8,228 research outputs found

    Interactive Games Using Hand-Eye Coordination Method for Autistic Children Therapy

    Get PDF
    Recent studies have found that imbalanced motor skills (hand-eye coordination) among autism spectrum disorder (ASD) or autistic children cause lower efficiency in daily routines. Autistic children need long-term rehabilitation programs to improve their abilities. However, problems with a lack of motivation to participate in conventional therapy and the high cost of therapy sessions arise over time. Autism children need to do repetitive activities every time therapy sessions been done. Repetitive activities cause children having less interest to participate ongoing therapy sessions. Other than that, the therapy process usually requires a long time to be implemented that cause the relatively high cost had to be paid by the patient's family. The use of technology is seen more effective and less boring for child with autism. However, the use of games technology require gamer to hold game controller. Proposals for motion-based touchless games using NUI technology, such as the Kinect Xbox 360, to be used in rehabilitation are exciting for patients, but the design elements do not meet the requirements of autistic people. Hence, this research proposes a Kinect game based on design elements for autistic rehabilitation. The objective of this research is to identify symptom of eye-hand coordination problem and develop serious game using Kinect technology as the solution for the problem faced by autism children. This technology provides a low-budget solution costs of therapy and games base on 3D sensor without the use of control equipment which must be hold or touch by hand. Moreover, Kinect does not need a controller or additional body-worn attachment during play time. A game prototype was developed and measured, and an evaluation resulted in positive feedback from the user and therapists, thus meeting the objective of this study

    From ‘hands up’ to ‘hands on’: harnessing the kinaesthetic potential of educational gaming

    Get PDF
    Traditional approaches to distance learning and the student learning journey have focused on closing the gap between the experience of off-campus students and their on-campus peers. While many initiatives have sought to embed a sense of community, create virtual learning environments and even build collaborative spaces for team-based assessment and presentations, they are limited by technological innovation in terms of the types of learning styles they support and develop. Mainstream gaming development – such as with the Xbox Kinect and Nintendo Wii – have a strong element of kinaesthetic learning from early attempts to simulate impact, recoil, velocity and other environmental factors to the more sophisticated movement-based games which create a sense of almost total immersion and allow untethered (in a technical sense) interaction with the games’ objects, characters and other players. Likewise, gamification of learning has become a critical focus for the engagement of learners and its commercialisation, especially through products such as the Wii Fit. As this technology matures, there are strong opportunities for universities to utilise gaming consoles to embed levels of kinaesthetic learning into the student experience – a learning style which has been largely neglected in the distance education sector. This paper will explore the potential impact of these technologies, to broadly imagine the possibilities for future innovation in higher education

    Long-term use of motion-based video games in care home settings

    Get PDF
    Recent research suggests that motion-based video games have the potential to provide both mental and physical stimulation for older adults in residential care. However, little research has explored the practical challenges and opportunities that arise from integrating these games within existing schedules of activities in these contexts. In our work, we report on a qualitative enquiry that was conducted over a three month period at two long-term care facilities. Findings suggest that older adults enjoyed playing video games, and that games can be a valuable means of re-introducing challenge in late life, but that the impact of age-related changes and impairment can influence people’s ability to engage with games in a group setting. We outline core challenges in the design for care context and discuss implications of our work regarding the suitability of games as a self-directed leisure activity

    Is movement better? Comparing sedentary and motion-based game controls for older adults

    Get PDF
    Providing cognitive and physical stimulation for older adults is critical for their well-being. Video games offer the opportunity of engaging seniors, and research has shown a variety of positive effects of motion-based video games for older adults. However, little is known about the suitability of motion-based game controls for older adults and how their use is affected by age-related changes. In this paper, we present a study evaluating sedentary and motion-based game controls with a focus on differences between younger and older adults. Our results show that older adults can apply motion-based game controls efficiently, and that they enjoy motion-based interaction. We present design implications based on our study, and demonstrate how our findings can be applied both to motion-based game design and to general interaction design for older adults. Copyright held by authors

    Natural User Interface for Education in Virtual Environments

    Get PDF
    Education and self-improvement are key features of human behavior. However, learning in the physical world is not always desirable or achievable. That is how simulators came to be. There are domains where purely virtual simulators can be created in contrast to physical ones. In this research we present a novel environment for learning, using a natural user interface. We, humans, are not designed to operate and manipulate objects via keyboard, mouse or a controller. The natural way of interaction and communication is achieved through our actuators (hands and feet) and our sensors (hearing, vision, touch, smell and taste). That is the reason why it makes more sense to use sensors that can track our skeletal movements, are able to estimate our pose, and interpret our gestures. After acquiring and processing the desired – natural input, a system can analyze and translate those gestures into movement signals

    Kinect as an access device for people with cerebral palsy: A preliminary study

    Get PDF
    Cerebral palsy (CP) describes a group of disorders affecting the development of movement and posture, causingactivity limitation. Access to technology can alleviate some of these limitations. Many studies have used vision- based movement capture systems to overcome problems related to discomfort and fear of wearing devices. Incontrast, there has been no research assessing the behavior of vision-based movement capture systems in peoplewith involuntary movements. In this paper, we look at the potential of the Kinect sensor as an assistive technologyfor people with cerebral palsy. We developed a serious game, called KiSens Números, to study the behavior ofKinect in this context and eighteen subjects with cerebral palsy used it to complete a set of sessions. The resultsof the experiments show that Kinect filters some of peoples involuntary movements, confirming the potential ofKinect as an assistive technology for people with motor disabilities
    corecore