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Chapter 1: Introduction

In locomotive path planning, many methods exist for trajectory optimization. The

focus of these optimizers is to introduce a precise, fast and easy-to-implement

method finding the system’s optimal trajectory according to a particular metric.

[3, 4, 5, 6]. However, in these optimizers the trajectory integration is treated as a

black box and don’t provide an intuitive understanding on how the movement are

related to the system’s mechanical features including mass, mass distribution, and

moment of inertia.

To understand the movement characteristics of the system, we need to know

the natural dynamic path of that system. The natural dynamic path is important

because a robot uses the least energy along that path. The geodesic illustrates the

geometric structure of the natural dynamic path which is defined as the straightest

path. The shape of the natural dynamic path depends on the system’s inertia

where inertia is the resistance of any physical objects to any change of its current

state (including change in speed and its direction). The ultimate goal in this

research is to use the concepts of inertia and geodesic to provide an intuitive

understanding of a robot’s motion by creating a link between its physical motion

and the fundamental mathematical structure [7]. Intuition about the physics of

the system can help the user quickly design a path or gait for the robot in a

short time. Intuition about the physics also helps the user to understand the
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Figure 1.1: Proposed framework provides an intuitive understanding between
mathematical structure and the robot’s motion for inertial systems, by defining
the complex equations in fewer and meaningful terms.

relationship between system’s movement characteristics and mechanical properties

of the system. Furthermore, it provides the understanding of the solution structure

of the optimal trajectory.

This thesis approach provides an advantage over the state-of-the-art method

for trajectory generation. Specifically, the current method to understand a system

is to change a variable in the input of optimizer, compute the system’s equations,

evaluate the outputs, and repeat this process over and over. [8, 9, 10, 11, 12]. This

process is tedious and computationally expensive and won’t provide an complete

view of the system’s movement. Unlike existing methods in motion planning,

the focus of our proposed method is to provide an intuition of the relationship

between the geometry and inertia of the system and the optimum way of moving.

Therefore, the user can design a trajectory and observe the effectiveness of different

gait patterns without integrating the complete dynamics (Fig. 1.1).

Overall, prior works including our own work have only considered trajectory

generation for non-inertial systems and that is only for systems called moving base
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system in viscous environments [13]. Specifically, in the moving base systems,

the robot’s locations in state space don’t matter. In the fixed base systems, the

robots location is fixed and the end effector’s trajectory between two points is

important (manipulator arms robots). Part of the reason they did not consider

the robots with a fixed base is because, their focus was on systems interacting in

drag dominated environment due to the simplicity of equations. Therefore, there

have been limited works explicitly dealing with inertial systems. This thesis goes

beyond the state-of-the-art by considering the inertia for moving base and fixed

base systems.

In this context, there are some unanswered questions that this thesis will focus on:

• How does the optimal curve for inertial systems depend on a system’s geom-

etry? How is it different from systems in viscous environments?

• How does a system with a fixed base move when the end effector is con-

strained to move between two points? What is the structure for the optimal

solution?

• How does the geometry and inertia of a system help us to predict a bounce

in impact dynamics problems?

• How does the system geometry in jumping robots channel the fast energy

release in a desired direction?

This thesis addresses these questions by introducing a mathematical framework

for gaining intuition of system’s motion with two key features. The first feature
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is that the framework should work regardless of the robot’s morphology. The

second feature is that it should clarify the relationship between the mathematical

structure and the physical motion of a robot. We argue that the second aspect is

crucial and helps the user generate a trajectory according to the need.

The approach to achieve these features will include three steps. The first step

is to develop insight of what inertia means for mechanical systems. Specifically

while, we have a good understanding of how inertia behaves on a point mass object

and can predict its motion, when the object is more complex such as a robot, our

understanding is much more limited. The second step is to develop the concept of

a minimum energy path using the geodesic curvature which provides a physically

meaningful interpretation of the natural dynamic path with respect to the inertia.

The third step is to use the concept of the geodesic path and inertia to generate

a minimum torque-squared path which provides an intuitive understanding of the

minimum torque with respect to the acceleration and curvature of the path. The

scope of the thesis is to develop this framework and focus on four classes of systems:

robotics arms, crawling robots, casting manipulators and jumping robots. First,

we investigate the optimal trajectory solution for robotics arm in which one end of

the robot is fixed and only the trajectory of the end-effector is important. Second,

we consider the locomotion of the systems that use the environment to create

reaction forces to push their body forward such as high Reynolds snake robots

where the effect of inertia is important. Then we consider the casting manipulator

robots that can control the end-effector by changing end-effector momentum by

the tether attached to it. Finally, we consider systems with fast energy release such
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as jumping robots in which jumping is an efficient locomotion over rough terrain.

It can be also considered as launching at a target.

The main contributions of this work are listed below:

• Contribution 1: Developed an inertia based insight that describes the most

efficient gaits and trajectories of the system.

• Contribution 2: Developed an inertia-based geometric motion planning

gait optimizer for inertial crawling systems such as the floating snake.

• Contribution 3: Developed a framework for impact controllability based

on systems geometry and inertia.

• Contribution 4: Developed a model prediction framework for impact dy-

namic on flying object.

• Contribution 5: Developed an inertia-based geometric motion planning

tool for the class of jumping robots with fast energy release such as jumping

spider.

The structure of this dissertation is as follows:

• Chapter 2 : The structure of natural dynamic path from a geometric me-

chanics point of view as well as the effect of inertia on robot’s movement are

considered.

• Chapter 3 : A trajectory motion planning for fix based systems such as ma-

nipulator’s arms are considered. The torque equation is derived as a function
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of curvature and acceleration to be related to the geodesic path to create a

pattern for optimal trajectories between two given points.

• Chapter 4 : The geometric motion planning from the last chapter is extended

to be suitable for moving based systems where the displacement of the robot

is also important.

• Chapter 5 : The concept of inertia and natural dynamic is used to develop a

framework for bounce prediction in impact dynamics problems.

• Chapter 6 : The effect of inertia and geometry of a jumping spider is studied

for the targeted jump.

• Chapter 7 : Snake robot locomotion over granular surfaces via an empirical-

geometric approach that is amenable to analysis and optimization is consid-

ered.
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Chapter 2: Background

This chapter covers the concept of passive dynamics path from a geometric me-

chanics point of view and geometrically illustrates the terms in dynamic equations.

We use the two fundamental concepts in differential geometry to gain insight into

the underlying motion of the system: geodesics and metric fields. The geodesic

illustrates the robots geometric structure of the natural dynamic path which is

defined as the straightest path. The metric field in mechanical systems is obtained

from the system’s inertia which illustrates where it is easier to move in param-

eterized space. Using these concepts, we develop a cost function that describes

the natural dynamic path in meaningful mathematical terms which can be easily

visualized.

2.1 Passive-Dynamic Path

The standard equations of motion for a system with inertial dynamics are

τ = M(q)q̈ + C(q̇, q)q̇, (2.1)

where M is the inertia matrix, q is the vector of generalized coordinates, and C

is the centrifugal and coriolis matrix. The natural dynamic trajectories for this

system are those for which no torque is applied to the system, and the configuration
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evolves along the differential equation

q̈ = M(q)−1C(q̇, q)q̇ (2.2)

for given initial conditions.

If the configuration space is shaped into a surface such that a point mass

moving on the surface has the same kinetic energy as the system moving with the

corresponding parameter trajectory, then the torque-free motions are the geodesics

of the surface, moving with constant speed and without “turning” except to follow

the surface. The geometry of this surface is defined by the mass matrix M (which

serves as its metric tensor), with the curvature of the surface encoded in the partial

derivatives of M with respect to the configuration variables.

Geodesics are the generalization of Euclidean straight lines to arbitrarily shaped

manifolds (spaces which may have intrinsic curvature) and are defined as the

straightest paths on these manifolds, traversed at constant speed. Additionally,

the paths traced out by geodesics are typically the shortest paths connecting points

on the manifold as measured by distance along the surface.1

By the least action principle, the straightest path minimizes the line integral

of kinetic energy over the path [14]. For instance, given a unit point mass object

moving on the surface, the kinetic energy for this object can be written as

1More completely, geodesics are local extrema of the length of paths connecting two points.
In some cases, e.g., the path that goes the “wrong way” around the great circle on the globe, a
geodesic can be locally the longest path connecting two points.
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T =
1

2

∥∥∥∥∂γ∂t
∥∥∥∥2 (2.3)

where ∂γ
∂t

is the velocity of the particle along the path. Minimizing the integral of

this kinetic energy over the duration of the trajectory results in movement with a

constant speed (because the cost penalty for moving faster than average is greater

than the benefit for moving slower than average), which means no tangential forces

are applied to the system. If the particle moves on other paths other than the

straight path, the path will be longer than the straightest path (shortest path)

which requires higher speed to complete the path in a given time. This minimum

kinetic energy path is the geodesic path.

To find the geodesic path, we define the energy of the γ(t) curve [15], ε, as the

time-integral of the system’s kinetic energy,

ε =

ˆ t

0

∥∥∥∥∂γ∂t
∥∥∥∥2 dt =

ˆ t

0

α̇TMα̇2dt, (2.4)

whereM is the metric tensor representing the manifold’s Riemannian metric, and

α̇ is the velocity in local coordinate, then minimize this energy over candidate

paths γ. This minimization is equivalent to minimizing the pathlength,

s =

ˆ t

0

∥∥∥∥∂γ∂t
∥∥∥∥ dt =

ˆ t

0

√
α̇TMα̇dt =

ˆ
γ

√
dαTMdα (2.5)

and selecting a constant-speed traversal of the path, but the energy equation is gen-

erally preferable as an optimization criterion, because its quadratic nature makes



10

it more robust in variational formulations [15].

The curve resulting from minimizing (2.4) satisfies [15] the equation

d2αl
dt2
−
∑
i,j

Γijl
dαi
dt

dαj
dt

= 0, (2.6)

where the Γijl terms are called Christoffel symbols and are given by the formula

Γijl =
1

2

∑
k

(M−1)lk

{
∂Mjk

∂αi
+
∂Mik

∂αj
− ∂Mij

∂αk

}
. (2.7)

Christoffel symbols are the derivatives of the Riemannian metric, capturing how

the metric changes with respect to the parameterized coordinates. The first term

in equation (2.9) corresponds to the curvature of the trajectory in parameter space

and the second term corresponds to the curvature of the manifold. A path is a

geodesic when the parameter curvature matches the manifold curvature, such that

the difference between them is zero. In the case that the object is a point-mass the

second term in equation (2.9) is zero, indicates that the manifold is a flat surface.

2.2 Inertial Objective Function for a Point Mass Object

For a point mass system, the cost of the system to move depends on the accel-

eration of the system over the path. The acceleration composed of two different

parts namely as tangential acceleration and normal acceleration. The tangential

acceleration corresponds to speed change and normal acceleration corresponds to

direction change over the path. Therefore, the cost can be formulated as a function
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of curvature and acceleration to be related to the geodesic concept:

ICF =

ˆ
((κv2)2 + a2t )dt. (2.8)

where κ is the curvature of the path, v is the speed, and at is the tangential

acceleration over the trajectory. Since the object is point mass and surface is flat,

the equation (2.9) can be simplified to

d2αl
dt2

= 0. (2.9)

This equation states that the manifold is flat and the geodesics are straight

lines.

A simple example for such a system is racetrack which consists of two curved

parts and two straight parts as illustrated in Fig. 2.1 (a). When a point mass

object is moving on a racetrack, the total cost is the cost associated for staying

in semicircle parts as well as the cost for changing the speed which can occur in

transition points between the semi-circle and straight parts. Fig. 2.1 (b) shows

the instantaneous cost is pathlength which results in constant speed with zero

acceleration. According to the definition of inertial cost, the optimal solution for

moving over racetrack occurs when the object is moving faster in straight parts

and slower in parts with curvature (Fig. 2.1 (c)) which results in the reduction

of overall cost. As it is shown in Fig. 2.1 (c) the optimal solution has spiky cost

at transition points. That is because it switches abruptly between two states.

Mathematically, there might be no problems, but in reality it causes oscillating
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Figure 2.1: (a) shows a racetrack. (b) the cost is considered as path-length which
results in constant speed and zero acceleration. (c) the cost is considered as a com-
bination of normal and tangential acceleration. (d) is the combination of squared
normal and tangential acceleration.

error around desired set point value. Furthermore, this abrupt changes in speed,

draw high electrical current which results in overheating the motor that leads to

metal fatigue or other wear and tear effects.

To fix this problem we consider the cost as squared cost in which it generates

acceleration over a distributed amount of time rather than only a point which

results in removing the spikes in the optimal solution (Fig. 2.1 (d)).

2.3 Inertial Objective Function for a Multi-body System

When the object is not a point mass, the manifold is not flat but rather it has a

curvature. To take the curvature of the manifold into the account, the Riemannian

metric is used to capture the curvature.
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For such systems, the Coriolis and centripetal forces exist and their effects are

captured by the curvature of the space. Hence, the straight line between two points

doesn’t look straight since it is defined over the surface of a manifold. For instance,

as illustrated in Fig. 4.2 (a) and (b) the straightest path on the globe is not the

straight line in the latitude-longitude map due to the curvature of the globe. To

deal with curve surface, it is required to understand the Riemannian metric.

A distance metric on a configuration space is a function that captures the

distance between a pair of configurations as a single-valued real number [16]. On

a Riemannian manifold, the curve connecting two points locally has the smallest

length. The local distance ds is referred to as the line element or unit infinitesimal

length element for the manifold, and its square is the first fundamental form of

the space. This form can be represented quadratically as

ds2 = dα2
1 + dα2

2 =

[
dα1 dα2

] M︷ ︸︸ ︷1 0

0 1


dα1

dα2

 , (2.10)

where M is the metric tensor representing the manifolds Riemannian metric and

dα1 and dα2 are elements in parameterized space. The identity metric indicates

that this is a Euclidean distance and only considers distances on a flat manifold.

However, to consider the motion on a curved manifold, another metric is required.

In other words, a metric is a way to put weights in the path-length. For instance,

the fundamental form of distances and metric tensor on a unit sphere parameterized
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by longitude α1 and latitude α2 are:

ds2 =

[
dα1 dα2

] M︷ ︸︸ ︷cos2(α2) 0

0 1


dα1

dα2

 , (2.11)

where this metric captures the tapering of the sphere at the poles. This explains

why the straightest path in the globe doesn’t look straight in the chart and vice

versa in Fig. 4.2 (a) and (b) which is because of the metric. To represent the metric

in configuration space the ellipses are utilized [17]. The ellipses demonstrate how

the manifold is stretched in parameterized space. This metric was appeared in

equation (2.9).

Since the surface for multi-body systems has curvature, the two terms at and

an in equation (2.8) are defined on the manifold. To find the normal and tangential

accelerations on the manifold we start by finding the relationship between joint

velocities and the current tangential velocity of the point-mass on the manifold.

This relationship is given by

vt
vn

 = J

α̇1

α̇2

 , (2.12)

where α̇1 and α̇2 are joint velocities, vt and vn are tangential and normal velocities

on the manifold (the tangential velocity is defined as the rate of change of metric

weighted path-length. The normal velocity is a basis vector in tangent space of the

manifold which is orthonormal to the tangential velocity.) and J is the Jacobian
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that maps joint velocities to velocities on the manifold.2 To find the Jacobian, we

take the following steps:

Because the motion of the system for a given α̇ is by definition tangent to

the geodesic the system is instantaneously following, the Jacobian into tangential-

normal coordinates must map the α̇ motion to a purely-tangential motion with

matched energy, satisfying

2
√
T

0


‖

= J

α̇1

α̇2


‖

, (2.13)

where T is the kinetic energy of the particle, α̇1 and α̇2 are joint velocities at the

current time.

To find the complete Jacobian, we use a Gram-Schmidt process to identify a

velocity α̇⊥ that is perpendicular to α̇‖ with respect to the mass matrix, such that

its output is purely normal in the tangential-normal coordinates,

0

1


⊥

= J

α̇1

α̇2


⊥

(2.14)

Combining (2.13) and (2.14) results in a relationship

2
√
T 0

0 1

 = J

α̇1‖ α̇1⊥

α̇2‖ α̇2⊥

 (2.15)

2It should be noted that, the JTJ forms the metric (M) and many Js exist that satisfy this.
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from which the Jacobian into tangential-normal coordinates can be calculated as

J =

2
√
T 0

0 1


α̇1‖ α̇1⊥

α̇2‖ α̇2⊥


−1

. (2.16)

Multiplying J from (5.16) to the geodesic equation (2.9), we can write the geodesic

equation in the form of tangential and normal acceleration on the manifold.

at
an

 = J


α̈1

α̈2

−
∑i,j Γij1

dαi
dt

dαj
dt∑

i,j Γij2
dαi
dt

dαj
dt


 (2.17)

Now we can form the inertial cost function as

ICF =

ˆ [
at κgv

2

] at

κgv
2

dt (2.18)

where the integrand is a local expression of the geodesic acceleration in (2.9) with

κg the geodesic curvature of the path at each time, v the speed at those times, and

at the tangential acceleration at those times. Equation (2.18) states how far the

path is from the natural dynamic path, including both the curvature and tangential

acceleration. If an object moves along the geodesic path with constant speed, it

has zero normal and tangential acceleration and as a result, experiences zero forces.

This equation has a similar analogy to the strain energy of an elastic beam. It

can be thought as an elastic rod that is bent between two points. It will straighten

to reduce the curvature and contract axially when it is curved in which is not

similar to a normal rod. The first term a2 corresponds to the beam’s tension



17

Figure 2.2: (a) shows the geodesic path in parameterized space (red curve). The
ellipse indicates that the sphere is stretched in both hemisphere when it is wrapped
up in plane coordinate (it shows moving in major axis direction is cheaper than mi-
nor axis one). (b) shows the geodesic line in embedded space. The red dashed line
indicates the great circle of the sphere. α1 and α2 are parameterized coordinates
in longitude and lateral directions respectively.

energy and the second term in the equation (κgv
2)2 corresponds to the beam’s

bending energy.

To illustrate the relationship of geodesics path and Riemannian metric in pa-

rameterized space we consider a sphere. Two arbitrary points on the surface of the

sphere and their corresponding points on the parametrized space coordinate frame

(α1 is longitude and α2 is latitude) are considered. We start with the straight line

between two points indicated with the dashed blue line to find the geodesic path.

As expected the line move toward the north pole where the ellipses are bigger in

one side as illustrated in Fig. 2.2 (a). The reason is the north and south hemisphere

of the globe are stretched in the chart so moving in those regions are easier. Also,

Fig. 2.2 (b) shows how the initial and final paths are on the sphere.
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Chapter 3: Geometric Motion planning for fixed based systems

3.1 Introduction

The natural dynamics of a mechanical linkage (such as a robot arm) follow the

geodesics of its inertia matrix. That is, if we take the linkage’s configuration space

as a manifold whose metric tensor is the generalized mass matrix with respect to

its joints, then the system’s free motion will be “straight lines at constant speed”

over this manifold, with the effects of Coriolis and centripetal forces captured by

the curvature of the space [18, 19, 20, 21]. For example, free motion of a point

mass over a sphere follows Great Circles at constant speed.

A logical extension of this principle, employed in works such as [22, 23, 24, 11], is

that least-effort start-stop trajectories1 between points on the configuration space

should lie along the images of those geodesics, overlaying them with an accelera-

tion/deceleration profile. Because geodesics are both the straightest and shortest

lines between points, such trajectories need no “steering” forces and require the

least acceleration/deceleration to cover the distance in a given time. For example,

the optimal start-stop paths of a thruster-driven system on a globe as shown in

Fig. 4.2(b), also trace the Great Arcs of the globe. Therefore, the presence of

acceleration/deceleration in the system only affects the speed, and not the path

followed.
1Minimizing the time integral of squared actuator forces.
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Figure 3.1: The shortest path on the globe (the geodesic) is not the straight line
on a latitude-longitude map (a), because the globe is curved (b). The geodesic
represents an optimal control path for moving a point-mass around the sphere
when input forces are applied tangent to the sphere (c, top), but not when they are
torques applied to a yaw-pitch mechanism at the center of the sphere (c, bottom).
The force-to-torque relationship which biases the optimal control path away from
the geodesic can be captured by a set of ellipses on the spherical surface (d),
in which accelerations in the major direction require less torque. These ellipses
are found by decomposing the system’s metric tensor M into JTJ , where J is
a Jacobian from the yaw-pitch coordinates to the sphere, and then everting the
metric into the form JJT .

In our work on robotic systems, however, we observed that torque-optimal

start-stop paths do not always (or even in general) trace out geodesics of the mass

matrix. As an example, consider a point mass attached to a lightweight linkage

(one leg taken from a Minitaur robot as illustrated in Fig. 3.2(a) [25]). Its natural

dynamics (the mass geodesic path) are for the mass to move in a straight line at

a constant speed in the direction of an initial velocity. Under the reasoning that
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Figure 3.2: Biased and standard geodesics for a parallel actuator. The Minitaur
leg (a) is a kite-shaped parallel actuator, to which we have added a large point
mass at the toe. The geodesic motions for a point mass moving in task space
are straight lines, and the biased geodesic trajectories are arches (b). The biased
geodesic trajectory requires significantly less torque from Motor 1 at the beginning
of the motion and from Motor 2 at the end of the trajectory (c), which reduces the
overall torque squared requirement by 1.6 because the torque-squared reduction at
the endpoints outweighs the additional torque required to curve the path near its
midpoint.

torque-optimal start-stop trajectories between two points should likewise follow

a straight line. Optimizing such trajectories, however, indicates that using the

“arched” trajectory in Fig. 3.2(b) traverses the distance at 60% the cost of the

best straight line acceleration profile over an equal time period.

What is missed in extending the geodesic concept from natural dynamics to

forced trajectories is how the system’s actuators project onto its configuration

manifold. In many circumstances, this projection means that it is more efficient
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for the system to take on some “steering” cost, by moving away from the geodesic,

in order to reach a region of configuration space where tangential acceleration

requires less actuator effort, for an overall reduced trajectory cost.

For example, if we consider a spherical pendulum actuated via a motorized

yaw-pitch gimble at the center instead of tangential forces at the surface of the

sphere, the yaw motor has more leverage when the pitch is large, and the optimal

start-stop path is drawn away from the great circles and toward the poles.

In the case of the Mintaur leg example, accelerating along the line requires the

motors to apply torques in opposite directions. Pulling the mass inward allows

one of the motors to “get out of the way” of the second motor (as seen in the

comparative behavior of Motor 1 in the left plot of Fig. 3.2. Therefore, the overall

torque squared cost decreases even though the total acceleration experienced by

the mass increases. A symmetry in system dynamic means that it is likewise better

in a torque-squared sense to decelerate while extending the leg even though this

path is both curved and longer; this is illustrated in Fig. 3.2 by the torque in Motor

2 becoming small at the end of the motion.

In this chapter, we used a notion of biased geodesic curvature derived in previous

chapter, which incorporates the projection of the actuators into the configuration

manifold (Fig. 3.2). This biased curvature geometrically captures the costs of

curving away from the current geodesic or accelerating along it in different parts

of the space. Minimizing this biased geodesic curvature over all paths between two

endpoints is equivalent to minimizing the torque-squared cost of motion between

them. Considering this biased curvature as the “strain energy” of the curve allows
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us to create “biased geodesic spline” that connects a set of waypoints with the least

torque cost. We demonstrate on the Minitaur leg that the biased geodesic motion

plan outperforms geodesic plans even in the presence of friction and absence of

feed-forward control.

3.2 Literature Review

Our analysis in this chapter draws on prior research efforts regarding geodesics as

optimal paths for humanoid robots, human arm dynamics, and minimum energy

splines in computer graphics.

3.2.1 Geodesics as Optimal Paths

In [18], the kinematic and dynamic properties of a mechanism are extracted from

from geometrical properties. To illustrate the geodesic nature of natural dynamic

paths, the surface whose metric is the inertia tensor was plotted together with the

natural paths of their mechanism. In [19, 20, 21] the geometric characteristics of

geodesics were used to find the optimal trajectory of robot manipulators, based

on the premise that the geodesic is the optimal kinetic energy gait. In [26], the

geodesic approach was used as an method for finding the energy efficient paths for

a humanoid robot. They showed that the geodesic path planning is more energy

optimized than spline interpolations in the parameter space. However, in the all

aforementioned works, changes in speed over the path were not taken into the
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account and the kinetic energy was considered constant.

3.2.2 Human Arm Dynamics

An important problem in human arm dynamics is understanding the fundamental

principles underlying the achievement of natural movements [27]. In order to

consider the problem associated with central nervous system in the control of multi-

joint movements, some researchers have focused on understanding the movement

control in human arms and the variables that are controlled during the movement

[28].

Biess et al. found that moving along the geodesic paths required less mus-

cular effort than any other candidate non-geodesic path [10, 11]. Biess et al. in

[10] conducted an empirical experiment on a robotic arm with different paths and

postures and observed that the arm path and arm posture are independent of

movement speed, suggesting that the geometric and temporal properties of move-

ments are decoupled. They hypothesized that the spatial properties are obtained

from the geodesic path in configuration space and the temporal characteristics are

determined by minimization of squared tangential jerk along the path. Further-

more, they found that the geodesic path requires less effort compared to the paths

calculated from minimum-total-jerk and minimum torque-change models.
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3.2.3 Minimum Energy Spline

A spline is most generally a “shortest/smoothest” path that is obtained by mini-

mizing bending/tension energy of a curve [29]. A Bezier curve is a type of spline

which is defined by control points, with applications in fields such as computer

graphics [30]. Motivated by the application of motion design, Ravani in [31] ex-

plored Bezier curves on Riemannian manifolds, and studied how the choice of

coordinates affects the behavior of the curve in relation to the intrinsic solution.

In [32] and [33] Hofer focused on the extrinsic formulation of energy-minimizing

curves in embedded manifolds with application in computer graphics.

As an extension of spline problems, some research has been done on dynamic

interpolation for control systems, in which certain dynamic variables of state tra-

jectories are forced to pass through specific points by suitable choices of con-

trols [34, 35, 36]. In this method, the spline paths are obtained by solving a

dynamical control system, rather than being given a priori by polynomials.

Borum et al. in [37] studied the shape estimation of an elastic rod which

is deformed by a robot. To find the smooth configuration based on minimum

strain energy, they considered the equilibrium of elastic rod as a local solution to

a geometric optimal control problem. They considered all the configurations of

the rod as a smooth three-dimensional manifold so that they could work with a

continuous description of the rod rather than a discretization.
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3.3 Biased Geodesic Curvature

In the last chapter, we considered geodesics, identified as trajectories with con-

stant speed. In this section, we investigate paths with start-stop motion. Consider

a point-mass object moving over a manifold with start-stop end conditions. Since

the geodesic is the straightest path and the shortest path on the manifold, no

steering forces are required for the object to move and it requires the least accel-

eration/deceleration to cover the distance in a given time as compared to nearby

paths [11].

Now assume that the point-mass object is connected to the center of the sphere

with a massless rod which turns the system to the yaw-pitch gimble. Minimizing

the torques on the rod’s joint at the center of the sphere results in a different tra-

jectory, which is away from the geodesic path as shown in Fig. 4.2(b) with the black

line. This is due to the fact that, the yaw motor has more leverage when the pitch

is large, therefore, the optimal start-stop path is drawn away from the great circles

and toward the poles. To explore the reason the geodesic and minimum torque

paths are different for the start-stop motion, we derive a minimum-torque-squared

model as a function of geodesic curvature and acceleration over the dynamic mani-

fold space to provide a meaningful relationship between the geodesic and minimum

torque equations.
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3.3.1 Torque-Squared Measure of Distance from Passive-Dynamic

Paths

Minimizing the geodesic inertial cost defined in (2.18) corresponds to minimizing

the tangential and normal forces on the sphere’s surface indicated by Ft and Fn in

Fig. 4.2(c). However, for systems analogous to the spherical pendulum, the torques

on the joints are more important than forces on the end-effector as they are directly

related to the effort needed to move the pendulum as shown in Fig. 4.2(c). Hence,

it is required to take a step further and find a relationship between forces on the

manifold and torques on joints space.

The equation (2.1) can be expressed geometrically as

τ = M(q̈ − c(q̇)) (3.1)

where M = JTJ . Therefore, rewriting the equation again we have

τ = JTJ(q̈ − c(q̇)) (3.2)

where the J(q̈− c(q̇)) is equivalent to the equation (2.17) which leads the equation

(3.2) to

τ = JT

at
an

 (3.3)

These normal and tangential acceleration on the manifold are equivalent to the
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forces on the surface of the manifold as shown by Ft and Fn in Fig. 4.2. On the

other hand, based on principle of virtual work, the relationship of torques and

forces is [38]

τ = JT

Ft
Fn

 (3.4)

which is equivalent to equation (3.3). Torque squared can thus be written as

‖τ‖2 = F T
tnJJ

TFtn, (3.5)

here Ftn is the column-vector of forces on the manifold in the tangential-normal

coordinates. and finally from equation (2.18) and (3.5) we have a torque squared

cost of

ICτ =

ˆ
‖τ‖2dt =

ˆ [
at κgv

2

]
JJT

 at

κgv
2

dt (3.6)

where the subscript τ indicates the inertial cost that minimizes the torques. The

quadratic mappings encoded by JJT are represented as ellipses in Fig. 4.2 (d) and

3.4 (b), with the major axes of the ellipses illustrating directions that require less

torque for acceleration over the manifold.2

2To the best of our knowledge, the JJT structure has not been explored in the geometric
mechanics literature, though its relationship to the metric tensor does bear some similarity to
the relationship between Cauchy-Green and Finger deformation tensors considered in elastica
theory. We suggest the name “everted metric” to describe this structure, corresponding to JJT

being an “inside out” reorganization of the JTJ structure that forms the standard metric on the
space. Note that everted metrics are not equal to the inverse of the metric; they are also not
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3.3.2 Trajectory generation

To find the optimal trajectories for both geodesic and biased geodesic, we utilize the

basic variational principle that functions reach their extrema when their derivatives

go to zero. Therefore, taking the gradient of equations (2.18) and applying Leibniz

rules for gradient under the integral sign yields

∇pICF = ∇p

ˆ
((κgv

2)2 + a2t )dt

=

ˆ
∇pκg κgv

4 +∇pv v
3κ2g +∇pat at (3.7)

in which the above equation measures how changes in curvature and tangential

acceleration affect the geodesic curvature. Likewise taking the gradient of (3.6)

under integral sign yields

unique to the metric, as their construction depends on the coordinate basis in which the torque
costs are taken as orthonormal.
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∇pICτ = ∇p

ˆ
||τ ||2dt

= ∇p

ˆ [
at κgv

2

]
JJT

 at

κgv
2

dt
=

ˆ
2

[
∇pat ∇p(κgv

2)

]
JJT

 at

κgv
2

dt
+

ˆ
2

[
at κgv

2

]
∇pJJ

T

 at

κgv
2

dt (3.8)

which measures how the changes in curvature and tangential acceleration as well as

changes in JJT affect the biased geodesic curvature. We implement the (3.7) and

(3.8) as the gradient for fmincon optimizer in Matlab utilizing the interior-point

algorithm. More details in this section can be found in next chapter.

3.3.3 Biased Geodesic Spline

In the previous sections, the geodesic and biased geodesic were discussed as meth-

ods to connect two waypoints. In many cases more than two points need to be

connected. Several methods can be used to connect the points: (1) minimizing the

length of the path between points, (2) splines in parameter space, (3) splines based

on geodesic curvature, and (4) a spline based on our biased geodesic curvature.

As an illustration of the methods above, we consider the cost of moving the
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Figure 3.3: Various interpolations for a prismatic linkage moving its tip between
three points. Minimizing pathlength results in a sequence of straightline segments,
whereas splines that use curvature of the end-effector path or the path through
the kinetic-energy manifold produce very round paths. The biased geodesic path
concentrates its curvature near the peak, where the moment of inertia is smallest
and the actuators have the most leverage.

end of a prismatic leg with two degrees of freedom (translational and rotational)

by these methods among three points in the task space (xy coordinates of the end

effector), where all the mass of the system is concentrated at the end effector.

The first method finds the geodesic between each pair of points. That means

once more than one point exists, it finds the shortest path between each pair of

points. This definition of the geodesic corresponds to the “shortest line” and is

defined as
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s =

ˆ
ds =

ˆ √
drTMdr, (3.9)

where dr is the infinitesimal changes in local coordinates [15]. As shown in Fig. 3.3

using this method, the path obtained is a triangle indicated with the solid blue

line. If the acceleration is an important consideration along the path, this method

is not suitable, as it has a high cost at the midpoint due to its high (infinite)

curvature.

Splines in the extension-rotation space minimize the strain energy of the path

to create smooth paths in these parameters while satisfying waypoints. The cost

of these motions is defined from the first term in (2.9),

Es =

ˆ (d2α
dt2

)2
dt, (3.10)

which ignores the effects of Coriolis forces on the cost of motion. Using this method

for the prismatic leg finds a semicircle running through the points (the grey line

with circle markers).

Geodesic splines take into account the Coriolis forces, and thus minimize the

in-manifold inertial cost function

ICF =

ˆ [
at κgv

2

] at

κgv
2

dt (3.11)

while satisfying the constraints on points through which the path must path. Using

this method on our example system results in a path which is away from the
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Figure 3.4: Minitaur leg and input trajectories. (a) The physical Minitaur leg,
mounted to move in a horizontal plane with a large point mass at the distal joint.
The link lengths (as labeled in Fig. 3.2 ) are L1 = 0.1m and L2 = 0.2m. The
end effector mass is m = 730g. (b) The minimum torque geodesic accelerates and
decelerates along the line connecting the start and end points. Because this line is
closely aligned with the minor axes of the JJT ellipses, this trajectory costs more
than the arched trajectory, whose accelerations are aligned with the major axes of
the ellipses, even though the geodesic path is shorter and has no curvature. The
arrows show the acceleration direction along the path.

semicircle path due to the existence of the Riemannian metric. This metric has

the information regarding the physical characteristics of the system, and the path

moves in the direction where according to the inertia, less effort is required, with

the result that the trajectory is “pulled in” from the spline that was not aware of

Coriolis forces.

The biased geodesic spline incorporates the leverage that the actuators have

on acceleration through the manifold, with a cost function
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ICτ =

ˆ
‖τ‖2dt =

ˆ [
at κgv

2

]
JJT

 at

κgv
2

dt. (3.12)

Using the biased geodesic spline method on the prismatic leg pushes the path

away from the geodesic path to decrease the squared torque on the motors as

shown in Fig. 3.3. Although the cost due to curvature increases (the curvature is

more concentrated, the overall cost decreases.

3.4 Hardware Demonstration

To demonstrate the principle that the optimal start-stop paths do not follow

geodesics, we conducted an experiment using a leg from the Minitaur robot [25]. In

this experiment, we measured the torque required for a 2-DoF parallel manipulator

to follow two given trajectories. Both trajectories are start-stop trajectories. One

trajectory follows a geodesic in the manipulator’s configuration space with min-

imum squared tangential acceleration along the path, and the second trajectory

was generated through the biased geodesic optimizer to be torque-squared-optimal.

Both trajectories are followed using PD control around the motor angle.

3.4.1 Testing apparatus

We used the direct-drive, kite-shaped parallel linkage (a Minitaur leg). This leg is

shown in Fig. 3.4 fixed rigidly to a heavy base and operated in a horizontal plane
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normal to gravity. The two proximal links are each actuated relative to ground by

a high-torque motor with no gear reduction.

The linkage itself has very little inertia. We attached a point mass to the

end of the manipulator. The point mass is heavy enough to dominate the system

dynamics. By comparison, the links of the manipulator are negligible, so the

system’s inertia is approximated as a simple point mass in the plane.

3.4.2 Trajectory commands

The manipulator was commanded to follow start-stop trajectories between two

points in the plane. Using a dynamic model of the mechanism, we derived the

nominal motor trajectories for two trajectories between the same endpoints. One

trajectory follows the mechanism’s geodesic path with least squared acceleration

along the geodesic, which is a straight line because the system dynamics are dom-

inated by the point mass. The second trajectory follows an arched least-torque

path found through torque squared optimization, illustrated in Fig. 3.2. Each

trajectory traverses between following given points:

xi = +0.14 m xf = −0.14 m

yi = −0.24 m yf = −0.24 m

We used our optimizer to find both the geodesic and biased geodesic path.

Then we calculated the required torques for the system to move between the points.

Fig. 3.5 (b) shows that the geodesic path has a higher torque value at the starting

point than the biased geodesic which is due to the fact that the projection of accel-
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eration of the path into the actuators space has higher acceleration/deceleration

at endpoints. We also plotted the torque-squared in Fig. 3.5 (e) that once again

depicts that the biased geodesic path requires less torque to traverse between given

points.

3.4.3 Experimental Results

To run the experiment, both the geodesic and biased geodesic trajectories were

discretized into 384 points over a T = 0.42 second period between two end points.

At each timestep, the manipulator received motor angle commands then applied

motor torque based on a PD controller around each motor’s error. The PD control

was tuned with KP = 0.9 and KD = 0.025 gains.

Fig. 3.5 shows the motor torques for both geodesic and biased geodesic in the

start-stop trajectory. The motion has been repeated for multiple times, the torque

profile for each motor was captured through each cycle, and the results from the

trials were overlaid on each other. In Fig. 3.5 (a) and (c), torques obtained from

both the simulation and experimental results are plotted. The results demonstrate

that the torques obtained from experimental results are in agreement with simu-

lation. The Fig. 3.5 (d) and (f) illustrate that the torque squared for the biased

geodesic path is smaller than the geodesic path, which corroborates that deviating

from geodesic is beneficial for the system. This observation shows that, although

the geodesic paths are known as natural trajectories, start-stop trajectories do not

follow the geodesics. Instead, moving away from the geodesic the acceleration in
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the joint space leads to a total decrease in squared torque.

3.5 Discussion

In this chapter, we have demonstrated that start-stop paths following geodesics are

not in general torque-squared-optimal for robotic manipulators. We introduced a

novel “biased geodesic curvature” takes into account the leverage that the actuators

have on the system motion via their projection on the system’s dynamic manifold,

such that the minimum-torque-squared trajectories for the manipulator are those

that minimize the biased geodesic curvature.

To demonstrate the principle that start-stop motion along geodesic paths is not

torque-optimal, we conducted an experiment using a parallel actuator (a Minitaur

leg). For the sake of simplification, we added a point-mass to the end-effector of a

lightweight parallel mechanism, making the geodesics simple straight-line motions.

For start-stop motions, moving in an arc that used the biased geodesic curvature

to take into account leverage of the motors on the system dynamics required less

torque-squared than did moving along the geodesic.

Beyond clarifying the relationship between geodesics and optimal control poli-

cies, we see the key impact of this work as providing an intuitive understanding

of a link between mathematical models of a robot’s dynamics and its physical mo-

tion, building on past efforts such as [18]. These intuitive understandings facilitate

discussions about the structure of the solution equations and dissemination of this

knowledge into fields such as engineering and biology. In our own work, we are
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incorporating the biased geodesic formulation into our locomotion dynamics frame-

work [16], extending [1, 39] to handle systems with inertially-dominated dynamics

such as swimmers at high reynolds numbers.
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Figure 3.5: Torque profiles for the geodesic and biased geodesic trajectories in
simulation and experiment. (a) and (c) show the torques for each motor for both
the simulation and experimental results. In (b) the torque inputs for both geodesic
and biased geodesic are plotted. (d) and (f) illustrate the torque squared in the
start-stop trajectory for geodesic and biased geodesic respectively. In (e) torque
squared for both geodesic and biased geodesic curvature are plotted.
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Chapter 4: Geometric Motion planning for Moving based systems

4.1 Introduction

Robot locomotion is a method that a robot uses to move from one point to another

point and consists of interaction forces, constraints, mechanism and actuator that

generate forces. Hence, it is a challenge to find the relationship of body deforma-

tions coupled with an environment.

A general method for gait generation for multiple-link crawling robotic systems

is to change a variable in the input of the optimizer, compute the system’s equa-

tions, evaluate the outputs, and repeat this process over and over. [8, 9]. This

process is a tedious work and computationally expensive and won’t provide an

complete view of the system’s movement.

To address this issue, the geometric community has been developed a tool

that uses Lie bracket of system dynamics to identify shape changes that produce

net displacements in world coordinate. Lie Bracket can be plotted as curvature

function which provides a good visualization of the systems motion for any gait

whose topographies identify good placements for gait trajectories [7].

Overall, prior works including our own work have only considered trajectory

generation for non-inertial systems and that is only for systems called moving base

system in viscose environments [13].
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Our group in soap bubble paper collected these observation into a formula

for the efficiency of the system in a drag-dominated environment in which the

most efficient gait obeys from dynamic analogous to a soap bubble [1]. They

encoded the geometric insight into a variational gait optimizer. The optimizer is

a gradient ascent/descent algorithm that pushes the cycle to enclose a large sign-

definite region of the Lie bracket to maximize the net displacement it generates.

A cost function is based on a Riemannian distance metric that limits the growth

of the gait cycle. To balance the perimeter of the gait, the optimizer evenly-spaces

the waypoints in the trajectory that causes stability of solution and provides an

efficiency-optimal parameterization gait. However, the insights afforded by this

optimizer is restricted to the drag-dominated system including viscous swimmers

[13, 40, 41, 42].

Unlike existing methods in motion planning, the focus of our proposed method

is to provide an intuition of the relationship between the geometry and inertia of

the system and the optimum way of moving. Therefore, the user can design a

gait and observe the effectiveness of different gait patterns without integrating the

complete dynamics.

This class of interaction is inertially dominated system, such as system floating

in space, and swimmer interacting in environment with large Reynolds numbers

where the inertial effect is important. Cost as path-length seems reasonable to

find the optimum path for the drag-dominated system where the effort required

to change shape is the path-length. However, closer consideration raises question

regard to the systems with inertia. What is the cost for such a system? How to
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Figure 4.1: The maximum displacement and optimal gaits for the three-link swim-
mer at high Reynolds over the manifold. The solid line is the optimal gait and the
dashed line is the maximum displacement

formulate the cost?

Taking the cost of motion as squared-torque on the joints, the inertial contribu-

tion to this cost is proportional to the squared-acceleration of the system -changes

in speed and direction of its trajectory- weighted by the system’s inertia term.

For an isolated inertial locomotion system, the trajectory can be reduced to the

trajectory through its shape space, using the coupling between shape and position

velocity to define an effective inertia with respect to the shape variables. The

acceleration of the system used to calculate the cost is its acceleration relative to

the ”free motion” of the system. If the effective inertia changes as a function of

the system shapes, then these free motion - the geodesics of the inertia matrix -

are not constant speed, straight lines in the parameter space, in the same way the

moving forward on a globe doesn’t look straight line in latitude-longitude space,

but instead traces out a great circle. The acceleration relative to these natural

dynamics geodesics can be found by substituting out the Coriolis terms (Christof-
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fel symbols) from the parameter acceleration. If the gait trajectory has curvature

(the Coriolis-curvature acceleration is not everywhere parallel to the velocity) then

optimal trajectories slow down in the curved parts (and speed up in straight parts)

to minimizes the overall acceleration.

Fig. 4.1 illustrates the maximum displacement and optimal gaits for the high

Reynolds three-link swimmer over the manifold which is formed based on config-

uration space. It shows the relation of the curvature of the path, the curvature of

the manifold and curvature of the constraints.

In this chapter, we take four steps.

• The first step is to develop insight of what inertia means for mechanical

systems and how inertia affects on the optimal trajectory.

• The second step is to develop the concept of a minimum energy path us-

ing the geodesic curvature concept which provides a physically meaningful

interpretation of the natural dynamic path with respect to the inertia.

• Third step is to use the concept of the geodesic path and inertia to generate

a minimum torque path which provides an intuitive understanding of the

minimum torque with respect to the acceleration and curvature of the path.

• In forth step, we develop a variational principle based on system geometry

and inertia to find the efficient gait.

The proposed framework provides a good insight of the gait patterns. The

gait patterns are required to translate and rotate the robot in different directions.
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Figure 4.2: The shortest path in the globe is not the straight line since surface has
a curvature. (a) shows the shortest path in chart of the globe (b) shows shortest
path in globe. (c) this plot depicts that, the topological space of inverted pendulum
is sphere and shows that the the cost as geodesic equation minimizes the forces on
the surface of the sphere (forces on end effector) whereas, the cost as minimum
torque minimizes the forces on the center of sphere (joint of pendulum).

This geometric visualization conveys a concise understanding of the relationship

between 1) gait amplitude and 2) the size and efficiency of the displacement it

induces. This understanding helps users to design a controllable gait for robots.

We start by first discussing the meaning of straight line. We will show that the

straightest path on the globe is not the straight path on the map and vice versa

but rather it depends on the curvature of the manifold. The cost is defined as how

much the path bend from the curvature of the manifold (Fig. 4.2 (a) and (b)).

Furthermore, we will modify the minimum torque squared cost obtained in last

chapter to be appropriate for moving based systems.
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4.2 Literature Review

Our work builds on the body of locomotion literature that uses geometric mechan-

ics. Geometric mechanics is a powerful mathematical framework for analyzing

locomotion [43, 44, 45].

Walsh and Sastry [46, 47] studied the dynamics of a planar three-link robot

floating in space. They derived a specific form of the Lagrangian to generate gaits

for the planar three-link snake robot. They have proposed sinusoidal gaits and

then computed the geometric phase shift produced by these gaits.

Kanso and Melli [48, 42] studied the locomotion of solid bodies submerged

in an ideal fluid. They used this model to analyze the coupling between their

shape changes and the fluid dynamics in their environment. They showed that the

hydrodynamically decoupled model produces smaller net motion than the coupled

model, indicating that it is important to consider former one.

Ostrowski and Burdick [49] and Ostrowski et al. [50], took advantage of the

idea of translational symmetry from physics and projected the entire dynamics

of the system onto the joint space. They introduced a relationship between the

body velocity and shape variables using the reconstruction equation. This allowed

the systems dynamics to be represented as an affine non-linear control system.

Furthermore, they combined the reconstruction equation with Lie bracket theory

to generate sinusoidal gaits. These translate and rotate a variety of snakelike

systems. Using this approach, they intuitively developed and the analyzed gaits

for principally kinematic and dynamic systems with non-holonomic constraints.
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Shammas et al. [51, 52, 53] combined the idea of Stokes theorem with the

reconstruction equation to define height functions on the shape space of their three-

link robots. This allowed the design of gaits that resulted in specified rotations.

This allowed them to depict all of the shape parameters of the suggested curves,

which reduced the need for deeper intuition to manually or empirically setting

these parameters. Hatton and Choset [7] addressed the limitation that for general

macroscopic (non-infinitesimal) gaits, the height functions could only be used to

determine the net rotations over the gaits. They introduced a choice of coordinates

that reduced the error by making appropriate choices of system parameterization.

Additionally, this converted much of the systems non-commutativity into non-

conservativity, which is amenable to finite-scale integration.

In [13] we used the concept of geometric mechanics to simplify the problem

of controlling a snake robot moving across a granular surface. We showed that

geometric mechanics provide a deep understanding of the relationship between

gait amplitude and the size and efficiency of the displacement it induces. We also

identified a turn-in-place gait that has not previously appeared in the snake robot

literature. In recent work, Ramasamy and Hatton applied Lie bracket methods

to a gradient-based optimizer for drag-dominated environments [1]. To find the

optimized gait, they built a gradient ascent/descent component that push the

gait cycle to enclose a large sign-definite region of the Lie bracket to maximize

the net displacement it generates. The cost component that was used was based

on a Riemannian distance metric that limits the growth of the gait cycle and a

component to evenly spaces the way points on the gait. These components together
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form a dynamical system analogous to a soap bubble, whose boundary (here, the

gait curve) is pushed outward by internal pressure (here, the Lie bracket) and is

constrained by surface tension (here, the metric-weighted path-length).

All of the related works, help the user obtain a geometric intuition of the system

to design a gait. However, there has been no work done for finding the optimal

solution for a system with inertia which is very important since most of the systems

in real world have inertia. In our work, we are aiming to build upon prior work

and introduce an optimizer to deal with inertia based systems as well as providing

geometric intuition of the systems.

4.3 Geometric Locomotion Model and Local Connection

To model the locomotion system we divide the configuration space q = (g, r) ∈ Q

into a position space G and shape space M , such that the position g ∈ G locates

the system in the world, and the shape r ∈M gives the relative arrangements of its

bodies. As an example, the position of the three-link swimmer as shown in Fig. 4.3

is the average location and orientation of the links, g = (x, y, θ) ∈ SE(2), and its

shape is parameterized by two joint angles, r = (α1, α2). This separation is a means

that demonstrates that how the change in shape effects on the displacement of the

body.
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Figure 4.3: Three-link swimmer geometry.

4.3.1 Local Connection

In geometric mechanic, there exists a linear relationship between changes in shape

velocity ṙ and body velocity
◦
g,

◦
g = −A(r)ṙ (4.1)

where A(r) is the local connection matrix and acts like a Jacobian that maps shape

velocity to the body velocity [7]. This can be used as a tools to find an optimize

gate for the snake robot. This equation is a reconstruction equation in which it

can be integrated to reconstruct the position trajectory from given shape changes.

The local connection for inertial systems can be calculated from kinetic energy

equation. For the system with conservative of momentum, Lagrangian is equal to

its kinetic energy that is isolated from external forces (energy can only be added or
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removed from the system through generalized forces applied to the internal shape

variables). The kinetic energy can be expressed as

T (
◦
g, r, ṙ) =

1

2

(
◦
g ṙ

)T
M(r)

◦g
ṙ

 (4.2)

where M is the inertia matrix and of the form

M(r) =

 I −IA

−IAT m

 (4.3)

where I is the local form of the locked inertia tensor 1, m is a square matrix

that depends only on the base variables and A is the local connection and can be

easily extracted.

4.3.2 Constraint Curvature Functions

Geometric mechanics community (including our own) have utilized the structure

of the systems Lie bracket (a measurement of non-commutivity of the system) to

identify the oscillation that produces maximum displacement and also the structure

of optimal solutions to the system equation of motion [7]. By an extension of Stokes

theorem [55], the net displacement over a closed loop φ can be approximated by

an area integral of the curvature D(A) of the local connection (total Lie bracket

[55]) over a region enclosed by the loop.

1Locked inertia is the instantaneous moment of inertia in which all the joints in the system
are considered to be fixed [54].
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gφ =

˛
φ

gA(r) dr

≈
¨
φa

dA + [A1,A2]︸ ︷︷ ︸
D(A) total Lie bracket

dr (4.4)

where dA is the curl of local connection which is taken row-wise and the local Lie

bracket term evaluates (on SE(2)) as

[A1,A2] =


Ay

1A
θ
2 −Ay

2A
θ
1

Ax
2A

θ
1 −Ax

1A
θ
2

0

 (4.5)

We can plot the curvature terms as a constraint curvature function on shape

space as shown in Fig. 4.4. Gaits that produce net displacement in (x, y, θ) di-

rection are located in sign-definite area of the corresponding constraint curvature

function. For instance x-direction gaits enclose the center of the shape space for

high-Reynolds swimmer, whereas θ-direction for floating snake is produced by cy-

cles in the corners of the shape space.

4.3.3 Efficiency of the Gait

For a mobile robots the efficiency of the optimal gaits is a way to evaluate design

and performance of the system. An appropriate way to look at the efficiency

of the locomotion is the cost of transport. It allows for fair comparisons between
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Figure 4.4: Curvature constraint function (plots of the Lie bracket DA) for the
three link swimmer (a) at high Reynolds and (b) floating in space are shown. The
conservation of momentum for floating snake results in zero displacement, therefore
the CCF in x and y directions has zero curvature.
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different gaits within and across systems with different morphologies. Our measure

of efficiency,
gφ
cost

is equivalent to the inverse of the cost of transport.

Previous works [1, 13] were focusing on the systems moving in viscous environ-

ment. For such systems, cost is defined as the dissipative power. The dissipative

power through the join is the dot product of the velocities and torques (p = α̇τ)

where τ = f(α)α̇. Therefore, the power can be turned into Riemannian metric in

which the path-length measures the effort required by a shape trajectory [17].

The maximum displacement gait over the cycle for such systems follows the

zero-contour of the curvature constraint function. Therefore, the maximum-efficiency

gait for drag-dominated systems is obtained by giving up low-yield regions at the

ends of the cycle and crosses slightly outside the zero contour [1].

However, if the system has inertia and inertia is considerable, the Riemannian

metric is induced by the inertia matrix of the system rather than power dissipation,

and effort corresponds to measurement of torques on the joints. Therefore, the

first step is to find the Riemannian metric for such systems. Metric weights the

components of coordinate in the length calculation. To find the Riemmanian metric

for purely mechanical systems and conserved systems the kinetic energy need to

be calculated and the inertia matrix is the Riemmanian metric as calculated in

(5.8). In order to make the metric function of shape velocity (base bundle), the

energy equation can be rewritten as

T (g, r, ṙ) =
1

2
ṙ

(
−A(r) I

)T  I IA

IAT m


−A(r)

I

 ṙ (4.6)
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Then, the metric can be written as below:

M =

(
−A(r) I

)T  I IA

IAT m


−A(r)

I

 (4.7)

Now the equation (4.7) depends only on base variables (α1, α2) and can be used

for finding the optimal gait.

4.4 Inertial Cost of Motion

Unlike the drag-dominated system [1], in inertia-dominate based system, the cost

as path-length doesn’t directly matter and it cannot capture the effort required

for the system dynamic to move in natural dynamic path. In inertia-dominate

based system, the cost is based on the natural dynamics of a mechanical linkage

(such as a robot arm) that follow the geodesics of its inertia matrix. That is,

if we take the linkage’s configuration space as a manifold whose metric tensor

is the generalized mass matrix with respect to its joints, then the system’s free

motion will be “straight lines at constant speed” over this manifold, with the

effects of Coriolis and centripetal forces captured by the curvature of the space

[18, 19, 20, 21]. For example, free motion of a thruster-driven system over the

sphere follows Great Circles at a constant speed, during which the only force

acting on the system is the centripetal force due to the circular motion. However,

considering the start-stop trajectories for multi-body systems the geodesic paths

cannot capture the minimum torque required for the system to traverse over the
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path as it was demonstrated in §3.3.1. In this chapter, we will modify the cost as

torque squared in order to use it for moving based systems.

4.5 Analyzing Gaits Behavior

Two important effects in gait optimization may occur: scaling effect and squash-

ing effect. The squashing effect was described in §2.2 where the effect of curvature

and acceleration on the cost was considered and it was shown how by accelerat-

ing/decelerating in different regions of the path that has different curvatures can

reduce the overall cost. In this section, we consider the scaling effects and its

relation with both drag cost and inertial cost.

4.5.1 Scaling Effect

In this section, the gait’s scaling effect on the cost is considered. When a gait

scales up/down, the total length of the gait increases/decreases which changes the

curvature of the gait. This change may also affect on the speed, but the accel-

eration remains unchanged. Therefore, we are allowed to remove the tangential

acceleration from inertial cost equation (3.6) and write it in simple form as

ICF =

ˆ
(κv2)2dt (4.8)

Now we set the instantaneous cost constant
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(κv2)2 = 1 (4.9)

Therefore, the equation (4.8) takes the below form

ICF =

ˆ
1dt (4.10)

dt is obtained from equation (4.9) as below:

κ(
ds

dt
)2 = 1⇒ dt =

√
κds (4.11)

and then substituting (4.11) into the equation (4.10) results in:

ICF =

ˆ √
κds (4.12)

The above equation demonstrate how the cost is changing due to the gait’s

change. To illustrate the structure of the gait a comparison is made. As men-

tioned previously, the drag cost is defined as path-length and it is equivalent to

the perimeter of the gait. Therefore, as the gait scales up/down the cost changes

proportionally. For instance, if the gait is a circle with radius r, the path-length

is equal to the perimeter of the circle which is 2πr therefore, Drag Cost ∝ r. On

the other hand, for inertial cost as it is shown in equation (4.13) is equivalent to

√
κs which means the cost scales cheaper than the drag cost. For example, since

κ ∝ 1
r
, and the s ∝ r therefore Inertial Cost ∝

√
r.

The equation (4.11) can be written in time format
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ICF =

ˆ √
κds⇒

ˆ √
κvdt⇒

ˆ
(κ2v4)

1
4dt (4.13)

The term κ2v4 equals to the squared of normal acceleration (a2n) and has the same

unit as of squared tangential acceleration (a2t ), therefore, we can write equation

(3.6) in the right format that conforms with the change of gait’s size.

(ICτ )
1
4 = ICτg =

ˆ
(

[
at κv2

]
JJT

 at

κv2

)
1
4dt. (4.14)

where the subscript τg indicates the torque squared cost for the gait.

4.6 Optimizer

In 4.3.3, we introduced the measure of efficiency cost. In this section we encode

the geometric principles and the cost function described in previous sections into

the inertia based gait optimizer algorithm.

We want to find the extrema of the cost function when the derivative goes to

the zero. As described in [1], the maximum-displacement for gait parameterization

p, occurs when the gradient of net displacement of the cycles with respect to the

parameters is zero.

∇pgφ = 0 (4.15)

and maximum-efficiency cycles (normalizing displacement by the inertial cost, η =
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g
ICτg

) similarly satisfy the condition that the gradient of this efficiency ratio is zero,

ṗ = ∇p
gφ
ICτg

=
1

ICτg
∇pgφ −

gφ
IC2

τg

∇pICτg = 0 (4.16)

Now utilizing the geometric principles described in (4.4) and (3.6), we can eval-

uate ∇pgφ and ∇pICτg as a function of Lie bracket DA, curvature and tangential

acceleration. This differential equation now is searching for maximum displace-

ment as well as pushing the path in the direction that minimizes the strain energy

and tension energy of the curve.

Factoring out a coefficient of 1
ICτg

from equation (4.16), our algorithm thus

finds the maximum-efficiency gait as the equilibrium of

ṗ = ∇p
gφ
ICτg

= ∇pgφ −
gφ
IC2

τg

∇pICτg = 0. (4.17)

this differential equation is analogous to the equations governing the shape of a

soap bubble [1]. ∇pgφ takes the Lie bracket as an internal pressure seeking to

expand the gait cycle to fully encircle a sign-definite region,
gφ
ICτg
∇pICτg is the

bending stiffness that constrains the growth of the bubble.

In the following subsections, we explore each of the terms in (4.17), discussing

both their fundamental geometric definitions and how they can be implemented in

a direct transcription solver that parameterizes the gait as a sequence of waypoints.
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4.6.1 Internal Pressure from the Lie Bracket [1]

The first term in (4.17), ∇pgφ, push the gait towards maximum-displacement cy-

cles. By substituting the approximation from (4.4) into this expression as

∇pgφ ≈ ∇p

¨
φa

D(A), (4.18)

and noting that variations in the gait parameters p affect the gait curve φ but

not the systems underlying constraint D(A), we can convert ∇pgφ into gradient of

an area integral with respect to variations in its boundary. We can then invoke a

powerful geometric principle, which states ”The gradient of an integral with respect

to variations of its boundary is equal to the gradient of the boundary with respect

to these variations, multiplied by the integrand evaluated along the boundary”.

Formally, this multiplication is the interior product of the boundary gradient

with the integrand,

∇p

¨
φa

D(A) =

˛
φ

(∇pφ) y D(A), (4.19)

which contracts D(A) (a differential two-form) along ∇pφ to produce a differ-

ential one-form that can be integrated over φ.

Implementation of the internal pressure Each waypoint pi forms a triangle with

its neighboring points. whose base defines a local tangent direction e‖ as

pi+1 − pi−1 = le‖ (4.20)
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Figure 4.5: This figure illustrates the changes in area caused by moving in the
two coordinate directions in the local frame. Moving in the tangential direction e‖
produces no change in area, as the area of the triangle given by half the product
of base length and height remains the same.

and a local normal direction e⊥ orthogonal to e‖.

As illustrated in Fig. 4.5, the gradient of the enclosed area with respect to

variations in the position of pi in the e‖ and e⊥ directions is the change in triangles

area as pi moves. Because the triangles area is always one half base times height

(regardless of its pitch or the ratio of its side lengths), this gradient evaluates to

∇piφa =

[
e‖ e⊥

] 0

l/2

 . (4.21)

4.6.2 Bending Stiffness from the Curvature:

The second term of equation (4.17) takes ∇pICτg as a measure of how acceleration

of the gait influence the cost of executing gait.
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∇pICτg = ∇p

ˆ
(

[
at κv2

]
JJT

 at

κv2

)
1
4dt. (4.22)

Applying the Leibniz integral rule and then applying standard calculus opera-

tions, results in following equation

∇pICτg = 1
4

´
∇p(

[
at κv2

]
JJT

 at

κv2

)(

[
at κv2

]
JJT

 at

κv2

)
−3
4 dt. (4.23)

The gradient component ∇pκ, is computed from curvature of the path which is

captured by Reimannian metric. ∇pv is related to the systems Riemannian metric

by first incorporating the arc-length calculation. ∇pκ and ∇pv state that how the

change of curvature and arc-length influence on the change of normal acceleration.

Similar to the ∇pv, ∇pat is related to the difference of consecutive arc-length. ∇pat

captures the change in tangential acceleration.

Implementation of the curvature: For each triangle the geodesic curvature can

be obtained as well as the gradient of it. The gradient term∇pκ can be decomposed

in

∇pκ = ∇pκp −∇pκs (4.24)

To find the parameterized curvature (κp), we first normalized the coordinate

with the metric associated with the waypoint pi and then in normalized coordinate
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Figure 4.6: (a) Local normalization and rotation for finding the curvature. (b) it
shows the normalized triangle with the edge’s lengths.

the new triangle formed is rotated such that the two neighboring points are in the

equal height (Fig. 4.6).

pN =

[
px py

]
MiT (4.25)

where N represents the normalized coordinate, px and py are vectors indicating

the waypoints in x and y directions respectively. T is the transformation matrix

as shown in Fig. 4.6.

We start with defining the following lengths on the obtained triangle as shown

in Fig. 4.6.
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Figure 4.7: This figure illustrates the changes in curvature and acceleration caused
by moving in the coordinate in horizontal and vertical directions in the local frame.
Moving in vertical direction affect on the curvature and moving in horizontal di-
rection changes the acceleration.

L1 = pNi − pNi−1

L2 = pNi+1 − pNi

ly = (pNi − pNM)

lx1 = (pNM − pNi−1)

lx2 = (pNi+1 − pNM) (4.26)

where pNM is the project of pNi on horizontal line. Now, the curvature the parame-

terized curvature can be written as

κp =
∆θ

∆s
(4.27)

in which ∆s is the arclength and ∆θ is the local tangent direction changes which

can be obtained from following equations respectively
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∆s =
L1 + L2

2
(4.28)

∆θ = arctan(
ly
lx1

) + arctan(
ly
lx2

) (4.29)

The curvature of the surface is defined as

κs =
drTΓdr

drTMdr
(4.30)

where the denominator is the path-length such that dr and its gradient can be

calculated as:

dr = pi − pi−1 (4.31)

∇pidr =

1

1

 (4.32)

The metric of each segment is the average of the metrics of endpoints. Therefore,

gradient with respect to changes in pi is thus one half of its gradient over the

underlying space,

∇piM =
1

2
∇M (4.33)

Similarly, the same calculation will take place for Christoffel symbols. There-

fore, to find the geodesic curvature, the κs need to be transformed to the same

coordinate frame. By taking the gradient from equation (4.27) and (4.30) with

respect to the variations in the position of pi and the differences of the gradient of
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these two equations produce the final gradient as shown in Fig. 4.7.

The next term is ∇pv which is a measure of how pacing in gait affect the cost

of executing it. The gradient component can be written as

∇pv
2 = ∇p

˛
φ

(
dr

dt

T

Mdr

dt
) (4.34)

and then applying the standard calculus operations results in

∇pv
2 =

˛
φ

(2∇p
dr

dt

T

Mdr

dt
+
dr

dt

T

∇pM
dr

dt
) (4.35)

where these gradient (∇p
dr
dt

and ∇pM) are calculated similarly as were shown in

equations (4.31) to (4.33).

Implementation of surface tension from the tangential acceleration: For each

triangle, the tangential acceleration corresponds to to the difference in the tangen-

tial distance from that waypoint to each of its neighbors,

∇pat = ∇p
∆v

∆t
= ∇p

vi − vi−1
∆t

= ∇p
si − si−1

∆t2
(4.36)

whose gradient with respect to the position of pi is proportional to difference of

gradient of si and si−1 relative to pi as explained in equations (4.31) to (4.33).

(Fig. 4.7)

∇piat =
∇pisi −∇pisi−1

∆t2
(4.37)

where ∆t is the evenly spaced time of each segment.
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4.7 Applying Geodesic Concepts to Mobile Robots

We consider purely mechanical systems, whose motion is governed solely by the

conservation of momentum such as floating snake and high Reynolds swimmer.

4.7.1 Calculating the Body Velocities

The systems we are dealing with are three-link swimmer as shown in Fig. 4.3.

Therefore, we start with calculating the body velocities as it is needed for our

systems we are exploring in this chapter. The body velocity of each link which can

be calculated from below equations:

◦
g1 =


cos(α1) − sin(α1)

L
2

sin(α1) 0 0

sin(α1) cos(α1) −L
2
(cos(α1) + 1) L

2
0

0 0 1 −1 0





◦
gx

◦
gy

◦
gθ

α̇1

α̇2


(4.38)

◦
g2 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0





◦
gx

◦
gy

◦
gθ

α̇1

α̇2


(4.39)
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◦
g3 =


cos(α2) sin(α2)

L
2

sin(α2) 0 0

− sin(α2) cos(α2)
L
2
(cos(α2) + 1) L

2
0

0 0 1 0 1





◦
gx

◦
gy

◦
gθ

α̇1

α̇2


(4.40)

where
◦
gx,

◦
gy,

◦
gθ body velocities of the three-link and dotα1, α̇2 are shape veloc-

ities.

4.7.2 Floating Snake

The floating snake is a classic example of systems that undergo the cyclic changes

in shape space to achieve net motion [46, 47]. Because the system is not subjected

to any external forces, if the system starts at rest, conservation of linear momentum

ensures that the velocity of the center of mass remains zero for all time and there

is no displacement in XY direction. The floating snake is governed by the inertia

hence, the effort required for achieving the rotation can be captured by measuring

the torque squared of the joints.

The kinetic energy associated with the three-link floating snake has the form

of

T =
N∑
i=0

1

2
◦
gTi (Ii)

◦
gi (4.41)

where N is the number of links, Ii is the links inertia tensor, and
◦
gi is body
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Figure 4.8: (a) shows, max-efficiency turning gait for floating snake. (b) max-
efficiency gait is plotted over metric field and demonstrates the region where mov-
ing is easier for for the system to move). The black regions are negative and red
regions are positive (The direction of rotation of the gaits is clockwise to pro-
duce positive displacement). α1 and α2 represents the two shape variable of the
swimmer.

velocities. Substituting equations (4.38 - 4.40) into equation (4.41), it turns to

the form of equation (4.6) and from there it is straight forward to calculate local

connection and Riemannian metric. Once the metric is obtained, we can run

the optimizer on floating three-link swimmer to find the maximum-efficient gait

based on both inertial and path-length cost in the θ-direction over a single cycle.

(Fig. 4.8).

As demonstrated in Fig. 4.8 (a), one can observe that the maximum turning

gait occurs in either the top right corner or left the bottom corner. One can see the

gait found based on the inertia cost is slightly bigger than the one found based on

the path-length cost and this is in agreement with the analytical results described
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in §4.5.1 where states that the path-length cost is proportional to the size of the

gait whereas the inertial cost is proportional to the square root of the size of the

gait. Moreover, the waypoints on the gait demonstrate how speed changes over

the path. Fig. 4.8 (b) shows the surface formed by inertia matrix.

As it is shown in Fig. 4.8 (b) the waypoints on the path found from path-length

cost doesn’t account for the curvature of the path. Whereas, the distribution

of waypoints on the gait found from inertial cost is based on the curvature and

acceleration. One can see the waypoints are closer in parts with more curvature

which indicates the system moves slower in these parts and vice versa is true for

the straight parts.

4.7.3 High Reynolds Three-links Swimmer

For systems interacting at very large Reynolds number, the effect of inertia dom-

inates the viscosity. Kanso et al. in [48], showed that the net locomotion in fish

body swimming in high Reynolds fluid occurs due to the transfer of momentum

between the fish body and the fluid. This demonstrates that the forces and mo-

ments acting on the body by shed vortices are not the only solely contributing in

net locomotion. Coupling between the shape dynamics and the surrounding fluid

of a system is a key reason for a system to move. Therefore, it is assumed that

the effects of viscosity and vortex shedding in the system interacting with high

Reynolds fluid are negligible [56, 42].

The drag forces on the object are induced by the displacement and act as
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directional added masses M on the object that add with the inertia of the object

to produce effective inertia. To do so, we assume that the submerged bodies

are hydrodynamically decoupled. This assumption means that the added masses

associated with a given body are not affected by the presence of the other bodies.

Therefore the kinetic energy associated with three-link swimmer, can be obtained

through

T =
N∑
i=0

1

2
◦
gTi (Ii +Mi)

◦
gi (4.42)

where N is the number of links, Ii is the links inertia tensor,M its added mass

and
◦
gi is body velocities.

Similar to floating snake substituting equations (4.38 - 4.40) into equation

(4.42), it turns to the form of equation (4.6) and from there it is straight for-

ward to calculate local connection and Riemannian metric.

We run the optimizer on the three link system to find the gait that maximizes

the displacement in the x-direction over a single cycle and then to find the maxi-

mum efficiency cycle. Fig. 4.9 (a) depicts maximum displacement and maximum

efficiency gait for three-link swimmer moving on the high Reynolds fluid. As one

can see in Fig. 4.9 (b), the optimal gait has been shrunk to conform the curvature

of the manifold and become closer to geodesic path. Once again, it is shown that

the gait obtained using the inertial cost is slightly bigger as predicted in §4.5.1.

Furthermore, the gait also is squashed to reduce the regions with higher curvature

and increase the regions with lower curvature. As it was shown and discussed in
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Figure 4.9: (a) shows, max-displacement and max-efficiency gaits for high-
Reynolds snake. (b) max-efficiency gait is plotted over metric field and demon-
strates the region where moving is easier for for the system to move). The black
regions are negative and red regions are positive (The direction of rotation of the
gaits is clockwise to produce positive displacement). α1 and α2 represents the two
shape variable of the swimmer.

§2.2, this effect reduces the cost. In addition, it is shown that the concentration of

the points are higher in region with higher curvature and lower in region with less

curvature for the inertial gait which causes the system to move slower in region

with higher curvature and faster in other parts to reduce the overall cost.

4.7.4 High Reynolds Three-links Swimmer-hydrodynamically cou-

pled

The expressions above are appropriate for considering the motion of systems in

which the individual links are hydrodynamically decoupled. This means the added
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mass associated with each link is independent of the position or velocity of the

other links in the system. However, Kanso et al., [48] showed that this assumption

is only useful for evaluating the qualitative behavior of the model and doesn’t

provide accurate numerical solution for the model.

To explore whether this assumption affect on the optimal gait solution, we ob-

tain the motion of the system by solving the hydrodynamicallly coupled equations

for submerged three-link swimmer body.

For such a system the kinematic energy of the system is equal to the kinetic

energy of the fluid (Tf ) and the kinetic energy of the body (Tb)

T = TF +
N∑
i=0

Tbi (4.43)

where N is the number of links and Tbi and Tf are defined respectively as

Tbi =
1

2
◦
gTi (Ibi )

◦
gi (4.44)

and

TF =
1

2

ˆ
F
ρF |u|2dv (4.45)

where Ib is the moment of inertia tensor of the system, ρF is the mass density of

the fluid, u is its spatial velocity field, dv is the standard volume element on R3,

and F is the region the fluid occupy. Considering that the flow is irrotational and

has zero circulation, the velocity field can be written in form of a potential φ
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u = ∇φ (4.46)

Going through all the calculation according to [48], results in the form below

T =
1

2
◦
gTi (Ifij)

◦
gj (4.47)

Therefore, the total inertia tensor of the system is the sum of the body mass and

fluid mass

Iii = Ibi + Ifii (4.48)

where Ifii is the moment of inertia of the fluid. Similarly, substituting equations

(4.38 - 4.40) into equation (4.47), it turns to the form of equation (4.6) and we can

find the local connection and Riemannian metric.

Having the local connection and Riemannian metric, we can plot the curvature

constraint function and find the optimal gaits as shown in Fig. 4.10. The results

from hydrodynamically coupled and decoupled systems both reveal that although

the decoupled solution (analytical) is not precise, it provides a good qualitative

comparison of movement characteristic of the system.

4.7.5 High Reynolds Serpenoid Swimmer

Snake locomotion through lateral undulation or Serpenoid is based on a continuous

interaction of the snakes entire body with its environment. In this section, we
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Figure 4.10: (a) shows, max-displacement and max-efficiency gaits for high-
Reynolds snake. (b) max-efficiency gait is plotted over metric field and demon-
strates the region where moving is easier for for the system to move). The black
regions are negative and red regions are positive (The direction of rotation of the
gaits is clockwise to produce positive displacement). α1 and α2 represents the two
shape variable of the swimmer.

investigate the effect of inertia on locomotion of multiple links system interacting

with fluid with high Reynolds number.

Before analyzing the high Reynolds serpenoid swimmer, we start with applying

both inertial cost and pathlength cost on the low Reynolds serpenoid swimmer as

a model which is already explored in our group under the pathlength cost to gain

intuition of optimum pacing over the gait. To do so, we consider a circular gait

shown in Fig. 4.11 (a) and keep the size of the gait fixed during the optimization

so that the speed through the gait can be optimized to reduce the cost (as it was

done for the racetrack §2.2). As is shown in Fig. 4.11 (b-d), for both inertial and
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Figure 4.11: Comparison of optimized joints speed from inertial and pathlength
costs for low Reynolds swimmer while the gait’s size is kept fixed. (a) constraint
curvature function for low Reynold swimmer with the circular gait encircling the
black region. (b) shows that the joints speed for the pathlength cost has smaller
change than the inertial cost in different region of the gait. (c) the illustration of
the gait in normalized coordinate now corresponds closely to arclength and helps
for better understanding the gait curvature. (d) and (e) demonstrate how the
joints speed is changing in different regions of the circular gait for both pathlength
and inertial cost respectively.

pathlength cost the speed of shape variables over the gait is not constant and it

is varying in different regions causing a surge motion in those regions. However,

the speed change for gait found from inertial cost is more significant (Fig. 4.11

(d)). That is because the gait as shown in normalized coordinate (manifold space)

Fig. 4.11 (c) is not a circle with constant curvature ans the curvature is varying

through the gait. Similar to the racetrack example, the speed is changing over

the different region of the gait which is due to the curvature of the manifold (the

curvature of the path is constant).
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Figure 4.12: (a) shows, max-displacement and max-efficiency gaits for high-
Reynolds serpenoid snake. (b) max-efficiency gaits are plotted over a manifold
embedded in R3 and demonstrates the region where moving is easier for for the
system to move. The black regions are negative and red regions are positive (The
direction of rotation of the gaits is clockwise to produce positive displacement).
α1 and α2 represents the two curvature modes of the serpenoid snake..

Now we can go further and find the optimal gait for serpenoid system inter-

acting in high Reynolds fluid. Similar to the three-link swimmer, the submerged

serpenoid body is assumed to be hydrodynamically coupled. Therefore, substitut-

ing equations (4.38) - (4.40) into equation (4.47), it turns to the form of equation

(4.6) and we can find the local connection and Riemannian metric.

We run the optimizer on the serpenoid swimmer to find the maximum efficiency

cycle based on both inertial and pathlength costs.

The dashed line shows the maximum-displacement gait that traces the zero

contour, and the solid line shows the maximum-efficiency gait that captures a
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more compact area within the sign-definite region. Once again,one can see the gait

obtained from inertial cost is bigger than the pathlength cost and the weightpoint

distribution are denser in the regions with higher curvature.

4.8 Discussion

In this work, we have incorporated geometric insights to develop a framework for

motion planning. This framework, is built to facilitate studying, understanding

and designing a gait for robotic locomotion.

We built the cost function for inertial systems based on the concept of geodesic

and metric in differential geometry to find an effective and efficient way for robots

to move and show how the motion is connected to the system geometry. Then

we extended the geodesic cost function to the minimum torque squared problem,

which is crucial for systems where there is zero velocity at the start and end points.

We showed that a meaningful structure for minimum torque trajectory exists. In

fact, we introduced curvature and acceleration as general characteristics of the

system that describe the properties of the system in a meaningful way and with

fewer terms.

We demonstrated the results of our optimizer for floating snake, the three-link

and Serpenoid swimmers in the high Reynolds fluid which has metric induced by

inertia and compared the results with the results obtained from pathlength cost

function. The results revealed that, the gaits found from the inertia based op-

timizer are a little greater than the gaits found by drag based optimizer which



76

matches with the mathematical equation we derived (the inertial cost is propor-

tional to square root of the size of the gait whereas the drag cost is proportional to

the size of the gait). Furthermore, we demonstrated the pacing effect for inertial

systems and how the weigh-points are distributed through the gait. The results

revealed a structure for the optimal solution for these types of robots.
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Chapter 5: Impact Bounce Prediction Using Geometric Mechanics

5.1 Introduction

In many high-speed processes including manufacturing equipment or robots, some

part of bodies might be vulnerable to dynamic impact, therefore it is very crucial

to understand the impact and determine the orientation and position of that in

order to adjust the robot with the impact force (reduce the impact force) or even

make use of the impact to reduce the power consumption. The effect of collisional

contact on the motion is determined by the momentum balance equations and

collisional constitutive relations. But there are still many questions need to be

answered: how to construct a sensible and general law for the collision; are the

existing method a good basis; can we make a prediction model of impact effect

based on objects geometry? To understand the essence and necessity of impact

dynamic, it is first necessary to understand the definition of the impact in the first

place. Going through this process then guides us in a very natural fashion toward

the various application of knowing the impact. One way of understanding the

impact in a solid object is investigating the impact that occurs under the tension

of the string attached to the free flight object.

The momentum of a moving object in free flight can be redirected by pulling

on a tether connecting it to the ground or a heavier object. The application of this
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principle is used by jumping spiders [57] to maneuver while jumping and has been

used by astronauts to maneuver during spacewalks [58].

As a step towards the goal of enabling robots to be able to move with this

agility, we seek to understand how much and what kind of control authority can be

achieved by bouncing against a cable, and in particular by setting up the right pre-

bounce initial conditions so that no active feedback is needed during the moment

of impact. In this chapter, we consider the fundamental case of planar object

anchored by a tether attached to either its center of mass or an outboard point,

as illustrated in Fig. 5.1. This tether is slack for most of the motion, then applies

a short impulse when the distance between its anchor and attachment point to

the body matches its actual length. This impulse can be considered as an impact

of the body against a virtual wall that is perpendicular to the tether and passes

through the attachment point.

We identify the space of post-bounce motions available by changing the angle

of the tether relative to the body’s initial motion or the position of the attachment

point relative to the center of mass, and in particular consider the ways in which the

alignment between the velocity, tether, and offset direction of the attachment point

exchange energy between the translational and rotational modes of the body. Along

the way, we also identify the accuracy of using an impulse equation that treats the

bounce as instantaneous versus modeling the tether as deformable spring. A key

result in this chapter is the identification of a tether configuration that converts an

initial pure translational velocity of the puck into a pure rotational motion after the

bounce.Moreover, we develop a visualization tool that demonstrates how energy is
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Figure 5.1: Bouncing a projectile against a tether (a) attached to the center of
mass, and (b) attached to the outboard from the center of mass.

transferred from translational to rotational and vice versa. In addition, we explore

the energy dissipation effect after the bounce using our developed vitalization tool.

This chapter is organized as follows: Section 2 puts our work into the context

of previous studies on tethered systems. Section 3 describes the modeling of the

system in terms of both the full dynamic equation and an impulse approximation.

Section 4 considers several case studies of the system dynamics with different initial

conditions. Section 5 introduces a visualization tool that can predict the change

of energy after the bounce. Section 6 describes the experimental results that we

implemented on a physical realization of our idealized system. Finally, Section 6

presents a discussion on the relevance of the results and highlights directions for

future work.
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5.2 Literature Review

Our analysis in this chapter draws on prior research efforts regarding modeling the

impact, casting manipulators, string pendula, and balls bouncing against walls.

5.2.1 Modeling the impact

Our work builds on the body of the discontinuous model of impact. This approach

assumes that impact happens in a very short time, therefore there is no significant

change in the configuration of impacting bodies [59]. This approach is based on

solving a set of algebraic impulse-momentum equations that account for discon-

tinuities in the system velocities during the impact event. Thus, the generalized

impulse-momentum equation for all the bodies in the system is derived. The solu-

tion of these equations produces a discontinuity in the joint reactions as well as in

the velocities. This method is mostly used for impact between rigid bodies. This

approach also referred to impulsemomentum or discrete methods [59].

Poisson defined the kinetic quantity that accounts for normal impulses and re-

lates them in contact point during the impact. Whittaker [60] proposed a model

based on Newtons model that defined the coefficient of restitution as a relation-

ship between the normal components of the velocities before and after the impact

at the contact point. Routh [61] defined the coefficient of restitution as a kinetic

quantity that relates the normal impulses and restitution phases. He considered

the change in slip direction during the impact. Brach [62] [63] proposed a ratio of

the tangential and normal impulse component by modifying Newtons model. The
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tangential components are determined by frictional impulses and are a constant

fraction of the normal impulse [62]. This coefficient is appropriate for the oblique

impact problem and is an equivalent to the friction coefficient. In addition, he de-

fined another parameter to relate the tangential velocities before and after impact

and showed this coefficient and the coefficient between the tangential and normal

impulse are related [63].

Keller [64] developed a differential equations to present the impact. Therefore,

impact is considered as a normal component applying in finite time which helps to

determine the events that happen during the impact. Also, Keller modified Pois-

sons model and proved that an increase in energy during the impact is impossible.

His study has also shown how the direction of sliding changes during impact and

what effect it causes for determining the frictional force.

Wang and Mason [65] used Rouths graphical method to solve the impact prob-

lem. They classified the possible modes of impact and used Poissons and Newtons

models of restitution to and derive analytical expressions for impulse. Also, they

identified the impact conditions under Newtons and Poissons models give the same

solution.

Hurmuzlu and Chang [66] developed a methodology to solve the impact prob-

lem where one end of a planar kinematic chain impact a horizontal surface while

the other end is stationary on the surface. They developed their work based on

Brach theorem where the rigid bodies do not contact each other before the colli-

sion. In Brach method, since the contact happens only in one point, separation

would be at the same point. The advantages of their method over Brach method
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was, their method could successfully predict rebounds at both ends and yields

physically consistent transitions among the various cases associated with lateral

and horizontal motions at the contact points. Han and Gilmore [67] developed

a similar approach, using an algebraic formulation of motion equations, Poissons

model of restitution and Coulomb’s law to define the tangential motion.

5.2.2 Casting Manipulation

In order for robots such as mobile robots to perform in uncertain and unstable

environments, it is crucial to extend their workspace using their mobility. However,

mobile robots such as legged and wheeled robot still have difficulty in moving in

wasteland, steep slopes, etc. Casting manipulators are robots that can throw an

end effector which is attached the robot by a tether. A key aspect of casting

manipulation is midair control of the end-effector by applying an impulsive force

through the tether that causes the end-effector to approach a desired target [68].

When the moving body is arrested by the tether during the flight, it rebounds.

This phenomenon can be thought that there is a virtual wall perpendicular to the

string. This idea has been experimented in Kendama game [69]. Also, [70, 71]

considered the effects of bouncing with an off-center attached tether, but that they

didn’t examine the geometry of bounce direction and speed. In this research we

utilize the idea of the virtual wall that happens in impact time and will consider

the geometry and physics of the moving body with off-center attached tether after

the impact.
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5.2.3 String Pendulum

Our system is a special case of a string pendulum, a class of systems in which the

element connecting the pendulum bob to the pivot can only provide tension, and

acts as a high-stiffness spring when taut. Prior research on these systems mostly

has focused on the periodic motion of such pendula, as in [72]. In our work here

we focus on the transient response around the slack-taut transition, rather than

the long-term dynamics.

5.2.4 Classic case of a bouncing ball

The dynamics of the system we are considering are very similar to those of a ball

bouncing against a wall [73]. When modeled as a point mass, the ball’s velocity

normal to the wall changes signs while its velocity parallel to the wall is unaffected,

so that its angles of incidence and reflectance are the same. For a ball with finite

radius, the angle of reflection will in general be different from that of the point

mass, as some of the ball’s kinetic energy is transferred into or out of its spinning

mode [74]. Our tethered-projectile model extends this concept by allowing the

bounce point to be inside the perimeter of the moving object, opening up the

potential for a wider variety of post-impact behaviors. Spong [75] investigated the

controllability of an air hockey puck sliding on a frictionless table when it is struck

by a mallet. He assumed the velocity of the mallet as the control input, then he

used “ Routh impact model“ to show the reasonable set of velocities that depends

on whether or not the relative sliding between the puck and mallet terminates
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during the impact which restricts the size of the reachable set.

5.3 Background

In this section, we cover some important definitions and concepts in impact dy-

namics.

5.3.1 The Definition of Impact

Impact happens in the collision of two or more bodies, that involves large accelera-

tion, finite changes in velocities and small changes in position and orientation [76]

[77]. Other effects are directly related to the impact phenomena including, vibra-

tion on the system, deformation at the point of contact zone and energy dissipation

[78]. Moreover, while impact is happening, discontinuity in geometry occurs and

material properties may altered by the impact itself [59].

5.3.2 Impact VS. Contact

Now it is important to note the difference between impact and contact. In impact,

interactions between the bodies happens in a short period of time, therefore there

is no significant change in the configuration of the bodies. On the other hand, in

contact the interaction forces act in continuous manner [59].



85

5.3.3 Different Types of Impact

Basically, there are four types of impact can be defined between two bodies: (a)

central or collinear, which is when the impact in alignment of center of mass of

two bodies; (b) eccentric, is the case that, the impact direction is not in alignment

of at least one of the body; (c) direct, if initial velocities of the bodies are in the

same line of impact; (d) oblique, happens when at least the initial velocities of the

body is not in the same line of impact [59].

5.3.4 Phases of Impact

Generally, any impact may be considered in two phases: The first phase is the

compression phase. It starts when the body touch the surface or second body

and then the body start deforming in the direction of the impact and the rela-

tive velocity will reduce until it reaches to zero. This phase is called maximum

compression or maximum penetration. The second phase is referred as restitution

phase. It starts from the end of first phase and ends when bodies separates from

each other [78]. The restitution coefficient is introduced to account for dissipation

of energy during impact process [79] [80]. The coefficient of restitution depends on

many parameters including geometry of bodies in contact, velocity before contact,

material properties, times in which contact takes place and friction [80] [59].
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Figure 5.2: (a) perfectly elastic, line OAC, where no energy is lost;(b) perfectly
plastic, line OA, where all energy is lost and the deformation is permanent;(c)
partially elastic, line OAD, with energy loss but no permanent deformation;(d)
partially plastic, line OAB, with energy loss and permanent deformation.

5.3.5 Impact Based on Coefficient of Restitution

Regarding the coefficient of restitution, impact can be considered as below: Elastic

collision: In elastic collision between two bodies, the total kinetic energy between

the two bodies after the impact is equal to the total kinetic energy of both bodies

before the impact. In other word, the energy is conserved and there is no energy

lost in the system. Inelastic collision: In inelastic collision, some part of energy

converts to the other form of energy such as vibration, heat and e.g. This can be

considered as a collision which energy is not conserved. It is worth to note that

despite the fact that in inelastic collisions the energy is not conserved, they obey

conservation of momentum [81].
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5.3.6 Approaches to Calculate the Impact

The evaluation in contact forces can be considered from two different approaches

which are namely, the continuous and discontinuous approaches.

The continuous approach, assumes that the impact forces happens in a con-

tinues manner during the impact [78]. To simulate the continuous behavior, the

compliance or continuous contact models are used where the impact force is a

function of local indentation. This method is suitable for long impact duration

and returns more efficient and accurate results [78].

The discontinuous approach assumes that impact happens in a very short

time, therefore there is no significant change in configuration of impacting bodies

[59]. The discontinuous approach is based on solving a set of algebraic impulse-

momentum equations that accounts for discontinuities in the system velocities

during the impact event. Thus, the generalized impulse-momentum equation for

all the bodies in the system is derived. The solution of these equations produces

a discontinuities in the joint reactions as well as in the velocities. This method is

mostly used for impact between rigid bodies.

5.4 Modeling of the System and Coordinates

Our model system for this study consists of a puck (a solid disk moving in the

plane) anchored to the ground by a stiff, elastic, and massless tether. We consider

this system under two conditions. In the first, simpler case, the tether is attached
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to the puck’s center of mass;1 in the second case the tether is attached to a point

outboard from the center of mass. This outboard attachment allows for a variable

moment arm between tether’s line of action and the center of mass, and thus for

different amounts of energy to be transferred between translational and rotational

modes at impact.

Fig. 5.3 illustrates the coordinates we use to model this system, where x and

y are the position of the puck with respect to the global reference frame and the

puck’s initial velocity is in the y direction. The tether is anchored to the origin

of the global frame, and is at an angle β with respect to this frame; it has a base

length L0 when it is taut and not stretched. For a tether attached outboard from

the puck’s center of mass, the line connecting the attachment point and center of

mass makes an angle ϕ with the direction of motion.

When using an impulse model of the bounce dynamics, as in §5.4.2, it is useful

to transform the system dynamics into a frame whose axes are aligned with or

orthogonal to the tether, as illustrated in Fig. 5.4, and to measure the tether

angle with respect to the initial direction of motion, rather than the x axis of the

global frame. It is also useful to introduce an “offset angle” α that represents the

declination of the line from the tether attachment point to the center of mass,

relative to the tether’s line of action.

1The tether is out of the plane of the puck, and so is allowed to intersect with it.
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5.4.1 Full Equations of Motion

The tethered-puck system described above exhibits hybrid dynamics, in that it

obeys free-flight equations of motion

ẍ = ÿ = ϕ̈ = 0 (5.1)

when the tether is slack, we define Lagrangian, L which is a map from the tangent

space of the configuration manifold to the reals. For mechanical systems, the

Lagrangian is defined as the difference of kinetic energy and potential energy.

L = KE−PE (5.2)

where L is the Lagrangian term for a system and the kinetic energy is

KE =
1

2

[
ẋ ẏ ϕ̇

]
m 0 0

0 m 0

0 0 I



ẋ

ẏ

ϕ̇

 (5.3)

relatively the potential energy is

PE =
1

2
K(L− L0)

2 (5.4)
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Figure 5.3: Coordinates of the dynamic model.

where

L =
√

(x+R cos(ϕ))2 + (y +R sin(ϕ))2 (5.5)

is the length of the spring, and L0 is the neutral length of the spring. Now we can

form the systems equations of motion, as Euler-Lagrange equations

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
= 0 (5.6)

The motions considered in this chapter, starts with free-flight mode where the

tether is slack and nominal tether length L < L0. When it reaches to slack-taut

transition condition of L = L0, then the mode transitions to spring-mass dynamics

with the tether stretching to L > L0.
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5.4.2 Impulse Approximation

In many situations involving impacts, the duration of contact is short enough that

the forces applied to the moving system can be modeled as an impulse, allowing the

final velocity to be determined by conservation of energy and momentum instead of

evaluating the full dynamic equations over the contact period. For the puck-tether

system, these conservation laws lead to four equalities relating the puck’s velocity

before and after the bounce. Three of these equations are given by the net change

of momentum,


m 0 0

0 m 0

0 0 I




∆vr

∆vθ

∆ϕ̇

 =


J

0

~J × ~R

 (5.7)

where ∆ indicate the difference of the velocity before and after the impact and ~R

is the position of the center of mass relative to the attachment point as measured

in the tether-aligned coordinates. The first equation means that the string applies

an impulse ~J = Jr̂ to the puck, changing the magnitude of its linear momentum

along the tether by J . The second equation implies that the tether cannot apply

any forces perpendicular to itself, so the center-of-mass’s momentum (and thus

velocity) in that direction is unchanged. Third, this linear impulse applies a mo-

ment to the system around the center of mass, so that its initial and final angular

momenta are related.
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Figure 5.4: Extra coordinates useful for the impulse model.

Fourth and last, a perfectly-elastic tether dissipates no energy during the im-

pact, so the system’s initial and final kinetic energies are equal,2

∆KE =
1

2

[
∆vr ∆ϕ̇

]m 0

0 I


∆vr

∆ϕ̇

 (5.8)

Given these relationships, we can solve (5.7) and (5.8) as a set of simultaneous

equations to extract the final translational and rotational velocities from a set of

known pre-impact initial conditions. Note that we need never solve for the impulse

J : it acts as a constraint on the dynamic equations that mandates a proportional

change in linear and angular momentum, and can be factored out of the system

by combining first and third row of (5.7). Additionally, because the exit condition

for the impulse equations is that the tether has returned all of its elastic energy to

2This formula can be generalized to dissipative systems via a coefficient of restitution as
discussed in §5.6.2.
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Figure 5.5: The post-bounce direction of velocity for a puck with a 45◦ tether at-
tached at the center of mass, as a function of the system’s characteristic parameter
ρ from (5.9).

the puck and thus is at L = L0, the equations automatically exclude any solution

that would put the tether in compression.

5.4.3 Convergence Study on Impulse Equations

The impulse equations in §5.4.2 assume that the bounce duration is “small” relative

to the time-scale of the system, and in particular that the angle of the tether with

respect to the global frame changes very little during the impact. The accuracy

of the impulse approximation therefore depends on a non-dimensional parameter

ρ that is the ratio of natural frequency of the spring-mass mode of the system and
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Figure 5.6: Bounce direction with outboard tether (a) when the tether’s line of
action passes through the center of mass, the puck’s velocity is redirected in the
same manner as seen when the tether is attached to the center of mass. (b) when
the tether’s line of action does not pass through the center of mass, it rebounds
along a shallower angle.

the rate at which the tether is rotating at the start of the impact,

ρ =
ωn

θ̇
=

√
k

m
· L
vθ
. (5.9)

To validate our use of the impulse equations, we conducted a convergence study

between their results and those of the full equations in (5.2)–(5.6), with a 45◦

tether attached to the center of mass with varying ρ. As illustrated in Fig. 5.5, the

two equations have essentially converged for ρ > 100. Our experimental system

(described in §5.8) has ρ > 850, well within the region of convergence.
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5.5 Exploring Bounce Direction with the Impulse Equations

With the impulse model for tether-bounces in hand, we can now explore how the

direction in which the system bounces depends on the orientation of the tether,

where it is attached to the puck, and the mass distribution of the puck.

When the tether is attached to the center of mass, (5.7) and (5.8) have a simple

solution: the velocity along the tether is reversed, and the velocity orthogonal to

the tether stays the same. As illustrated in Fig. 5.1, this motion is equivalent to

bouncing a point mass off of a virtual wall, with equal angles of incidence and

reflection. Such reflections allow for some interesting trajectories, such as a 90◦

bank shot by placing the tether at 45◦, but far more interesting phenomena occur

when we consider pucks with outboard tether attachments.

As illustrated in Fig. 5.6, the bounce direction with an outboard tether is

strongly influenced by the relative angle between the tether and the line between

the attachment point and the center of mass: aligning these directions produces the

same “reflected particle” bounce seen for a tether attached to the center of mass

as in Fig. 5.6a , but the puck bounces by a shallower angle when the tether is at

a different angle from the tether attachment as in Fig. 5.6b. From the standpoint

of our momentum equations, this change in bounce direction originates in third

row of (5.7), where the offset angle determines the effective moment arm in the

rotational impulse, and thus the proportion of energy that is directed into spinning

the puck instead of redirecting its translational velocity.

To further understand the bounce dynamics of this system, we consider how
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the system’s velocity evolves for different offset angles under two conditions: When

the tether is at a 45◦ angle to the initial velocity, and when it is directly inline

with the velocity.

5.5.1 Outboard Attachment With 45◦ Tether

The bounce directions and relative translational output speed of the puck generated

by a half-circle sweep of the attachment point and a fixed3 tether angle of 45◦ are

plotted in Fig. 5.7a. As expected, the puck makes a right-angle turn with zero

change in speed when there is zero offset between the tether and attachment angles,

mimicking a system with the tether attached at the center of mass. Likewise, it

experiences the smallest change in direction when the tether is at right angles to

the attachment, and thus provides the largest ratio of angular-to-linear impulse;

this large ratio means that the system experiences a large rotational acceleration

which slackens the tether before the linear momentum is fully redirected. Between

these two points, however, we see that the greatest speed change does not occur

at this configuration, and in fact corresponds to an offset angle of 45◦.

The difference between the minimum-deflection and maximum-deceleration

points is an impedance-matching effect between the system’s translational and

rotary inertias, in which the impulse applied by the tether most efficiently im-

parts rotational energy into the system when the moment-arm of the tether force

3On a physical system with a fixed tether length, the tether angle at impact would of course
vary with the offset angle. For a sufficiently long tether, however, this change of angle is negli-
gable.
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around the center of mass is equal to the puck’s radius of gyration, as illustrated in

Fig. 5.8. This condition corresponds to case where the square of the ratio between

the magnitudes of its linear and rotational components is equal to the the ratio

between the puck’s translational and rotational inertia,

(
JR sinα

J

)2

=
I

m
. (5.10)

For the puck, which has rotational inertia I = 1
2
mR2, (5.10) is satisfied when

sin2 α = 1
2
, leading to maximum energy transfer (and thus speed change) at α = π

4

and α = 3π
4

.

The offset angle that results in the maximum change in the puck’s speed de-

pends on its mass distribution. If we replace its solid-disk geometry with a thin

ring of the same radius, for which I = mR2, then (5.10) is satisfied for sin2 α = 1.

This equation has only a single solution in our domain, α = π
2
. As illustrated

in Fig. 5.7b, this means that the ring’s maximum change in velocity is collocated

with its minimum deflection.

The evolution of the maximum-deceleration points as a function of I/mR2 from

a pair of solutions evenly distributed about α = π
2

into a single solution at α = π
2

with a merge-point at I = mR2 is plotted in Fig. 5.7c. Note that for pucks whose

moment of inertia is greater than I = mR2, (5.10) has no solution, indicating that

the tether’s impulse inefficiently applies energy to the rotational mode for any

angle; however, the most efficient transfer of energy for these systems still occurs

when α = π
2
.



98

5.5.2 Tether Inline with Velocity

The effects of offset between the tether and moment arm, and of changing the

system’s moment of inertia, are even more strongly demonstrated if we consider

a tether anchored directly behind the puck. As such a tether is inline with the

system’s initial linear momentum, it cannot deflect the system at the bounce, and,

as illustrated in Fig. 5.7d, any “change in direction” it produces can only be a

complete 180◦ rebound, and there is a range of offset angles for which there is no

change in direction: the puck continues moving in its pre-bounce direction, albeit

at a slower speed.

An interesting effect appears at the offset angle where the puck transitions

from rebounding to carrying on in its original direction: The puck goes to zero

translational velocity and instead spins in place. This “deadspin” effect is a special

case of the maximum-deceleration point we identified for the 45◦ tether, where

placing the tether’s effective moment arm at the puck’s radius of gyration now

completely transfers its kinetic energy into the rotational mode. The completeness

of this energy transfer is enabled by the alignment of the puck’s velocity with

the tether; in the 45◦ degree case, the component of the puck’s momentum that

was orthogonal to the tether represented energy in the system that was unable to

interact with the tether.

As was the case for the maximum-deceleration points for the 45◦ tether, the

deadspin points of the 90◦ tether satisfy the condition sin2 α = I/mR2, and merge

into a single solution for I = mR2 as illustrated in Fig. 5.7e–f. For moments of iner-
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Figure 5.7: Bounce direction and magnitude as a function of tether and offset angle.
(a) with a 45◦ tether angle, the puck experiences maximum deflection (change in
direction) when the offset angle is zero, maximum deceleration when the offset
angle is π

4
or 3π

4
, and minimum deflection when this angle is π

2
. (b) a puck that is a

ring (instead of a solid disk) experiences both maximum deceleration and minimum
deflection at an offset angle of π

2
. (c) for inertia ratios of i/mr2 < 1, the maximum

deceleration occurs when the tether’s line of action is tangent to the radius of
gyration. the locus of such points (which satisfies 5.10) has two branches which
merge together when the inertial ratio reaches unity. Above this limit, maximum
deceleration occurs when the tether’s line of action has a maximal moment arm
around the center of mass. (d) when the tether is anchored directly behind the
impact point, the maximum deceleration removes all translational velocity from
the puck, leaving it in a “deadspin.” (e) the two deadspin points merge together
for a ring. (f) the deadspin points for a 90◦ tether trace out the same locus as
did the maximum-deceleration points of the 45◦ tether. Note that the maximum-
deceleration points for inertia ratios greater than 1 are not deadspins.
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Tether

Tether’s line
of action

Radius of
gyration

Figure 5.8: The tether impulse most efficiently transfers energy into the system’s
rotational mode when the tether’s line of action is tangent to the puck’s radius
of gyration (the root-mean-square radius of its mass elements or, equivalently, the
radius of a thin ring with the same moment of inertia). This arrangement balances
the linear inertia of the puck with its rotational inertia relative to forces acting
along the tether.

tia above this merge-point, however, there are no dead-spin solutions: the tether’s

line of action is always inside the radius of gyration, and cannot transfer energy

or momentum into the rotational mode efficiently enough to prevent rebound.

5.6 Visualization method for prediction the velocity and its direc-

tion (energy method)

In order to enable better visualization and understanding of the effect of the ob-

ject‘s geometry and its inertia on the impact, a mathematical framework that de-

scribe the physical motion of the system is proposed. This is achieved by defining

the energy ellipse and impact line of action.
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5.6.1 Line of action and energy ellipse

The geometric iterpretation of the energy equation can be represented by the

energy ellipse which is defined by the inertia matrix of the object. It states a

level set of kinetic energy function of the system and demonstrates how the energy

changing from one form to the other form after the impact. Therefore, according

to (5.8) we can find the major and minor axis of the energy ellipse

a =

√
2KE

m
(5.11)

b =

√
2KE

I
(5.12)

The impact line of action describes the states that the momentum changes

along that line. This ratio can be written as

tan γ =
∆ϕ̇

∆vr
=
mR sinα

I
(5.13)

Fig. 5.9 illustrates the energy ellipse and line of action of the impact. As shown

in Fig. 5.9 the horizontal axis represents the change in velocities and the vertical

axis represents the change in angular velocities before and after the impact. The

two intersection points of red lines and ellipse correspond to the velocities and

rotational velocities of the object before and after the impact. For instance, if

the puck moves with translational velocity vir = 1 in tether parallel to the tether
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Figure 5.9: Shows the energy ellipse for the puck. The blue line indicates the
impact line of action for the tether and offset angles illustrated above. The two
intersections of the ellipse with each red line parallel to the blue line indicates the
velocities before impact and velocities after impact.
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direction while the offset angle is perpendicular to the tether, then the output

velocities after the impact are vir = 0.33 and ϕ̇ir = 21.16. Other input velocities

also result in corresponding output velocities as it is shown in Fig. 5.9. For instance,

by looking at the ellipse, immediately one can observe how the energy is changing

from transnational to rotational mode and vice versa without any further need for

calculating the equations.

Furthermore, the bouncing direction of the object after the impact can be

obtained from following expression

αf = arctan
vfr

vfθ
(5.14)

where vθf = vθi indicating that the velocity in θ − direction remains unchanged

after the impact and αf is the direction of the puck with respect to the tether line

of action after the impact.

5.6.2 Dissipation of Energy

In the previous section, we demonstrated the effect of the geometry and attachment

point in the achievable puck velocities. We also showed how to use the energy

ellipses to predict the energy transformation after the impact. The question of

impact controllability then comes down to determining the transformation of the

energy after the bounce while the dissipation of energy also exists. This section
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considers the condition where the tether attached to the object is not ideal which

means some part of energy may dissipate during impact. The dissipation of energy

can occur in direction of impact line of action according to the Newton’s kinematic

hypothesis [63]. Regarding the Newton’s kinematic hypothesis, the coefficient of

restitution can be written as a combination of the velocities before and after the

impact.

e =
vfr
vir

(5.15)

Now a question arises how to use this model in our visualization model? and

how the dissipation of energy affect on energy level ellipse? The first attempt was

done by multiplying the (5.15) in left side of energy equation (5.8) which results

in the wrong solution. The coefficient of restitution is defined in the direction of

impact line of action. Since the energy equation has the rotational term, we cannot

directly implement the coefficient of restitution into the equation. Therefore, the

implementation has to taken into account in a new coordinate frame where the the

rotational velocities remain unchanged through the impact.

In order to do so a Jacobian needs to be found that maps the translational and

rotational velocities to the new coordinate (q̇1, q̇2) where q̇1 is in the direction of

impact line of action and q̇2 is orthogonal to q̇1 such that ∆q̇2 = q̇2
f − q̇2

i = 0.

This relationship is given by
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∆vr

∆ϕ̇

 = Ĵ

∆q̇1

∆q̇2

 , (5.16)

where ∆q̇1 and ∆q̇2 are the change of translational and rotational velocities before

and after the impact respectively. Ĵ is the Jacobian that maps current coordinate

to new coordinate where one axis is along the impact line of action (∆q̇1) and ∆q̇2

is orthogonal to the ∆q̇1. That means for any line parallel to q̇1 axis, the values in

q̇2 axis remains unchanged during the impact. To find the Jacobian, we take the

following steps:

From (5.16), we have the following relationships

∆vr = Ĵ11∆q̇1 + Ĵ12∆q̇2 (5.17)

∆ϕ̇ = Ĵ21∆q̇1 + Ĵ22∆q̇2 (5.18)

Since in new coordinate the rotational velocity doesn’t change, ∆q̇2 = 0. There-

fore, from (5.13), and (5.17) we have

Ĵ21

Ĵ11
=
mR sinα

I
(5.19)

Using this ratio if we assume Ĵ11 = 1 then we have
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Ĵ21 =
mR sinα

I
(5.20)

From orthogonality law, we can write

[
∆q̇1 0

]Ĵ11 Ĵ21

Ĵ12 Ĵ22


m 0

0 I


Ĵ11 Ĵ12

Ĵ21 Ĵ22

[0 ∆q̇2

]
= 0 (5.21)

where after simplifying it takes the following form

Ĵ11mĴ12 + Ĵ21IĴ22 = 0 (5.22)

substituting Ĵ11 and Ĵ21 results in

Ĵ12

Ĵ22
= −R sinα (5.23)

Once again using this ratio we can assume Ĵ22 = 1 then

Ĵ12 = −R sinα (5.24)
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which leads to

Ĵ =

 1 −R sinα

mR sinα
I

1

 (5.25)

Once the Jacobian is obtained, the coefficient of restitution e can be imple-

mented into the energy equation. First, both translational and rotational veloc-

ities are calculated in the new coordinate. Then the coefficient of restitution is

multiplied by initial velocity before the impact according to the equation below

and the result will be transformed back to the old coordinate.

vir
ϕ̇i

 = Ĵ

eq̇1i
q̇2
i

 , (5.26)

To use the energy ellipse and impact line action for the case with energy loss,

we normalize the new coordinate using the Tissots indicatrix and plot the energy

ellipse and impact line of action with respect to the new coordinate. The Tissots

indicatrix is a transformation matrix that illustrates the extent of a maps dis-

tortions by showing how the circles transform to the ellipses in parameter space

[16]. This transformation is normally used to show the distortion as a field of el-

lipses over a space. To normalized the coordinates, we obtain this transformation

and then multiply the inertia matrix by the inverse of the Tissots transformation

matrix to turn the energy ellipse to the circle.

The indicatrix ellipses are derived from the singular value decomposition of the
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inertia matrix

SV D(M) = UΣUT (5.27)

where the inertia mass matrix in new coordinate is

M =

Ĵ11 Ĵ21

Ĵ12 Ĵ22


m 0

0 I


Ĵ11 Ĵ12

Ĵ21 Ĵ22

 (5.28)

The Σ is a scaling matrix, and U can be viewed as rotation matrix. Now we can

define a Tissot transformation matrix T as following form

T = UΣ−
1
2UT (5.29)

that encodes the local deformation produced by the projection. Applying inverse

of Tissot transformation to the new coordinates and the energy ellipses shown in

Fig. 5.11 results in Fig. 5.10.

As illustrated in Fig. 5.10, the ellipses are circles and the impact line of action

only changes horizontally which means the energy only changes the translational

velocity inline with impact line of action. Furthermore, it is illustrated that the

coefficient of restitution has a direct relationship with the ratio of the velocity after
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Figure 5.10: In the normalized coordinate the ellipses have transformed to the circle
and changing of the momentum occurs in horizontal direction which indicated the
angular momentum remains unchanged. The energy loss now is directly related to
the translational velocities as demonstrated in the figure.

the impact over the velocity before the impact.

Now, the energy ellipses can be plotted as illustrated in Fig. 5.11 illustrates

how the ellipses due to energy loss look like in original coordinate. Each ellipse

corresponds to a value of the coefficient of restitution. As shown in Fig. 5.11, the

intersection of the impact line of action with the corresponding ellipses, determines

the translational and rotational velocities after the impact. For instance, once

again if the puck moves with translational velocity vir = 1 in tether parallel to

the tether direction while the offset angle is perpendicular to the tether, then the
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Figure 5.11: The energy ellipses are depicted for three different values of coefficient
of restitution. The blue coordinate is the new coordinate where if the coefficient
of restitution is implemented, the energy loss only occur in translational direction.
The intersections of the ellipses with red lines, show how the energy changes after
the impact for different coefficient of restitution.

output velocities after the impact are vir = 0.33 and ϕ̇ir = 21.16 for completely

elastic impact whereas for the case of energy loss in system (e = 0.66), the output

velocities after the impact are vir = 0.44 and ϕ̇ir = 17.57. Therefore, for any given

input velocities the corresponding output velocities can be observed as it is shown

in Fig. 5.11.

As one can see in the Fig. 5.11, the intersection of impact line action and

ellipses occur in two points. As explained earlier, in new coordinate the rotational

velocities remain unchanged through the impact therefore, the impact happens
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Figure 5.12: The comparison is made between the simulation and analytical solu-
tions which shows that the energy ellipses results are accurate.

as if it is a central impact. In central impact the direction of the velocities will

change after the impact, hence, in case of energy ellipse one can see which point

has opposite direction in q̇1 direction.

To verify the results from energy ellipses, an equivalent mass-spring-damper

model related to the coefficient of restitution is needed. According to [82] the non-

dimensional damping ratio can be written as a function of coefficient of restitution.

ζ = − ln e√
π2 + (ln e)2

(5.30)
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hence, the damping coefficient is obtained from

c = ζ
√
km (5.31)

where the k is spring stiffness and m is the effective mass of the puck. This equation

provides a good approximate relation between damping ratio and coefficient of

restitution. The results are illustrated in Fig. 5.12 which verify the results obtained

from the energy ellipses method.

5.7 Error Caused by an Non-ideal Tether

In all above impact study, the tether was assumed an ideal tether such that once

the impact occurs the impact point remains steady and no changes happen in the

position of the end-effector. In this section, we consider a case where the string is

not ideal and the position where impact starts is different from the one after the

impact. This error results from the stretch and rotation of the tether during the

impact. This can be thought as a spring substitute with the string which only acts

as it stretches. Therefore, when spring becomes taut, it will continue to stretch to

some extent and while it is stretching the velocity in θ−direction cause the spring

to rotate as shown in Fig. 5.13 which leads to the different velocity direction after

the impact. As shown in Fig. 5.13, the error composed of translation, rotation,

-rotation and -translation of the puck. Therefore, the error of the end-effector can
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Figure 5.13: The error that an non-ideal tether caused in direction of the movement
after impact. The sequences of movement is shown with arrow as illustrated.

be captured approximately by using the Lie bracket rules.

We define two vectors in local coordinate(r, θ as

vr =

1

0

 , vθ =

0

1

 (5.32)

These vectors can be written in world coordinate
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v1 = g

1

0

 , v2 = g

0

1

 (5.33)

where g is a mapping from local coordinate to world coordinate and it takes

the following form

g =

cos θ − sin θ

sin θ cos θ

 (5.34)

The Lie bracket of two vectors v1, v2 ∈ R2 finds the net effect of making se-

quential, infinitesimal moves in the v1, v2,−v1,−v2 directions and is calculated

as

[v1, v2] = ∇v2.v1 −∇v1.v2 (5.35)

which results in

[v1, v2] =

−vrvθ y
x2+y2

vrvθ
x

x2+y2

 (5.36)

where x and y indicates the position of the center of the puck with respect to the
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world frame. The x and y components of the Lie bracket capture the net motion

of the puck.

To verify the error found from Lie bracket equation, the simulation using full

of equation of motion is carried out. To do so, we use the spring to simulate the

behavior of an non-ideal string. The error calculated based on the duration of the

spring stretch. Once the spring reaches to its free length, the simulation is stopped

and the position and the time are recorded. The time obtained from simulation is

used to calculate the final position of the puck according to the velocities computed

from Lie bracket. The comparison has been done for different tether angle with

respect to the initial velocities as well as duration of impact as shown in Fig. 5.14.

The results reveal that the Lie bracket has a good approximation in calculating

the error for small deviation of the tether angle. Furthermore, it is shown that as

the impact duration increases, the Lie bracket approximation loses its accuracy.

5.8 Experiments

In conjunction with our analytical and numerical investigation of tethered-projectile

redirection, we also carried out a series of experimental tests on this process. We at-

tached a lightweight tether to a puck on an air hockey table, then used a pendulum-

hammer to apply a repeatable initial velocity to the puck. We then tracked the

puck’s subsequent motion via a high-speed camera (GoPro, HERO3+, 1080p) at

60 frames per second (fps) and extracted its trajectory by processing the video

data. Results from two series of these experiments are presented in Figs. 5.15



116

Figure 5.14: The comparison is made using the full equation of motion for different
configurations. The results demonstrates the good convergence for small tether
angle with respect to the velocity as well as small duration of impact.
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and 5.16.

Our first experiment was to test the bounce direction of a puck with a tether

attached to the center of mass for different tether angles. The impulse model

predicts that there should be a 2:1 linear relationship between the tether angle

and the puck deflection, based on the requirement of equal incident and reflection

angles. As shown in Fig. 5.15, the measured bounce direction closely matched this

prediction. The small negative error in the data is most likely a result of energy

dissipation in the tether, which would reduce the rebound component of the final

velocity and thus the deflection angle.

In our second experiment, we observed the motion of the puck when the tether

was placed at a nominal angle of 45◦ to the puck’s velocity and the tether was

attached outboard to the center of mass and at different angles. The data from

this experiment is plotted in Figs. 5.16, and once again shows a good correlation

to the experiments. We attribute the error in this plot to a combination of energy

dissipation in the tether and a small rotational disturbance in the initial conditions

set by the pendulum hammer and from drag on the slack tether. We correct for

the net rotation from these sources by plotting the puck’s deflection relative to the

actual measured initial angle, but the spin also adds energy to the system that is

more difficult to accurately capture and compensate for.

Finally, in the third experiment, we tested the deadspin effect. A challenge

in observing this effect is that unless the string is released from the base after

the impulse is finished, the puck will bounce a second time after making a half-

revolution. To avoid this second bounce, we constructed a dynamically-equivalent
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Figure 5.15: Comparison of simulation and experiment in which the tether is
attached at the center of mass and its angle is varied with respect to initial velocity
direction.

system, illustrated in Figs. 5.17 in which the tether is replaced by an orthogonal

wall. The wall is raised slightly to allow the puck to slide beneath it, but to catch

against a pin at the puck’s “tether attachment point” and provide an equivalent

impulse. As can be seen from the captured images and the attached video, the

puck indeed goes into the deadspin predicted by the model and makes more than

a full revolution without leaving the red area at the center of the air table.

5.9 Discussion

In this chapter, we investigated the direction in which a moving projectile anchored

by a tether will bounce when the tether becomes taut. In doing so, we identified

five critical points in the puck’s dynamics:

1. The puck is maximally deflected when the tether’s line of action passes
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Figure 5.16: Comparison of simulation and experiment in which the tether angle
is set at a 45◦ angle relative to the puck’s initial velocity, and the offset angle α is
varied.

through the center of mass, and so transfers no energy into the rotational

mode.

2. The puck is minimally deflected when the tether’s line of action is at right

angles to the line connecting its attachment point to the center of mass. In

this configuration, the impulse’s moment-to-force ratio is large, and the puck

rotates into the tether (causing it to go slack) before it can fully redirect its

linear momentum.

3. The puck is maximally decelerated when the tether’s line of action is tangent

to the puck’s radius of gyration, and so optimally transfers energy into the

rotational mode and out of the translational modes.

4. The puck’s bounce is predicted using the energy ellipse and impact line of

action even when puck has non-zero rotational velocity.

5. The puck’s bounce is predicted considering the effect of energy dissipation



120

on the tether using the family of the energy ellipses intersecting with tether

line of action.

In our future work, we aim to build on these results by incorporating the bounce

dynamics into a system that can actively change its orientation during flight, e.g.,

by coupling to a flywheel or other reaction mass. We anticipate that the com-

bination of the bounce and orientation dynamics will lead to the development of

mobile systems with novel maneuvering capabilities. We will also be incorporating

our bounce analyses into our ongoing work on casting manipulation [83] (inter-

acting with the environment via an end-weighted tether) and spring-mass legged

locomotion [84].
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Figure 5.17: Experimental validation of the deadspin effect described in §4.2. The
puck can slide under the bar, but has a pin that can catch on the bar, and so is
dynamically-equivalent to the tethered puck. With an initial velocity perpendicular
to the wall and the pin at the puck’s radius of gyration, the puck goes into a
deadspin on impact and stops at the same place. We remove the bar after the
initial impact—between (c) and (d)—to prevent the puck from experiencing a
second bounce between (e) and (f). Note that the camera was angled in the
experiment, but the bar is shown correctly in the cartoon as being perpendicular
to the velocity direction.
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Chapter 6: Geometric Motion Planning for Systems with Fast

Energy Release

6.1 Introduction

Jumping can serve multiple functions for animals and robots: Escape from a preda-

tor or other dangerous situation, efficient locomotion over rough terrain [2], and

launching at a target. Achieving these goals requires a combination of fast energy

release and a structure to channel this release in a desired direction. This aiming

is especially important for purposeful locomotion and targeted launching.

Jumping spiders provide an interesting example of an aiming mechanism that is

employed by animal feeding strategy involves precision pounces on often-airborne

insects. The spiders use their legs to adjust the direction and velocity of the jump.

The rear legs provide the required reaction force to propel the spider and the front

legs in jumping spider act as a lever to control the direction of the jump [2].

In this chapter, we present a simplified model of the jumping spider robot

based on the anatomy of the real spider. The main contribution of this chapter is

to investigate the geometry of the jump and how the presence of the vaulting leg

affects the resulting motion; this focus on how energy is channeled is in contrast

to most other jumping studies’ focus on questions of energy storage capacity and

rate of release. In our model we implement the main legs of the spider which
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Figure 6.1: The jumping spider mechanism.

can contribute in the targeted jump as identified in [2]: the hind leg that supplies

the energy for the jump, and the front leg which acts as a guide for the energy

release. We use dynamic simulations to investigate the influence of parameters

including front leg angle, front leg length and spring stiffness on the height, travel

distance, velocity and direction of the jump. These simulations were corroborated

via experiments on a physical implementation of our model, illustrated in Fig. 6.1

and the accompanying video.

A key insight that we gained from this investigation is that the vaulting leg

allows the system to jump along flatter trajectories than would be possible with

a simpler aiming mechanism. This effect persists even as the spring stiffness is

increased, indicating that this increased range of launch angles is a fundamental

geometric effect, and not tied to a slow release of jumping energy.
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6.2 Literature Review

This chapter draws on prior research efforts regarding jumping spider anatomy

and jumping mechanism. Researchers have worked on many robots with jumping

ability [85, 86, 87, 88, 89, 90] for which the main concerns are overcoming high

obstacles, designing good energy storage mechanisms, and efficiently releasing the

energy [91]. In [92], a 7g jumping mechanism was developed to overcome large

obstacles. The major focus of that study is on the height and the travel distance

of the jumping robot. In order to generate a high jump, Kovac, et.al designed the

mechanism such that the force profile starts with small force to prevent the system

from launching before the maximum energy has been released from the spring into

the system. The 7g jumping mechanism was later improved by adding the ability

to steer the take-off in the horizontal plane [93].

Some investigations of jumping designs that have taken advantage of an as-

sistive leg to jump [94, 95]. The assistive leg can help the robot to steer itself

and jump with a desired elevation. In recent study of jumping robots, the [95]

presented a soft robot which takes advantage of combination of pneumatic and

explosive actuators to perform a jump. The robot proposed in study is capable of

targeted jump, with the height and travel distance adjustable by its legs. In these

works, however, the legs have been treated primarily as an aiming device for the

energy release mechanism, and their effects on the launch dynamics have not been

considered.

The jumping process also has been studied from biological point of view. Jump-
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ing spider characteristics in different jump situations have been considered in [2].

In this research, photographs were used to measure the spider jumps. The focus

was mainly on the ability of spiders to select their take-off velocity and direction

to account for prey position and gravity. Other related works have studied on

hydraulic leg extension. Parry and Brown [96] concentrated on jump mechanism

of jumping spiders and mentioned that there are no extensor muscles at the hinge

joints of spider leg and the extension is due to haemocoelic blood pressure [97].

The directional jump also has been studied for other insects. Card studied the

fruit flies behavior of the jump [98] and showed why they are so hard to swat.

She demonstrated that the flies can change the center of mass (COM) of their

body by combination of leg placement (changing legs position) and leaning (shift-

ing the body position). This center of mass movement helps them to jump in

different directions. Her study revealed that most of the COM repositioning in

forward and backward direction comes from leg placement whereas, the leaning

movement mostly contributes in lateral repositioning. In the other study, Burrows

investigated the grasshopper jump and the role of its legs during the jump [99].

He identified three different phases where the jump takes place and in the second

phase the body angle is adjusted by changing the front leg position.

6.3 Spider Anatomy and Modeling

There are two main legs that play key roles in launching the jumping spider. The

rear leg (labeled IV in [2] and in Fig. 6.2) provides most of the propulsion force for
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Figure 6.2: Description of fundamental legs of jumping spider for a complete
jump [2].

a jump. The front leg (labeled III) contributes a stabilizing force to stop the spider

from falling over before the jump and serves to guide the direction of jumping [2].

The rear leg has several links, which straighten from initial folded position under

internal pressure [97].

Based on the information gained from the anatomy of the spiders, we model

our jumping spider as a planer system consisting of rear and front legs in which

both front leg and rear leg have no-slip contact with the ground, and thus serve

as pivots while there is a positive reaction force. The, rear leg in our model is

composed of two segments which are equal in length and are joined together. The

front leg length is equal to the length of summation of rear legs. We model the

legs as massless links, corresponding to the concentration of mass in the body of a

real spider [97].

The resulting system is a four-bar linkage. We model the body as a point
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mass, the front leg as freely pivoting around the body, and the leg energy storage

as rotational spring at the joint that provides leg extension as shown in Fig. 6.3.

The spiders jump occurs in four phases. Fig. 6.4 shows three stages of jumping

and one stage of flying. In each stage, the trajectory of the body mass is displayed

as the trailing path.

• Stage (1) is when spring is released from an initial resting configuration.

• Stage (2) shows the spider as it has begun to increase in its velocity in an

upward direction, pivoting around the front foot. This stage only appears

during vaulting jumps.

• Stage (3) shows when the reaction force of the front leg becomes zero, the

system enters into the unsupported phase. In an aiming jump, the system

enters this stage directly from stage 1.

• Stage (4) shows the spider at flying phase. When both legs have zero reaction

force, the system enters its flight phase.

The jumping spider jumps by starting in a configuration with the back leg

spring pre-loaded to jump. When it is released, it continues until the rear leg

angle α2 becomes close to 0°angle (stage 3) and after that it enters to the stage

(4) with the initial velocities taken from the previous stage.

Note that the Fig. 6.4 shows a vaulting jump. In some cases (the unsupported

jumps described below), the mechanism lifts off directly, without pivoting around

the front leg.
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Figure 6.3: The spider model.

Figure 6.4: Stages of the jump. (1) initial configuration, (2) pivoting around front
foot, (3) launching off of rear leg, and (4) flight phase.

6.4 Types of Jump

There are three different jumps may happen for spiders: unsupported Jump, aiming

and vaulting.

• Unsupported Jump: The initial reaction force is what determines an un-

supported jump, and that in the limit of high stiffness, it would be an aim-

ing jump, but that for lower stiffnesses, the jumper would “fall over” as it

launches.
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• Aiming jump: Is the theoretical limit of unsupported jump when the jump

occurs very fast. Therefore, the system launches along the initial body angle.

• Vaulting: In a vaulting jump, the mechanism pivots around the front foot,

re-aligning the rear leg’s line of action prior to take-off.

Given this categorization of jumping, we can then ask:

• What is the role of the mechanism's geometry in the jump?

• Under what conditions does an unsupported jump occur?

• Under what conditions does vaulting occur?

• How does vaulting affect the kinds of jumps that the mechanism can make?

6.5 Simulation and Results

To investigate the system's jumping behavior, we carried out a series of simulations.

The fixed parameters over these simulations are the lengths of the leg segments,

L1 = L2 = L3

2
and initial angle of the back leg joint (i.e., the compression of the

spring) at α2 = 2.2 radians. In our parameter explorations, we evaluate the effect

of initial front leg angle α1, non-dimensional stiffness

ρ =
ωn

2

θ̈
=

k

m
· L1 + L2

g
(6.1)

relating the time scale of spring release and falling forward, and front leg length.

In each series of simulations, we fixed one of the variables, took a coarse sampling
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of a second, and a fine sampling of a third, resulting in three plots of data each,

as illustrated in Fig. 6.5, 6.6, 6.7 and described below.

6.5.1 Front Leg Angle (α1) and Stiffness (ρ)

The first set of simulations consider the effect of the front leg angle on the launch

angle, at low, medium and high stiffness. As illustrated in Fig. 6.5, increasing

the front leg angle increases the launch angle. For low stiffness, the hypothetical

unsupported jump is very close to the vaulting jump. As the spring stiffness

becomes higher the take-off angle for the unsupported jump approaches that of

the aiming jump, while the vaulting jump maintains a significantly lower angle.

When the front leg increases, the spider’s body tends toward the back leg and

causes the reaction force to get close to the vertical direction which decreases the

load over the front leg and instead put more load on the back leg. Therefore, the

spider experiences unsupported jump.

6.5.2 Spring Stiffness (ρ) and Front Leg Angle (α1)

The second set of simulations considers the effect of the stiffness on the launch

angle, at small, medium and large front leg angle. As shown in Fig. 6.6, increasing

the stiffness increases the flying angle to some extent and this is noticeable that

the rate of increase in flying angle is much higher when spider is doing aiming

jump than when it is doing vaulting jump (Fig. 6.6 c). Similar to the results
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Figure 6.5: Launch angle and type as a function of stiffness and front-leg angle.
As the stiffness increases, unsupported jump converges to the aiming jump and
vaulting stays as lower launch angle.

Figure 6.6: Launch angle and type as a function of front leg angle and spring
stiffness. Lower stiffness corresponds to the vaulting behavior and the front leg
angle decrease results in vaulting behavior over a greater range of stiffnesses.
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Figure 6.7: The behavior of the jump for α1 = 30°and front leg length variation
are depicted. Increasing the front leg length increases the launch angle and can
change the type of jump (b).

from the front leg angle, it is shown here that for any given stiffness, in some

angle the spider only performs unsupported jump and in some others does the

vaulting angle. The figure states that for small front leg angle, the difference of

flying angle between hypothetical unsupported jump and vaulting jump is more.

That is because vaulting takes longer time before switch to unsupported jump.

(Vaulting jump usually starts with vault and then during the jump when spider

loses the front leg contact, switches to the unsupported jump). As expected also,

increasing the stiffness has a direct effect on the travel distance and the height of

the jump regardless of what the front leg angle is, and increases both height and

travel distance. Also, as the stiffness increases the speed of the jump increases.
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Figure 6.8: Separated regions where the vaulting jump or unsupported jump oc-
curs.

6.5.3 Front Leg Length (L3) and Spring Stiffness (ρ)

Finally the third set of simulations considers the effect of the front leg length

on the launch angle, at low, medium and high stiffness. Increasing the front leg

length, increases the flying angle regardless of the type of the jump (Fig. 6.7). For

larger front leg angle, higher spring stiffness and larger front leg, the spider does

unsupported jump. On the other hand, for smaller front leg angle, lower spring

stiffness and smaller front leg, the spider does the vaulting jump. As the leg length

increases for the same configuration, the body of spider moves toward the back leg.

Therefore, the reaction force on the rear leg tends to the vertical direction which

causes the front leg loses its contact with ground at the beginning of the jump and

performs unsupported jump.
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6.5.4 Analysis of Results

The vaulting and aiming motions are distinguished by the presence or absence of a

vertical reaction force on the front foot when the spring is released. We calculate

this reaction force by assuming a zero-displacement constraint on the motion of

the front foot, and then extracting the vertical reaction force from the resulting

trajectory of the body as

FR =
m(ÿx+ g)−mẍy

L
(6.2)

where x, y, ẍ, ÿ are the position and acceleration of the body respectively. L is

the toe's distance of the front and back legs. If FR > 0, then the zero-displacement

condition is consistent with the spider vaulting with some weight supported on the

front foot. If FR ≤ 0, then this means that the spring has sufficient vertical force

to immediately lift the spider in an aiming jump.

The Fig. 6.8 illustrates that even for high stiffness spring (explosive-actuated

system) the system vaults at some angles, and that the division converges to the

angle of α1 at the initial configuration as ρ increases, where γ is the angle of the

reaction force and (x, y) is the position of the center of mass. if α1 > 90°, an

unsupported aiming jump occurs. On the other hand, if α1 ≤ 90° the system

vaults instead (Fig. 6.9).
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Figure 6.9: Description of aiming and vaulting jump

6.6 Experiments

To demonstrate the aiming and vaulting motions on a physical system, we built a

proof-of-concept mechanical model, illustrated in Fig. 6.1. This model consists of

four main parts: The front and rear legs, main body, and the leg stoppers. The

front and rear legs are of equal length (165mm) and 3D printed with ABS plastic.

The main columns of the legs feature a c-channel design in order to save weight and

provide the appropriate strength. All three ground contact points for the legs have

small extruded spikes to ensure there is no slipping during the jumping motion.

The front legs are fixed together with a cross brace to ensure even tracking and

increase rigidity. The rear leg features a joint at the midpoint which is fitted with

a torsional spring to actuate the jumping motion.

The spring is loaded manually, then secured with fishing line using the 2 eye-

bolts located at opposite ends of the rear leg. The string is then cut to release

the energy stored in the spring to actuate the jumping motion. The main body

of the mechanism was constructed using a single hallow tube of aluminum. The
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use of aluminum against plastic creates a low friction interface allowing the front

legs to rotate, as well as providing enough weight to keep the center of mass close

to concentric with main body. The lateral center of the main body features 12

tapped holes that are drilled at 30°degree increments around its circumference.

These holes allow for the angle between the front and rear legs to be adjusted by

removing the eyebolt at the top of the rear leg, and rotating the leg around the

body. The leg stoppers are set at a fixed position on the main body and serve to

ensure the front legs are at the proper angle before the jump is executed. Fig. 6.10

and the attached video illustrate the result of our experiment for both vaulting

and aiming jump.

Figure 6.10: Experimental validation with two different front leg angle (0°and
45°) that cause vaulting and aiming respectively. The cartoons below the pictures
demonstrate the reaction forces on the feet. In vaulting, the spider start jumping
by assisting from the front leg and when the reaction force becomes zero, the jump
switch to the aiming jump. For the aiming jump it is shown that there is no
reaction force on front leg at the beginning.
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6.7 Discussion

In this chapter, we investigated a model of the aiming mechanism used by jumping

spiders. Through parameter exploration and dynamic analysis, we identified three

critical jumping regimes: unsupported jumps, aiming jumps and vaulting jumps.

Unsupported jumps were those for which the front leg lifted off the ground imme-

diately at the beginning of the jump, and for which the final take-off angle was

determined by the relative rates of energy release from the spring and the system

falling forward under the influence of gravity. In the limit of fast energy release,

these unsupported jumps converged on an “aiming” behavior, in which the take-off

angle was the same as the initial line of action of the spring.

Vaulting jumps, in which the mechanism pivots around the front leg before

launching, exhibited a different, and unexpected convergence behavior. Because

the spring force pushes into the front leg during “low-aimed” jumps, its release

rate is slowed; this allows the system more time to pivot forward, and results

in a trajectory that is even flatter than its initial aimed direction. Unlike the

unsupported jumps, these jumps do not converge to the “aiming” behavior with

increased stiffness, and so can be considered a distinctly geometric effect.

In our future work, we will seek to enhance our model by adding more segments

to the legs and incorporate rotation of the jumper’s body, as observed for spiders

in [2]. Jumping spiders have also been observed to use anchored draglines to

achieve maneuvering capabilities while in the air [100]; we aim to take advantage

of our study of tethered projectiles in [101] to add similar capability to our jumping
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spider mechanism.
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Chapter 7: Empirical Power Metric for Granular Snake

Locomotion over sand and other loose, flowing material is an ongoing challenge in

mobile robotics. Snake robots, which can contact the ground along their whole

body, have the potential to perform better in these environments than systems

relying on wheels, tracks, or even legs for propulsion [1]. A major challenge in con-

trolling snake robots, however, is coordinating their many degrees of freedom into

useful motions; on granular media, this challenge is compounded by a lack of fun-

damental physical models for the robot-environment interaction. In this chapter,

we investigate snake robot locomotion over granular surfaces via an empirical-

geometric approach that is amenable to analysis and optimization.

7.1 Empirical Derivation of Local Connection and Power Metric

In this chapter, our goal is to characterize and optimize the motion of a snake

robot over a bed of granular particles.

To do so we can empirically derive the local connection for an N-link snake

robot swimming on a granular surface by (1) sampling a configuration ω, (2)

commanding a small shape velocity ω̇ (3) measuring the resultant body velocity

◦
g and power consumption, and (4) fitting the local connection A(α) and power

metric to the data. This procedure is repeated over a uniform sampling of the
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shape space to generate a comprehensive model of the system.

After evaluating body velocity at every sampled shape configuration from ex-

periment setup, the local connection can be derived by linear regression as the

best-fit linear map from shape to body velocity. In addition, as explained in §4.3.2

we evaluate curvature of the vector field to derive the empirical height functions,

as shown in Fig. 7.1. Red areas indicate that the local connection vector field has

positive curvature, while black areas indicate negative curvature. The intensity

of either color represents the magnitude of the curvature of the local connection

vector field and white regions are where the curvature is zero.

Our model for the energy and power consumed by the snake robot as it changes

shape is a dissipative Riemannian metric of the form

(
dE

dt
)2 = P 2 =

[
α̇1 α̇2

]
Mp

α̇1

α̇2

 (7.1)

where the metric tensor

Mp =

 a 1
2
c

1
2
c b

 (7.2)

encodes the surrounding medias resistance to motion along different shape di-

rections.1 The energetic cost of a gait cycle is then

E2
cost =

ˆ
dαTMpdα (7.3)

1This model is a Coulomb-friction equivalent to the viscous-friction metric discussed in detail
in []
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Figure 7.1: Empirical local connection vector field and height function of an 8-
link snake robot slithering on the surface of 6mm plastic particles, represented in
minimal perturbation body frame. The range of the curvature plots is ±0.0152
body-lengths or ±0.0483 radians per square unit of shape. Red, white and black
indicate positive, zero and negative values respectively.
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which is the pathlength of the cycle in the parameter space, weighted by Mp.

To evaluate Mp experimentally, we used the high-fidelity joint-torque sensors

on the snake robot to measure the mechanical load on the joints during a sequence

of test motions. Under our model, we would expect to see the energy consumed

for small motions around a given starting shape to fit a conical function whose

coefficients correspond to the elements in the metric tensor,

a(dα2
1) + b(dα2

2) + c(dα2
1)(dα

2
2) = P 2dt2 (7.4)

and we find the set of coefficients that best fit our observations using a linear

regression of the data: For each set of n values for dα, P , and dt around a given

starting shape, our model expectation is



(dα2
1)1 (dα1dα2)1 (dα2

2)1

(dα2
1)2 (dα1dα2)2 (dα2

2)2

. . .

. . .

(dα2
1)n (dα1dα2)n (dα2

2)n




a

b

c

 =



P 2dt21

P 2dt22

.

.

P 2dt2n


(7.5)

which is over constrained but has a best fit solution via the pseudo-inverse
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
a

b

c

 =



(dα2
1)1 (dα1dα2)1 (dα2

2)1

(dα2
1)2 (dα1dα2)2 (dα2

2)2

. . .

. . .

(dα2
1)n (dα1dα2)n (dα2

2)n



+ 

P 2dt21

P 2dt22

.

.

P 2dt2n


(7.6)

giving a set of components for the metric tensor at that shape. The metric

tensors at different shapes can be visualized via the Tissot indicatrix [17, 20],

which illustrates the extent to which lengths according to the metric are distorted

by the working parameterization. In these plots, unit circles according to the

metric are displayed as ellipses, with the long axes of the ellipses corresponding to

directions in which motion is easiest (i.e., for which a unit amount of effort changes

the parameters the most). Fig. 7.2 illustrates the power dissipation metric for the

non-linear system and the estimated one obtained from (7.2).

In Fig. 7.2 (A), we can see that moving around the shape space (passing a wave

down the body) is easier than crossing the center of the shape space (straightening

out the body and then curving it again). We can also see that it is slightly easier to

move in the α1 sine mode direction than the α2 cosine mode direction, which par-

allels the observations in [17] that bending into a C shape costs more energy than

bending into an S shape because the C motion sweeps the body through more of

the surrounding medium. To remove some of the metric distortion captured by the

Tissot indicatrices from the shape space, we can use a cartographic reparameteri-

zation [17] to find a set of coordinates that match the metric as much as is possible,
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Figure 7.2: (A) Power dissipation metric in shape coordinates is shown. The long
axis in the ellipse corresponds to less energy consumption per change in shape.
(B) The metric as it appears in under a power-normalizing cartographic reparam-
eterization.
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in the same way that a conical map projection is a best-fit flat parameterization of

the globe. This operation treats the metric distortions as pre-strains in an elastic

sheet and relaxes these strains as much as possible while maintaining continuity in

the space. As illustrated in Fig. 7.2 (B), applying this reparameterization to the

shape space significantly reduces the distortion.

7.2 Discussion

In this chapter, we showed how to approximately fit a geometric model to a set of

small test motions. The results of this chapter was implemented on experimental

test data from Carnegie Mellon University which enables us to design a efficient

gait for Serpenoid snake robot moving on granular surface. This work resulted in

publishing a paper in Robotics Science and Systems (RSS) conference [13].
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Chapter 8: Conclusion

In this work, we have incorporated geometric insights to develop a framework for

motion planning. This framework, is built to facilitate studying, understanding

and designing a gait for robotic locomotion.

We built the cost function for inertial systems based on the concept of geodesic

and metric in differential geometry to find an effective and efficient way for robots

to move and show how the motion is connected to the system geometry and inertia.

In fact, we introduced curvature and acceleration as general characteristics of the

system that describe the properties of the system in a meaningful way and with

fewer terms.

These concepts were used to demonstrate that start-stop paths following geodesics

are not in general torque-squared-optimal for robotic manipulators. We introduced

a novel “biased geodesic curvature” takes into account the leverage that the ac-

tuators have on the system motion via their projection on the system’s dynamic

manifold, such that the minimum-torque-squared trajectories for the manipulator

are those that minimize the biased geodesic curvature.

To demonstrate the principle that start-stop motion along geodesic paths is not

torque-optimal, we conducted an experiment using a parallel actuator (a Minitaur

leg). For the sake of simplification, we added a point-mass to the end-effector of a

lightweight parallel mechanism, making the geodesics simple straight-line motions.
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For start-stop motions, Moving in an arc that used the biased geodesic curvature

to take into account leverage of the motors on the system dynamics required less

torque-squared than did moving along the geodesic.

Furthermore, we have incorporated geometric insights to develop a framework

for motion planning of crawling systems. This framework, is built to facilitate

studying, understanding and designing a gait for robotic locomotion.We modified

the torque-squared cost function to be proportional to the change of the gait’s

size. Utilizing this cost function, we demonstrated the results of our optimizer for

floating snake, the three-link and Serpenoid swimmers in the high Reynolds fluid

which has metric induced by inertia and compared the results with the results

obtained from pathlength cost function. The results revealed that, the gaits found

from the inertia based optimizer are a little larger than the gaits found by drag

based optimizer which matches with the mathematical equation we derived (the

inertial cost is proportional to square root of the size of the gait whereas the drag

cost is proportional to the size of the gait). Furthermore, we demonstrated the

pacing effect for inertial systems and how the way-points are distributed through

the gait. The results revealed a structure for the optimal solution for these types

of robots.

The concept of inertia and natural dynamic in impact dynamics was studied

and a framework for understanding the impact dynamics was developed. We inves-

tigated the direction in which a moving projectile anchored by a tether will bounce

when the tether becomes taut. In doing so, we identified five critical points in the

puck’s dynamics: The puck is maximally deflected when the tether’s line of action
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passes through the center of mass, and so transfers no energy into the rotational

mode. The puck is minimally deflected when the tether’s line of action is at right

angles to the line connecting its attachment point to the center of mass. In this

configuration, the impulse’s moment-to-force ratio is large, and the puck rotates

into the tether (causing it to go slack) before it can fully redirect its linear momen-

tum. The puck is maximally decelerated when the tether’s line of action is tangent

to the puck’s radius of gyration, and so optimally transfers energy into the rota-

tional mode and out of the translational modes. The puck’s bounce is predicted

using the energy ellipse and impact line of action even when puck has non-zero

rotational velocity. The puck’s bounce is predicted considering the effect of energy

dissipation on the tether using the family of the energy ellipses intersecting with

tether line of action.

The system with fast energy release such as jumping robots were studied and

investigated specifically a model of the aiming mechanism used by jumping spi-

ders. Through parameter exploration and dynamic analysis, we identified three

critical jumping regimes: unsupported jumps, aiming jumps and vaulting jumps.

Unsupported jumps were those for which the front leg lifted off the ground imme-

diately at the beginning of the jump, and for which the final take-off angle was

determined by the relative rates of energy release from the spring and the system

falling forward under the influence of gravity. In the limit of fast energy release,

these unsupported jumps converged on an “aiming” behavior, in which the take-off

angle was the same as the initial line of action of the spring.

Vaulting jumps, in which the mechanism pivots around the front leg before
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launching, exhibited a different, and unexpected convergence behavior. Because

the spring force pushes into the front leg during “low-aimed” jumps, its release

rate is slowed; this allows the system more time to pivot forward, and results

in a trajectory that is even flatter than its initial aimed direction. Unlike the

unsupported jumps, these jumps do not converge to the “aiming” behavior with

increased stiffness, and so can be considered a distinctly geometric effect.
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Appendix A: Effect of Contact Regions on Locomotion of Snake

Robots

A.1 Introduction

Robot locomotion is a method that a robot uses to move from one point to another

point and consists of interaction forces, mechanism, an actuator that generate

forces. Snakes locomotion has gained researchers attention since they can move

large distance with consuming very little energy. In addition, wheeled robots have

fundamental problems to perform over rough terrains. Legged robots have better

functionality over irregularities; however, they have stability problem as well as

a limited capability to move. Because of the high level of redundancy in snakes,

they are very stable and reliable in moving.

Snake locomotion through lateral undulation is based on a continuous interac-

tion of the snake’s entire body with its environment. The snake bends its body

so that it could push against the environment’s obstacles. Reaction forces from

the so-called push-points constitute together the total propulsive force required

for progression in a given direction [102]. Most of the researches who have been

working on snake robots, use the passive wheels to decreases the friction in the

longitudinal direction and cause the resultant friction forces of both lateral and

longitudinal in the forward direction which make the snake propel forward [103].
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However as aforementioned, wheeled robots cannot operate in an uncertain or irreg-

ular environment. On the other hand, observing the real snake locomotion reveals

that while performing the lateral undulation, the snake‘s body is not completely

in contact with ground, but snake lifts some parts of its body and concentrates its

body weight only on few points touching the ground, so that it can create push

points and it helps snake to propel forward more efficiency.

This work addresses this crucial behavior that has been paid less attention in

previous studies. We are considering three different scenarios in snake serpentine

locomotion and will consider the efficiency of the cost of transport for each of them.

We are considering the robot locomotion in low Reynolds numbers similar to the

three-link swimmer [104] to take advantage of the swimming dynamic.

A.2 Literature Review

Snake robots have been studied since 1971, with Hiroses well-known work on the

Active Cord Mechanism (ACM) [105]. Recent effort has been directed towards

mechanisms that can assume full three-dimensional shapes. Mori and Hiroses

ACM-R3 [106], modular snakes (modsnakes) [107], and Goldman and Hongs

HyDRAS [108].

Hiroses early work on snake robots identified the Serpenoid curve (Hirose 1993)

as the fundamental shape function simulating the backbones resembling the bi-

ological snakes while executing common gaits and used this curve as the basis

for robotic gaits. Chirikjian and Burdick [109, 110] developed modal functions
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for describing arbitrary backbone curves and algorithms for fitting discrete serial

mechanisms to these curves.

The second branch of gait development, also inspired by Hiroses work, has

taken a lower-level, wave-based approach. The joint angles in a serpenoid-curve

gait are specified by a sinusoidal traveling wave function, and, by extension, other

gaits can be produced by modifying the form of this wave [111]. In our work, we

are focusing on the extension of serpenoid motion utilized with a biological snake

which basically is carried out when the snake lifts some parts of its body to create

push points.

A.3 Geometric Modeling and Analysis of Locomotion

To model the locomotion system we divide the configuration space Q into a position

space G and shape space M , such that the position g ∈ G locates the system in

the world, and the shape r ∈ M gives the relative arrangements of its bodies

(Fig. 3.4). This separation is a means that demonstrates that how the change in

shape effects on the displacement of the body. In geometric mechanic, there exists

a linear relationship between changes in shape velocity ṙ and body velocity
◦
g,

◦
g = −A(r)ṙ (A.1)

where A(r) is the local connection matrix and acts like a Jacobian that maps

shape velocity to the body velocity [7]. This can be used as a tool to find an

optimize gate for the snake robot. This equation is a reconstruction equation in
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Figure A.1: Serpenoid model.

which it can be integrated to reconstruct the position trajectory from given shape

changes.

The connection vector can be considered a gradient of the body velocity with

respect to the shape velocity. The Stokes theorem is a mean that can be used

to approximate the net displacement over specified gaits. The Stokes theorem

equates the line integral along a closed curve on a vector field V on a space U to

the integral of the curl of that vector field over a surface bounded by the curve.

Therefore, by integrating the curvature of A we can find the net displacement and

applying the Stokes theorem covert this line integral to into an area integral.

∆g =

˛

φ

−A(r)dr ≈
¨

φ

curvature︷ ︸︸ ︷
−curlA+ [A1, A2] dr (A.2)

The Lie bracket of the local connection measures the net translation that is in-

duced by a differential oscillation in the system’s shape and prevent the net integral

from being self-canceling [55]. This effect corresponds to the noncommutativity of

the system’s position.
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According to [55], the noncommutativity approximation is most accurate in

minimum perturbation coordinates which is the mean orientation of the individual

links and the center of mass location space and can be completely identified through

a Hodge-Helmholtz decomposition of the system dynamics.

A.3.1 The low Reynolds and its characteristic

In this research, we are taking advantage of the dynamic of low Reynolds number.

In the low Reynolds number the drag forces dominate the inertial forces because

the inertia forces are very small in comparison to the drag forces, and can be

neglected, therefore the net drag forces on the system are zero. The equations

of drag forces are a linear function of body velocity, shape velocity, and shape

changes. The drag forces and moments on the ith link are based on a principle of

lateral drag forces being approximately twice the longitudinal forces [104], with

the moment around the center of the link found by assuming the lateral drag forces

to be linearly distributed along the link according to its rotational velocity

Fi,x =

ˆ L

−L
cLζi,xdl (A.3)

Fi,y =

ˆ L

−L
2cLζi,ydl (A.4)

Mi =

ˆ L

−L

2

3
cL(lζi,θ)dl (A.5)
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where Fi,x and Fi,y are respectively the longitudinal and lateral forces, Mi the

moment, c is the differential viscous drag constant, an ζi ’s are the body velocities

of the ith segments.

The net forces can be expressed in the term of velocities

F = ω(α)

ζ
α̇

 (A.6)

where ω is a 3x5 matrix. As it was explained before in low Reynolds number,

the net forces and moments on an isolated system should be zero. Therefore, we

can write the A.6 as below:


0

0

0

 =

[
ωg

3x3 ωr
3x2

]ζ
α̇

 (A.7)

Therefore, the local connection takes the following form

A = −ωg−1ωrα̇ (A.8)

A.3.2 Constraint Curvature Function and Power Metric

The constraint curvature functions (CCFs) in the shape space is a tool that can

capture the net motion resulting from an arbitrary choice of the gaits. However,

CCF doesn’t determine the efficiency of the movement. To find the optimal path,
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the cost of the gait through the shape change space of the system needs to be

calculated. As stated in [40], the cost of a gait can be captured by its path-length

according to a power-consumption distance metric on the space by showing the

circle distortion to an ellipse. Path-length closely corresponds to energy usage.

Then by normalizing the coordinate according to power metric, one can see the

effort which corresponds closely to arc-length.

To normalize the height function regarding the power metric, we consider our

shape space as an elastic sheet in which in the current shape it corresponds to

the current configuration and in relaxes case it corresponds to minimum energy

configuration. The relaxation is done based on Airy criterion as explained in [40].

As the sheet relaxes, the points in the initial coordinate, move to the new positions

which are consistent with the distance metric we calculated.

A.3.3 Backbone Curve

A fundamental tool for creating a gait of the snake robot is a backbone curve which

can capture the infinitesimal shape of the snake robot and produce the desired gait

[109, 112]. Although backbone curves are geometrically intuitive, they cannot be

used directly for generating the control inputs. The backbone curve allows to

access to the underlying physics of serpenoid motion and also, it helps to apply

the analysis to snake robots with different actuation.

In the continuous backbone curve the Cartesian position of points on a nonex-

tensible backbone curve can be intrinsicly parameterized by:



158

x(s, t) =

ˆ s

0

sin(

ˆ σ

0

k(µ, t)dµ)dσ (A.9)

where k(s, t) is the curvature function and defined in the way that a positive

curvature means bending in a clockwise sense.

κ = α(t)k(s) (A.10)

where k(s) is a curvature mode and as(t) is the modal participation factor. In

order to, have the locomotion travel forward, it is required to choose α(t) to be

a cyclic function to cause the robots curvature changes. Therefore, the Serpenoid

traveling wave can be described as weighted sums of sine and cosine mode that is

described in Fig. A.2 and the curvature is defined as:

κ =

[
sin(s) cos(s)

]α1

α2

 (A.11)

A.3.4 Gaussian Function

There are two different scenarios we are considering: first is when the drag forces

are maximum in the area with the highest curvature and zero where curvature of

the body is zero (This is called elbow down which means snake uses the push points

at the curve parts by lifting the other parts of its body up and propels its body

forward). Second is when the maximum drag force occurs in the parts where the
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Figure A.2: Serpenoid locomotion is produced by combining the two different mode
shapes.

curvature of the body is zero and parts with maximum curvature has almost zero

or close to the zero drag forces (This is called elbow up which means snake pushes

the point along the straight body line to produce the push points). To apply this

effects to the system, we use the Gaussian distribution function as a coefficient of

drag constant to form the variable contact area on the snakes body

GDFeu = e−a‖K‖
2

(A.12)

GDFed =


e−a(‖K‖−1)

2
if ‖K‖ < 0

e−a(‖K‖+1)2 if ‖K‖ > 0

0 if ‖K‖ = 0

(A.13)
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Figure A.3: The contact area for elbow up and elbow down.

The first equation is used for elbow up and the second one is used for el-

bow down configuration. Where a is the participation coefficient of the curvature

function and K is the normalized curvature function calculated as the following

equation,

‖K‖ =

[
k1(s) k2(s)

]α1

α2


√√√√√√[α1 α2

]α1

α2

[k1(s) k2(s)

]k1(s)
k2(s)


(A.14)

Fig. A.3 illustrates how the Gaussian distribution function effects on area of

the contact.
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Figure A.4: X height function for the low Reynolds number of a swimmer contin-
uous snake robot
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A.4 Analysis and Results

The amplitude of the curvature can be represented by the gait in the shape space.

This gait can be a circle and it will produce the serpenoid locomotion. Therefore,

the radius of the circle is the curvature amplitude. Increasing the amplitude of

the gait such that it encircles the maximum red area, increases the displacement.

That observation declares that the displacement is a function of the curvature and

amplitude. In addition to the circle gait, based upon the maximum efficiency and

displacement, gaits may have different shapes. Maximum displacement gait oc-

curs where there is a zero contour in height function. Fig. A.4 shows the X- height

function in minimal perturbation body frame. In order to have a better visual-

ization, the height function are represented in normalized coordinate as explained

in section A.3.2. The plot illustrates the height function and zero contour for the

different number of wavelength.

Fig. A.5 shows the behavior of different number of wave lengths over max

displacement and efficiency for all three scenarios.

For elbow up, increasing the number of wavelengths, decreases both the dis-

placement and increases the efficiency to some extent, then it starts to lose the

efficiency as well. That is because the main push points are created at the center

line of the direction of motion and lower wavelength means having bigger arc shape

which contributes in greater displacement in each cycle and it requires more effort.

Likewise, the same pattern is observed for the normal case which results from the

existence of the higher drag forces in the lateral direction than the longitudinal
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Figure A.5: Displacement and efficiency for normal, elbow up and elbow down.

one.

For the elbow down case, by observing the behavior of the odd and even modes

individually one can see that increasing the number of wavelengths decreases both

the displacement and cost of the path. That means, bigger arc in the body is more

efficient. Comparing the results of the odd and even wavelengths, it can be seen

that increasing the wavelength has a faster rate in decreasing the efficiency in even

wavelengths. Also, the displacement for the odd number of wavelengths is greater

than the even wavelengths and that is because as it is shown in figure Fig. A.6 for

odd wavelengths, the forces are balanced at the side of the snake which leads to

less wobbling motion.
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Figure A.6: Distribution of drag forces for even and odd wavelength are shown.

Furthermore, we examined the influence of the contact area for both elbow

up/down cases. As the contact area becomes pointier, it gets better in term of

displacement and the cost of the gait. That is because fewer points of the body are

in contact with the ground which means less drag forces in the longitudinal direc-

tion. Furthermore, in elbow down locomotion when the area with more curvature

becomes close to the point, the longitudinal drag force on that point contributes

in forward locomotion.

A.5 Conclusions

We proposed an improvement for serpentine locomotion for a snake robot that

makes it able to move in the flat surface without aiming the obstacles. We simu-

lated three possible different scenarios for modeling the contact points through the

snake’s body. Then we find the zero contour on height function which represents

the maximum displacement. Afterward, we showed that the elbow up case is more

efficient in both terms of displacement and efficiency. The efficiency for elbow up

case increased by increasing the number of wavelength to some extent and then
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start to reduce. For elbow down case, it was shown that the more efficient case

occurs in a lower number of wavelengths and the rate of changes for even and odd

wavelengths are different. For the future work, we are planning to compare the

current results with the triangular traveling wave.
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