20 research outputs found

    Kernel Andorra Prolog and its computation model

    Get PDF
    The logic programming language framework Kernel Andorra Prolog is defined by a formal computation model. In Kernel Andorra Prolog, general combinations of concurrent reactive languages and nondeterministic transformational languages may be specified. The framework is based on constraints

    Finite domain constraint programming systems

    Get PDF
    Tutorial at CP'2002, Principles and Practice of Constraint Programming. Powerpoint slides.</p

    Independence in constraint logic programs

    Full text link
    Studying independence of literals, variables, and substitutions has proven very useful in the context of logic programming (LP). Here we study independence in the broader context of constraint logic programming (CLP). We show that a naive extrapolation of the LP definitions of independence to CLP is unsatisfactory (in fact, wrong) for two reasons. First, because interaction between variables through constraints is more complex than in the case of logic programming. Second, in order to ensure the efUciency of several optimizations not only must independence of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow different independence-related optimizations, from parallelism to intelligent backtracking. Sufficient conditions for independence which can be evaluated "a-priori" at run-time are also proposed. Our results suggest that independence, provided a suitable definition is chosen, is even more useful in CLP than in LP

    Terminological reasoning with constraint handling rules

    Get PDF
    Constraint handling rules (CHRs) are a flexible means to implement \u27user-defined\u27 constraints on top of existing host languages (like Prolog and Lisp). Recently, M. Schmidt-SchauĂź and G. Smolka proposed a new methodology for constructing sound and complete inference algorithms for terminological knowledge representation formalisms in the tradition of KLONE. We propose CHRs as a flexible implementation language for the consistency test of assertions, which is the basis for all terminological reasoning services. The implementation results in a natural combination of three layers: (i) a constraint layer that reasons in well- understood domains such as rationals or finite domains, (ii) a terminological layer providing a tailored, validated vocabulary on which (iii) the application layer can rely. The flexibility of the approach will be illustrated by extending the formalism, its implementation and an application example (solving configuration problems) with attributes, a new quantifier and concrete domains

    Intensional Updates

    Get PDF

    Structural operational semantics for Kernel Andorra Prolog

    Get PDF
    Kernel Andorra Prolog is a framework for nondeterministic concurrent constraint logic programming languages. Many languages, such as Prolog, GHC, Parlog, and Atomic Herbrand, can be seen as instances of this framework, by adding specific constraint systems and constraint operations, and optionally by imposing further restrictions on the language and the control of the computation model. We systematically revisit the description in Haridi and Jarison [HJ90], adding the formal machinery which is necessary in order to completely formalize the control of the computation model. To this we add a formal description of the transformational semantics of Kernel Andorra Prolog. The semantics of Kernel Andorra Prolog is a set of or-trees which also captures infinite computations

    Residuation and guarded rules for constraint logic programming

    Get PDF
    A major difficulty with logic programming is combinatorial explosion: since goals are solved with possibly indeterminate (i.e., branching) reductions, the resulting search trees may grow wildly. Constraint logic programming systems try to avoid combinatorial explosion by building in strong determinate (i.e., non-branching) reduction in the form of constraint simplification. In this paper we present two concepts, residuation and guarded rules, for further strengthening determinate reduction. Both concepts apply to constraint logic programming in general and yield an operational semantics that coincides with the declarative semantics. Residuation is a control strategy giving priority to determinate reductions. Guarded rules are logical consequences of programs adding otherwise unavailable determinate reductions

    Implementation of an event driven scheme for visualizing parallel execution of logic programs

    Get PDF
    This article presents in an informal way some early results on the design of a series of paradigms for visualization of the parallel execution of logic programs. The results presented here refer to the visualization of or-parallelism, as in MUSE and Aurora, deterministic dependent and-parallelism, as in Andorra-I, and independent and-parallelism as in &-Prolog. A tool has been implemented for this purpose and has been interfaced with these systems. Results are presented showing the visualization of executions from these systems and the usefulness of the resulting tool is briefly discussed

    Towards extracting non-strict independent and-parallelism using sharing and freeness information

    Get PDF
    Logic programming systems which exploit and-parallelism among non-deterministic goals rely on notions of independence among those goals in order to ensure certain efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than the traditional notion of "strict" independence (SI) which still ensures the relevant efficiency properties and can allow considerable more parallelism than SI. However, all compilation technology developed to date has been based on SI, presumably because of the intrinsic complexity of exploiting NSI. This is related to the fact that NSI cannot be determined "a priori" as SI. This paper fills this gap by developing a technique for compile-time detection and annotation of NSI. It also proposes algorithms for combined compile- time/run-time detection, presenting novel run-time checks for this type of parallelism. Also, a transformation procedure to eliminate shared variables among parallel goals is presented, attempting to perform as much work as possible at compiletime. The approach is based on the knowledge of certain properties about run-time instantiations of program variables —sharing and freeness— for which compile-time technology is available, with new approaches being currently proposed

    Extracting non-strict independent and-parallelism using sharing and freeness information

    Get PDF
    Logic programming systems which exploit and-parallelism among non-deterministic goals rely on notions of independence among those goals in order to ensure certain efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than the traditional notion of "strict" independence (SI) which still ensures the relevant efficiency properties and can allow considerable more parallelism than SI. However, all compilation technology developed to date has been based on SI, because of the intrinsic complexity of exploiting NSI. This is related to the fact that NSI cannot be determined "a priori" as SI. This paper filis this gap by developing a technique for compile-time detection and annotation of NSI. It also proposes algorithms for combined compiletime/ run-time detection, presenting novel run-time checks for this type of parallelism. Also, a transformation procedure to eliminate shared variables among parallel goals is presented, aimed at performing as much work as possible at compile-time. The approach is based on the knowledge of certain properties regarding the run-time instantiations of program variables —sharing and freeness— for which compile-time technology is available, with new approaches being currently proposed. Thus, the paper does not deal with the analysis itself, but rather with how the analysis results can be used to parallelize programs
    corecore