14 research outputs found

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    Global and Local Issues from the Aspects of Law and Economy

    Get PDF

    Globally Optimal Catalysts: Computerbasierte Optimierung von abstrakten katalytischen Einbettungen fĂĽr beliebige chemische Reaktionen

    Get PDF
    In the context of inverse design of molecules with desired optimal properties, the long-term goal of this Thesis is to develop a general framework which tackles the design of molecular systems for an optimal catalytic effect onto arbitrary chemical reactions. For any given reaction, an arrangement of an additional molecular framework around this reaction center is sought such that the energetic reaction barrier is lowered as much as possible. As necessary abstraction layer, the so-called globally optimal catalyst (GOCAT) model is introduced, and, furthermore, evolutionary algorithms (EAs) are harnessed as implemented in our global optimization suite for chemical problems, ogolem, which was highly extended to allow for these catalysis optimizations. Starting with a maximally reductionistic approach for studying the non-bonding interactions, electrostatic GOCATs are introduced that consist of arbitrary numbers, distributions and strengths of partial point charges around reacting molecules, mostly surrounding these on a common exposed surface. In the end, two reactions are studied in detail within the general topic of electrostatic catalysis. Some of the initially present model approximations are already sufficiently lifted, still-existing ones are critically assessed and further future extensions to the framework are discussed. Moreover, many method development matters are addressed: They range from optimal shared-memory parallelization, exemplified for global parameter optimization of the reactive force field, ReaxFF, via diversity control parameters for the EAs, applied to a cluster structure optimization problem, to EA operator benchmarks and optimizations of abstract electrostatics.Im Kontext von inversem Design von Molekülen mit optimalen Eigenschaften versucht die vorliegende Arbeit als Langzeitziel eine passende Plattform zu entwickeln, welche das generelle Design molekularer Systeme für einen optimalen Katalyseeffekt auf beliebige chemische Reaktionen projektiert. Für eine gegeben Reaktion soll eine hinzukommende chemische Umgebung komponiert werden, welche die Reaktionsenergiebarriere so weit wie möglich vermindert. Als notwendige Abstraktionsschicht wird das sogenannte Modell des globally optimal catalyst (GOCAT) eingeführt und außerdem kommen Evolutionäre Algorithmen (EAs) zur Anwendung, wie sie bereits in unserem Programmpaket zur Lösung allgemeiner globaler Optimierungsprobleme der Chemie, ogolem, bereitgestellt werden, welches jedoch deutlich für diese Katalyseoptimierungen ergänzt wurde. Angefangen in einem maximal-reduktionistischen Ansatz werden elektrostatische GOCATs erarbeitet, die aus einer beliebigen Anzahl, Verteilung und Stärke von Partialladungen bestehen und rund um die reagierenden Moleküle drapiert werden, meist auf einer gemeinsamen exponierten Oberfläche. Insgesamt werden zwei Reaktionen detailliert untersucht im generellen Kontext von elektrostatischer Katalyse. Einige eingangs vorhandene Modellannahmen werden bereits systematisch verbessert, noch vorhandene kritisch beleuchtet und künftige Erweiterungen auseinandergesetzt. Weiterhin werden unterschiedliche Methodenentwicklungsaspekte angesprochen: Diese reichen von verbesserter Parallelisierung in Mehrprozessorarchitekturen, beispielhaft gezeigt anhand einer globalen Parameteroptimierung des reaktiven Kraftfeldes ReaxFF, über Diversitätskontrollparameter des EAs, illustriert mittels eines Clusterstrukturoptimierungsproblems, bis hin zu EA-Operator-Testevaluationen und allgemeinen abstrakten Elektrostatikoptimierungen

    The Economics of Biodiversity The Dasgupta Review Full Report

    Get PDF
    In 2019, Her Majesty’s Treasury (UK) commissioned Sir Partha Dasgupta, an economist and Professor Emeritus at Cambridge University to produce an independent, global review on the Economics of Biodiversity. Sir Partha was assisted by a multi-disciplinary Advisory Panel that included representatives of public policy, science, economics and business. The Review argues that countries should de-emphasize GDP as an index of progress and instead should focus on a national Wealth measure that includes an accounting for Natural Capital. After World War II, when the world was very different from what it is now, Sir Partha argues the economic questions being faced could be studied most productively by excluding Natural Capital and focusing on Produced Capital (e.g. infrastructure) and Human Capital. But today, as economists have begun to devise methods to value and to track Natural Capital, it is becoming apparent that while Produced and Human Capital may be increasing, Natural Capital is declining. The Review analyzes what we know about Natural capital and begins to address how Natural Capital might be incorporated into a valid assessment of national wealth and long-term sustainability

    Study of a Renovated Command Module Laboratory and Renovated Command Module. Volume 3 - Subsystems Analysis Final Report

    Get PDF
    Technical feasibility of renovated command module laboratory and renovated command modul

    Carbohydrate-Active Enzymes

    Get PDF
    Carbohydrate-active enzymes are responsible for both biosynthesis and the breakdown of carbohydrates and glycoconjugates. They are involved in many metabolic pathways; in the biosynthesis and degradation of various biomolecules, such as bacterial exopolysaccharides, starch, cellulose and lignin; and in the glycosylation of proteins and lipids. Carbohydrate-active enzymes are classified into glycoside hydrolases, glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and enzymes with auxiliary activities (CAZy database, www.cazy.org). Glycosyltransferases synthesize a huge variety of complex carbohydrates with different degrees of polymerization, moieties and branching. On the other hand, complex carbohydrate breakdown is carried out by glycoside hydrolases, polysaccharide lyases and carbohydrate esterases. Their interesting reactions have attracted the attention of researchers across scientific fields, ranging from basic research to biotechnology. Interest in carbohydrate-active enzymes is due not only to their ability to build and degrade biopolymers—which is highly relevant in biotechnology—but also because they are involved in bacterial biofilm formation, and in glycosylation of proteins and lipids, with important health implications. This book gathers new research results and reviews to broaden our understanding of carbohydrate-active enzymes, their mutants and their reaction products at the molecular level

    Proceedings of the CIB World Building Congress 2016: Volume I - Creating built environments of new opportunities

    Get PDF

    Cedillo v. Farmers Insurance Co. of Idaho Clerk\u27s Record Dckt. 43890

    Get PDF
    https://digitalcommons.law.uidaho.edu/idaho_supreme_court_record_briefs/7608/thumbnail.jp
    corecore