] ≥ [(1− ǫ)Lα] Pk{(θ̂1 − k)+ ≥ (1− ǫ)Lα}

= [(1− ǫ)Lα] Pk{(θ̂1 − k) ≥ (1− ǫ)Lα} (2.37)

where the last equality is based on the fact that the event {X+ ≥ A} is true if and only if

{X ≥ A} is true for A > 0, and (1− ǫ)Lα is positive when 0 ≤ ǫ < 1.
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It is also evident that,

Pk{θ̂1 − k ≥ (1− ǫ)Lα} ≥ Pk{θ̂1 ≥ k} − γǫ
k(θ̂1) (2.38)

which is based on the fact that for two events Y and Z, P(Y ∪ Z) ≤ P(Y ) +P(Z).

Based on Lemma 2.1, the PFA is upper bounded by α. Thus

α ≥ PFA(θ̂1) =
∑∞

i=1
πiPi(θ̂1 < i) ≥ πkPk(θ̂1 < k)

Thus Pk(θ̂1 < k) ≤ π−1
k α, or equivalently,

Pk{θ̂1 ≥ k} = 1−Pk{θ̂1 < k} ≥ 1− π−1
k α (2.39)

Combining (2.37), (2.38) and (2.39), we get,

Ek[(θ̂1 − k)+] ≥ [(1− ǫ)Lα] [1− π−1
k α− γǫ

k(θ̂1)].

Since ǫ can be arbitrarily small, we can let ǫ → 0, then

lim
α→0

Ek[(θ̂1 − k)+]

Lα

≥ lim
α→0

[1− π−1
k α− γǫ

k(θ̂1)] = 1

where the last equality is based on the fact that γǫ
k(θ̂1) → 0 as α → 0 as given in (2.36).

This completes the proof.

The asymptotic lower bound in Theorem 2.2 is the same as the asymptotic upper bound

in Theorem 2.1. The asymptotic convergence between the lower bound and upper bound

indicates that the detection method in Definition 2.1 is asymptotically optimal. That is, the

algorithm can asymptotically achieve the minimum detection delay because the asymptotic

lower bound is also the asymptotic upper bound.
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Theorem 2.3 : Assume the condition (2.13) holds and πk = (1−ρ)k−1ρ. As the PFA upper

bound α → 0, the quickest change detection presented in Definition 2.1 is asymptotically

optimal with respect to (P1). The asymptotic ADD is

ADD(δ1) ≍
α→0

min
i

[

log
(

1−α
α

)

− log ωi

Di + | log(1− ρ)|

]

.

Proof: The results can be directly obtained by combining Theorems 2.1 and 2.2.

2.5 Numerical Results

Numerical results are presented in this section to demonstrate the performance of the pro-

posed change detection algorithm under Bayesian setting as described in Definition 2.1. The

algorithm utilizes the prior probabilities of change points as well as the prior probabili-

ties of post-change models. All simulation results are obtained by averaging over 10,000

Monte-Carlo trials. The change point follows a geometric distribution with ρ = 0.1 in all

simulations.

In the first example, we consider M = 2 possible post-change models. The pre-change

and post-change distributions are zero-mean Gaussian distributions with variance σ2
i , that is,

fi ∼ N (0, σ2
i ). We have σ2

0 = 1 for the pre-change distribution, and we will consider different

combinations of the post-change parameters (σ2
1 , σ

2
2). Figure 2.1 shows the average detection

delay, ADD(δ1), as a function of the PFA upper bound α under various combinations of

(σ2
1, σ

2
2) and model prior probability ω1. When (σ2

1 = 0.5, σ2
2 = 1.5), we have D1 = 0.0966

and D2 = 0.0473. When (σ2
1 = 0.8, σ2

2 = 1.2), we have D1 = 0.0116 and D2 = 0.0088. Under

all configurations, the asymptotic analytical ADDs have the same slopes as their simulation

counterparts. Thus the asymptotic results provide very good predictions regarding the trend

of the detection delay. The performance difference of the three cases becomes smaller as the
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Figure 2.1: Average detection delay of the proposed Bayesian algorithm for various values
of PFA upper bound α.

PFA increases.

Figure 2.2 illustrates ADD(δ1) as a function of the change point distribution parameter

ρ for the same model configurations used in Figure 2.1. The PFA upper bound is set as

α = 10−3. The parameter ρ is the inverse of the mean of the change point. A larger ρ

means a shorter average time period before the change point. The asymptotic analytical

ADDs demonstrate the same trend as the simulation ADDs. As Theorem 2.3 suggests, the

ADD decreases with the increase in ρ. That means if changes are more likely to occur at the

beginning of a process, then the proposed Bayesian algorithm will show better performance

in terms of ADD.

Figure 2.3 shows the PFA of the proposed Bayesian detection algorithm as a function of

the PFA upper bound α. There are M = 2 post-change models. The pre- and post-change
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Figure 2.2: Average detection delay of the proposed Bayesian algorithm for various values
of geometric distribution parameter ρ with α = 10−3.

data follow exponential distributions with the parameters λi, for i = 0, 1, 2. We have λ0 = 1

for the pre-change distribution, and λ1 = 0.5 and λ2 = 1.5 for the post-change distributions.

It can be clearly observed that PFA obtained from numerical simulations is always below its

upper bound as proved in Lemma 2.1. The analytical upperbound has the same trend as

the simulated PFA under all system configurations.

Figure 2.4 compares the ADD of the proposed Bayesian algorithm with an adaptation of

the well-known Shiryaev procedure. The adapted procedure exploits the mixture post-change

distribution, which is obtained as h(x) =
∑

i ωifi(x) [16]. The Shiryaev procedure is then

employed by using f0 and h as the pre-change and post-change models, respectively. In this

example, there are four post-change models, fi ∼ N (µi, 1), with µ1 = 0.6, µ2 = 0.8, µ3 = 1.2,

and µ4 = 1.4. The prior probabilities of these models are ω1 = 0.1, ω2 = 0.2, ω3 = 0.3, and
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Figure 2.3: Probability of false alarm for the proposed Bayesian algorithm.

ω4 = 0.4, respectively. The pre-change model follows the distribution f0 ∼ N (1, 1). The

proposed algorithm outperforms the Shiryaev-Mixture algorithm under the entire range of

PFA. At PFA = 0.02, the ADDs of the Shiryaev-Mixture and the proposed algorithms are 28

and 24, which corresponds to an improvement of 14% over the Shiryaev-Mixture algorithm.

2.6 Conclusion

We have proposed a threshold-based sequential test for Bayesian quickest change detection

when there are multiple possible post-change models. The analytical ADD of the change

point detection has been obtained through asymptotic analysis when the PFA is small. It

has been shown that the proposed algorithm is asymptotically optimal in terms of average

detection delay. Simulation results have shown that the asymptotic analytical results can

predict the performance of the proposed algorithm, and the proposed algorithm outperforms
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the Shiryaev procedure with a mixture post-change model.
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Chapter 3

Non-Bayesian Quickest Change Point Detection with Multiple Post-change

Models

Samrat Nath, Jingxian Wu

3.1 Abstract

We study the sequential quickest change point detection for systems with multiple possible

post-change models. A change point is the time instant at which the distribution of a

random process changes. In many practical applications, the pre-change model can be easily

obtained, yet the post-change distribution is unknown due to the unexpected nature of the

change. In this chapter, we consider the case that the post-change model is from a finite set

of possible models and consider the non-Bayesian setting, in which the prior probabilities of

the change point and prior probabilities of possible post-change models are unknown. The

objective is to minimize the average detection delay (ADD), subject to upper bounds on the

probability of false alarm (PFA). Theoretical analysis is performed to quantify the analytical

performance of the proposed algorithms in terms of exact or asymptotic bounds on PFA and

ADD. It is shown through theoretical analysis that when PFA is small, both algorithms

are asymptotically optimal in terms of ADD minimization for a given PFA upper bound.

Numerical results demonstrate that the proposed algorithms outperform existing algorithms

in the literature.
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3.2 Introduction

The problem of change point detection deals with the process of detecting the time instants

at which the distribution of a random process changes [1]. The applications of change point

detection encompasses a wide spectrum in various science and engineering fields, such as

quality control, anomaly detection, seismology, signal processing, biomedical engineering,

etc. [2]. In case of many applications, it is relatively easier to obtain the model distribution

before the change point, which usually corresponds to normal system operations. On the

contrary, the post-change model might not be readily available due to the unknown nature

of the change. This problem is exacerbated for quickest change detection (QCD), which aims

at minimizing the detection delay with only a small amount of post-change data for training

post-change models [3,4]. For many applications, the post-change data might originate from

a finite set of possible models, that is, there are multiple hypotheses of the post-change

models. For example, for the detection of wind turbine bearing fault, the fault could be

caused by a finite number of defects, such as inner race fault, outer race fault, cage fault,

and roller defect [5].

QCD methods attempt to detect the change point in real time by sequentially updating

a test statistics with recently observed data. They are usually designed based on the tradeoff

among several metrics, such as average detection delay (ADD), probability of false alarm

(PFA), false alarm rate (FAR), and average run length (ARL) to false alarms, etc. Based

on the availability of the prior information regarding the change point, existing sequential

change point detection methods can be classified into two categories, Bayesian and non-

Bayesian (Minimax) methods. In the Bayesian methods, the prior probability of the change
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point is known and utilized in designing the detector. Well-known Bayesian procedures, such

as the Shiryaev procedure [6], can be applied to minimize the ADD, under the constraint

of an upper bound on the PFA. The Shiryaev procedure is asymptotically optimal when

the PFA upper bound is small [7]. On the other hand, for non-Bayesian procedures, the

prior probability of the change point is unknown. Non-Bayesian procedures, such as the

cumulative sum (CUSUM) [8] method and the Shiryaev-Roberts (SR) procedure [9], aim at

minimizing the delay with the worst-case change point distribution, under the constraint of a

lower bound of ARL. In [10,11], the asymptotic optimality of the CUSUM and SR procedures

are discussed in details. The problem of QCD has been studied in different areas of science

and technology. In [12], a Bayesian QCD is formulated over wireless fading channels with

energy constraints as a partially observable Markov decision problem (POMDP) and the

optimal stopping rules are shown to have weak threshold structure. The QCD problem to

detect a point of disruption in centralized multi-sensor network is studied in [13].

All the above procedures are developed for binary hypothesis testing, i.e. for systems

with single pre-change and single post-change model, and they require precise knowledge

about the distribution models before and after the change. There have been some limited

works related to non-Bayesian formulation of the QCD problem with unknown or uncertain

or multiple post-change models. For example, [18] studied the non-Bayesian QCD problem

in multi-channel and distributed network systems. A non-parametric sequential method

is proposed using multichannel generalization of the CUSUM procedure for the detection

of intrusions in information systems in [19]. None of the above works provide theoretical

analysis to quantify the performance of the algorithms. [20] performed sequential change

point detection based on the sum of local CUSUM statistics of each possible post-change
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model. An orthogonal matching pursuit CUSUM (OMP-CUSUM) algorithm is proposed to

detect false data attack in power grid systems with unknown post-attack parameters while

minimizing the detection delay in [21].

The goal of this chapter is to develop sequential QCD algorithms for systems with multiple

possible post-change models under non-Bayesian setting. The algorithms are designed to

minimize the average detection delay (ADD), while keeping the probability of false alarm

(PFA) under a low level. Under the non-Bayesian setting, the algorithm is developed by

analyzing all the likelihood ratios of the change point corresponding to different post-change

models. The resultant procedure happens to be the sum of local Shiryaev-Roberts (SR)

statistics for each post-change model. The performances of the proposed algorithms are

analytically quantified in terms of exact or asymptotic bounds on PFA and ADD. It is

shown that when the PFA is small, the proposed algorithms are asymptotically optimal in

terms of ADD minimization under a certain PFA upper bound. Numerical results illustrate

that the proposed algorithms outperform other existing algorithms.

The rest of this chapter is organized as follows. Section 3.3 presents the assumptions and

problem formulation. The non-Bayesian detection algorithm, along with the corresponding

theoretical analysis, are given in details in Section 3.4. Section 3.5 demonstrates the perfor-

mance of the algorithms through numerical results, and Section 3.6 concludes the chapter.

3.3 Problem Formulation

Consider a sequentially observed random sequence, Xn, n = 1, 2, · · · . Let FX
n = σ(X1:n) be

the σ-algebra generated by X1:n. Assume there is an unknown change point θ, such that the

distributions of the random sequence are different before and after θ. Denote the probability
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density function (PDF) of the random sequence before the change point as f0,n(Xn|X1:n−1)

for n < θ. The distribution after the change point could be one of a finite number of possible

distribution models, denoted as fi,n(Xn|X1:n−1), for n ≥ θ and i = 1, 2, · · · ,M , withM < ∞.

Denote the index of true post-change distribution as β, where β ∈ {1, · · · ,M} is unknown.

The change point θ is random with prior probability mass function (PMF) P(θ = k) = πk,

for k = 1, 2, · · · . The post-change model index is random with prior PMF P(β = i) = ωi,

for i = 1, · · · ,M . In the non-Bayesian setting, both these priors are unknown.

Let Pk,i and Ek,i denote the probability measure and the corresponding expectation

operator when the change occurs at θ = k < ∞ and the post-change model index is β = i.

Under Pk,i, the conditional PDF of Xn is f0,n(Xn|X1:n−1) for n < k, and it is fi,n(Xn|X1:n−1)

for n ≥ k. For any k < ∞, we have Pk =
∑M

i=1 ωiPk,i and Ek =
∑M

i=1 ωiEk,i. Denote P∞

and E∞ as the probability measure and expectation operator for the data sequence before

the change point, that is, under P∞, the conditional PDF of Xn is f0,n(Xn|X1:n−1).

We need to design a test in order to detect the change point θ based on the sequentially

observed data Xn. Denote θ̂ as the estimated value of θ. A sequential test δ can be defined as

a mapping from FX
n to θ̂ ∈ {1, · · · , n}, such that δ(FX

n ) = θ̂. The test needs to be designed

by optimizing with respect to two performance metrics, the PFA and ADD.

For a given test δ, the PFA and ADD are defined, respectively, as

PFA(δ) = P(θ̂ < θ|FX
n ) (3.1)

ADD(δ) = E[θ̂ − θ|θ̂ ≥ θ] (3.2)

The objective is to minimize the ADD, subject to a constraint on the PFA. The problem
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can thus be formulated as

(P1) minimize ADD(δ)

subject to PFA(δ) < α

We propose the solution to this problem under non-Bayesian setting in the following

section.

3.4 Quickest Change Detection Algorithm for Non-Bayesian Setting

In this section, we develop the algorithm that can detect the change point with minimum

delay under a non-Bayesian setting. Under the non-Bayesian setting, the prior probabilities

of the change point, πk, for k = 1, 2, · · · and the prior probabilities of the post-change model,

ωi, for i = 1, · · · ,M , are all unknown.

3.4.1 Detection Algorithm

At any moment n, the detector needs to make a decision between two hypotheses

H1 : θ ≤ n

H0 : θ > n

Define

Zk:n
i =

∑n

t=k
log

fi,t(Xt|X1:t−1)

f0,t(Xt|X1:t−1)
, (3.3)

and

Λ(n) =
∑M

i=1
Λi(n) (3.4)

36



where,

Λi(n) =
∑n

k=1
exp

(

Zk:n
i

)

. (3.5)

With Λ(n) defined in (3.4), the proposed quickest change detection algorithm under

non-Bayesian setting is a threshold-based sequential test given as follows.

Definition 3.1 : (Non-Bayesian Quickest Change Detection) For a given PFA upper bound

α, the change point is detected as

δ2 : θ̂2 = inf

{

n ≥ 1 : Λ(n) ≥ Mθ

α

}

(3.6)

where

θ =
∑∞

k=1
kπk (3.7)

is the prior mean of the change point.

Note that the statistic Λi(n) is the Shiryaev-Roberts (SR) statistic [9] for detecting a

change corresponding to the i-th post-change model. The detection procedure δ2 is therefore

an extension of the SR procedure adapted to detect changes in system with multiple post-

change models [18]. The non-Bayesian detection algorithm in (3.6) has a similar flavor as

the algorithm proposed in [20]. The test statistic in [20, Equation. (9)] is the sum of the

CUSUM statistics for each post-change hypothesis. In (3.6), the test statistic is the sum

of the SR statistics for each post-change hypothesis. Next, we will show that the proposed

detection method in Definition 3.1 is asymptotically optimum with respect to (P1).

3.4.2 Probability of False Alarm

We first study the PFA of the detection procedure defined in Definition 3.1.

Lemma 3.1 : For the quickest change detection algorithm in Definition 3.1, the probability

of false alarm is upper bounded by α.
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Proof: The statistic Λi(n) defined in (3.5) can be written in a recursive form as

Λi(n+ 1) = λi(n + 1) [1 + Λi(n)] (3.8)

where λi(n) is the likelihood ratior (LR) of the i-th post-change model at time n

λi(n) =
fi,n(Xn|X1:n−1)

f0,n(Xn|X1:n−1)
(3.9)

It is straightforward that E∞[λi(n)] = 1, and from (3.8)

E∞[Λi(n+ 1)|FX
n ] = 1 + Λi(n). (3.10)

Thus Λi(n) is a submartingale with respect to the probability measure P∞. In addition,

since E[Λi(1)] = E[λi(1)] = 1, we have E∞[Λi(n)] = n.

Combining the definition of Λ(n) in (3.4) with (3.10), we get

E∞

[

Λ(n+ 1)|FX
n

]

= M + Λ(n). (3.11)

Thus Λ(n) is also a submartingale with respect to P∞ and E∞ [Λ(n)] = Mn. Using Doob’s

submartingale inequality, we get

P∞{θ̂2 < n} = P∞

{

max
1≤k≤n

Λ(k) ≥ Mθ

α

}

≤ nα

θ

Therefore,

PFA(δ2) =

∞
∑

k=1

πkP∞{θ̂2 < k} ≤
∞
∑

k=1

πkkα

θ
= α.

3.4.3 False Alarm Rate

For a given test δ, the FAR is defined as

FAR(δ) =
1

E∞(θ̂)
(3.12)
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where E∞(θ̂) is known as the ARL to false alarm.

Lemma 3.2 : For the quickest change detection algorithm in Definition 3.1, the false alarm

rate is upper bounded by α/θ.

Proof: From (3.11), it is obvious that Λ(n)−Mn forms a Martingale with respect to

P∞.

If E∞[θ̂2] = ∞, then FAR(δ2) = 0 and it is bounded by α/θ.

If E∞[θ̂2] < ∞, then based on the optional stopping theorem, we have

E∞[Λ(θ̂2)−Mθ̂2] = E∞[Λ(1)−M ] = 0. (3.13)

Thus

E∞[θ̂2] =
1

M
E∞[Λ(θ̂2)] (3.14)

Combining (3.14) with (3.6) yields

E∞[θ̂2] ≥
θ

α
(3.15)

which implies FAR(δ2) ≤ α/θ.

3.4.4 Average Detection Delay

The asymptotic upper and lower bounds for the ADD of the detection method in Definition

3.1 are derived respectively in a similar manner as in Subsection 2.4.3.

Theorem 3.1 : Assuming the condition (2.13) holds, as the PFA upper bound α → 0, we

have

Ek[(θ̂2 − k)+] �
α→0

min
i

log
(

Mθ
α

)

Di
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Proof: The proof follows a similar procedure as the proof of Theorem 2.1. First define a

new stopping time with respect to each individual post-change distribution model as follows

ζ2,i = inf

{

n ≥ 1 : Zk:n
i ≥ log

(

Mθ

α

)}

(3.16)

From (3.4) and (3.5), it is straightforward that log Λ(n) ≥ log Λi(n) ≥ Zk:n
i . Thus

θ̂2 ≤ min
i=1,2,...,M

ζ2,i. (3.17)

Given the fact that 1
n
Zk:k+n−1

i almost surely converges to Di in probability Pi as n → ∞

as in (2.13), we can define

Γk = sup

{

n ≥ 1 :

∣

∣

∣

∣

1

n
Zk:k+n−1

i −Di

∣

∣

∣

∣

> ǫ

}

. (3.18)

If ζ2,i − k > Γk, then from (3.18) we have

∣

∣

∣

∣

1

ζ2,i − k
Z

k:ζ2,i−1
i −Di

∣

∣

∣

∣

≤ ǫ, if ζ2,i − k > Γk (3.19)

which implies

ζ2,i − k ≤ Z
k:ζ2,i−1
i

Di − ǫ
, if ζ2,i − k > Γk (3.20)

From (3.16), we have

Z
k:ζ2,i−1
i < log

(

Mθ

α

)

(3.21)

Combining (3.20) and (3.21) results in

ζ2,i − k ≤
log
(

Mθ
α

)

Di − ǫ
, if ζ2,i − k > Tk (3.22)

When α < Mθ̄ and ǫ < Di, we always have
log

(

Mθ
α

)

Di−ǫ
> 0. Therefore the following

inequality is true for both ζ2,i − k > Γk and ζ2,i − k ≤ Γk

ζ2,i − k ≤
log
(

Mθ
α

)

Di − ǫ
+ Γk, if α < Mθ̄ and ǫ < Di (3.23)
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Given the convergence condition in (2.13), we have E(Γk) < ∞. Setting ǫ → 0 and

α → 0, we have

E[ζ2,i − k] �
α→0

log
(

Mθ
α

)

Di

. (3.24)

Since θ̂2 is a lower bound of ζ2,i as in (2.21), we have

E[θ̂2 − k] �
α→0

min
i

log
(

Mθ
α

)

Di

. (3.25)

When α → 0, the right hand side of (2.31) is always positive. Thus the inequality in

(2.31) still holds if we replace θ̂2 − k by (θ̂2 − k)+. This completes the proof.

From the results in Theorem 3.1, it can be seen that the delay upper bound is dominated

only by the post-change models that have large Di, that is, those models that have a big

difference with the pre-change model.

Theorem 3.2 : Assuming the condition (2.13) holds, as the PFA upper bound α → 0, we

have

Ek[(θ̂2 − k)+] �
α→0

min
i

log
(

Mθ
α

)

Di

Proof: The proof follows a similar procedure as the proof of Theorem 2.2. First define

Yiα =
log
(

Mθ
α

)

Di

, and Yα = min
i

Yiα (3.26)

Define the following events and their respective probabilities,

Di,k : {k ≤ θ̂2 ≤ k + (1− ǫ)Yiα} and φǫ
i,k(θ̂2) = Pk{Di,k}

Dk : {k ≤ θ̂2 ≤ k + (1− ǫ)Yα} and φǫ
k(θ̂2) = Pk{Dk}

where 0 ≤ ǫ < 1 is a constant.
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Since Yα = mini Yiα, we have Dk = ∩i Di,k, which implies

φǫ
k(θ̂2) ≤ min

i
φǫ
i,k(θ̂2). (3.27)

Similar to (3.28), it can be shown that

lim
α→0

φǫ
i,k(θ̂2) = 0, ∀i = 1, . . . ,M, 0 < ǫ < 1 and k ≥ 1. (3.28)

Combining (3.27) with (3.28) yields

lim
α→0

φǫ
k(θ̂2) = 0, ∀i = 1, . . . ,M, 0 < ǫ < 1 and k ≥ 1 (3.29)

Based on the Chebyshev inequality, for any 0 ≤ ǫ < 1, we have

Ek[(θ̂2 − k)+] ≥ [(1− ǫ)Yα] Pk{(θ̂2 − k) ≥ (1− ǫ)Yα} (3.30)

Since {θ̂2 ≥ k} = {θ̂2 − k ≥ (1− ǫ)Yα} ∪ Dk, we have

Pk{θ̂2 − k ≥ (1− ǫ)Yα} ≥ Pk{θ̂2 ≥ k} − φǫ
k(θ̂2). (3.31)

Based on Lemma 3.1, the PFA is upper bounded by α. Thus

α ≥ PFA(θ̂2) =

∞
∑

i=1

πiPi(θ̂2 < i) ≥ πkPk(θ̂2 < k),

and consequently,

Pk{θ̂2 ≥ k} = 1−Pk{θ̂2 < k} ≥ 1− π−1
k α (3.32)

Combining (3.30), (3.31), and (3.32), we get,

Ek[(θ̂2 − k)+] ≥ [(1− ǫ)Yα] [1− π−1
k α− φǫ

k(θ̂2)].

Since ǫ can be arbitrarily small, we can let ǫ → 0, then

lim
α→0

Ek[(θ̂2 − k)+]

Yα

≥ 1

This completes the proof.
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The asymptotic lower bound in Theorem 3.2 is the same as the asymptotic upper bound

in Theorem 3.1. The asymptotic convergence between the lower bound and upper bound

indicates that the detection method in Definition 3.1 is asymptotically optimal.

Theorem 3.3 : Assuming the condition (2.13) holds, as the PFA upper bound α → 0, the

quickest change detection presented in Definition 3.1 is asymptotically optimal with respect

to (P1). The asymptotic ADD is

ADD(δ2) ≍
α→0

min
i

log
(

Mθ
α

)

Di

Proof: The results can be directly obtained by combining Theorems 3.1 and 3.2.

3.5 Numerical Results

Numerical results are presented in this section to demonstrate the performance of the pro-

posed change detection algorithm under non-Bayesian settings as described in Definition 3.1.

All simulation results are obtained by averaging over 10,000 Monte-Carlo trials. The change

point follows a geometric distribution with ρ = 0.1 in all simulations.

Next, we study the performance of the algorithm in Definition 3.1 under the non-Bayesian

setting. In the first example, there are M = 2 equiprobable post-change models, i.e.,

ω1 = ω2 = 0.5. The pre-change and post-change distributions are zero-mean Gaussian

distributions with variance σ2
i . We have σ2

0 = 1 for the pre-change distribution, and we will

consider different combinations of the post-change parameters (σ2
1 , σ

2
2). Figure 3.1 shows

ADD(δ2) as a function of the PFA upper bound α. When (σ2
1 = 0.6, σ2

2 = 1.4), we have

D1 = 0.0554 and D2 = 0.0318. When (σ2
1 = 0.55, σ2

2 = 1.45), we have D1 = 0.0739 and

D2 = 0.0392. When (σ2
1 = 0.5, σ2

2 = 1.5), we have D1 = 0.0966 and D2 = 0.0473. Similar to

the Bayesian case, the asymptotic analytical ADDs for non-Bayesian method have similar
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Figure 3.1: Average detection delay of the proposed non-Bayesian algorithm.

slopes as their simulation counterparts under different configurations. Thus the asymptotic

results are very good predictors for the trend of the detection delay.

Figure 3.2 shows the PFA of the non-Bayesian algorithm as a function of the PFA upper

bound α under different system configurations. There are M = 2 post-change models. The

pre-change and post-change data follow Gaussian distributions with unit variance and mean

µi. We have µ0 = 1 for the pre-change distribution, and µ1 = 0.5 and µ2 = 1.5 for the post-

change distributions. The simulated PFAs are always under the theoretical upper bounds

as proved in Lemma 3.1. Under the non-Bayesian setting, the theoretical PFA upper bound

is not as tight as its Bayesian counterpart. The PFA upper bound is about one order of

magnitude higher than the results obtained from numerical simulations.

Figure 3.3 illustrates the performance of the non-Bayesian change detection algorithm

described in Definition 3.1. In this example, there are M = 3 post-change models. The data
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Figure 3.2: Probability of false alarm for the proposed non-Bayesian algorithm.

follow a two-dimensional multivariate Gaussian distribution with zero-mean and covariance

matrix

R =









1 r

r 1









.

The coefficient r is set to 0 before the change point. After the change point, we set r =

0.1, 0.5, and 0.9 for the three post-change models, respectively. The prior probabilities of

the post-change models are ω1 = 0.1, ω2 = 0.3, and ω3 = 0.6, respectively. Figure 3.3

compares the ADD of the proposed non-Bayesian algorithm with the ADD of three different

non-Bayesian algorithms based on CUSUM procedure. The CUSUM-GLRT procedure [16]

uses GLRT by estimating the unknown parameter, which corresponds to the post-change

model in this example. The SUM-CUSUM procedure [20] exploits the sum of the local

CUSUM statistics corresponding to the individual post-change models. The MAX-CUSUM
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Figure 3.3: Comparison of the proposed non-Bayesian algorithm with adapted CUSUM
algorithms.

procedure [19] uses the maximum of the local CUSUM statistics. The proposed non-Bayesian

algorithm achieves significant performance gains over the existing CUSUM-based algorithms.

3.6 Conclusion

Quickest change point detection with multiple possible post-change models has been studied

in this chapter. We have proposed two quickest change detection algorithms under the

Bayesian and non-Bayesian settings, respectively. Theoretical analysis has been performed

to obtain the PFA upper bounds and asymptotic bounds on ADD when the PFA is small.

It has been shown that both algorithms are asymptotically optimal in terms of average

detection delay. Numerical results have shown that the proposed algorithms outperform

existing algorithms in terms of average detection delay under the same PFA constraints.
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Chapter 4

Quickest Detection of False Data Injection Attacks in Smart Grid with

Dynamic Models

Samrat Nath, Israel Akingeneye, Jingxian Wu, Zhu Han

4.1 Abstract

A quickest intrusion detection algorithm is proposed to detect false data injection attacks

(FDIA) in smart grids with time-varying dynamic models. The quickest detection algorithm

aims at minimizing the worst-case detection delays of cyber-attacks, subject to an upper

bound of the false alarm rate. Since power grid state transitions could be caused by either

cyber-attacks or sudden change in loads or grid configurations, we propose to distinguish

between FDIA and sudden system change by using a time-varying dynamic model, which can

accurately capture the dynamic state transitions due to changes in system configurations.

A dynamic state estimation algorithm is developed to estimate and track the time-varying

and non-stationary power grid states. The quickest detection algorithm is developed by

analyzing the statistical properties of dynamic state estimations, such that the algorithm

minimizes the worst-case detection delay while accurately distinguishing FDIA from sudden

system changes. A Markov-chain-based analytical model is used to identify the detector’s

parameter and quantify its performance. Simulation results demonstrate that the proposed

algorithm can accurately detect and remove false data injections or system faults with min-

imum delays. The proposed algorithm can be implemented to harden intelligent electronic

devices or supervisory control and data acquisition systems to improve their resilience to
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cyber-attacks or system faults, thus improving the cyber-security of smart grids.

4.2 Introduction

A smart grid is a combination of electrical power infrastructure, smart meters, and a network

of computers [1]. It uses information technologies to make intelligent decisions about the

control and state of electrical power systems. Compared to conventional power grids, smart

grid is more robust and efficient due to the advancement in system monitoring, energy man-

agement, and operation control. However, due to its dependence on cyber-infrastructure, a

smart grid is prone to cyber-attacks [2]. Cyber-attacks can be performed by hacking into the

communication network of smart grids, or by remotely accessing the remote terminal units

(RTUs) installed at the substations [3]. For example, the supervisory control and data acqui-

sition (SCADA) system of Iran’s Natanz nuclear fuel-enrichment facility was attacked by a

Stuxnet worm in July 2010 [4]. An adversary can launch cyber-attacks by compromising the

measurement results obtained by the SCADA system or phasor measurement units (PMUs),

such as the power injected into different buses or power flowing into the lines between the

buses. False data injected in the measurement results will affect the real-time control of

grid operations, thus cause significant damages to power grids. A comprehensive review of

false data injection attack (FDIA) against modern power systems is given in [5]. To improve

the cyber-security of smart grids, it is critical to ensure the integrity and confidentiality of

the intelligent electronic devices (IEDs) in the network such as smart meters, RTUs, PMUs

through hardware or software hardening [6,7]. Tamper-proof hardware platforms can reduce

avenues for FDIA.
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A large number of algorithms have been developed to detect various forms of cyber-

attacks in smart grids [8–13]. Most methods assume a static system model, where the

system is in steady state and its measurements are quasi-static over time. However, in

reality, the state of a power system varies with time due to the dynamic nature of system

loads [14]. So, state estimation and FDIA detection algorithms require a dynamic model to

track the time evolution of the system states, which can be utilized to detect and replace

corrupted measurements in the system. A dynamic state estimator can capture the system

transients due to sudden system changes in a faster and more accurate manner compared

to its static counterpart. This is possible because of the dynamic state estimator’s ability

of using past state estimations to predict future state of the system one step ahead. A

mismatch between newly collected measurements and their predicted values indicates that

there have been sudden changes in the system such as loss of a large load, changes in

network configurations, system faults, or malicious attacks that have modified some system

measurements. It is vital to detect and identify these attacks as soon as possible in order to

replace the corrupted measurements before they are processed by the state estimator.

Dynamic state estimation is important for the control and operations of a power grid [14–

22]. Dynamic state estimation in many existing works is performed by using different versions

of an extended Kalman filter (EKF) to filter predicted state variables [14–18]. In [21], FDIA

is detected by tracking the dynamics of measurement variations in terms of the Kullback-

Leibler divergence [23] between two probability distributions under normal and abnormal

conditions. In [22], an online FDIA detection method is developed by analyzing temporally

consecutive estimated system states using wavelet transform and deep neural network, which

can effectively capture deviations in temporal data correlations of state vectors due to FDIA
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scenarios. Most works utilize the estimation residual, which is the difference between the

newly collected measurements and their corresponding predictions, to test the presence of

FDIA. If the residual magnitude exceeds a certain threshold, a flag is raised indicating that

either there is a sudden system change or FDIA. FDIA is distinguished from sudden system

changes by analyzing correlated measurements in the location near the abnormality. In [14],

if the measurements from neighboring buses fail the detection test simultaneously, a sudden

change is declared. But, such a method might not be effective if false data are simultaneously

injected into several neighboring buses with correlated measurements. This may lead to a

mischaracterization of the attacks as sudden changes.

Most existing FDIA detection methods are developed to improve detection accuracy,

with little or no attention given to detection delay. Detection delay is defined as the time

difference between the launch and detection of a cyber-attack. Reducing detection delay is

critical for improving cybersecurity [24]. A lower detection delay can shorten the response

time so that remedial actions can be taken in a timely manner to significantly reduce the

damages and economic losses caused by cyber-attacks. Detection delay can be reduced by

employing algorithms from the quickest change detection (QCD) framework [25, 26], which

aims at minimizing the average or worst-case detection delays while ensuring high detection

accuracy. One of the most commonly used QCD procedure is the cumulative sum (CUSUM)

procedure [25,27]. It has been shown in [28,29] that the CUSUM algorithm is asymptotically

optimum, that is, it can asymptotically minimize the worst-case detection delay (WDD) when

the false alarm rate goes to 0. However, implementation of CUSUM requires knowledge of

the exact statistical distribution of the measurement under attack, which is usually unknown

in practical applications [30]. An adaptive Rao-CUSUM test is proposed in [8] for false data

52



detection in smart grid, where the unknown distribution of data under attack is summarized

by using the Rao test statistic [31]. In [24], an orthogonal matching pursuit CUSUM (OMP-

CUSUM) algorithm is proposed to identify the buses under attack while minimizing the

detection delay. Both [8] and [24] are developed under highly simplified linear static system

models and they cannot capture the time-varying transient of power grids.

In this chapter, we develop a quickest intrusion detection algorithm for detecting FDIA in

smart grids by using dynamic state estimations. This algorithm can be used to harden IEDs,

PMUs, or SCADA system to improve their resilience to cyber-attacks or system faults. The

detection method is designed to minimize the worst-case detection delay of FDIA subject

to an upper bound of the false alarm rate, which is defined as the probability of falsely

detecting an FDIA while the system is under normal operating conditions. One of the

main challenges faced by FDIA detection is to distinguish power grid state changes caused

by FDIA from those caused by a sudden system change, such as sudden load changes on

certain buses. To address this challenge, we propose to use a locally linear but globally

non-linear dynamic state model to represent the dynamic state transitions in power grids.

The dynamic state evolution of the power grid is estimated and tracked by using an EKF-

based dynamic state estimator, which estimates the current state by using both current

measurements and predictions from past states. A sudden system change will affect the

dynamic state transitions on all buses based on the physical model of the grid, and such state

transitions can be accurately estimated by the dynamic state estimator based on SCADA or

PMUmeasurements. On the contrary, FDIA or system faults might violate the dynamic state

transitions determined by the model, and this may result in large residuals in estimation.

Thus the employment of the dynamic state models can help distinguish FDIA from sudden
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system change.

The quickest intrusion detection algorithm is developed by analyzing the statistical prop-

erties of the results obtained from dynamic state estimations. The problem is formulated as a

hypothesis test performed on the residuals between the estimated and actual measurements.

Since the false data attack vector is unknown at the detector, we propose a new normalized

Rao-CUSUM test, which summarizes the unknown statistics of post-attack distributions by

using a normalized Rao test statistic. Simulation results show that the normalization of Rao

test statistic yields significantly lower FAR compared to un-normalized Rao test statistic

under the same detection delay. The design parameter of the test is identified by using a

Markov-chain based model of the test statistics through offline calculations. Once FDIA is

detected, corrupted measurements are identified and replaced with their predicted values to

ensure normal operations of the grid.

To summarize, this work has two main contributions. First, the detection algorithm

aims at minimizing the worst-case detection delay of FDIA while ensuring high detection

accuracy. The quickest detection algorithm is developed by using a new normalized Rao-

CUSUM test that can accurately detect FDIA in a timely manner. Second, with a dynamic

model and dynamic state estimations, the quickest detection algorithm can distinguish state

transitions caused by FDIA from those caused by sudden system change, thus ensure the

normal operations of the grid under both conditions.

The remainder of this chapter is organized as follows. Section 4.3 describes the system

model and problem formulation. The dynamic model and dynamic state estimation are

presented in Section 4.4. In Section 4.5, we develop the quickest detection algorithm by

analyzing the statistical properties of the results from dynamic state estimations. In Section
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Table 4.1: List of Notations in Chapter 4

m total number of measurements
zk measurement vector at time instant k
xk state vector
Rk measurement error covariance matrix
Mk prediction error covariance matrix
h(xk) nonlinear function between xk and zk
H Jacobian matrix
a attack vector
vk residual vector
v̄k whitened residual vector
Wk whitening matrix
Lk log-likelihood ratio
Tk test statistic for false data detection
A threshold for detection rule
πj steady-state probability of state j

4.6, a Markov-chain-based model is introduced to analytically evaluate the proposed false

data detector. Simulation results are given in Section 4.7, and Section 4.8 concludes this

chapter. A list of the notations used in this chapter is summarized in Table 4.1.

4.3 System Model

A power system with N buses is considered. Without loss of generality, the first bus is

assumed to be the reference. Define the set of buses connected to bus i as Xi with cardinality

ci = |Xi|. Denote the active and reactive power injections into bus i as Pi andQi, respectively.

Similarly, the active and reactive power flows from bus i to bus j are denoted Pij and Qij ,

respectively, ∀ j ∈ Xi.

The power system collects measurements of both active and reactive power flows on

different buses. The measurements are collected in such a way that the system becomes

observable, i.e. all the state variables can be determined from the measurements. There
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are many optimal approaches for sensor placement in order to make the system completely

observable through collected measurements [32]. The power system provides a total of m =

m1 + m2 + 1 measurements, where m1 = 2N is the number of active and reactive power

injections, m2 =
∑N

i=1 |Xi| is the number of active and reactive power flows. In addition to

the power measurements, the measurement of the voltage magnitude at the reference bus is

also available. Define the measurement vector as z = [z1, z2, · · · , zm]T ∈ Rm×1, where (·)T is

the matrix transpose operator and R is the set of real numbers.

Define the state vector as x = [x1, x2, . . . , xn]
T ∈ Rn×1 for n = 2N − 1, where the first

N − 1 elements of x are the voltage angles of N − 1 non-reference buses and the last N

elements are the voltage magnitudes of N buses.

The relationship between the measurement vector zk and the state vector xk, at an

instant of time k is expressed as

zk = h(xk) + ek, (4.1)

where h(xk) = [h1(xk), . . . , hm(xk)]
T is a nonlinear function between the measurement vector

zk and the system state vector xk, and ek ∈ Rm×1 is the measurement error vector at the

sampling instant k. As shown in [14], we assume that the measurement noise ek is zero-mean

Gaussian distributed with covariance matrix Rk.

Based on the observations in (4.1), the state estimator can obtain an estimate x̂k of the

state variable xk. The state estimation results can be used to facilitate the detection of

FDIA or system faults.
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4.4 Dynamic State Estimation

In this section, we present a dynamic state estimation algorithm, which relies on previous

estimates to predict future states of the system. The predicted states can, in turn, be used

by the system operator for timely anomaly detection and other control decisions such as

economic dispatch.

Consider the following state transition model, which describes the time behavior of the

state vector, as

xk+1 = Fkxk +Gk +wk, (4.2)

where Fk ∈ Rn×n is a non-zero diagonal matrix, Gk ∈ Rn×1 is a non-zero column vector,

and wk ∈ Rn×1 is a white Gaussian noise vector with 0 mean and covariance matrix Qk.

The parameters Fk and Gk can be identified according to the Holt’s exponential smooth-

ing method [14]. The Holt’s method performs smoothing over an original time series with

two smoothing parameters, α and β, with values between 0 and 1. Denote the predicted

state vector at time k as x̃k. The Holt’s method is expressed as

x̃k+1 = a′
k + b′

k, (4.3)

a′
k = αxk + (1− α)x̃k, (4.4)

b′
k = β

[

a′
k − a′

k−1

]

+ (1− β)b′
k−1. (4.5)

Combining (4.3)-(4.5) yields

x̃k+1 = Fkxk +Gk, (4.6)
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where

Fk = α(1 + β)In,

Gk = (1 + β)(1− α)x̃k − βa′
k−1 + (1− β)b′

k−1.

The time-varying linear dynamic model in (4.2) can then be obtained by adding a zero mean

Gaussian noise wk to (4.6) to account for model uncertainties.

The proposed dynamic state estimator contains two steps: state forecasting and state

estimation. Details are given as follows.

4.4.1 State Forecasting

One main advantage of the dynamic state estimator is its ability to use past state estimates

to predict future system states. Let x̂k be the estimated state vector at time k and Σk

its error covariance matrix. The predicted state vector x̃k+1 and its error covariance matrix

Mk+1 at time k can be obtained by performing the conditional expectation on (4.2) as follows

x̃k+1 = E [xk+1 | xk = x̂k] = Fkx̂k +Gk, (4.7)

Mk+1 = E

[

(xk+1 − x̃k+1) (xk+1 − x̃k+1)
T | xk = x̂k

]

= FkΣkFk +Qk, (4.8)

where E [.] is the expectation operator.

4.4.2 State Estimation

The state estimation, also known as state filtering, seeks to estimate the state at time k+ 1

by using both the predicated state vector, x̃k+1, obtained at the preceding step k, and the

newly received measurement vector zk+1 at time k + 1. During this stage, a new estimate

58



x̂k+1 along with its error covariance matrix Σk+1 are obtained at time k + 1 by minimizing

the objective function

J (xk+1) =
1

2
[zk+1 − h(xk+1)]

T
R−1

k+1 [zk+1 − h(xk+1)]

+
1

2

[

(xk+1 − x̃k+1)
T
M−1

k+1 (xk+1 − x̃k+1)
]

. (4.9)

The estimate x̂k+1 that minimizes the objective function in (4.9) can be obtained through

an iterative extended Kalman filter (EKF) [14] as

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z− h(x(i))]−M−1[x(i) − x̃]}, (4.10)

where i denotes the iteration counter, H(x) = ∂h(x)
∂x

is the Jacobian matrix, and

Σ(i) =
[

HT (x(i))R−1H(x(i)) +M−1
]−1

. (4.11)

It should be noted that the subscript k + 1 was omitted in (4.10) and (4.11) for simplicity.

The proof for (4.10) is given below.

Proof:

The point x, which minimizes (4.9) can be obtained by calculating the first derivative of

J(x) and setting it to zero. Define the first derivative of J(x) as

g(x) =
∂J (x)

∂x
= −∂hT(x)

∂x
R−1 [z− h(x)] +M−1 (x− x̃) . (4.12)

The minimum point x̂ of J(x) is calculated by solving

g(x̂) = 0. (4.13)

Given the non-linearity of (4.12), (4.13) is solved by iterative methods such as the Newton-

Raphson method [33].
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The Taylor series expansion of g(x) for x = x(0) +∆x is

g(x) = g(x(0)) +
∂g(x)

∂x
|x=x(0) ∆x, (4.14)

where x(0) is the initial point and

∂g(x)

∂x
= g

′

(x) = HT (x)R−1H(x) +M−1, (4.15)

where H(x) = ∂h(x)
∂x

.

According to the Newton-Raphson method [33], by setting (4.14) to zero, the increment

∆x is obtained as

∆x = −
[

g
′

(x(0))
]−1

g(x(0)). (4.16)

Thus,

x = x(0) −Σ(0)g(x(0)), (4.17)

where

Σ(0) =
[

g
′

(x(0))
]−1

=
[

HT (x(0))R−1H(x(0)) +M−1
]−1

. (4.18)

Combining (4.12), (4.17), and (4.18) at the (i + 1)-th iteration with an initial point x(i) =

x(i+1) −∆x, the (i+ 1)-th point becomes

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z− h(x(i))]−M−1(x(i) − x̃)}. (4.19)

This completes the proof.

One main benefit of the state forecasting stage is to provide the initial states to the

iterative EKF algorithm in (4.10). Thus, the convergence of the EKF algorithm partly

depends on the accuracy of the forecast state vector. A high state forecasting accuracy leads

to a faster convergence of the EKF algorithm.
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4.5 False Data Detection and Identification

The problems of detecting false data injections in the measurement vector and identifying

the buses under attack are studied in this section.

Results of the dynamic state estimation will be used in the detection and identification

of FDIA. To facilitate the development of the FDIA detection algorithm, let the initial guess

x(i) = x̃ at time k + 1 and by performing only one iteration in (4.10), the estimated state

vector is approximated as

x̂k+1 = x̃k+1 +Kk+1vk+1, (4.20)

where

vk+1 = zk+1 − h(x̃k+1) (4.21)

is the residual vector,

Kk+1 = Σk+1H
T (x̃k+1)R

−1
k+1 (4.22)

is the gain matrix, and

Σk+1 =
[

HT (x̃k+1)R
−1
k+1H(x̃k+1) +M−1

k+1

]−1
. (4.23)

To facilitate analysis, write the Taylor series expansion of h(xk+1) around a linearization

point x̃k+1 as

h(xk+1) = h(x̃k+1) +H(x̃k+1)(xk+1 − x̃k+1), (4.24)

where H(x̃k+1) =
∂h(x)
∂x

|x=x̃k+1
.
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The higher order terms of (4.24) are omitted by assuming that the difference (xk+1−x̃k+1)

is very small.

Combining (4.1), (4.21), and (4.24) gives

vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1. (4.25)

The covariance matrix, Sk+1, of the residual vector, vk+1, can then be calculated as

Sk+1 = H(x̃k+1)Mk+1H
T (x̃k+1) +Rk+1. (4.26)

Based on (4.20), the estimated state vector x̂k+1 is a function the residual vector vk+1,

the difference between newly received measurements at time k + 1 and its corresponding

predictions h(x̃k+1). The newly received measurement vector zk+1 may deviate from its

predicated value h(x̃k+1). This mismatch between the measured and predicted measurements

may be a result of several factors: a sudden change in the system’s operating point due to

a loss of a large load [16], system faults such as sensor failure or line-to-ground faults, or

false data injections in the measurements. The change in the system’s operating point is

considered as a normal event. However, presence of false data injections is abnormal and can

be very harmful to the system. Hence, it is vital to distinguish between state changes due to

sudden load change or FDIA, such that false data injections can be detected and removed

from the measurements zk+1 before performing state estimations.

We propose a new quickest change detection method by analyzing the statistical prop-

erties of the residual vector vk+1. The design criterion of the quickest change detection

algorithm is to minimize the worst-case detection delay, subject to the constraint on an

upper-bound of the false alarm rate. Specifically, a sudden load change will affect the mea-

surements on all buses based on the physical model of the system. On the other hand,
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FDIA will only affect the measurements on a few buses. Thus we propose to distinguish

between sudden load change and FDIA by analyzing the statistical correlations of signals

from different buses.

4.5.1 Formulation of the Hypothesis Test

Define the null hypothesis H0, which corresponds to the measurements without false data

at time k + 1, and the alternative hypothesis H1, which corresponds to the measurements

with false data at time k + 1, as

H0 : zk+1 = h(xk+1) + ek+1,

H1 : zk+1 = h(xk+1) + ek+1 + a, (4.27)

where a is a vector of false data injected in the measurements.

From (4.21), (4.25), and (4.27), the hypothesis test on the residual vector vk+1 can be

written as

H0 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1,

H1 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1 + a. (4.28)

The residual vector vk+1 under the null hypothesis H0 is generally assumed to be a zero

mean Gaussian vector [14] and [19]. With the dynamic state estimator presented in this

chapter, the covariance matrix Sk+1 of the residual vector is given in (4.26). Assuming that

the attack vector a is a deterministic vector, under the alternate hypothesis H1, vk+1 is

Gaussian with mean a and covariance matrix Sk+1.

As in (4.26), the elements in zk+1 are correlated based on the physical model of the power

grid. To simplify the analysis, we propose to perform a whitening transformation on vk+1.
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The covariance matrix of the residual vector can be decomposed as Sk+1 = UT
k+1Dk+1Uk+1,

where Dk+1 is a diagonal matrix with the eigenvalues of Sk+1 on its main diagonal and Uk+1

is the corresponding orthonormal eigenvector matrix at time instant k + 1. The whitening

transformation of the residual vector vk+1 is v̄k+1 = Wk+1vk+1, where the whitening matrix

Wk+1 = D
− 1

2
k+1Uk+1. With the whitening operator, it can be easily shown that the covariance

matrix of v̄k+1 is Im, which is an m×m identity matrix.

Following the Gaussian distribution of vk+1 given in (4.28), the hypothesis test on v̄k+1

is

H0 : v̄k+1 = Wk+1vk+1 ∼ N (0, Im),

H1 : v̄k+1 = Wk+1vk+1 ∼ N (µ, Im), (4.29)

where µ = Wk+1a.

4.5.2 Proposed False Data Detector

A QCD-based false data detection method is proposed in this section to detect cyber-attacks.

We assume that the false data is injected at a random time τ , and the attack was detected

at time τ̂ . Based on the design criteria of quickest change detection, the problem can be

formulated as

(P1) minimize WDD = sup
k

Ek[(τ̂ − k)+]

subject to FAR =
1

E∞[τ̂ ]
≤ ζ.

where WDD is the worst-case detection delay, FAR is the false alarm rate, (a)+ = a if a ≥ 0

and 0 otherwise, Ek is the expectation assuming the attack becomes active at τ = k, and E∞

denotes the expectation when there is no attack. The solution of the problem is a quickest
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detection algorithm in that it aims at minimizing the worst-case detection delay, subject to

an upper bound of the false alarm rate.

The above problem can be solved by using the well-known CUSUM algorithm [27]

τ̂ = inf{k ≥ 1|Ck ≥ A}, (4.30)

where A is a threshold obtained by the FAR upper bound ζ ,

Ck+1 = max(0, Ck + Lk), (4.31)

and Lk = log f1(v̄k)
f0(v̄k)

is the log-likelihood ratio (LLR), with f1(v̄k) and f0(v̄k) being the prob-

ability density functions (pdfs) associated with hypotheses H1 and H0, respectively. The

CUSUM algorithm is the asymptotically optimum solution to (P1) because it can asymp-

totically minimize the WDD when the FAR goes to 0 [28, 29].

Under the assumption that v̄k is Gaussian distributed, the LLR can be calculated as

Lk = aTWT
k v̄k −

1

2
aTWT

kWka. (4.32)

The calculation of the LLR Lk requires the knowledge of the attack vector a, which is

unknown at the detector. Thus we cannot directly apply the CUSUM algorithm. In order to

resolve the unknown parameters, the detection method in [29] utilizes the generalized likeli-

hood ratio test (GLRT) approach by replacing the unknown parameter with the maximum

likelihood estimation (MLE) as

τ̂ = inf{k ≥ 1| max
1≤t≤k

sup
a

∑k

i=t
Li ≥ A}. (4.33)

This approach is proven to be asymptotically optimal in terms of minimum detection

delay [34]. However, the test statistic cannot be computed recursively as the CUSUM test,
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because GLRT needs to compute every unknown element of a for each observation at sam-

pling time 1 ≤ t ≤ k. In other words, GLRT needs to store the observations and perform

MLE of a at every sampling instant. As a result, this approach has very high complexity,

and it might not be feasible for real-time FDIA detection in power grids.

A low-complexity adaptive-CUSUM algorithm is proposed in [8] based on Rao test [31],

which is asymptotically equivalent to the GLRT test [35]. The Rao test statistic can be

computed by taking the derivative of Lk with respect to the unknown parameter a evaluated

around the region of interests. In our case, the region of interest is considered to be around

zero because the hypothesis H0 has zero mean. According to (4.29), the statistic [31] of the

Rao test for detection at time k can be written as follows:

Y (v̄k) =
∂Lk

∂a

T
∣

∣

a=0

[

I−1(a)
∣

∣

a=0

] ∂Lk

∂a

∣

∣

a=0
= v̄T

k v̄k, (4.34)

where I(a) is the Fisher information matrix [23]. The proof for (4.34) is given below.

Proof: Combining the definition of LLR in (4.32) with the hypotheses in (4.29), we

obtain

∂Lk

∂a
= WT

k v̄k −WT
kWka. (4.35)

Next, substituting the value a = 0 yields in

∂Lk

∂a

∣

∣

a=0
= WT

k v̄k. (4.36)

Using the definition of Fisher information matrix [23], we get

I(a) = −E

[

∂

∂a

(∂Lk

∂a

)

]

= WT
kWk. (4.37)

Combining (4.36) and (4.37) results in the Rao test statistic Y (v̄k) = v̄T
k v̄k. This completes

the proof.
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Under the null hypothesis H0, the Rao test statistic follows Chi-square distribution, that

is, Y (v̄k) ∼ χ2
m, where m is the degree-of-freedom corresponding to the dimension of the

measurement vector. If we directly replace the LLR Lk in (4.31) with the Rao test statistic

Y (v̄k) in the CUSUM test defined in (4.30), the CUSUM test statistic Ck will increase

monotonically under both the null and alternative hypothesis because Y (v̄k) ≥ 0. This is

undesirable for CUSUM because it is a threshold test. To address this issue, we introduce

a normalized version of the test statistic in (4.34) with respect to the mean and standard

deviation of Y (v̄k) under H0, which are, m and
√
2m, respectively. Based on the normalized

test statistic, we propose a new detection rule as follows.

Definition 4.1 : (Normalized Rao-CUSUM Detector) Given a whitened residual vector

v̄k+1 = Wk+1vk+1 at time k + 1 , an FDIA is detected at time τ̂ with

τ̂ = inf{k ≥ 1|Tk ≥ A}, (4.38)

where

Tk+1 = max

(

0, Tk +
Y (v̄k+1)−m√

2m

)

, (4.39)

with T0 = 0. The threshold A is determined by the FAR upper bound ζ .

The normalized Rao-CUSUM detector is developed by modifying the asymptotically opti-

mum GLRT-CUSUM detector to balance the tradeoff between complexity and performance.

The proposed normalized Rao-CUSUM algorithm might have a bit higher WDD than the

GLRT-CUSUM algorithm, but offers much lower complexity.

It should be noted that the above test can distinguish between sudden load change from

FDIA because the formulation of the null hypothesis H0 includes sudden load change as a

special case. In case of a sudden load change, the system dynamics still follow the physical
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model of the power grid. As a result, the residual vector can still be modeled as zero-mean

Gaussian distributed with covariance matrix Sk+1. Yet this is no longer true when there

is false data injected into the power grid, which is modeled as the alternative hypothesis

H1. Since the test in Definition 1 is designed to distinguish between the null and alternative

hypothesis by minimizing the worst-case detection delay, it is able to distinguish between

load change and FDIA. On the other hand, system faults, such as sensor failures or line faults,

will also cause the measurements to deviate from those predicted by the physical model of

the system. In that case, the proposed algorithm will be able to detect the presence of

sensor failures or system faults. However, it will not be able to differentiate FDIA from

sensor failures or system faults. Thus the algorithm will treat FDIA, sensor failure, or other

system faults in a similar manner.

In case false data are detected, we can identify the buses under attack by using the power

of the residuals at different buses. That is, if the residual power or amplitude on a given

bus is above a certain threshold, then it is considered that the corresponding bus is under

attack. Similar to [14], the amplitude test can be expressed as

|vk+1(i)| > γσSi
, (4.40)

where |vk+1(i)| is the absolute value of the i-th element of vk+1, σSi
is the standard deviation

of the i-th element of vk+1, and γ defines the limit of confidence. If a bus is detected as

under attack, we replace the estimated states with the predicted states to ensure the normal

operations of the power grid.

The normalized Rao-CUSUM detector proposed in Definition 1 is a simple threshold

test, and the test statistic Tk can be recursively calculated based on (4.39). As a result, the
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proposed test has low complexity and can be easily implemented. The implementation of the

detector in (4.38) requires a threshold A, which in turn depends on the FAR upper bound ζ .

In the next section, we will provide a theoretical guideline for choosing the threshold value

A in terms of FAR with the help of a Markov-chain-based analytical model.

4.5.3 Computation Complexity Analysis

In this subsection, we study the effects of the size of system on the computation complexity

of the proposed algorithm. The size of the system can be defined by two parameters:

(1) The dimension of state vector: n = 2N − 1, where N is the number of buses,

(2) The dimension of measurement vector: m, which depends on the number of buses and

lines.

It is easily observed that m > n. To determine the effect of size of the system on the perfor-

mance, we present the complexity analysis of the proposed algorithm in a single sampling

instant k with respect to these two parameters separately.

The proposed algorithm has two stages: 1) false data detection and 2) dynamic state

estimation. With respect to m, computation in stage 1 is dominated by the eigenvalue

decomposition process which has a cubic complexity O(m3), and stage 2 is dominated by

the matrix inversion of Rk which also has a cubic complexity O(m3). So, total complexity

of the proposed algorithm scales cubically with m as O(m3).

With respect to n, stage 2 computation is dominated by the computations of Mk in (4.8)

and Σk in (4.11), both of which have a cubic complexity O(n3). Comparatively, complexity

of stage 1 scales quadratically with n. So, total complexity of the proposed algorithm scales

cubically with n as O(n3).
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4.6 Markov-chain-based Analytical Model

In this section, we present a Markov-chain-based model to analyze the proposed false data

detector. The Markov-chain-based model provides theoretical guidelines on the choice of the

detection threshold in (4.38) based on the FAR upper bound. For a given FAR upper bound,

we can obtain the optimum detection threshold by using offline Monte-Carlo simulations.

Once the optimum threshold is obtained offline, the online normalized Rao-CUSUM detector

can then be performed to detect FDIA or system faults in real time.

To facilitate analysis, R+ ∪ 0 is discretized into a finite set of intervals representing the

states {U0, U1, · · · , UM} such as

U0 = 0, U1 = (0,∆], U2 = (∆, 2∆],

U3 = (2∆, 3∆], · · · · · · , UM = (A,+∞),

where ∆ = A
M−1

and M represents the total number of transitions from 0 to the state that

has the value greater than the threshold A.

It can be easily observed from (4.39) that the sequence exhibits the property of a first-

order Markov chain, where the future state Tk+1 at time index k + 1 depends only on the

current state Tk, but not on past states [36].

The transition probabilities of the Markov chain under H0 for the proposed algorithm

from state Ui at k to state Uj at k + 1 can be described as

Pij = P (Tk+1 ∈ Uj|Tk ∈ Ui). (4.41)

The transition probability Pij can be computed numerically using Monte-Carlo simulations

according to the distribution of v̄ under the null hypothesis H0. The values of the transition
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probabilities are uniquely determined by the threshold A and the number of discretization

levels M . Since the calculations of the transition probabilities are performed offline, we

can achieve arbitrary precision of the transition probability by increasing the number of

Mote-Carlo trials without affecting the complexity of the online portion of the algorithm.

Therefore, we can establish a very accurate numerical relationship between A and the tran-

sition probabilities.

Define the transition probability matrix (TPM) P as an (M +1)× (M +1) matrix with

the (i, j)-th element being Pi−1,j−1. It is clear that P is a Markov matrix, that is, all elements

of P are non-negative and the sum of each row vector is 1. The steady-state probability πj

of each state Uj can be determined by

πj =
∑M

i=0
Pijπi, ∀ j ∈ {0, · · · ,M}, (4.42)

∑M

j=0
πj = 1. (4.43)

The transition probability of the Markov chain can be written in a matrix format as

PT
π = π (4.44)

where π = [π0, π1, · · · , πM ]T . The steady-state probability vector π can then be obtained

by finding the eigenvector corresponding to the eigenvalue 1 of the TPM P. Since P is a

Markov matrix, it always has an eigenvalue of 1.

The steady-state probability can be used to calculate the FAR, which can be equivalently

evaluated as the probability that Tk crosses the threshold A when there is no attack in the

network. As in [36], the FAR can be equivalently calculated as the steady-state probability

71



πM , that is, the probability that Tk stays at state UM under the null hypothesis

FAR = πM . (4.45)

Since πM is determined by the eigenvector of P, which in turn depends on the choice of

threshold A, there is an optimum threshold value for a given FAR. Enabled by the Markov-

chain model, we can numerically obtain a very accurate estimate of the optimum threshold

based on the FAR.

4.7 Simulation Results

In this section, we present numerical simulations results to illustrate the performance of the

proposed algorithm. The first subsection demonstrates the performance in terms of FAR

and WDD using simulated data. The second subsection presents numerical results based on

simulations of the 13-bus system using MATLAB Power System Toolbox (PST v3.0) [37,38].

4.7.1 WDD v.s. FAR

Figure 4.1 shows the tradeoff between WDD and FAR of the proposed algorithm and the

Rao-CUSUM test [8]. In the simulation, the data are generated by following the model in

(4.29) with m = 55 and µ = [1, 1, 0, · · · , 0]. The false data injection time τ follows discrete

uniform distribution between [1, 100]. Every point on the curves is obtained by averaging

over 10, 000 Monte-Carlo trials. For a given FAR, the corresponding threshold A is chosen

by following the Markov-chain analysis in Section 4.6. As expected, the WDD is a decreasing

function of the FAR. The proposed detection algorithm outperforms the Rao-CUSUM test

used in [8]. At FAR = 10−2, the WDD of the proposed algorithm and the Rao-CUSUM test

is 42 and 95 samples, respectively.
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Figure 4.1: Performance analysis of the proposed algorithm in comparison with Rao-CUSUM
test.

4.7.2 FDIA Detection in Power Systems

In this section, we present the simulation results performed on a 13-bus system with two

areas as shown in Figure 4.2 [38]. Bus 1 is used as the reference bus. The measurement

vector consists of m = 55 components: the voltage magnitude of bus 1, the active and

reactive power injections at all 13 buses, the active and reactive power flows at all 14 lines.

The state vector consists of n = 25 components: the voltage magnitudes at all 13 buses and

the phase angles at the 12 non-reference buses.

Using MATLAB Power System Toolbox (PST v3.0), the system dynamics is simulated by

increasing the active load at bus 4 by 0.5 per unit (p.u.) and the resulting measurement and

state vectors are considered as the true values of the system. The noisy measurement vector

ek in (4.1) is obtained by adding a zero mean Gaussian noise with a diagonal covariance

matrix Rk to each of the true measurements. The noise variances, which are the diagonal
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Figure 4.2: Single Line Diagram Two Area System.

elements of Rk, are 10−5 for the voltage magnitude of reference bus and 10−6 for the active

and reactive power measurements. The matrix Qk = 10−6In is kept constant at every

sampling time k. The parameters Fk andGk are obtained according to the Holt’s exponential

smoothing method with α = 0.95 and β = 0.001 [14].

The sampling rate in our simulation is set as ∆t = 0.01 seconds. Thus the k-th time

index corresponds to a time value of t = k∆t seconds. In order to evaluate the performance

of the proposed detector, two scenarios are simulated: false data and sudden load change

conditions. The false data condition is simulated by injecting errors of −1.5 and 1 p.u.

into the active power measurements at buses 13 and 14, respectively, during a time period

0.25 ≤ t < 0.6 seconds unless specified otherwise. The sudden load change condition is

simulated by cutting the active power injection of bus 4 by 1 p.u at t = 0.6 seconds. In

each of the following figures, every point on the curves is obtained by averaging over 1, 000

Monte-Carlo trials.
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Figure 4.3: The real power at bus 14 vs time t with false data at 0.25 ≤ t < 0.6, load change
at t = 0.6, and the proposed detector in (4.39).

Figure 4.3 shows the active power at bus 14 with false data injected into the active

power measurements at buses 13 and 14. In addition, the active power injection of bus 4

is cut by 1 p.u. at t = 0.6 seconds to simulate sudden load change. The threshold of the

proposed detector is set at A = 200, which corresponds to FAR of 2.5×10−5 according to the

Markov-chain analysis. Once an FDIA is detected, the residual amplitudes are compared

to a threshold as in (4.40) to identify the buses under attack, with γ = 3.5 used in this

chapter. The measurements at the buses under attack are then replaced with their predicted

values. When there is no attack, the power calculated from the estimated states is almost

identical to its actual value. When false data is injected between 0.25 ≤ t < 0.6 seconds,

the proposed detector successfully detects the presence of FDIA and replaces the corrupted

measurement with the predicted values. In this case, the power calculated by using state

estimation is slightly different from its true value, with a difference less than 0.33%. When

75



0 0.2 0.4 0.6 0.8 1

Time (seconds)

0.98

0.985

0.99

V
m

a
g
. (

p
.u

) predicted

estimated

original

0 0.2 0.4 0.6 0.8 1

Time (seconds)

-38

-36

-34

V
a
n
g
. (

d
e
g
re

e
s
)

predicted

estimated

original

Figure 4.4: The voltage magnitude (top) and phase angle (bottom) at bus 13 vs time t with
false data at 0.25 ≤ t < 0.6, load change at t = 0.6, and the proposed detector in (4.39).

there is a sudden change at t = 0.6 seconds, the detector correctly recognizes it as a normal

operating condition and achieves correct state estimates. In addition, there is a one sample

lag between the predicted value and the actual value.

Figure 4.4 shows the voltage magnitude (top) and phase angle (bottom) at bus 13 under

the same configuration of Figure 4.3. The voltage amplitude and phase are estimated with

high accuracy despite the presence of FDIA, mainly because the false data are correctly

identified and replaced with predicted values. In addition, the state estimator correctly

adapts to the dynamic change at t = 0.6 seconds.

Figure 4.5 shows the performance of an existing residual-based detector that was proposed

in [14], under the same configuration as in Figure 4.3. Since the false data are injected into

the correlated measurements of adjacent buses 13 and 14, the detector in [14] is unable to

distinguish the false data from the sudden changes in the system. The FDIA is erroneously

76



0 0.2 0.4 0.6 0.8 1

Time (seconds)

-18

-17.5

-17

-16.5

P
1
4
 (

p
.u

.)
 

corrupt

estimated

predicted

original

Figure 4.5: The real power at bus 14 vs time t with false data at 0.25 ≤ t < 0.6 and the
conventional detector.

detected as a sudden change. As a result, during the FDIA, the power calculated from the

estimated and predicted states deviate significantly from its actual value. The performance

of the estimator yields in an estimation error of as high as 0.7 p.u at t = 0.25 seconds.

To further illustrate the ability of the proposed detector to distinguish between FDIA

and sudden change, Figure 4.6 shows the active power measurement at bus 4. The active

load at bus 4 is increased by 0.5 p.u. at t = 0.6 seconds. The load change caused a gradual

change of the active power. Since the load change affects power measurements on all buses

based on the physical model of the power grid, the proposed detector successfully recognizes

it as a load change instead of FDIA. Thus the dynamic state estimator can accurately track

and estimate the state change caused by the load change. The power calculated from the

estimated states is almost identical to its original value. Again a one sample lag is observed

between the predicted value and actual value. Similarly, in Figure 4.7, the voltage magnitude
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Figure 4.6: The real power at bus 4 vs time t with false data at 0.25 ≤ t < 0.6, load change
at t = 0.6, and the proposed detector in (4.39).

(top) and phase angle (bottom) at bus 4 are estimated with high accuracy.

The proposed algorithm assumes that the topology of the system remains unchanged.

However, in the event of a system fault, the topology of the system might change. As a

result, the proposed algorithm will detect the deviation of system’s behavior due to system

fault in a similar manner as FDIA detection. To further illustrate the performance of pro-

posed algorithm under system faults, Figure 4.8 shows the active power at bus 14 under the

influence of a single line-to-ground fault, which is applied to the line connecting bus 3 and

bus 101 at t = 0.2 seconds. The fault is cleared at bus 3 at t = 0.35 seconds and at bus 101

at t = 0.4 seconds. It can be observed that throughout the duration of the line-to-ground

fault, the proposed algorithm detects the fault and replace the measurement value by using

the predicted values. Thus the algorithm can detect the presence of fault, but it cannot

differentiate fault from cyber-attacks.
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Figure 4.7: The voltage magnitude (top) and phase angle (bottom) at bus 4 vs time t with
false data at 0.25 ≤ t < 0.6, load change at t = 0.6, and the proposed detector in (4.39).

4.8 Conclusion

A quickest intrusion detection algorithm has been developed for the detection and removal of

false data injected into smart grids. The algorithm was developed to minimize the worst-case

detection delay subject to an upper bound of false alarm rate. To distinguish between FDIA

and sudden system change, a time-varying dynamic model was used to represent the dynamic

state transitions. A dynamic state estimator was then developed to estimate and track the

time-varying and non-stationary state transitions. Based on the statistical properties of the

state estimation results, a new normalized Rao-CUSUM detector was developed to minimize

the detection delay of FDIA while separating FDIA from sudden system changes. Unlike

existing algorithms that rely on measurement correlation to discriminate false data from

sudden system changes, the proposed algorithm can detect any false data including those
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Figure 4.8: The real power at bus 14 with single line-to-ground fault at the line connecting
bus 3 and bus 101 during 0.2 ≤ t ≤ 0.4.

injected into correlated measurements. Simulation results have shown that the proposed

algorithm can accurately and timely detect and remove FDIA. In addition, the algorithm

can also detect system faults such as sensor failures or line outages. However, it cannot

differentiate system faults from FDIA. The algorithm can be used to harden IEDs or SCADA

systems to improve the security and resilience of smart grids.
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Chapter 5

Low Latency Bearing Fault Detection of Direct-drive Wind Turbines Using

Stator Current

Samrat Nath, Jingxian Wu, Yue Zhao, Wei Qiao

5.1 Abstract

Low latency change detection aims to minimize the detection delay of an abrupt change in

probability distributions of a random process, subject to certain performance constraints

such as the probability of false alarm (PFA). In this chapter, we study the low latency

detection of bearing faults of direct-drive wind turbines (WT), by analyzing the statistical

behaviors of stator currents generated by the WT in real-time. It is discovered that the

presence of fault will affect the statistical distribution of WT stator current amplitude at

certain frequencies. Since the signature of a fault can appear in one of the multiple possible

frequencies, we need to monitor the signals on multiple frequencies simultaneously, and each

possible frequency is denoted as a candidate. Based on the unique properties of WT bearing

faults, we propose a new multi-candidate low latency detection algorithm that can combine

the statistics of signals from multiple candidate frequencies. The new algorithm does not

require a separate training phase, and it can be directly applied to the stator current data

and perform online detection of various possible bearing faults. The theoretical performance

of the proposed algorithm is analytically identified in the form of upper bounds of the PFA

and average detection delay (ADD). The algorithm allows flexible parametric adjustment of

the tradeoff between PFA and ADD.
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5.2 Introduction

Wind is one of the top sources of renewable energy. Wind turbines (WTs) usually operate in

harsh environments, and hence, are more susceptible to failures compared to other type of

energy generators [1]. WT fault diagnosis and prediction are highly important for the wind

power industry. WT faults could be caused by exhaustion or manufacturing defect, and they

will cause unexpected outage and result in economic loss. One way to minimize this loss

is to predict and detect a malfunction before critical damage is done. With this taken into

consideration, online methods that can detect fault in real-time have a clear advantage over

offline methods. In addition, online diagnosis methods allow automatic remote monitoring

of the WT operation conditions, and this is crucial for WT located in remote areas.

WTs are complex systems with multiple subsystems. Each subsystem may be subject

to several different types of faults. A comprehensive survey of WT subsystem faults and

methods of WT fault diagnosis can be found in [1, 2]. According to [3–6], bearing faults

constitute a significant part of failures in WT. The study of this type of failure is not

new [3, 7–11]. The most commonly used type of bearings is the ball bearing [1]. Bearing

faults can be classified into four groups: inner race, outer race, cage and rollers faults. Many

defects start with the fault of bearings.

Different methods are used to identify WT compartments failures, including analyzing

mechanical vibrations, acoustic emission, temperature, oil parameters, and electrical signals.

Electrical signals, such as current signal, are available remotely, do not require additional

sensors, and can be analyzed in real-time [12]. Since faults of a bearing are associated with

mechanical defects, they introduce excitations at particular frequencies [7, 13]. For some
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bearings, these excitations can be captured by electrical signals [14].

Many bearing fault diagnosis methods have been developed in the literature, such as

threshold-based method [13, 15], wavelet-based method [16, 17], and maximum likelihood

fault detection [18]. Some existing works model the WT operation states as a Markov

process, where the states of the Markov process are used to represent various stages of

faults or degradations. The observed data can be used to identify the bearing state [19,

20]. Another category of fault detection methods resort to machine learning or AI-based

algorithms such as artificial neural networks (ANN), support vector machine (SVM), decision

trees, long short-term memory (LSTM) networks, etc. [21–26]. Both Markov-based and AI-

based methods require extensive training before actual detection, and in practice, there

might not be sufficient data for training purpose. Fault detection can also be performed

with particle filters [27–29]. Particle filters are usually computationally expensive and also

require extensive trainings beforehand.

Almost all previous works focus on the accuracy of fault detection and they seldom

consider the detection delay. Detection delay is defined as the time difference between the

moment that the fault occurs and the time instant that the fault is detected. A small

detection delay can result in timely remedial actions, thus prevent catastrophic results due

to extended damages and reduce economic loss. Therefore, detection delay is an essential

design parameter for WT fault detection or diagnosis.

Quickest or low latency change detection is an online detection method aiming at min-

imizing the detection delay of an abrupt change in probability distributions of a random

process. We propose to develop low latency fault detection method for WTs by analyzing

the statistical properties of the stator currents generated by WTs. The stator current can
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be modeled as a random process, and the presence of bearing fault will affect the probability

distributions of the stator current. The time instant that the fault occurs is a change point,

and it can be modeled as a random variable. Generally, change detection methods can be

classified into two categories, Bayesian and non-Bayesian (minimax) methods. If the prior

probability of the change point is known, then the methods are Bayesian procedures, such

as [30, 31]. On the other hand, when the prior probability of the change point is unknown,

the low latency change detection methods are developed under the minimax or non-Bayesian

criterion. Minimax methods are employed in many practical applications, since it is usually

difficult to obtain prior information about change point distribution.

Cumulative sum (CUSUM) procedure [32] and Shiryaev-Roberts (SR) procedure [33] are

two most commonly used minimax change detection methods, which aim at minimizing the

delay with the worst case change point distribution, under the constraint of a lower bound

of average run length (ARL) to false alarm. However, the above-mentioned minimax proce-

dures are developed for systems with single pre-change and single post-change model, and

they require the exact information regarding the distribution models before and after the

change. Therefore, these procedures cannot be readily applied to WT fault detection since

the fault signature might appear at one of several possible frequencies corresponding to sev-

eral candidates for post-change models. There are limited works with unknown or uncertain

post-change models under mimimax criterion. In [34], a quickest change detection algo-

rithm is proposed in order to detect false data injection attacks (FDIA) in smart grids with

time-varying dynamic models. An orthogonal matching pursuit CUSUM (OMP-CUSUM)

algorithm is proposed to identify the buses under FDIA while minimizing the detection delay
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in [35]. However, these two works study the cases where post-change parameter has contin-

uous support, whereas the problem of WT fault detection deals with multiple candidates for

post-change models, i.e. the post-change parameter has finite and discrete support.

The objective of this chapter is to develop low latency fault detection methods based on

the unique properties of WT bearing faults. Since faults of a bearing introduce excitations

(harmonics) into the spectrum of stator current, the analysis is performed in the frequency

domain. Statistical analysis show that the amplitude of stator current at a given frequency

can be modeled by using Gamma distribution, and the presence of fault will affect the

parameters of the Gamma distribution. The theoretical frequency of the excitation caused by

a certain fault is determined by the mechanical structure of the bearing. The actual frequency

of the fault excitation might deviate from its theoretical value due to the uncertainty of some

mechanical parameters. Therefore, in order to detect the fault, the detection algorithm needs

to monitor signals on several candidate frequencies. To solve this problem, we propose a

multi-candidate low latency fault detection procedure, which is an enhanced version of the

CUSUM algorithm. The conventional CUSUM algorithm can only be used to detect change

point over a single data stream, yet the proposed multi-candidate detection procedure can

be used to detect change point that happens on one of many potential data streams, with

the index of the data stream with the change point unknown to the detector. In addition,

the theoretical performance bounds on the PFA and ADD of the multi-candidate procedure

have been analytically derived. The performance bounds reveal the fundamental tradeoff

between detection delay and false alarm. The proposed procedure allows flexible parametric

adjustment of the tradeoff between ADD and PFA. Moreover, this detection method does

not require a training stage.
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The remainder of this chapter is organized as follows. Section 5.3 describes the experi-

mental setup and the process of data collection. The methods for data pre-processing and

feature extraction in the frequency domain are presented in 5.4. Section 5.5 studies the

statistical behavior of the feature behavior and establishes probability models. The multi-

candidate low latency fault detection procedure is proposed and analyzed in Section 5.6.

Experiment and simulation results are presented in Section 5.7, and Section 5.8 concludes

the chapter.

5.3 Experiment Setup and Data Collection

5.3.1 Data Collection

Stator current signals obtained from a 160-W Southwest Wind Power Air Breeze direct-

drive permanent magnet synchronous generator (PMSG) WT are used in this chapter to

test the fault detection algorithm. The procedure for obtaining the stator current signal was

described in [13]. The WT used to record the data has six pole pairs (p = 6). The data was

obtained while the turbine operated in variable wind speed (from 0 to 10 m/s) condition. The

shaft of the stator was rotating within the speed range of 6−13 Hz. The stator current signal

was recorded using National Instruments acquisition hardware with a sampling frequency

fso = 10 kHz. The signal was recorded within 100-second-long periods every 20 minutes.

The total operation time of the WT was about 25 hours. The test bearing (7C55MP4017)

was pretreated by removing the lubricant, in order to accelerate degradation. A bearing

outer-race fault was generated artificially for a test bearing, as illustrated in [13, Figure 12].

One of the two bearings supporting the shaft was removed to simulate eccentricity. The test

wind turbine stopped rotating at the end of the experiment, due to the broken bearing cage.
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Although the data were prerecorded and stored offline, they are processed sequentially in

an online manner by the faulty detection algorithm to emulate practical application scenarios.

That is, during the testing of the fault detection algorithm, the data are fed to the algorithm

sequentially in real-time. The algorithm makes decisions based on all current and past data,

without any knowledge of the future data that have not been fed to the algorithm. Even

though the data were collected over a time period of about 25 hours, experiment results

demonstrate that the algorithm can detect wind turbine faults just a few seconds after the

occurrence of the fault. Details will be given in Section 5.7.

5.3.2 Fault Signatures

Bearing faults introduce excitations on particular frequencies of the stator current. Those

excitations are referred to as fault signals. There are four fault modes for bearings: inner

race fault, outer race fault, cage fault, and rollers defect. Each one is characterized by a

frequency of a fault signal. Denote the frequencies corresponding to inner race fault, outer

race fault, cage fault, and rollers defect as fi, fo, fc, and fb, respectively, and they can be

calculated as [6]:

fi = 0.5 ·Nb · fr
(

1 +
Db · cos φ

Dp

)

(5.1)

fo = 0.5 ·Nb · fr
(

1− Db · cosφ
Dp

)

(5.2)

fc = 0.5 · fr
(

1− Db · cosφ
Dp

)

(5.3)

fb = fr ·
(

Db

Dp

)

·
[

1−
(

Db · cosφ
Dp

)2
]

(5.4)

where fr is the bearing rotation frequency, Db is the diameter of rollers, Dp is the rollers

pitch diameter, Nb is the number of rollers, and φ is the rollers’ contact angle with races.
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Table 5.1: Fault Frequencies

Faulty compartment fbf (Hz) f1 ± fbf (Hz)

Inner race 49.69 10.31, 109.69

Outer race 30.3 29.7, 90.3

Cage 3.78 56.22, 63.78

Rollers 2.28 57.72, 62.28

The bearing under investigation supports the main shaft, which connects the generator

with wind blades. For that reason, the vibrations excited in the bearing affect the stator

current by modulating the amplitude of the fundamental frequency f1. The fundamental

frequency is defined as the frequency of the main harmonic generated by the wind turbine.

Frequencies of fault signals in stator current can be calculated as

ffault = f1 ± k · fbf (5.5)

where fbf ∈ {fi, fo, fb, fc}, and k = 1, 2, ... . Throughout this chapter the value k = 1 is

used.

For the WT that was used to obtain stator current, fr = f1
p
, where f1 = 60 Hz is the

fundamental frequency, and p = 6 is the number of pole pairs. The parameters of the bearing

supporting the shaft are, Db = 8 mm, Dp = 33 mm, Nb = 8. The contact angle of the rollers

is unknown and it is assumed that φ = 0. The frequencies corresponding to the four different

types of faults are listed in Table 5.1.

5.4 Data Preprocessing and Feature Extraction

The procedures for data preprocessing and feature extraction are described in this section.

All procedures described in this section are sequential online algorithms that process new

data as they sequentially come in.
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5.4.1 Synchronous Resampling

The key for fault detection is to extract fault signatures, which are located on particular

frequencies relative to fundamental frequency f1. The extraction of fault signatures (5.5) of

a signal with non-stationary frequency f1 is rather difficult. The signal-to-noise ratio (SNR)

of bearing fault signals is usually small. High frequency resolution is required to reduce the

impact of the noise, and more samples for FFT are required. However, the fundamental

frequency f1 may drift over time, which leads to time-varying frequencies corresponding to

different faults. This makes it difficult to extract the information corresponding to a specific

bearing fault.

In order to resolve the problem of fundamental frequency variation, the method of syn-

chronous resampling can be applied [13]. The basic idea is to perform non-uniform sampling

such that the phase difference between any two adjacent samples is constant. Details of

synchronous resampling can be found in [13]. The resampling frequency used in this chapter

is fs = 1920 Hz.

5.4.2 Frequency-domain Feature Extraction

After synchronous resampling, the time domain data are converted to the frequency domain

via FFT. The resampled time-domain data are divided into length-Nf frames, and FFT is

performed on each frame. The time duration for each frame is Tf =
Nf

fs
second, and the

frequency resolution after FFT is f0 = 1
Tf

= fs
Nf

. In this chapter, we use fs = 1920 Hz and

Nf = 19200, and the frequency resolution after FFT is f0 = 0.1 Hz.

Figure 5.1 shows the spectrogram of the data after synchronous resampling. In the

spectrogram, we can clearly see the main harmonic of the stator current at 60 Hz. In
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Figure 5.1: FFT of the resampled stator current. Frequency resolution is 0.1 Hz. Excitations
due to faults of the bearing are visible on frequencies corresponding to bearing cage and
rollers defects.

addition, excitations due to different types of faults are clearly visible around frequencies 54,

56, 58, 62, 64, and 66 Hz.

The fault frequencies shown in the spectrogram do not match with the theoretical values

given in Table 1. The mismatch is mainly due to the assumption φ = 0, which is usually

non-zero. Nevertheless, the theoretical value gives a rough estimate of the exact location of

the fault frequencies. Therefore, during the analysis, we can analyze a range of frequency

components centering at the theoretical fault frequencies as [ffault − fw, ffault + fw], where

ffault is one of the possible fault frequencies, and the window size 2fw is chosen to be an

integer multiple of the frequency resolution f0.

For a given fault frequency ffault, we can extract the amplitude of the signals over the

block of frequencies in [ffault−fw, ffault+fw] and form them as a feature vector. For the n-th
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FFT frame, denote the signal amplitude vector over the frequency range [ffault−fw, ffault+fw]

as sn = [sn1, sn2, · · · , snw], where snj is the signal amplitude at frequency ffault−fw+(j−1)f0

in the n-th frame, and w = 2 fw
f0

+ 1 is the number of elements in the feature vector. Since

the fault feature could appear at any one of the frequencies in {ffault − fw + (j − 1)f0}wj=1,

we denote the set of frequencies as candidate frequencies. In this chapter, fw = 0.5 Hz is

used, which results in a feature vector size w = 11.

5.4.3 Energy Normalization

Due to the fluctuation of the operation environment, such as wind speed, the power of

the feature vector changes with respect to time. Energy normalization is performed to

compensate for power fluctuations.

The energy normalization is performed by using a sliding window approach. The energy

of each sample is normalized by the average energy of samples in the current and the previous

Nw frames. The normalization of the j-th element in the n-th frame can be expressed as

xnj =
snj√
enj

(5.6)

where

enj =
1

Nw + 1

n
∑

k=n−Nw

|skj|2 (5.7)

is the average energy of the current and past Nw samples on the j-th candidate element.

With the normalized samples, we can form the normalized feature vector as xn =

[xn1, xn2, · · · , xnw]
T .

The normalized feature vector xn is a random vector. We will detect the presence of

fault by analyzing the statistical properties of the components in xn.
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5.5 Statistical Analysis of Feature Vector

Statistical analysis is performed over the frequency domain feature vector to identify their

statistical properties with and without different types of faults.

5.5.1 Statistical Distribution

We obtain histogram by using the experiment data corresponding to the samples on the

j-th candidate frequency {xnj}n. It is found that the distribution of xnj can be accurately

modeled by using Gamma distribution with probability density function (PDF) given as

p(x;α, β) =
βαxα−1e−xβ

Γ(α)
, (5.8)

where Γ(α) is the Gamma function, and α and β are the parameters of the Gamma distri-

bution. The parameters α and β depend on the element index j as well as the presence of

fault.

The mean, mx, and variance, σ2
x, of a Gamma distributed random variable x are

mx =
α

β
, σ2

x =
α

β2
(5.9)

5.5.2 Online Parameter Estimation

We propose to estimate the distribution parameters, α and β, online by using a sliding

window approach. At each frame, the parameters for signals on one candidate frequency can

be estimated by using the corresponding data from the current and the past Nw frames.
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Figure 5.2: Empirical and analytical Gamma distribution of outer race feature vector com-
ponents.

The mean and variance of the j-th element at the n-th frame can be estimated as

m̂nj =
1

Nw + 1

n
∑

k=n−Nw

xkj (5.10)

σ̂2
nj =

1

Nw

n
∑

k=n−Nw

(xkj − m̂nj)
2 (5.11)

It should be noted that the factor 1
Nw

is used in (5.11) to ensure the estimation is unbiased.

From (5.9), at the n-th frame, we can obtain an estimate of the parameters α and β for

the j-th element as

α̂nj =
m̂2

nj

σ̂2
nj

, β̂nj =
m̂nj

σ̂2
nj

(5.12)

Figure 5.2 shows the empirical and analytical pdfs of xn1 and xn9 from the feature vector

related to the outer race fault, by using parameters estimated with (5.12). In the experiment
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Figure 5.3: Empirical and analytical Gamma distribution of cage feature vector components
in normal and defective conditions.

setup, the outer race fault is artificially introduced at the beginning of the experiment and its

signature is shown in xn9, which is at the frequency of 30.0 Hz. There is no fault signature at

xn1, which is at the frequency of 29.2 Hz. The analytical pdf is obtained by evaluating (5.8)

by using parameters estimated from (5.12). The empirical pdf is obtained by normalizing

the histogram of the experiment data. There is a good match between the analytical and

empirical pdf. Also, there is an obvious difference in distribution between xn1 and xn9 due

to the presence of fault signature on xn9.

Figure 5.3 shows the distribution of xn4 from the feature vector related to the cage fault,

before and after the fault occurs. In the experiment, the cage fault starts to appear at

n = 130 frame, and the fault signature is at 56.2−fw+(j−1)f0 = 56 Hz, which corresponds
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to an index of j = 4 in the feature vector. The pdf corresponding to the non-defective case

is calculated by using data with n < 130, and the pdf corresponding to the defective case is

calculated by using data with n ≥ 130. There is a clear difference between the distributions

before and after the fault occurs.

Moreover, when the fault is not present, it is discovered that the elements in a fault

feature vector are identically distributed. That is, when the fault is not present, α̂nj ≈ α̂mj

and β̂nj ≈ β̂mj for m 6= n. Such a property can be used to further improve the estimation

accuracy of the parameters.

It should be noted the proposed frequency domain modeling is robust against noise. Noise

in real-world systems can be modeled as additive white Gaussian noise (AWGN), which has

uniform power spectrum density in the frequency domain. The flat noise spectrum means

the noise power is uniformly distributed over the entire frequency bands, which results in a

very low noise power over a small frequency range. On the other hand, the fault signature is

embedded over a very small frequency range. Thus we can significantly increase the signal-

to-noise ratio (SNR) by focusing on the analysis of the signal over a very small range of

frequency bands. As a result, the presence of noise will have negligible impacts regarding

the performance of proposed algorithm.

5.6 Low Latency Fault Detection

The sequential low latency fault detection algorithm is presented in this section. The detec-

tion algorithm is formulated by exploring the statistical distributions of the feature vector

before and after the fault occurs.
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5.6.1 Formulation of Hypothesis

For the fault detection, define the two hypotheses for the variable xnj

H0 : No fault (5.13)

H1 : Fault is present (5.14)

As shown in Figs. 5.2 and 5.3, the presence of fault will affect the values of α and β for

the corresponding element in the feature vector. Denote the parameters before and after the

change point as
(

α(0), β(0)
)

and
(

α(1), β(1)
)

, respectively.

For a Gamma distributed random variable x with energy normalized to unit, from (5.9),

we have

m2
x + σ2

x =
α2

β2
+

α

β2
= 1 (5.15)

which yields

β =
√

α(α+ 1) (5.16)

Therefore we only need to characterize the impacts of fault on α, and the corresponding β

can be inferred from (5.16).

To quantify the impacts of fault, define a new parameter

α∆ =
α(1)

α(0)
(5.17)

For the outer race fault shown in Figure 5.2, the average value of α∆ is 1.4. For the cage

fault shown in Figure 5.3, the average value of α∆ is 2.9.

In practical system design, α∆ is unknown beforehand. We will treat α∆ as an adjustable

design parameter that can be set by using prior knowledge. We will show the impact of the

choice of α∆ on the detection performance in the section of experiment results.
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With the definition of α∆ and the estimation of α̂
(0)
j using (5.12), the hypotheses can be

formulated as

H0 :xnj ∼ Gamma
(

α̂
(0)
j , β̂

(0)
j

)

(5.18)

H1 :xnj ∼ Gamma
(

α̂
(1)
j , β̂

(1)
j

)

(5.19)

where

α̂
(1)
j = α̂

(0)
j α∆ (5.20)

β̂
(k)
j =

√

α̂
(k)
j (α̂

(k)
j + 1), for k = 0, 1 (5.21)

With the hypothesis formulated in (5.18), define the likelihood ratio (LR) as

λnj =
p(xnj ; α̂

(1)
j , β̂

(1)
j )

p(xnj ; α̂
(0)
j , β̂

(0)
j )

(5.22)

Combining (5.8) and (5.22) yields

log λnj = α̂
(1)
j log β̂

(1)
j − α̂

(0)
j log β̂

(0)
j +

(

α̂
(1)
j − α̂

(0)
j

)

log xnj − xnj

(

β̂
(1)
j − β̂

(0)
j

)

+ log Γ(α̂
(0)
j )− log Γ(α̂

(1)
j ) (5.23)

5.6.2 Low Latency Fault Detection Algorithm

Based on the hypothesis and LR formulated in the previous subsection, we propose a multi-

candidate low latency fault detection algorithm.

Assume a certain fault occurs at frame θ and the fault signature is on the µ-th candidate

frequency in the feature vector. Both θ and µ are random variables. That is, when n < θ, xnj

follows the distribution specified by H0; when n ≥ θ, xnµ follows the distribution specified

by H1, and xnk follows the distribution of H0 for all n and k 6= µ.
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Denote the detected change point as θ̂. Then the PFA can be defined as

PFA = P(θ̂ < θ) =
∞
∑

k=1

πkP(θ̂ < k) (5.24)

where πk = P(θ = k) is the prior probability of the change point.

The well known CUSUM and SR procedures are designed for the change point detection

in a single time sequence. They cannot be readily applied to the problem encountered in

this chapter, where there are multiple parallel data streams (multiple candidate frequencies),

and the change point occurs in at most one of the data stream (candidate frequency).

To address this problem, we propose a multi-candidate low latency detection procedure

as follows.

Definition 5.1 : (Multi-candidate detection procedure) With the frequency domain fea-

ture vector xn, the detected change point is

θ̂ = inf{n : Cn ≥ A} (5.25)

where we set inf{∅} = ∞, A is a pre-defined threshold determined by the PFA, the test

statistic Cn is defined as Cn =
∑w

j=1Cn,j, Cn,j is the test statistic for the j-th element, and

it can be recursively calculated as

Cn+1,j = max(1, Cn,j)λn+1,j (5.26)

and C1,j = 1.

This detection procedure is an enhanced version of the CUSUM procedure. It combines

the test statistic {Cn,j}wj=1 to determine the change point. The CUSUM procedure can be

considered as a special case of the multi-candidate procedure when w = 1. It should be

noted that the multi-candidate test procedure proposed in Definition 5.1 is different from

the procedure proposed in [36]. In [36], the summation is performed over the logarithm
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of the CUSUM statistic, i.e.,
∑w

j=1 logCn,j, which corresponds to the multiplication of the

linear CUSUM statistic Cn,j.

5.6.3 Performance Analysis

Next, we study the performance of the multi-candidate test procedure. Let Pk and Ek denote

the probability measure and the corresponding expectation when the change occurs at θ = k.

With such a notation, P∞ and E∞ can be used to represent the probability measure and

expectation before the change point, that is, θ = ∞.

Lemma 5.1 : The test statistic Cn is a sub-martingale under the probability measure P∞,

and E∞[Cn] ≤ nw.

Proof: To show that Cn is a sub-martingale under P∞, it is sufficient to prove that

E∞[Cn+1|Cn] ≥ Cn. For the LR λn,j, we have

E∞(λn,j) =

∫

p(xnj ; α̂
(1)
j , β̂

(1)
j )

p(xnj ; α̂
(0)
j , β̂

(0)
j )

p(xnj ; α̂
(0)
j , β̂

(0)
j )dxnj = 1

Based on the definition of Cn, we have

E∞[Cn+1|Cn] =
w
∑

j=1

E∞[Cn+1,j|Cn]

=
w
∑

j=1

max(1, Cn,j)E∞(λn+1,j)

≥
w
∑

j=1

Cn,j = Cn

Thus Cn is a sub-martingale.

In addition,

E∞(Cn) = E∞

(

w
∑

j=1

max
1≤k≤n

Λk:n,j

)

≤ E∞

(

w
∑

j=1

n
∑

k=1

(Λk:n,j)

)

= nw.
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Theorem 5.1 : Assume the elements in the feature vector xn are independent. With the

multi-candidate procedure defined in 5.1, the probability of false alarm is upper bounded by

PFA ≤ θ̄w

A
(5.27)

where θ̄ =
∑∞

k=0 πkk is the prior mean of the change point θ, and w is the number of

candidates.

Proof:

Cn is a sub-martingale under P∞. Based on Doob’s inequality, we have

P∞(θ̂ < n) = P∞

(

max
1≤k<n

Cn ≥ A

)

≤ E∞(Cn)

A
≤ nw

A
(5.28)

Therefore, the PFA can be calculated as

PFA =
∞
∑

k=1

πkPk(θ̂ < k) =
∞
∑

k=1

π∞Pk(θ̂ < k) ≤
∞
∑

k=1

πk

kw

A
=

θ̄w

A
.

Next, we study the detection delay of the multi-candidate test procedure. It is difficult

to obtain the exact ADD of the detection procedure. Instead, we will obtain an asymptotic

upper bound. To facilitate analysis, define

f(x) �
x→x0

g(x) ⇐⇒ lim
x→x0

f(x)

g(x)
≤ 1 (5.29)

Theorem 5.2 : Assume the elements in the feature vector xn are independent, and the

frames are independent in time. Let PFA < α. As α → 0, we have

E[θ̂ − θ|θ̂ > θ] �
α→0

1

1− α

| logα|+ log θ̄ + logw

D10

(5.30)

where θ̄ is the priori mean of the change point, w is the length of the feature vector, and

D10 =

∫

p(x;α(1), β(1)) log
p(x;α(1), β(1))

p(x;α(0), β(0))
dx (5.31)

is the Kullback-Leibler (KL) divergence between the post-change distribution p(x;α(1), β(1))

and the pre-change distribution p(x;α(0), β(0)).
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Proof: Assume the fault happens at the k-th frame on the j-th element. Define a new

stopping time

τ(A) = inf{n ≥ k : Zk:n
j ≥ logA} (5.32)

where

Zk:n
j =

n
∑

l=k

log λl,j (5.33)

From (5.26), we have

Cn,j = max
1≤k≤n

n
∏

l=k

λl,j (5.34)

Thus Cn ≥ Cn,j ≥
∏n

l=k λl,j when n ≥ k, or equivalently, logCn ≥ Zk:n
j . As a result, we have

θ̂ ≤ τ(A).

Based on the strong law of large numbers, under the probability measure Pk,
1
n
Zk:k+n−1

j

almost surely converges in probability Pk to the KL divergence D10 = Ek[log λl,j],

1

n
Zk:k+n−1

j

Pk−a.s.−−−−→
n→∞

D10. (5.35)

Define

Tk = sup

{

n ≥ 1 :

∣

∣

∣

∣

1

n
Zk:k+n−1

j −D10

∣

∣

∣

∣

> ǫ

}

. (5.36)

If τ(A)− k > Tk, then from (5.36) we have

∣

∣

∣

∣

1

τ(A)− k
Z

k:τ(A)−1
j −D10

∣

∣

∣

∣

≤ ǫ, if τ(A)− k > Tk (5.37)

which implies

τ(A)− k ≤
Z

k:τ(A)−1
j

D10 − ǫ
, if τ(A)− k > Tk (5.38)
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Based on the definition of τ(A) in (5.32), we have

Z
k:τ(A)−1
j < logA (5.39)

Combining (5.38) and (5.39) results in

τ(A)− k ≤ logA

D10 − ǫ
, if τ(A)− k > Tk (5.40)

When log(A) > 0 and ǫ < D10, the following inequality is true for both τ(A) − k > Tk

and τ(A)− k ≤ Tk

τ(A)− k ≤ logA

D10 − ǫ
+ Tk, if logA > 0 and ǫ < D10 (5.41)

Given the convergence condition in (5.35), we have E(Tk) < ∞. Since ǫ can be arbitrarily

small, we can let ǫ → 0. From Theorem 5.1, we can set A = θ̄w
α

to guarantee PFA < α.

Thus when α → 0 and ǫ → 0,

Ek[τ(A)− k] �
α→0

log |α|+ log θ̄ + logw

D10
. (5.42)

Since θ̂ is upper bounded by τ(A), we have

Ek[θ̂ − k] �
α→0

log |α|+ log θ̄ + logw

D10

. (5.43)

When α → 0, the right hand side of (5.43) is positive. Thus the inequality in (5.43) still

holds if we replace θ̂1 − k by (θ̂1 − k)+.

The ADD can be calculated as

E[θ̂ − θ|θ̂ > θ] =
1

P∞(θ̂ ≥ θ)

∞
∑

k=1

πkEk(θ̂ − k)+ (5.44)

With the constraint PFA < α, we have P∞(θ̂ ≥ θ) = 1 − PFA ≥ 1 − α. Combining

(5.32), (5.44), and the above results yields (5.30).
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In Theorem 5.2, the asymptotic upper bound of the ADD is inversely proportional to the

KL divergence D10. The KL divergence measures the difference between two distributions.

When the difference between the two distributions before and after the change point is large,

the detection delay is in general smaller. The asymptotic ADD upper bound is a decreasing

function of the PFA α, which demonstrates the tradeoff relationship between the PFA and

ADD. In addition, the asymptotic ADD upper bound is proportional to logw, which means

we can reduce the detection delay by reducing the number of candidate frequencies. On the

other hand, the value of w must be large enough to ensure that the frequency corresponding

to the faulty feature is included in the feature vector.

5.6.4 Complexity Analysis

In order to apply the proposed multi-candidate detection procedure to on-line data in each

time-frame, the procedure needs to go through 3 stages: 1) data preprocessing, 2) feature

extraction, and 3) test statistic computation. In stage 1, the computation is dominated by

the fast Fourier transform (FFT) operation that has a complexity of O(Nf logNf ), where

Nf is the frame size. The second stage involves operations such as energy normalization,

mean and variance estimation. Each of these operations has a complexity of O(Nw), where

Nw is the number of past time-frames (samples) used for parameter estimation and energy

normalization. Finally, the third stage is dominated by the operation described in equation

(5.26), which has a complexity of O(w), where w is the feature vector size, i.e., the number

of candidate frequencies.

In this chapter, we set Nf = 19200, Nw = 100, and w = 11. As a result, the overall

complexity of the proposed algorithm is dominated by stage 1, which is O(Nf logNf). That
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means the frame size Nf is the most dominating factor in the computational complexity

of the algorithm. A frame of Nf = 19200 samples with a sampling rate of fs = 1920 Hz

corresponds to a frame duration of Tf = 10 seconds. Thus as long as the algorithm can finish

the computation within 10 seconds, the algorithm can be implemented in an online fashion.

Our simulation and experiment results show that the calculation time of the algorithm is

much less than 10 seconds, thus the algorithm can be directly applied to online data.

5.7 Numerical Analysis

In this section, we demonstrate the performance of the proposed bearing fault detection

algorithm with both experiment and synthesized simulation data. Since the experiment

data is obtained from only one trial, it is important to obtain the results with simulation

data to analyze the bounds on performance metrics.

5.7.1 Experiment Results

We test the performance of the proposed bearing fault detection algorithm with the experi-

ment data. In the data processing, we set the FFT frame size as Nf = 19, 200, a resampling

frequency of fs = 1, 920 Hz, which result in a frequency resolution of f0 = 0.1 Hz and a frame

duration of Tf =
Nf

fs
= 10 sec. The size of the feature vector is w = 11, which corresponds

to a frequency span of wf0 = 1.1 Hz. The number of past time-frames (samples) used for

parameter estimation and energy normalization is set as Nw = 100.

In the experiment setup, the inner race fault and outer race fault are artificially intro-

duced at the beginning of the experiment. The cage fault and roller fault starts to appear

at the n = 130th frame.
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The performance of the proposed low latency fault detection algorithm can be tuned by

setting the values of two parameters, the degree of change α∆ and the detection threshold A.

The value of α∆ is determined by the distributions before and after the change point. If the

location of the change point is known, we can estimate the value of α∆ by using data before

and after the change point. The value α∆ may be different for different types of faults. For

example, for the outer race fault shown in Figure 5.2, the average value of α∆ is 1.4, while

for the cage fault shown in Figure 5.3, the average value of α∆ is 2.9. We obtained these

empirical values using offline analysis based on the experimental data, where we knew the

exact location of the change point, i.e., the time instant when a particular fault occurs.

However, in case of online change point (fault) detection, we will not have the exact

knowledge of α∆ beforehand, as it requires the exact location of change point. Therefore, in

online change detection, α∆ is treated as an adjustable design parameter that can be set by

using prior knowledge. The performance of the proposed algorithm under different values of

α∆ is shown next.

Since the experiment data are obtained under one trial, the PFA cannot be directly

calculated from the experiment data. To address this issue, we propose to study the behav-

iors of false alarm by using the frequency-domain data streams without fault. Specifically,

for each of the 4 faults, we extract features from several groups of frequency-domain data

centered around frequencies which are outside the range of [ffault − fw, ffault + fw], where

ffault denotes the theoretical fault frequency (c.f. Table 1). The detection procedure is then

applied to these frequency-domain data streams and the total number of false alarms is

recorded. The frequency-domain false alarm ratio is defined as the ratio between the total

number of false alarms and the total number of time-frames multiplied by the number of
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Figure 5.4: Frequency-domain false alarm ratio v.s. α∆.

groups. The frequency-domain false alarm ratio can serve as an indicator for PFA. Figure

5.4 shows the frequency-domain false alarm ratio as a function of α∆, under various values of

the threshold A. The relationship between frequency-domain false alarm ratio and α∆ is not

monotonic. Under a fixed threshold A, the frequency-domain false alarm ratio is concave or

quasi-concave in α∆. The choice of α∆ needs to consider the tradeoff between the detection

delay and frequency-domain false alarm ratio.

The detection delay of the proposed multi-candidate detection algorithm is shown in

Figure 5.5. This metric is obtained by running the proposed detection procedure 4 times

with four different sets of candidate frequencies corresponding to the 4 types of faults and

then computing the average delay in detecting these 4 faults. The detection delays are shown

in the units of frames, with the duration of each frame being 10 seconds. Under different

configurations, the detection delay ranges between 27 to 48 frames, which correspond to an
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Figure 5.5: Detection delay v.s. α∆.

absolute delay of 270 to 480 seconds. Based on our statistical analysis of the experiment

data, the average true value of α∆ is around 2.

Figure 5.6 shows the detection delay as a function of the frequency domain false alarm

ratio. This figure demonstrates the tradeoff relationship between delay and false alarm.

For comparison, results obtained from three other detection algorithms, namely the conven-

tional impulse detection algorithm [13], SUM-Shiryaev-Roberts (SUM-SR) algorithm [37],

and CUSUM-GLRT [38] algorithm, are also shown in the figure. SUM-SR procedure is an

enhanced version of the SR procedure, where all the local SR statistics corresponding to

individual post-change models are combined together. In all algorithms, we set α∆ = 2.0,

and different tradeoff points are achieved by adjusting the threshold value A. It is observed

that the proposed multi-candidate algorithm slightly outperforms the existing algorithms.
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5.7.2 Simulation Results

Synthesized simulation data are used to verify the analytical bounds derived in this chapter.

In the simulation setup, we model the occurrence of the fault as a geometric distribution,

that is, πk = (1 − ρ)k−1ρ, where ρ = 0.1. The value of α∆ is set to 2. The pre-change

distribution parameters for each candidate frequency α
(0)
j follows a uniform distribution

between [1 × 10−5, 5 × 10−5]. The simulation results are obtained by averaging over 10,000

Monte-Carlo trials, where only a single type of fault is simulated in each trial.

Figure 5.7 shows the PFA as a function of the detection threshold A. Under the same

threshold A, the CUSUM-GLRT algorithm has the lowest PFA, followed by the proposed

algorithm, and the PFA of the SUM-SR algorithm is significantly higher than the other two

algorithms. The PFA of all three algorithms are lower than the analytical upper bounds

developed in Theorem 1. It should be noted that a lower PFA does not necessarily mean a
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better performance due to the effects of the ADD.

The ADDs of the three different algorithms are shown in Figure 5.8 as a function of the

detection threshold. Under the same threshold A, the SUM-SR algorithm has the lowest

ADD at the cost of a large PFA, followed by the proposed multi-candidate detection proce-

dure and CUSUM-GLRT, respectively. The ADD of the proposed low latency algorithm is

lower than the asymptotic upper bound presented in Theorem 5.2.

The tradeoff relationship between ADD and PFA for the simulated data is illustrated in

Figure 5.9, where the ADD is shown as a function of PFA. Different points on the tradeoff

curve are obtained by adjusting the detection threshold A. Among the four algorithms, the

proposed algorithm achieves the best ADD-PFA tradeoff, followed by the SUM-SR algorithm,

the CUSUM-GLRT algorithm, and the impulse detection algorithm, respectively. Since the

impulse detection algorithm is not a quickest change detection algorithm, the ADD of the
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impulse detection algorithm is significantly larger than the other three algorithms, which

are developed by using sequential statistics. At a PFA of 0.04, the ADDs of the proposed

algorithm, the SUM-SR algorithm, the CUSUM-GLRT algorithm, and the impulse detection

algorithm are 7, 7.5, 10.7, and 382 frames, respectively.

5.8 Conclusion

The detection of bearing faults of direct-drive wind turbines have been studied in this chapter

under the framework of low latency change point detection. The amplitude of stator current

at a given frequency was modeled by using the Gamma distribution, and the presence of fault

will affect the parameters of the Gamma distribution. We defined a new parameter, α∆, to

measure the impact of the fault on the Gamma distribution. A multi-candidate low latency

change point detection algorithm, which includes the conventional CUSUM algorithm as a
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special case, has been proposed to detect the various faults. The theoretical performance

of the proposed algorithm has been analytically identified in terms of upper bounds of the

probability of false alarm and average detection delay. This algorithm can flexibly achieve

different tradeoff between the PFA and ADD. This proposed low latency fault detection

algorithm does not require a training phase and can be readily applied to the collected data

in real-time. Experiment and simulation results demonstrated that the proposed algorithm

can detect faults in real-time with minimum delays, and it outperforms existing algorithms.

The proposed multi-candidate change detection can also be applied to other change detection

scenarios with the change occurring in one of many possible data streams.
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Chapter 6

Conclusions

This chapter summarizes the main contributions of this dissertation and lists some possible

directions for future research.

6.1 Contributions

The content of this dissertation focuses on the design of algorithms that enhance the opera-

tion stability and security in various systems with imperfect post-change models by detecting

any type of abnormality in the system as quickly as possible. The algorithms are built un-

der the quickest change detection (QCD) framework which is appropriate for low latency

anomaly detection. The main findings of the dissertation are summarized as follows.

First, QCD algorithms for detecting changes in systems with multiple post-change models

are designed under both Bayesian and non-Bayesian settings. The theoretical ADDs of the

proposed algorithms have been obtained through asymptotic analysis and it is proven that

the proposed algorithms are asymptotically optimal in terms of detection delay. Simulation

results have shown that the proposed algorithms outperform the existing algorithms in terms

of detection delay under similar PFA constraints.

Second, a QCD algorithm is studied in order to detect false data injection attacks (FDIA)

in smart grids with time-varying dynamic models. To distinguish between FDIA and sudden

system change, a time-varying dynamic model is used to represent the dynamic state tran-

sitions. A new normalized Rao-CUSUM detector is developed by analyzing the statistical
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properties of dynamic state estimations, such that the detector minimizes the worst-case

detection delay while accurately distinguishing FDIA from sudden system changes. Unlike

existing algorithms that rely on measurement correlation to discriminate false data from

sudden system changes, the proposed algorithm can detect any false data including those

injected into correlated measurements. Simulation results demonstrate that the proposed

algorithm can accurately detect and remove false data injections or system faults with min-

imum delays, thus improving the security and resilience of smart grids.

Third, a QCD algorithm was designed for the detection of bearing faults of direct-drive

wind turbines. After analyzing the statistical properties of the stator currents in the fre-

quency domain, it has been discovered that the current amplitude at a given frequency can

be modeled by using the Gamma distribution, and the presence of fault will affect the pa-

rameters of the Gamma distribution. A multi-candidate quickest change point detection

algorithm, which is an enhanced version of CUSUM algorithm, has been proposed to detect

the various faults. The theoretical performance of the proposed multi-candidate detection

procedure has been analytically identified in terms of upper bounds of PFA and ADD.

Through analysis with both the experiment data and simulation data, it is observed that

proposed algorithm outperforms other existing algorithms.

In summary, the research in this dissertation covered developing theoretical algorithms for

low latency anomaly detection in systems where the information regarding the post-change

model is unknown or imperfect. Analytical results and simulation results are obtained to

validate the performance of the proposed algorithms. In addition, two practical applications

are studied which can utilize the low latency anomaly detection algorithms in real-time. One

of the applications is the detection of false data injection attacks in smart grids with dynamic
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models and the other one is the bearing fault detection of direct-drive wind turbines using

stator current.

6.2 Future Work

We now discuss possible future directions in which the topics discussed in this dissertation

can be extended.

• Non-i.i.d. settings: A major assumption that has been used throughout this dis-

sertation is the i.i.d. assumption, i.e., the observations are identically and independently

distributed. The QCD problem is studied under non-i.i.d. settings in [1, 2], where the post-

change models are assumed to be known. It would be interesting to study the QCD problem

with both the constraints of imperfect models and non-i.i.d. settings.

• Change isolation: The quickest change detection problem can also be studied in com-

bination with the change isolation problem [3, 4]. In this problem, the objective is not only

to detect the change, but also to isolate the change, i.e., to identify the possible post-change

distribution at the time of detection. It would be interesting to investigate the joint prob-

lem of change detection and isolation in systems with imperfect post-change models. For

example, in the case of our study in Chapter 5, it will be more beneficial if we are able to

not only detect the bearing faults quickly, but also to identify which particular fault (inner

race, outer race, cage, or roller) has occurred.

•Machine learning approach: In this dissertation, all the QCD algorithms that have been

presented are based on the theory of sequential hypothesis testing. However, in recent years,

there has been a rise of machine learning-based approaches in the field of change detection.

Change detection methods using kernel-based non-parametric statistics is one of the ways to
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tackle the issue of imperfect post-change model, since these methods make fewer assumptions

on the distributions than traditional parametric approaches [5,6]. In [6], it is discovered that

one-class support vector machine (SVM) can be trained online with unlabeled data sets

because of its unsupervised nature, which breaks the strong assumption that most of the

existing methods are based on. Additionally, by utilizing the predictive power of Long Short

Term Memory (LSTM) network, methods are developed in [7,8] to detect anomalies in time

series data. It is demonstrated that by modeling the normal behavior of a time series through

LSTM networks, deviations from normal behavior can be detected without any prespecified

context window or preprocessing.

To summarize, all the above-mentioned approaches combine the problem of change de-

tection with various machine learning techniques. This provides an impetus to study further

on this topic with a specific focus on low latency detection without requiring complete model

information.
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