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ABSTRACT This paper presents a novel robot vision architecture for perceiving generic 3D clothes

configurations. Our architecture is hierarchically structured, starting from low-level curvature features, to

mid-level geometric shapes and topology descriptions, and finally high-level semantic surface descriptions.

We demonstrate our robot vision architecture in a customised dual-arm industrial robot with our in-

house developed stereo vision system, carrying out autonomous grasping and dual-arm flattening. The

experimental results show the advanced effectiveness of the proposed dual-arm flattening using the stereo

vision system compared to single-arm flattening using the widely-cited Kinect-like sensor as the baseline.

In addition, the proposed grasping approach achieves satisfactory performance on grasping various kind of

garments, verifying the capability of the proposed visual perception architecture to be adapted to more than

one clothing manipulation tasks.

INDEX TERMS Robot Clothes Manipulation, Visual Perception, Garment Flattening, Garment Grasping,

Dual-arm Manipulation

I. INTRODUCTION

T
HE increasing need to deploy robots over a broader

range of perception and manipulation tasks requires

increased robot capabilities to compensate unpredictable set-

tings and scenarios. Modern robots can perform a wide range

of isolated tasks with high-precision, accuracy and reliability

given that the environment and the task are rigid and static.

However, robot perception and manipulation of deformable

objects represents a difficult tasks for robots to perform con-

sistently and accurately. This is because a robot needs to fully

perceive and understand the state of a garment configuration

at a given time during the manipulation task, and deformable

objects can possibly take almost infinite configurations and

shapes.

We hypothesised that a continuous sense-plan-act loop

could indeed be exploited to overcome the limitations of

the above non-trivial tasks [1]. In this paper, we, therefore,

describe a novel robot vision architecture capable of perceiv-

ing and understanding deformable objects. Our architecture

transforms low-level 3D visual features into rich semantic

descriptions to underpin dexterous manipulation. We demon-

strate that our robotic architecture can be employed to carry

out the robotic tasks of autonomous dexterous grasping and

dual-arm flattening.

Current research efforts have been advocated to solve sub-

tasks within an autonomous laundering pipeline, these are:

grasping clothes from a heap of garments [2], [3], recognising

clothes categories [2], [4]–[7], unfolding [4], [8]–[12], gar-

ment pose estimation [13]–[16], garment flattening [8], [17],

[18], ironing [19] and folding [20]–[24]. We found that exist-

ing approaches for garment perception have been devised as

ad-hoc robot vision solutions rather than generalisable robot

vision architectures that can be adapted into different robotic

clothes manipulation tasks. Most simplify the perception task

while mainly focusing on the manipulation aspects of the

robotic task.

We aim to address the visual perception problem by sig-

nificantly increasing the robot capabilities while handling

deformable objects. To investigate this problem, we focused

on developing robotic solutions for garment grasping and

dual-arm flattening using our robot vision architecture. We

choose these application areas because garment flattening

has been under-developed in the literature thus far (with

exception to our early work in [17] and [18]) and garment

grasping provides a point of reference to benchmark our

proposed vision architecture with respect to the state-of-art.
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FIGURE 1. (A) The CloPeMa robot which consists of two six degrees of

freedom YASKAWA arms and a custom made YASKAWA turn-table. Each arm

features a specialised gripper for handling clothing and an ASUS Xtion Pro

attached to the wrist of the arm. (B) Our stereo robot head integrated on our

dual-arm robot. (C) A close up of the robot’s gripper.

The main contributions of this paper are:

• Most of the existing approaches are devised for specific

tasks, which lack a full-understanding of generic clothes

configurations. In this paper, we propose a vision archi-

tecture with hierarchical 3D features for more than one

manipulation tasks (i.e. clothes grasping and dual-arm

flattening.

• The widely-used Kinect-like cameras (i.e. Kinect and

Xtion pro) is not precise enough for dexterous clothes

manipulation manipulation tasks e.g. flattening. Alter-

natively, we proposed an active binocular camera sys-

tem for high-resolution depth sensing.

• To the best of our knowledge, our proposed dual-arm

clothes flattening is the first and unique autonomous

dual-arm flattening solution.

The structure of this paper is: In Section II, a comprehen-

sive literature review presenting the state-of-the-art achieve-

ments of visually-guided garment manipulation. Section III

provides an overall overview of our autonomous clothes

manipulation system including our customised robot, stereo

robot head, the hand-eye calibration and the proposed vision

architecture. In Section IV, the visual architecture for generic

garment surface analysis is detailed. Section V presents

the proposed visually-guided grasping approach and dual-

arm flattening approach. The experimental validations of the

proposed autonomous grasping and flattening are detailed in

Section VI. The conclusion of this work is given in Section

VII.

II. LITERATURE REVIEW

Research on deformable objects in robotics is often framed to

applications handling clothing items. The current generation

robotic cloth perception and manipulation is introduced in

five categories (according to the core tasks in autonomous

laundering), namely, clothes grasping, unfolding, folding,

flattening and the generic interactive perception. A summary

of state-of-the-art approaches is thus given below, followed

by a discussion and limitation on current state-art-of-the-art

approaches.

a: Garment grasping

Ramisa et al. [2], [3] proposed a grasping detection approach

using RGBD data. Their approach consisted of extracting

SIFT and GDH (Geodesic Distance Histogram) local features

in the RGB and depth domain, respectively, to detect wrin-

kled regions. After Bag-of-Features coding, two layers of

SVM classifiers are trained with linear and χ2 kernels. Dur-

ing the testing phase, a sliding window method is employed

to detect graspable positions. After detection, ‘wrinkledness’

is calculated from the surface normals to select the best

grasping location.

b: Garment Unfolding

The critical step for garment unfolding is to detect grasping

locations that can potentially lead to an unfolding state (e.g.

corners of a towel, shoulders of a shirt, waistline of a pant,

and so forth). In this case, Cusumano et al. [8] have proposed

a multi-view based detection approach for unfolding towels.

Their technique is based on finding two corners that are

along the same edge of a towel. Following on Cusamano’s

work, Willimon et al. [4] proposed an interactive perception-

based strategy to unfold a towel on the table. Their approach

relies on detecting depth discontinuities on corners of towels.

For each iteration, the highest depth corner on the towel

is grasped and pulled away from its centre of mass. This

approach is constrained to a specific shape of cloth (square

towel); hence it is unlikely to be extended to other clothing

shapes.

Doumanoglou et al. [9], [10] have proposed a general un-

folding approach for all categories of clothes. Their approach

is based on active random forests and hough forests which

are used to detect grasping positions on hanging garments.

Unfolding is carried out by iteratively grasping the lowest

point of the observed garment until an unfolding state is

detected. In their later work [12], geometry-based visual

clues, e.g. edges extracted from depth maps, are employed

to detect the grasping positions for unfolding. Li et al. [11]

have also devised an interactive unfolding strategy, in which

the relevance of grasping positions for unfolding is modelled

based on Gaussian density functions.

c: Garment Folding

Miller et al. [25] modelled each category of clothes with a

parametric polygonal model. They proposed an optimisation

approach to approximate polygonal models based on 2D

contours on clothing obtained after segmenting the garment

from the background. After that, the authors exploited their

approach to fold garments based on a gravity-based [21]

and geometry-based [22] folding strategies. In Stria et al.’s

method [23], contour keypoints (i.e. collar points, sleeve
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points, and so forth) are matched to a polygonal model stored

in the database, thereby accelerating the matching procedure.

In [26], the unfolding [9] and folding [23] are integrated.

d: Interactive Perception in Garment Manipulation

Interactive perception has been a critical role in dexterous

clothing manipulation. That is, a robot iteratively changes

the state of the garment from an unrecognisable or initial

state towards a recognisable state. The working assumption

of these approaches is that for each perception, there is a

planned action; closely following a perception-manipulation

loop. Specifically, Willimon et al. [27] first proposed to

recognise the clothing’s category from hanging configura-

tions. In their approach, the hanging garment is interactively

observed as it is rotated. In Cusumano et al. [8], the robot

is driven to hang the garment and slid along the table edges

(on both left and right side) iteratively until the robot can

recognise its configuration and then to an unfolded config-

uration. In Doumanoglou et al.’s unfolding work [10], an

active forest is employed to rotate the hanging garment to

a perceptually-confident field of view. Li et al. [11] proposed

a more straight-forward unfolding approach based on pose

estimation [15], [16] by interactively moving the grasping

point towards specific target positions (e.g. elbows). More-

over, interactive perception has been used in heuristic-based

generic clothing manipulation.

In Willimon et al. [4] and our previous work [17], [18],

perception-manipulation loops are carried out to track the

flattening state of the garment and heuristic manipulation

strategies are used to flatten the wrinkled garment on the

working table.

e: Garment Flattening

For the specific garment flattening robotic task tackled in

this paper, current research can be broadly classified into

gravity-based flattening [9], [10] i.e. hanging the garment for

reducing the wrinkledness and by sliding the garment along a

table [8]. Since no visual-feedback is used in these methods,

the garment cannot be guaranteed to be flattened.

Li, et. al [19] proposed a clothes ironing approach, in

which multiple light sources are used to detect wrinkled

regions for ironing. In our early research [17], [18], we

first proposed to flatten wrinkled clothes on the table au-

tonomously through detecting wrinkles and apply an heuris-

tic to generate robot flattening actions on the detected wrin-

kles. Compared to the clustering-based methods (i.e. GMM

used in [19] and K-means used in [17], a geometry-based

method (i.e. used in [18]) results in a stable and precise visual

framework for wrinkle detection and quantification.

A. DISCUSSION

The rigid objects (usually kitchen objects e.g. bottles, bowels,

plates, cooking tools, etc.) are relatively smaller than gar-

ments, and therefore the grasping detection task can be ad-

dressed by exploring different grasping poses centred by the

FIGURE 2. The comparison between depth data produced by Kinect-like

camera and stereo head. (a) the depth map captured by ASUS Xtion Pro. (b)

the depth map captured by stereo head.

objects. However, the grasping detection or pose estimation-

based methods [28]–[34] cannot be directly adapted to de-

formable garment grasping. The difficulty is that, more del-

icate configuration parsing and dexterous grasping are re-

quired in order to fetch small landmarks on garments (e.g.

wrinkles, collars, cuffs, etc.). The main limitation of deep

learning-based grasping detection [30], [32] and end-to-end

motor-control methods [35], [36] is that large-scale train-

ing examples/trials are required. Although simulated objects

can be utilised [32], [36], limited progress is achieved on

deformable clothes due to the difficulty of simulating their

physis.

The reported literature in deformable object perception

and perceptions shares commonalities in the chosen RGBD

sensor. Specifically, Kinect-like cameras are widely-used for

perception tasks [2], [3], [9]–[11], [15], [16], [24]. Kinect-

like cameras can provide real-time depth sensing with a

precision of approximately 0.3-3cm1 by trading off image

resolution and depth sensing accuracy. Kinect-like cameras

cannot capture small landmarks or estimate the magnitude

of bending of clothes surfaces accurately, which is essen-

tial for successful dexterous manipulation as demonstrated

in this paper. To this end, we integrated our custom-made

active binocular robot head with our in-house 3D matcher

(described in Sections III-B and III-D)

Reported methods are constrained to a specific garment

or task at hand. In other words, current robot vision ap-

proaches for clothes manipulation are not generic enough

for more than one task. Arguably, the latter can be attributed

to the lack of sufficient understanding and perception of the

clothes configuration, by which the generic landmarks can

be localised and parametrised. Ramisa et al. [37] proposed a

3D descriptor that is employed for clothes grasping, wrinkle

detection, and category recognition tasks. To the best of

our knowledge, this descriptor is the only generic approach

for multiple clothes perception tasks. However, Ramisa et

al. evaluated their manipulation performance in annotated

datasets as opposed to real-life experiments where camera

1This depth sensing precision depends on the range between camera and
object. In our robotic scenario, the precision is about 0.5-1.0cm.
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FIGURE 3. A hierarchical visual architecture for visually-guided clothes

manipulation.

and robot calibration, mechanical and sensing errors and

mistakes caused by labelling were not considered.

We can conclude that current approaches for dexterous

clothes perception and manipulation have the following limi-

tations. Firstly, Kinect-like and low-resolution depth cameras

are not precise enough to sense garment details; hence,

dexterous visually-guided manipulation become challenging

for the task at hand, and complex heuristics need to be

put in place. These types of cameras, therefore, constrain

the application scope and capabilities of robots. Secondly,

existing approaches usually focus on specific robot vision so-

lutions rather than developing a general purpose robot vision

architecture that provides a robot with the required abilities

to understand surface shapes and topologies of deformable

objects. As a consequence, most of the existing approaches

are unlikely to be extended outside the application and task

focus. We thus propose a robot vision architecture for dexter-

ous clothing manipulation to advance the state-of-the-art in

deformable objects perception and manipulation research.

III. AN OVERALL SCHEMA OF THE AUTONOMOUS

SYSTEM

In this section, we introduce our proposed autonomous sys-

tem for clothing perception and manipulation. This system

consists of our customized dual-arm robot, our active binoc-

ular robot head and its calibration, stereo matcher, vision

architecture, visually-guided manipulation skills and robot

motion control.

A. CLOPEMA ROBOT

The main robot manipulators are based on the industrial

robotic components for welding operation which are sup-

plied by YASKAWA Motoman. As shown in Fig. 1-A, two

MA1400 manipulators are used as two robot arms. Each

manipulator is of 6 DOF, 4 kg maximal load weight, 1434

mm maximal reaching distance, ±0.08 mm accuracy. These

specifications satisfy the requirements for conducting accu-

rate and dexterous clothing manipulation. They are mounted

on rotatable turning tables. The robot arms and turning

table are powered and controlled by a DX100 controller.

The aim of CloPeMa project is to design a clothes folding

prototype robot from (mainly) off-the-shelf components. We

choose the YASKAWA arms because the size and the load

of the MA1400 manipulators is capable of manipulating

adult clothes. The approaches and methods developed in

this paper are robot agnostic as all algorithms have been

developed following ROS principles. Robotic manipulation

and grasping are driven through the MoveIt library2 such

that it can be easily interfaced into another bi-manual robot

configuration supported by ROS and MoveIt.

B. CLOPEMA ROBOT HEAD

Differing from most of the state-of-the-art visually-guided

manipulation research, we aims to use relatively inexpensive,

commercially available component elements to build an robot

vision system (binocular head) for garment depth sensing.

In order to offset the limitation of widely-used depth

sensor such as Kinect w.r.t. accuracy and resolution, a self-

designed robot head is used in this paper for depth sensing.

As shown in Fig. 1-B, the robot head comprises two Nikon

DSLR cameras (D5100) that are able to capture images of

16 mega pixels through USB control. Gphoto library3 is

employed to drive the capturing under ubuntu. These are

mounted on two pan and tilt units (PTU-D46) with their

corresponding controllers. The cameras are separated by a

pre-defined baseline for optimal stereo capturing. Its field of

view covers the robot work-space. The robot head provides

the robot system with high resolution 3D point cloud.

C. STEREO HEAD CALIBRATION

Our stereo head calibration has two steps: camera calibra-

tion and hand-eye calibration. The former is employed to

estimate the intrinsic parameters of the stereo cameras. For

the CloPeMa robot, the OpenCV calibration routines4 are

employed to estimate the intrinsic camera parameters of each

camera. Furthermore, hand-eye calibration is employed to

link the stereo head’s reference frame into the robot kine-

matic chain. In other words, the unknown transformation

from the camera frame to the calibration pattern coordinate

system, as well as the transformation from the calibration

pattern coordinate system to the hand coordinate system,

need to be estimated simultaneously. For the CloPeMa stereo

head, Tsai’s hand-eye calibration [38], [39] routines are used

to estimate rigid geometric transformations between camera

to chess board and chess board to the gripper.

D. STEREO MATCHER

Having calibrated and integrated the stereo-head, the next

stage is stereo-matching and 3D reconstruction. In this proce-

2Available in ROS: http://moveit.ros.org
3http://gphoto.sourceforge.net/
4http//opencv.org
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FIGURE 4. The whole pipeline for autonomous grasping and flattening.

dure, a pair of images are captured simultaneously by the left

and right cameras. The C3D matcher [40], [41] is employed

to find the horizontal and vertical disparities of the two

images. In the implementation for the CloPeMa robot head,

C3D matcher is accelerated by CUDA5 GPU paralleling

programming [42] to produce a 16 mega-pixel depth map

in 0.2 fps. A GMM-based grab-cut [43] pre-trained by table

5https://developer.nvidia.com/cuda-zone

color information is employed to detect and segment the

garment.

E. ROBOT MOTION CONTROL

The ClopeMa robot is fully integrated with Robot Operating

System through ROS industrial package6. More specifically,

the URDF (uniform robot description form) is used to define

the geometric structure of the robot. After the geometric

6http://wiki.ros.org/Industrial
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structure is defined, collision can be detected by robot col-

lision models, and the transforms between robot links can be

achieved by TF7. MoveIt package is employed to achieve the

communication between user interface and robot controllers.

F. THE CLOPEMA PROJECT AND ITS RELATED

RESEARCH

During the project, tactile sensing, visual sensing and

soft materials manipulation were jointly managed by a

goal driven, high-level reasoning module. Inspired by the

perception-manipulation cycle of the mammalian brain, the

reasoning module also provided perception capabilities to

fuse sensing and manipulation. The task calls for hierarchical

representations and related perception-manipulation skills

of different complexities. These theories addressed real-

life autonomous laundering problems, e.g. dual-arm garment

folding [23], unfolding [9], [10], dual-arm flattening [18],

interactive sorting [6] and a novel gripper design [44].

It is worth noting that, in our previous research [6], [18],

the proposed lower-level curvature feature and mid-level

shape and topology feature are used for clothes category

recognition. More specifically, in [18], the B-Spline patches

are extracted to descrip the landmarks of clothes, and the

histogram representations of shape index and topologies are

extracted to represent the stiffness of the clothes’ fabric at-

tributes. Later, an interactive perception approach is proposed

[6], where two manipulation skills, i.e. grasping-shake-drop,

grasping-flip, are proposed to interact with the garment and

maximize the visual perception confidence.

IV. HIERARCHICAL VISION ARCHITECTURE

This section presents the proposed vision architecture in de-

tails. Firstly, a piece-wise B-Spline surface fitting is adapted

as pre-processing in Section IV-A, and the low-level feature

extraction is presented in Section IV-B. In Section IV-C,

surface shapes and topologies are introduced as the mid-level

features. Afterwards, two high-level features i.e grasping

triplets and wrinkle description, are reported in Section IV-D

and Section IV-E.

A. PRE-PROCESSING: B-SPLINE SURFACE FITTING

As geometry-based 2.5D features such as curvatures and

shape index are extremely sensitive to high frequency noise,

a piece-wise B-Spline surface approximation is used to fit

a continuous implicit surface onto the original depth map.

More details are presented in our previous work [45].

B. LOW-LEVEL FEATURE: SURFACE CURVATURES

ESTIMATION

To compute curvatures from depth, 2.5D points in the depth

map (i.e. x, y and depth − x and y are in pixels while depth

is in metres) are examined pixel by pixel in order to find if

they are the positive extrema along the maximal curvature

direction. That is, given a depth map I , for each point p in

7http://wiki.ros.org/tf

I , the mean curvature Cp
m and Gaussian curvature Cp

g are

firstly calculated by Eq. 1 and Eq. 2, where first derivatives

fp
x , fp

y , and second derivatives fp
xx, fp

yy ,fp
xy are estimated

by Gaussian convolution. Then, the maximal curvature kmax

and minimal curvature kmin can be calculated by Cp
m and Cp

g

(shown in Eq. 3).

Cp
m =

(1 + (fp
y )

2)fp
xx + (1 + (fp

x )
2)fp

yy − 2fp
xf

p
y f

p
xy

2(
√

1 + (fp
x )2 + (fp

y )2)3
(1)

Cp
g =

fp
xxf

p
yy − (fp

xy)
2

(1 + (fp
x )2 + (fp

y )2)2
(2)

kpmax, k
p
min = Cp

m ±
√

(Cp
m)2 − Cp

g (3)

C. MID-LEVEL FEATURES: SURFACE SHAPES AND

TOPOLOGIES

1) Surface Shape Analysis

Shape index [46], performs a continuous classification of the

local shape within a surface regions into real-value index

values, in the range [-1,1]. Given a shape index map S, the

shape index value Sp of point p can be calculated as follows

[46]:

Sp =
2

π
tan−1

[

kpmin + kpmax

kpmin − kpmax

]

, (4)

where kpmin, kpmax are the minimal and maximal curvatures

at point p computed using Eq.3. The shape index value is

quantised into nine uniform intervals corresponding to nine

surface types – cup, trough, rut, saddle rut, saddle, saddle

ridge, ridge, dome and cap.

In order to parse the shape information exhibited by the

visible cloth surface, the shape index map is calculated from

each pixel of the depth map and a majority rank filtering

is applied. This non-linear filtering removes outlier surface

classifications and can be tuned to produce a relatively clean

classification of shape types over the cloth surface. An exam-

ple can be seen in Fig. 4-I. It is worth noting that, the shape

types ‘rut’ and ‘dome’ can be used to recognise the junction

of multiple wrinkles thereby splitting wrinkles (as shown in

Fig. 5).

FIGURE 5. An example of splitting wrinkle using Shape Index. In highly

wrinkled situations, the shape of wrinkles at junctions are classified as dome

or rut (as shown in brown and red colours); this classification is used to

separate jointed wrinkles in this work.
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2) Surface Topologies Analysis

Among all the shape types, ridges is of critical importance

in the analysis and description of wrinkles. In this paper,

the definition of ‘ridges’ shares similarities to that given

by Ohtake et al. [47]. The main difference is that instead

of estimating curvatures from a polygon mesh, surface cur-

vatures are calculated using differential geometry, obtained

directly from the depth map (as it is presented in Eq. 3). The

surface ridges are therefore the positive extrema of maximal

curvature while the wrinkle’s contour is the boundary of the

concave and convex surfaces of the garment.

From the nine shape types, four are convex (i.e. saddle

ridge, ridge, dome, cap) and the rest are concave (i.e. cup,

trough, rut, saddle rut, saddle). Thereby, the wrinkle’s con-

tour can be estimated. Alternatively, the boundary of the

convex and concave surface can be more robustly estimated

by computing the zero-crossing of the second derivatives

of the garment’s surface. In our implementation, a Laplace

template window of size 16 × 16 is applied on the depth

map in order to calculate the second order derivative. After

the wrinkle’s contour has been detected, the garment surface

topologies are fully parsed. An example can be seen in Fig.

4-J.

D. HIGH-LEVEL FEATURES - GRASPING TRIPLETS

In this paper, a wrinkle comprises a continuous ridge line

localised within in a region where the surface shape type is

‘ridge’. The wrinkle is delimited (bounded) by two contour

lines, each located on either side of the maximal curvature

direction. A wrinkle can be quantified by means of a triplet

comprising a ridge point and the two wrinkle contour points

located on either side of the ridge, along the maximal curva-

ture direction (as shown in Fig. 4-K).

The above definition is inspired by classical geometric

approaches for parsing 2.5D surface shapes and topologies

(i.e. shape index [46], surface ridges and wrinkle’s contour

lines). In this work, the height and width of a wrinkle are

measured in terms of triplets. Accordingly, triplets can also

be used as the atomic structures for finding and selecting

grasping points (shown in Fig. 4-N).

1) Triplets Matching

From wrinkle’s geometric definition, the maximal curvature

direction θ can be calculated by Eq. 5.

θ = tan−1
∂y

∂x
. (5)

In this equation, ∂y and ∂x are the derivatives of kmax,

computed by Gaussian convolution.

Given a ridge point pr in a depth map I with scale ϕL1,

this proposed method searches for the two corresponding

contour points (plc and prc) over the two directions defined

by θ and its symmetric direction using a depth based gravity-

decent strategy. If the searched path is traversed in the same

‘ridge’ region as pr (shown as yellow in Fig. 4-I), the process

will continue. Otherwise, the searching will be terminated.

Algorithmic details of triplet matching are described in our

previous work [45].

Theoretically, every ridge point should be matched with

its two corresponding wrinkle contour points. Whereas, due

to occlusions and depth sensing errors, some wrinkle points

fail to find their associated contour points and therefore do

not generate a triplet. In order to eliminate the uncertainties

caused by occlusions and errors, only triplets whose ridge

points matched with both two wrinkle contour points are

regarded as valid primitives for wrinkle quantification. An

example of triplets matching is shown in Fig. 4-K and M.

Given a triplet tp containing one ridge point pr and two

wrinkle contour points p1c and p2c , the height ht and width

wt can be calculated from the embedded triangle (triplets)

using Eq. 6. It is worth noting that, the triplet’s points are

transformed to the world coordinates, and as a consequence

the unit of height ht and width wt is in meter.

ht = 2
d (d− a) (d− b) (d− c)

c
wt = c,

(6)

where a = ‖ pr, p
1

c ‖2, b = ‖ pr, p
2

c ‖2, c = ‖ p1c , p
2

c ‖2, and

d = (a + b + c)/2. The numerator of the right hand side of

the equation is the area of a triangle embedded into the 3D

space.

E. HIGH-LEVEL FEATURES: WRINKLE DESCRIPTION

1) Wrinkle Detection

The wrinkle detection consists of two steps: first, connecting

ridge points into contiguous segments; second, grouping

found segments into wrinkles (Fig. 4-L). More details are

given in our previous work [45].

After wrinkles have been detected, for each wrinkle, a fifth

order polynomial curve is fitted along its ridge points. A

high order polynomial curve is adopted in order to ensure

that it has sufficient flexibility to meet the configuration of

the wrinkles (here fifth order works well in practice). The

polynomial curve denotes the parametric description of a

wrinkle, and the curve function is defined as:

f(x) = (c1, c2, c3, c4, c5, c6) · (x
5, x4, x3, x2, x, 1)T , (7)

, here c1, c2, c3, c4, c5, c6 are the coefficients of fifth order

polynomial curve.

2) Hough Transform-Based Wrinkle Splitting

As reported in Section IV-C1, Shape Index is used to find

junctions of wrinkles, where the shape types ‘rut’ and ‘dome’

are used as the visual cues for splitting wrinkles (as shown in

Fig. 5). Furthermore, an additional Hough transform-based

wrinkle splitting approach is proposed. In our approach, the

joined wrinkles are parametrised as straight lines in Hough

space to find the primary directions of the joined wrinkles.

Specifically, the Hough transform-based wrinkle splitting

is used if the quality of wrinkle fitting (the RMSE of the
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FIGURE 6. Splitting joined wrinkles through Hough-Transform based wrinkle

direction analysis. (a) The Hough line parameter space. The x-axis refers to

the angle in the Polar coordinate system α and the y-axis refers to the radius

β. In this figure, the two peak points refer to the two main directions of the

joined wrinkles. (b) The joined wrinkle points are split by two main directions.

In this figure, the two main hough line directions are plotted as a blue line, and

the points of joined wrinkles are split corresponding to their two directions,

shown as red and green respectively.

polynomial curve fitting above) is not acceptable. That is,

each 2D point on the fitted wrinkle is projected as a curve in

the Hough parameter space. Afterwards, peaks in the Hough

space are ranked and the two largest peaks indicate the two

main directions of the joined wrinkles. In order to avoid

choosing two peaks originating from the same wrinkle, the

two largest peaks should satisfy a non-locality constraint. In

the implementation of this work, the value of 20 degrees

works well in practice. Then, wrinkle points can be split

into two subsets depending on the two largest peaks. An

example of the proposed splitting is shown in Fig. 6. Finally,

new polynomial curves are approximated on the split points

respectively. This splitting procedure will be performed re-

cursively until all the wrinkles are below an optimal RMSE

value (in practice, a value of 2 pixels works best for our

implementation). Algorithm 1 details the proposed Hough

Transform based wrinkle splitting approach.

3) Wrinkle Quantification

Shape Index classifies surface shapes without measuring

surface magnitude. In our approach, the magnitude of a wrin-

kle’s surface is measured by means of triplets (as described

in Section IV-D1). Whereas, here the direction of triplet

matching direction θ is estimated from the parametrised

wrinkle description, which is more robust than that estimated

from the maximal curvature direction. To be more specific, θ
is computed from the perpendicular direction of the tangent

line of the fitted curve on the observed wrinkle (i.e. fifth order

polynomial curve in Eq. 7). The tangent direction δ can be

calculated as:

δ = arctan((c1, c2, c3, c4, c5) · (x
4, x3, x2, x, 1)T ). (8)

Having obtained the searching direction θ, the triplets on a

detected wrinkle can be matched and thereafter their heights

and width can be estimated by Eq. 6. That is, given a wrinkle,

ω, containing a set of triplets {t1, ..., tNr
}, the width, ww and

Algorithm 1 The Hough Transform based wrinkle splitting

approach.

1: In: The detected wrinkles’ points for splitting {Px, Py},

the threshold tolerance, thresrmse, of the RMSE wrinkle

fitting, and non-locality constraints threshold, thresα.

2: Out: The splited wrinkles’ points {P 1

x , P
1

y } and

{P 2

x , P
2

y }.

3: Approximate polynomial curve to {Px, Py}, and calcu-

late the fitting error rmse.

4: if rmse is larger than thresrmse then

5: Transform {Px, Py} to Hough space, and get α and

β in Polar coordinate system

6: Find the peak points in hough space and rank them

w.r.t the accumulator values {p̂1, ..., p̂np
}.

7: Find the two largest peak points P̂1 and P̂2 satisfying

‖ α
P̂1

, α
P̂2

‖> thresα.

8: Restore two straight lines l1 and l2 in image space

w.r.t two largest peaks in Hough space.

9: Split the wrinkles’ points {Px, Py} into two subsets

(P 1

x , P
1

y and P 2

x , P
2

y ) through calculating the minimal

Hausdorff distances to l1 and l2.

10: else

11: {P 1

x , P
1

y } = {Px, Py}, and {P 2

x , P
2

y } is empty.

12: end if

return {P 1

x , P
1

y } and {P 2

x , P
2

y }.

height, hw are calculated as the mean value of the width and

height values of ω’s triplets:

wω =
1

Nt

Nr
∑

ti∈ω

wti , hω =
1

Nt

Nr
∑

ti∈ω

hti , (9)

where ωti and hti are the width and height of the ith triplet

of the wrinkle ω.

For garment flattening, the physical volume of the wrinkle

is adopted as the score for ranking detected wrinkles. PCA is

applied on x-y plane of the largest wrinkle in order to infer

the two grasping points and the flattening directions for each

arm. More specifically, a 2 by 2 covariance matrix can be

calculated from x and y coordinates, and then the principal

direction of this wrinkle can be obtained by computing the

eigenvector with respect to the largest eigenvalue. To obtain

the magnitude that the dual-arm robot should pull in order

to remove the selected wrinkle, the geodesic distance be-

tween the two contour points of each triplet are estimated.

Section V-B details how these estimated parameters are used

for flattening a garment.

V. GARMENT MANIPULATION USING THE PROPOSED

VISUAL ARCHITECTURE

This section presents the autonomous robot clothes manipu-

lation systems with integrated visual perception architecture.
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The autonomous grasping approach is reported in Section

V-A and dual-arm flattening is detailed in Section V-B.

A. HEURISTIC GARMENT GRASPING

In this research, two visually-guided heuristic grasping

strategies are proposed, in which the high-level grasping

triplet feature (Section IV-D) is adapted as the grasping lo-

cation. Both strategies depend on an outlier removal strategy

and grasping parametrisation for optimal garment manipula-

tion as described in the following subsections.

1) Central Wrinkles Points Estimation

Due to stereo matching errors caused by occlusions, inaccu-

rate and incorrect topological descriptions may be detected,

thereby affecting the estimations of grasping candidates. A

central point evaluation mechanism is therefore devised to

deal with isolated and inaccurate detections. This mechanism

consists of computing the Mahalanobis distance distribution

of grasping triples. We adopt a Mahalanobis distancs based

non-linear filtering. That is, given a grasping triplet ti and

the size of filter window8, its Mahalanobis distance can be

calculated as follows:

DMahalanobis(pti , pT ) =
√

(pti − µT )TΣ−1(pti − µT )
(10)

, where pti is the x − y coordinate of ti, T refers to all

the triples within the filter window, µT is the mean of the

x−y coordinates of all triples, and Σ is the covariance matrix

among all grasping triples within this region with respect to

their spatial coordinates.

The probability of a grasping triplet being an outlier

depends on the distance and direction within the spherical

distribution. Hence, grasping triplets that are greater than a

threshold9 are treated as outliers and are removed from the

list. This filtering is applied to every grasping triplet to probe

whether it is an eligible grasping candidate.

2) Grasping Parameter Estimation

A good grasping position is considered as where the grasping

region is most likely to fit the gripper’s shape (constrained

by the robot joints limitations) and at the same time is most

unlikely to change the garment’s configuration when grasped.

That is, the gripper must get grip of a large region of the

clothing surface in order to provide a firm grasp on the

clothes. In this approach, two robotic poses are required for

a successful grasping action. These are: before-grasping and

after-grasping poses. The before-grasping pose is above the

grasping point, while the after-grasping pose indicates the

lowest position the gripper should reach without colliding

with the surface of the garment. By interpolating these poses

8From practical experience, a filter window of 32 × 32 is used in our
implementation.

9From practical experience, a threshold of 0.5 is chosen in our implemen-
tation.

sequentially, the robot is therefore able to conduct a smooth

grasping action.

The required parameters for completing the two grasping

poses mentioned above comprise: the before-grasping pose

of the gripper with respect to the robot’s world reference

frame, the normal vector of grasping triplet and the rotation

angle of the gripper with respect to the normal vector. The 3D

position of gripper can be indicated by the detected grasping

candidate. The grasping orientation of the gripper is set as

the surface normal direction of the local region to grasp. In

this paper, the surface normals are robustly estimated from

the third principal direction of PCA of local point cloud. In

order to obtain a robust estimation of the gripper rotation,

the principal direction of graspable candidates within a local

region is estimated and its perpendicular direction is used as

the gripper rotation.

3) Grasping Strategies

In this paper, two grasping strategies are proposed: a height-

priority and a flatness-priority strategy. For the height-

priority strategy, the grasping energy of the motion of the

gripper is minimised by selecting the candidates from the

highest graspable points with respect to the robot’s world ref-

erence frame. While the flatness-priority strategy computes a

flatness score for each grasping candidate, t, that encodes the

height, ht, and the width, wt of the wrinkle’s topology (Eq.

11):

flatness(t) =
ht

wt

(11)

The height-priority strategy is able to grasp the clothing

with the smallest cost of motion energy, and as a consequence

the trajectory of planing is simpler, and is easier to solve

the inverse kinematic problem and avoid collisions during

motion planning. However, the drawback is also obvious, as

the height-priority strategy cannot grantee that the mechani-

cal shape of the gripper fits the region to grasp properly. In

contrast, the flatness-priority strategy chooses the grasping

candidate of the largest flatness rate, which is able to select

the region most likely to fit the gripper but can bring difficul-

ties to solving the inverse kinematic problem and avoiding

collision. In our implementation, flatness-priority strategy

and height-priority strategy are selected alternately until the

grasping is completed.

B. DUAL-ARM GARMENT FLATTENING

1) Flattening Heuristic

In this research, the heuristic flattening strategy adopts a

greedy search approach, in which the largest wrinkle detected

is eliminated in each perception-manipulation iteration. Only

largest detected wrinkle is considered to be modified per

iteration because the manipulation errors accumulated into

the system increases when considering a group of wrinkles

with similar directions, and the likelihood of applying ap-

propriate flattening is significantly reduced. Therefore, the

largest wrinkle detection heuristic guarantees that a solution
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is achieved regardless of highly wrinkled configurations.

In our approach, wrinkles are quantified according to their

physical volume in this chapter. The estimation of the volume

of a wrinkle w is given by integrating the height of wrikle’s

surface points h(u, v) on the two dimentional space u and v:

volumew =

∫∫

h(u, v)dudv ≈ lr ∗
1

Nt

Nt
∑

ti∈w

(wt × ht),

(12)

Practically, we approximate this integral by suming the uni-

form samples on the wrikle’s surface. In this paper, we further

simplify the approximation as the sum of uniform samples

(i.e. 2D slice) on the ridge. Here Nt refers to the number of

matched triplets, ti is the ith triplet of w, wt and ht refers to

the width and height of the triplet ti, and lr is the length of the

wrinkle which is calculated by summing up the L2 distances

between every two nearest ridge points of the fitted wrikle.

2) Poses of a Primitive Flattening Action

FIGURE 7. The seven poses for a robotic flattening motion. The gripper is

moved to the ‘plan pose’, from where the trajectory of gripper is interpolated

among poses sequentially in order to move the gripper. It is noticeable that the

grasping direction and pulling direction are not aligned. The plan pose,

touch-table pose and grasping pose are coplanar, while the grasping pose,

pulling pose, put-on-table pose, free-garment pose and leave-table pose are

coplanar. For the gripper state, it will be set to ‘open’ in plan pose, ‘close’ after

grasping pose and ‘open’ again after put-on-table pose.

An entire flattening action consists of seven robotic

poses: plan, touch-table, grasping, pulling, put-on-table,

free-garment and leave-table. These poses are illustrated in

Fig. 7. This figure also includes other pre-defined parameters

used during the flattening task, e.g. orientation of the gripper

w.r.t the table. The plan pose (Fig. 7, purple) refers to mov-

ing the robot’s gripper close to the table by error-tolerance

planing in preparation for flattening, then the gripper will

approach the rest poses consequently by interpolating in

Cartesian coordinates system. The touch-table and grasping

poses (Fig. 7, orange and red, respectively) involve grasping

the garment’s boundary by interpolating the robot’s motion

between these two poses. The pulling and put-on-table poses

pull the grasped garment according to the Geodesic distance

FIGURE 8. An example of detected wrinkles and the corresponding grasping

poses and flattening directions of the dual-arms. The three largest wrinkles are

shown, where the red one is the largest. The inferred grasping and flattening

(pulling) directions are shown as red and blue arrows, respectively.

(Eq. 13) and smoothly return the garment to the table. Finally,

the free-garment and leave-table poses are for freeing the

garment and leaving the table.

In order to define these end-effector’s poses and interpolate

the trajectories, four parameters are required: grasping po-

sition, grasping direction, flattening direction and flattening

distance. The grasping and pulling poses are estimated using

these parameters. To be more specific, given the 3D grasping

position and grasping direction (equivalent to the yaw rota-

tion), the 6DOF pose of the gripper i.e. grasping pose can be

obtained. The pulling pose can be then estimated via setting a

proper flattening distance and direction. Afterwards, the other

poses are inferred from the grasping pose and pulling poses

by applying rigid transforms In this paper, these transforms

are set according to the practical experience. For example, a

translation of 4 cm along the grasping direction is set between

touch-table pose and grasping pose to guarantee a firm but

dexterous grasping of the clothes’ edge. By interpolating

these seven poses sequentially, the robot is therefore able to

perform a smooth flattening action. It worth noting that for

planning and interpolation, the MoveIt package is used. More

details of the inference of four flattening parameters are given

in the next section.

3) Flattening Parameters Estimation

Here the details about how to set the four flattening param-

eters (described in Section V-B2) are provided. As shown in

Fig. 8, once the largest wrinkle is selected, PCA is employed

to compute its primary direction, and the two flattening di-

rections are perpendicular to the wrinkle′s primary direction.

After the flattening directions are fixed, the two correspond-

ing cross points on the garment contour are set as the position

of the grasping pose (Fig. 7). In single arm flattening, the

intersection point is defined between wrinkles bisector and

garment’s contour. Whereas, in dual-arm flattening, wrinkles
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are divided into two equal segments and the two intersection

points are calculated respectively. The grasping direction is

estimated by the local contours of the grasping positions (as

shown in Fig. 8). The pulling distance dwi
of wrinkle wi is

estimated by:

dwi
=

Nr
∑

ti∈w

(G(ctil , c
ti
r )− E(ctil , c

ti
r ))/Nt) ∗ Coeffspring,

(13)

where ti is the ith Nr triplet in wi; c
ti
l and ctir are its two

wrinkle contour points; G refers to Geodesic distance [48]10,

while E refers to Euclidean distance. Coeffspring is the

maximal distance constraint between particles in a mass-

spring cloth model11.

4) The Dual-Arm Collaboration

Because of the limitation of the robot’s joints and possible

collisions between the two arms, not all of the planing poses

(the first pose of a flattening action) can be planned success-

fully. Therefore a greedy pose/motion exploration strategy

is proposed (The pseudo code of the proposed algorithm

is provided in Algorithm 2). The goal of this algorithm is

to explore the optimal pair poses of the two grippers and

enhance the success rate of the motion planning of dual-arm

flattening. More specifically, we define the error (offset in

rotation) between the goal pose and the planning pose for

both grippers i.e. el and er. Then we exhaustively explore

all possible combinations of two grippersâĂŹ poses in a

certain range with a proper interval and choose the pair poses

with lowers joint error i.e. el × er to plan. This results in

a significant improvement while flattening with both arms.

However, if this algorithm fails, the robot only employs one

arm; the arm used is selected according to the flattening

direction12.

VI. EXPERIMENTS

In this section, the proposed grasping and flattening ap-

proaches are evaluated in our dual-arm robot (Section VI-A

and Section VI-B, respectively).

A. GARMENT GRASPING EXPERIMENTS

In this experiments, the grasping performance of the pro-

posed approach is evaluated. The evaluation of robotic grasp-

ing has two parts: firstly, the success rate of single-shot grasp-

ing is investigated; secondly, the effectiveness of grasping

is evaluated by counting the required number of shots for

completing a successful grasping.

10Gabriel Peyre’s toolbox is used in the implementation of this
work for calculating Geodesic distance between two surface points:
http//www.mathworks.co.uk/matlabcentral/fileexchange/6110-toolbox-fast-
marching

11From practical experience, the Coeffspring is set as 1.10 in the
experiments of this work.

12In order to enhance the success rate of motion planing, if the flattening
action is towards left, then left arm is employed; otherwise, right arm is
employed.

Algorithm 2 The Pose Exploration Algorithm for Planing

Dual-Arms Grasping.

In: The direction interval is dI . The maximum numbers of

exploration in each side NE .

Out: The final planable grasping directions of two arms

dL, dR.

Compute the ideal grasping directions DL, DR.

if DL, DR is planable then

dL = DL, dR = DR;

return dL, dR
end if

Set the minimal whole error of two arms emin = ∞
for dl = 0; dl 6 dI ×NE ; dl = dl + dI do

for dr = 0; dr 6 dI ×NE ; dr = dr + dI do

Compute the error of left arm and right arm, el =

dl/dI , er = dr/dI ;

Compute the whole error elr = el × er;

if dl, dr is planable and elr < emin then

dL = dl; dR = dr; emin = elr;

end if

end for

end for

return dL, dR

1) Single-Shot Grasping Experiment

In the first grasping experiment, the grasping performance

among five categories including t-shirts, shirts, sweaters,

jeans and jackets are tested. Each category has three items

of clothing, and 20 grasping experiments are tested on each

item of clothing (in total 300 experiments). In each grasping

experiment, the selected item of clothing is initialized to an

arbitrary configuration by grasping and dropping it on the

table. A successful grasping case means that: the gripper

is moved to the position indicated by the visual feature;

the grasping pose fits the shape of the region to grasp; and

the clothing is fetched up. Since this work is focused on

visual perception of grasping rather than kinematics, in these

experiments, the flatness-priority grasping is carried out first.

If the inverse-kinematics cannot be solved, the height-priority

strategy is then applied (introduced in Section V-A3).

The experimental results of the first grasping experiment

are shown in Table 1. Overall, the grasping success rate

varies from 76.7% to 93.3% on different types of cloth-

ing. This difference can be attributed into the difference of

clothes materials. In other words, the thickness and stiffness

variation of clothes’ materials brings different challenges to

grasping. Specifically, the sweaters and t-shirts performed

the best (93.3%,90%) while jeans and shirts obtained the

lowest scores (78.3%,76.7%). The reason is two-fold: firstly,

the more stiff the clothing material is, the more difficult

the grasping is; and also, the more wrinkles the clothing

configuration has, the easier the grasping is. On average,

the proposed method is able to achieve 84.7% success rate
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TABLE 1. The grasping success rate on different types of clothing.

Successful Rate t-shirts shirts sweaters jeans jackets average
categories 90.0% 78.3% 93.3% 76.7% 85.0% 84.7%
items 95%|85%|90% 70%|80%|85% 95%|95%|90% 70%|75%|85% 80%|95%|80% –

TABLE 2. The required number of grasping shots for a successful grasping on different types of clothing.

Number of Shots t-shirts shirts sweaters jeans jackets average
categories 1.1 1.23 1.1 1.27 1.17 1.17
items 1.0|1.2|1.1 1.2|1.2|1.3 1.1|1.1|1.1 1.4|1.3|1.1 1.1|1.1| 1.3 –

among the five categories of clothing. In addition, the grasp-

ing performance on each item of clothing is also shown in the

table. All 15 items of test clothing can achieve at least 70%

successful grasping rate.

2) Multiple-Shot Grasping Experiment

Apart from the single-shot grasping success rate, the other

criterion required to be evaluated is the number of trails for

each completed grasping. The latter allowed us to demon-

strate that our visual architecture and extracted features is

able to handle difficult configurations13. In our implementa-

tion, the proposed grasping feature provides a ranked array

of grasping candidates, then the robot attempts to grasp them

sequentiality until the grasping is completed successfully. In

order to acquire the grasping status, tactile sensors are used

to detect whether the gripper is holding the garment.

Experimental results are shown in Table 2, in which 150

successful graspings are completed (10 experiments on each

item of clothing) and 1.17 trails are required for each suc-

cessful grasping on average. As shown in the table, similarly

to the first grasping experiments, stiff clothes such as jeans

and shirts require more grasping trails (1.27 and 1.23 times,

respectively). The robot requires the least number of grasping

trails on sweaters and t-shirts (1.1 and 1.1 times, respec-

tively). The deviation between different items of clothing

is small; the required number of trails ranges from 1.0 to

1.4 among all of the items of clothing. Among these 150

successful graspings, only 1 grasping is completed after 4

attempts, 3 graspings after 3 attempts, 17 graspings after 2

attempts, and the remaining 129 graspings are completed on

the first attempt.

Overall, the experimental results of the proposed grasping

method demonstrate a reliable grasping performance in terms

of its grasping success rate (84.7%) and its effectiveness of

grasping difficult configurations (1.17 trails on average).

B. GARMENT FLATTENING EXPERIMENTS

This section evaluates the performance of the proposed visual

perception architecture on localising and quantifying wrin-

kles, and the integrated autonomous dual-arm flattening. This

evaluation comprises three different experiments. Firstly, a

benchmark flattening experiment comprising eight tasks is

13Difficult configurations means those without graspable positions. They
often appear in clothes made of stiff fabric; e.g. shirt and jeans.

established to verify the performance and reliability for flat-

tening a single wrinkle using dual-arm planning (Section

VI-B1). While, in Section VI-B2, the second experiment

demonstrates the performance of the proposed approach

while flattening a highly wrinkled garment, comparing our

robot stereo head system with standard Kinect-like cameras.

Finally, Section VI-B3 investigates the adaptability of the

proposed flattening approach on different types of clothing,

in which the performance of flattening towels, t-shirts and

shorts are evaluated and compared.

The proposed visual perception architecture is able to

detect wrinkles that are barely discernible to human eyes

unless close inspection on the garment is carried out. As it

is not necessary to flatten these wrinkles, a halting criterion

is therefore proposed, which scores the amount of ‘flatness’

based on the amount of the pulling distance computed in Eq.

13. In these experiments, if the flattening distances inferred

by the detected wrinkles are less than 0.5 cm (barely percep-

tible), the garment is considered to be flattened14.

1) Benchmark Flattening

The aim of the first experiment is to evaluate the performance

of the proposed flattening method under pre-defined single

wrinkle configurations as well as the dual-arm planning per-

formance for flattening in different directions. For this pur-

pose, eight benchmark flattening experiments are performed.

As shown in Fig. 9, in each instance there is one salient

wrinkle distributed in the range of 45 degrees to -45 degrees

(from the robot’s view). In order to obtain a stable evaluation,

each experiment is repeated 5 times, and results are shown in

Table 3.

It can be deduced from Table 3 that the proposed flattening

approach is able to flatten these eight benchmark experiments

with only one iteration. Moreover, the success rate for dual-

arm planning is 85%, where the robot successfully grasps the

edge(s) of the garment in all of these experiments. Exper-

iment 5 shows a failed case while using both arms; this is

because the robot reaches the limitation of its joints and the

inverse kinematic planner adopted.

14This value is obtained by averaging manually flattened garment exam-
ples performed by a human user.
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TABLE 3. The Required Number of Iterations (RNI) in the experiments.

Benchmark Experiments exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 average
RNI 1 1 1 1 1 1 1 1 1
Dual-Arm Success Rate 100% 100% 80% 100% 0% 100% 100% 100% 85%
Grasping Success Rate 100% 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 4. The Required Number of Iterations (RNI) for flattening in highly wrinkled experiments. See text for a detailed description.

Flattening Experi-
ments

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 exp10 AVE STD Dual-Arm
Success

Dual-Arm (RH) 4(4) 5(4) 6(4) 5(4) 4(3) 5(3) 4(2) 5(2) 3(2) 6(3) 4.7(3.1) 0.95 65.9%
Dual-Arm (Xtion) 7(4) 8(4) 7(3) 12(4) 8(4) 13(7) 11(3) 10(5) 9(5) 10(5) 9.5(4.4) 2.07 46.3%
Single-Arm (RH) 7 12 5 8 7 7 12 14 8 6 8.6 2.99 -
Single-Arm (Xtion) 10 12 17 11 12 19 13 12 11 14 13.1 2.85 -

TABLE 5. The Required Numbers of Iterations (RNI) for flattening different types of garments.

RNI of tasks exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 exp10 AVE STD
flattening towels 4 5 6 5 4 5 4 5 3 6 4.7 0.95
flattening t-shirt 5 7 12 11 7 8 12 9 12 6 8.9 2.68
flattening pants(shorts) 11 10 5 14 4 3 4 3 2 7 6.3 4.05

2) Highly-Wrinkled Towel Flattening

In order to investigate the contribution of the proposed

dual-arm approach in terms of autonomous flattening of

highly wrinkled garments, the flattening performance be-

tween single-arm and dual-arm strategies is compared. Simi-

larly, in order to demonstrate the effectiveness of high-quality

sensing capabilities for the dexterous clothes manipulation, a

Kinect-like sensor is used as the baseline method (here the

ASUS Xtion PRO15 is used. We did not choose Kinect v1 or

v2 due to the hardware configuration of our manipulator).

Therefore, for each experiment, a square towel is randomly

wrinkled - wrinkles are distributed in different directions

without following an order. Then different flattening strate-

gies are applied (single-arm or dual-arm) with either the

robot stereo head or Xtion. For comparison, 4 groups of

experiments are carried out: (1) dual-arm using robot head,

(2) single-arm using robot head, (3) dual-arm using Xtion

and (4) single-arm using Xtion. To measure the overall

performance and reliability, 10 experiments are conducted

for each group of experiment and the required number of

iterations (RNI) is counted as shown in Table 4. In Table 4,

each column represents the experiment index for each of the

groups proposed above. Values in parentheses show the RNI

where dual-arm planning was successful while the rest of the

values show the RNI for each experiment.

As shown in Table 4, the average RNI for dual-arm flatten-

ing using robot head is 4.7 (achieving 65.9% arm planning

success rate) while single-arm is 8.6. The average RNI for

dual-arm flattening using Xtion is 9.5 (achieving 46.3% dual-

arm planning success rate), while single-arm is 13.1. This

result shows that a dual-arm strategy achieves a much more

efficient performance on flattening than a signal-arm strategy.

The standard deviation (STD) of each group of experiments

15https : //www.asus.com/3D − Sensor/XtionPROLIV E/

is also calculated, where the STD for dual-arm flattening

is 0.95 (using robot head) and 2.07 (using Xtion) while

for single-arm is 2.99 (using robot head) and 2.85 (using

Xtion). As expected, a dual-arm strategy is not only more

efficient but also more stable than a single-arm strategy.

Likewise, from the sensors’ perspective, the robot is able to

complete a flattening task successfully within 4.7 iterations

(dual-arm case) using the stereo robot head as opposed to

9.5 iterations while using Xtion. Overall, the our robot head

clearly outperforms the Xtion in both dual-arm flattening and

single-arm flattening experiments.

The results described above demonstrate that the dual-arm

strategy is more efficient in flattening long wrinkles than

the single-arm because the latter approach usually breaks

long wrinkles into two short wrinkles. Likewise, compar-

ing the our stereo head and Xtion, as observed during the

experiments, it is difficult to quantify the wrinkles and also

estimate the accurate flattening displacement (especially for

small wrinkles) from the Xtion depth data because the depth

map is noisier than the robot head (the high frequency noise

is usually more than 0.5cm). Furthermore, long wrinkles

captured by Xtion are often split into two small wrinkles due

to the poor quality of the depth map, which in turn results

in more flattening iterations (the short detected wrinkles are

likely to have a lower dual-arm planing success rate).

3) Flattening Different Types of Garments

Since the proposed flattening approach has no constraints on

the shape of the garment, this section evaluates the perfor-

mance of this method on flattening other types of clothing,

namely t-shirts and shorts. Ten flattening experiments are

performed for each type of clothing. Examples are shown in

Fig. 12 and Fig. 13, respectively.

The RNIs of different clothes categories are shown in
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FIGURE 9. Eight benchmark experiments on a single wrinkle using dual-arm

planning. Each row depicts an experiment, in which the left images show the

stage before flattening; middle, during flattening; and right, after flattening.

Table 5, and here the towel flattening performance is pre-

sented as the baseline performance. As shown in the table,

towels require an average of only 4.7 iterations to complete

flattening. Shorts need more iterations on average(6.3) and

t-shirts require still more (8.9). The reason is that towels

are of the simplest shape among these three categories of

clothing, while the shape of shorts is more complicated and

that of t-shirts is the most complex. This experimental result

demonstrates that the proposed approach is able to flatten

different categories of clothing and that the RNI of flattening

clothing is propagating to the complexities of the clothing’s

2D topological shape.

C. SUMMARY

The proposed autonomous grasping is evaluated in both

single-trial and interactive-trial experiments, showing robust-

ness among the clothes types. And the validation of the

reported autonomous flattening behaviours has been under-

taken and has demonstrated that dual-arm flattening requires

significantly fewer manipulation iterations than single-arm

flattening. The experimental results also indicate that the dex-

terous clothes operation (such as flattening) is significantly

influenced by the quality of the RGB-D sensor − using a

customized off-the-shelf high-resolution stereo-head outper-

forms the commercial low-resolution Kinect-like cameras in

terms of required number of flattening iterations (RNIs).

It takes approximately 50 seconds to grasp a clothing or

apply a flattening iteration. This is mainly because we have to

set the speed limit of the robot to 10% of the maximum speed

for security reasons. Further more, considering the proposed

vision architecture is not GPU parallelised, there exits a large

room to improve the efficiency in the future.

VII. CONCLUSION

In this paper, a novel visual perception architecture is pro-

posed for clothes configuration parsing, and this architecture

is integrated with an active stereo vision system and dual-arm

CloPeMa robot to demonstrate dexterous garment grasping

and flattening. The proposed approach is based on generic 3D

surface analysis, and tend to fully understand the landmark

structures distributed on the clothing surface, thereby demon-

strating the adaptability for multiple visually-guided clothes

manipulation tasks. From the experimental validation, the

conclusions are: firstly, the proposed visual perception archi-

tecture is able to parse the various garment configurations by

detecting and quantifying structures i.e. grasping triplets and

wrinkles; secondly, the stereo robot head used in this research

outperforms Kinect-like depth sensors in terms of dexterous

visually-guided garment manipulation; finally, the proposed

dual-arm flattening strategy greatly improves garment ma-

nipulation efficiency as compared to the single-arm strategy.

The integrated stereo head, visual perception architecture

and visually-guided manipulation systems demonstrate the

effectiveness of grasping and flattening different types of

garments. On the other hand, the integrated autonomous

flattening employs the perception-manipulation cycles, and

consequently the clothing configuration is modified towards

the flattening goal.

It is worth noting that our proposed vision architecture

has the potential to be extended to more clothes perception

and manipulation tasks. We has extend the proposed visual

features to clothes recognition and sorting task [6], [7]. The

future work will investigate the possibility of the proposed

architecture for clothes on-table unfolding and folding. More

invitigation will be done on depth sensing using stereo-

based RGBD sensors e.g. Ensenso camera. Moreover, we

use 16 megapixel image for stereo matching for a better

accuracy and the vision architecture is implemented in CPU

programming, thereby a close-loop manipulation with a real-
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FIGURE 10. A demonstration of flattening an item of highly wrinkled towel. Each column depicts one iteration in the experiment. The top row depicts the towel

state before the iteration; middle row, the detected largest wrinkles and the inferred forces; bottom row, the towel state after the iteration. On the third iteration,

dual-arm planing demonstrated infeasible to execute, so a single-arm manoeuvre is formulated and applied.

FIGURE 11. An example of flattening a T-shirt. As it is observed, the proposed flattening approach is able to adapt to any shape of garment, the robot can grasp

the sleeves and stretch the wrinkles successfully.

FIGURE 12. Ten experiments of flattening t-shirts. Each column demonstrates a flattening experiment, in which the upper image refers to the initial configuration

and the lower final configuration.
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FIGURE 13. Ten experiments of flattening shorts. Each column demonstrates a flattening experiment, in which the upper image refers to the initial configuration

and the lower final configuration.

time perception is not achieved. In the future work, we will

investigate the trade-off between performance and running

time and reimplement the whole pipeline with GPU paral-

lelisation.
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[23] J. Stria, D. Průša, V. Hlaváč, L. Wagner, V. Petrík, P. Krsek, and V. Smutný,

“Garment perception and its folding using a dual-arm robot,” in Proc. In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE,

9 2014, pp. 61–67.

[24] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable

objects using predictive simulation and trajectory optimization,” in Intel-

ligent Robots and Systems (IROS), 2015 IEEE/RSJ International Confer-

ence on. IEEE, 2015, pp. 6000–6006.

[25] S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Parametrized shape models

for clothing,” in Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 4861–4868.

[26] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos,

L. Wagner, V. Hlavac, T. Kim, and S. Malassiotis, “Folding clothes

autonomously: A complete pipeline,” IEEE Transactions on Robotics,

vol. 32, no. 6, pp. 1461–1478, Dec 2016.

[27] B. Willimon, S. Birchfleld, and I. Walker, “Classification of clothing using

interactive perception,” in Robotics and Automation (ICRA), 2011 IEEE

International Conference on. IEEE, 2011, pp. 1862–1868.

[28] A. Saxena, L. L. Wong, and A. Y. Ng, “Learning grasp strategies with

partial shape information.” in AAAI, vol. 3, no. 2, 2008, pp. 1491–1494.

16 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[29] A. Saxena, J. Driemeyer, and A. Y. Ng, “Learning 3-d object orientation

from images,” in Robotics and Automation, 2009. ICRA’09. IEEE Inter-

national Conference on. IEEE, 2009, pp. 794–800.

[30] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic

grasps,” vol. 34, no. 4-5. SAGE Publications, 2015, pp. 705–724.

[31] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-net

3.0: Computing robust robot suction grasp targets in point clouds using a

new analytic model and deep learning,” arXiv preprint arXiv:1709.06670,

2017.

[32] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,

and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with

synthetic point clouds and analytic grasp metrics,” 2017.

[33] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative

matching for 6d pose estimation,” in European Conference Computer

Vision (ECCV), 2018.

[34] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-

tional neural network for 6d object pose estimation in cluttered scenes,”

Robotics: Science and Systems (RSS), 2018.

[35] S. Levine, P. P. Sampedro, A. Krizhevsky, J. Ibarz, and D. Quillen,

“Learning hand-eye coordination for robotic grasping with deep

learning and large-scale data collection,” 2017. [Online]. Available:

https://drive.google.com/open?id=0B0mFoBMu8f8BaHYzOXZMdzVOalU

[36] J. Mahler and K. Goldberg, “Learning deep policies for robot bin picking

by simulating robust grasping sequences,” in Proceedings of the 1st Annual

Conference on Robot Learning, ser. Proceedings of Machine Learning

Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78.

PMLR, 13–15 Nov 2017, pp. 515–524.

[37] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Finddd: A fast

3d descriptor to characterize textiles for robot manipulation,” in IROS

2013. IEEE, 2013, pp. 824–830.

[38] R. Y. Tsai and R. K. Lenz, “Real time versatile robotics hand/eye cal-

ibration using 3d machine vision,” in Robotics and Automation, 1988.

Proceedings., 1988 IEEE International Conference on. IEEE, 1988, pp.

554–561.

[39] ——, “A new technique for fully autonomous and efficient 3d robotics

hand/eye calibration,” Robotics and Automation, IEEE Transactions on,

vol. 5, no. 3, pp. 345–358, 1989.

[40] J. Siebert and C. Urquhart, “C3d: a novel vision-based 3-d data acquisi-

tion system,” in Image Processing for Broadcast and Video Production.

Springer, 1995, pp. 170–180.

[41] J. Zhengping, “On the multi-scale iconic representation for low-level com-

puter vision systems,” Ph.D. dissertation, PhD thesis, the Turing Institute

and the University of Strathclyde, 1988.

[42] P. Cockshott, S. Oehler, T. Xu, P. Siebert, and G. Aragon-Camarasa, “A

parallel stereo vision algorithm,” in Many-Core Applications Research

Community Symposium 2012, 2012.
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