3,949 research outputs found

    Information Assurance Protocols for Body Sensors Using Physiological Data

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    Get PDF
    A wireless medical sensor network (WMSN) can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs

    Bluetooth-Based Sensor Networks for Remotely Monitoring the Physiological Signals of a Patient

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.Peer reviewe

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Wireless biomedical sensor networks: the technology

    Get PDF
    The increase in research in the area of wireless sensor networks (WSN) has brought a whole new meaning to medical devices. This is mainly due to advances in microcontroller technologies. The WSN are cited as one of the major technologies of this century and hence it assumes importance in areas such as health, psychology, fire prevention, security and even the military. The great advantage of this technology is the ability to track, monitor, study, understand and act on a particular phenomenon or event. The primary purpose of a wireless health system is reliable data transfer with minimum delay. This work is a synthesis of vast research done as Wireless Biomedical Sensor Networks (WBSN), including experimental and non-experimental investigations as well as data from the theoretical and empirical literature which incorporates a wide range of purposes: definition of concepts, review theories and evidence analysis of methodological problems, seeking to generate a consistent and understandable overview of WBSN. Such systems are already being marketed, some are still under investigation. It is also the aim of this study to identify the characteristics of a WSN applied to health.info:eu-repo/semantics/publishedVersio

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF

    Experimental investigation into novel methods of reliable and secure on-body communications with low system overheads

    Get PDF
    Until recently the concept of wearable biosensors for purposes of medical monitoring was restricted to wired sensor applications. Recent advances in electronics and wireless communications have made the possibility of removing the wire from sensor applications a possibility. These advances have led to the development of small scale, wearable, sensing and communication platforms that can be placed on the human body creating the foundation for a Body Sensor Network (BSN). Body Sensor Networks aim to remove the restrictions that traditional wired sensors impose. The anticipation is that BSNs will permit the monitoring of physiological signals in any environment without limitation, giving Physicians the ability to monitor patients more closely and in environments that they cannot monitor today. Even with the recent advancements of electronics and wireless communications there are still many unanswered questions for practical solutions of BSNs that prevent BSNs from replacing traditional wired systems altogether. There is a great need for research into BSN architectures to set the standard for wireless sensor monitoring. In this work a development platform has been created for the investigation into the design and implementation of practical BSN solutions. The platform is used to compare BSN architectures and provide quantifiable results. From this work BSN architecture components that provide optimizations in system performance, energy, network lifetime and security are recommended. In Chapter 3 BSN network architectures employing the use of relaying of creeping waves is investigated. The investigation includes experimental analysis of various test environments. Experimentation demonstrates that the relaying of creeping waves offers considerable performance gains when compared to non-relay networks. For example, relaying is shown to increase network-lifetime by a factor of 13, decrease energy-per-bit requirements by 13 dB and provide the ability for the network to compensate for considerably wider fade margins. In Chapter 4 utilizing the randomness of the wireless channel for securing on-body communications with low overheads is considered. A low-complexity algorithm for establishing symmetric encryption keys is presented and validated. The algorithm relies on readily available RSSI measurements obtained from existing packets being sent and received in the network. The generated bit sequences from the algorithm are evaluated for matching between two communicating parties and mismatching with a malicious eavesdropper. It is shown that the algorithm produces long sequences of highly random bits that are perfectly matched between legitimate parties and highly mismatched with the eavesdropper
    corecore