96 research outputs found

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery

    Get PDF
    Robot-assisted orthopedic surgery has gained increasing attention due to its improved accuracy and stability in minimally-invasive interventions compared to a surgeon's manual operation. An effective navigation system is critical, which estimates the intra-operative tool-to-tissue pose relationship to guide the robotic surgical device. However, most existing navigation systems use fiducial markers, such as bone pin markers, to close the calibration loop, which requires a clear line of sight and is not ideal for patients. This dissertation presents fiducial-free, fluoroscopic image-based navigation pipelines for three robot-assisted orthopedic applications: femoroplasty, core decompression of the hip, and transforaminal lumbar epidural injections. We propose custom-designed image intensity-based 2D/3D registration algorithms for pose estimation of bone anatomies, including femur and spine, and pose estimation of a rigid surgical tool and a flexible continuum manipulator. We performed system calibration and integration into a surgical robotic platform. We validated the navigation system's performance in comprehensive simulation and ex vivo cadaveric experiments. Our results suggest the feasibility of applying our proposed navigation methods for robot-assisted orthopedic applications. We also investigated machine learning approaches that can benefit the medical imaging analysis, automate the navigation component or address the registration challenges. We present a synthetic X-ray data generation pipeline called SyntheX, which enables large-scale machine learning model training. SyntheX was used to train feature detection tasks of the pelvis anatomy and the continuum manipulator, which were used to initialize the registration pipelines. Last but not least, we propose a projective spatial transformer module that learns a convex shape similarity function and extends the registration capture range. We believe that our image-based navigation solutions can benefit and inspire related orthopedic robot-assisted system designs and eventually be used in the operating rooms to improve patient outcomes

    Capture and generalisation of close interaction with objects

    Get PDF
    Robust manipulation capture and retargeting has been a longstanding goal in both the fields of animation and robotics. In this thesis I describe a new approach to capture both the geometry and motion of interactions with objects, dealing with the problems of occlusion by the use of magnetic systems, and performing the reconstruction of the geometry by an RGB-D sensor alongside visual markers. This ‘interaction capture’ allows the scene to be described in terms of the spatial relationships between the character and the object using novel topological representations such as the Electric Parameters, which parametrise the outer space of an object using properties of the surface of the object. I describe the properties of these representations for motion generalisation and discuss how they can be applied to the problems of human-like motion generation and programming by demonstration. These generalised interactions are shown to be valid by demonstration of retargeting grasping and manipulation to robots with dissimilar kinematics and morphology using only local, gradient-based planning

    Autonomous clothes manipulation using a hierarchical vision architecture

    Get PDF
    This paper presents a novel robot vision architecture for perceiving generic 3-D clothes configurations. Our architecture is hierarchically structured, starting from low-level curvature features to mid-level geometric shapes and topology descriptions, and finally, high-level semantic surface descriptions. We demonstrate our robot vision architecture in a customized dual-arm industrial robot with our inhouse developed stereo vision system, carrying out autonomous grasping and dual-arm flattening. The experimental results show the effectiveness of the proposed dual-arm flattening using the stereo vision system compared with the single-arm flattening using the widely cited Kinect-like sensor as the baseline. In addition, the proposed grasping approach achieves satisfactory performance when grasping various kind of garments, verifying the capability of the proposed visual perception architecture to be adapted to more than one clothing manipulation tasks

    Virtuaalse proovikabiini 3D kehakujude ja roboti juhtimisalgoritmide uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVirtuaalne riiete proovimine on üks põhilistest teenustest, mille pakkumine võib suurendada rõivapoodide edukust, sest tänu sellele lahendusele väheneb füüsilise töö vajadus proovimise faasis ning riiete proovimine muutub kasutaja jaoks mugavamaks. Samas pole enamikel varem välja pakutud masinnägemise ja graafika meetoditel õnnestunud inimkeha realistlik modelleerimine, eriti terve keha 3D modelleerimine, mis vajab suurt kogust andmeid ja palju arvutuslikku ressurssi. Varasemad katsed on ebaõnnestunud põhiliselt seetõttu, et ei ole suudetud korralikult arvesse võtta samaaegseid muutusi keha pinnal. Lisaks pole varasemad meetodid enamasti suutnud kujutiste liikumisi realistlikult reaalajas visualiseerida. Käesolev projekt kavatseb kõrvaldada eelmainitud puudused nii, et rahuldada virtuaalse proovikabiini vajadusi. Välja pakutud meetod seisneb nii kasutaja keha kui ka riiete skaneerimises, analüüsimises, modelleerimises, mõõtmete arvutamises, orientiiride paigutamises, mannekeenidelt võetud 3D visuaalsete andmete segmenteerimises ning riiete mudeli paigutamises ja visualiseerimises kasutaja kehal. Selle projekti käigus koguti visuaalseid andmeid kasutades 3D laserskannerit ja Kinecti optilist kaamerat ning koostati nendest andmebaas. Neid andmeid kasutati välja töötatud algoritmide testimiseks, mis peamiselt tegelevad riiete realistliku visuaalse kujutamisega inimkehal ja suuruse pakkumise süsteemi täiendamisega virtuaalse proovikabiini kontekstis.Virtual fitting constitutes a fundamental element of the developments expected to rise the commercial prosperity of online garment retailers to a new level, as it is expected to reduce the load of the manual labor and physical efforts required. Nevertheless, most of the previously proposed computer vision and graphics methods have failed to accurately and realistically model the human body, especially, when it comes to the 3D modeling of the whole human body. The failure is largely related to the huge data and calculations required, which in reality is caused mainly by inability to properly account for the simultaneous variations in the body surface. In addition, most of the foregoing techniques cannot render realistic movement representations in real-time. This project intends to overcome the aforementioned shortcomings so as to satisfy the requirements of a virtual fitting room. The proposed methodology consists in scanning and performing some specific analyses of both the user's body and the prospective garment to be virtually fitted, modeling, extracting measurements and assigning reference points on them, and segmenting the 3D visual data imported from the mannequins. Finally, superimposing, adopting and depicting the resulting garment model on the user's body. The project is intended to gather sufficient amounts of visual data using a 3D laser scanner and the Kinect optical camera, to manage it in form of a usable database, in order to experimentally implement the algorithms devised. The latter will provide a realistic visual representation of the garment on the body, and enhance the size-advisor system in the context of the virtual fitting room under study

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    Control of objects with a high degree of freedom

    Get PDF
    In this thesis, I present novel strategies for controlling objects with high degrees of freedom for the purpose of robotic control and computer animation, including articulated objects such as human bodies or robots and deformable objects such as ropes and cloth. Such control is required for common daily movements such as folding arms, tying ropes, wrapping objects and putting on clothes. Although there is demand in computer graphics and animation for generating such scenes, little work has targeted these problems. The difficulty of solving such problems are due to the following two factors: (1) The complexity of the planning algorithms: The computational costs of the methods that are currently available increase exponentially with respect to the degrees of freedom of the objects and therefore they cannot be applied for full human body structures, ropes and clothes . (2) Lack of abstract descriptors for complex tasks. Models for quantitatively describing the progress of tasks such as wrapping and knotting are absent for animation generation. In this work, we employ the concept of a task-centric manifold to quantitatively describe complex tasks, and incorporate a bi-mapping scheme to bridge this manifold and the configuration space of the controlled objects, called an object-centric manifold. The control problem is solved by first projecting the controlled object onto the task-centric manifold, then getting the next ideal state of the scenario by local planning, and finally projecting the state back to the object-centric manifold to get the desirable state of the controlled object. Using this scheme, complex movements that previously required global path planning can be synthesised by local path planning. Under this framework, we show the applications in various fields. An interpolation algorithm for arbitrary postures of human character is first proposed. Second, a control scheme is suggested in generating Furoshiki wraps with different styles. Finally, new models and planning methods are given for quantitatively control for wrapping/ unwrapping and dressing/undressing problems

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces
    corecore