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Intensional Updates: 
Abduction via Deduction 
Frangois Bry 
E C R C , Arabellastraße 17, D-8000 München 81, West Germany 
fb@ec rc.de 

Abstract 
Because they are extra-logical and procedural, the conventional updating facili-

ties of Logic Programming are not convenient for all applications. In particular, it is 
desirable to give database and expert System users the possibility to specify Updates 
without having to define their execution. We propose the concept of 'intensional 
update' as a formal basis for declarative update languages. Intensional Updates 
express in first-order logic changes of the consequences of logic programs. They 
generalize database 'view Updates'. The modifications of the logic program that 
actually realize an intensional update are derived through abductive reasoning. We 
show that this form of abduction can be reduced to deduction in a non-disjunctive, 
definite theory, thus giving rise to implementations in Logic Programming. First, 
we formalize abduction as deduction in a disjunctive theory. Second, we apply 
the theorem prover Satchmo [22], which express deduction in disjunctive theories 
through definite meta-clauses. This approach gives rise to effkiently taking static 
and dynamic integrity constraints into account and to achieving completeness. 

1 Introduction 
The conventional updating facilities of Logic Programming do not have a semantics 
independent from the proof procedure. The effect of Prolog 'assert' and 'retract' 
built-in predicates depends on their positions in bodies of clauses and on the order-
ing of clauses in the program. Similarly, the changes resulting from the updating 
primitives proposed for bottom-up Logic Programming in [1, 2] depends on the pro-
cessing order of clauses. Though useful in certain contexts — e.g., in programming 
languages —, such extra-logical, procedural facilities are not always convenient. In 
particular, database, knowledge base, or expert System users often require more 
declarative tools in order to specify an update without having to define an execu
tion mode. In this article, we propose the notion of'intensional update' as a formal 
basis for proof-procedure independent, declarative update languages. 

Instead of deflmng updating Operations, and explicitly or implicitly specifying 
how to perform tliem, it is possible to describe properties that the facts derivable 
from the updated program have to satisfy. Döing so, the update of the logic program 
is not specified, as usual, extensionally as changes to perform, but intensionally by 
the expected effect. We call 'intensional update' the latter notion. Intensional 
Updates are not restricted to ground atomic formulas but can express more general 
properties, for example Statements involving quantifiers, or referring to the current 
logic program as well as to its updated version. Hence, they extend the database 
notion of 'view update' — see, e.g., [10, 21, 28] — and the Updates considered in 
[17, 11, 25, 19]. 

Consider for example a database of university employees. Assume that the 
Professors that are qualified for tenure are defined in a 'view', i.e., by means of non-
factual clauses. A view update perinits one to express that a given professor should 

http://rc.de
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become qualified for tenure. In contrast, the more general concept of 'intensional 
update' gives rise to requiring a modification of the database such that, say, all 
Professors currently teaching Logic Programming should qualify for tenure in the 
new, updated database. So, intensional Updates extend view Updates by allowing on 
the one hand quantified updating intentions, on the other hand intentions referring 
to the current program and to its updated version. 

We rely on a meta-predicate for expressing intensional Updates in logic. More 
precisely, we express Statements that describe the desired, updated logic program 
within a meta-predicate called 'new'. Thus, they are distinguished from assertions 
on the current, non-updated logic program, giving rise to expressing properties 
related to both states of a logic program in a same intensional update. In this 
formalism, the intensional update considered above could be expressed as: 

Vx professor(x) A teach(x, lp) => new(qualified-for-tenure(z)) 

This formalism also gives rise to declaratively expressing dynamic integrity con-
straints. A classical example is a constraint requiring that the salary (denoted x ) 
of an employee (denoted y) never decreases: 

V x x i y salary(x, y) A new(salary(a:1, y ) ) => x \ > x 

Although they are defined with a meta-predicate, one can show that intensional 
Updates and dynamic integrity constraints have a first-order logic semantics. 

Intensional specifications of Updates must be translated into actual changes of 
the logic program. In other words, it is necessary to generate, from an intensional 
update, 'extensional Updates' that realize it. With the aim of automatizing this gen-
eration, we investigate the reasoning it involves. Consider for example the following 
logic program: 

p(ar) <— q ( x ) A T ( X ) r(a) 
q(x) <— s(x) s(a) 

and assume that the updating intention is to make the atom p(a) no longer derivable, 
i.e., in our formalism new(-ip(a)). This intention can be achieved by realizing 
new(-iq(a)), or by realizing new(->r(a)) — disjunctive reasoning. Assuming that it 
is realized through new(-iq(a)) — hypothesis formation — the second clause yields 
the intensional update new(-«s(a)), which is realized by removing the fact s(a) from 
the program. 

Although performing backward chaining like Linear and SLD Resolution do, the 
reasoning involved in such aprocess is not deductive. Instead of drawing conclusions 
from given premises, it infers possible causes for the intensional update. It performs 
disjunctive reasoning and relies on hypothesis formation. Following Peirce [24], we 
call this kind of inference 'abductive reasoning'. 

Abductive reasoning has been primarily applied to diagnostic tasks [26]. Find-
ing possible explanations for malfunctions or diseases indeed consists of making 
hypotheses that permit to justify the observed Symptoms. Abductive reasoning has 
also been applied to natural language understanding [8, 23, 18], to design synthesis 
[15], and to formalizing analogical reasoning [27]. 

In previous studies, links between abductive reasoning and Logic Programming 
have been investigated in several directions. It has been proposed to take advantage 
of the fact that abduction performs back ward chaining for expressing it as a — 
significantly — modified Linear or SLD Resolution procedure. This approach was 
first described in [27] with Linear Resolution, more recently in [17, 11, 25] with 
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SLDNF Resolution for the special task of realizing certain intensional Updates. 
Abduction has also been considered for extending Logic Programming [12, 13, 9]. 

We propose to bring abduction and Logic Programming closer together in a way 
that differs from these approaches. First, we apply abduction to Logic Programming 
for giving formal bases to logical, proof-procedure independent update languages. 
Second, we rely on Logic Programming for expressing abduction via deduction. We 
apply the Prolog meta-interpreter Satchmo [22] for processing disjunctions and per-
forming hypothetical reasoning. Therefore, we argue that there is no need to extend 
Logic Programming with abduction, nor to modify SLD Resolution for achieving 
abductive reasoning. 

An intensional update which is realized by certain transformations of the logic 
program is often also realized by more substantial changes. We introduce the con-
cept of 'minimal realization'. In order to be effective, a method for realizing inten
sional Updates has to be complete. Intuitively, this means that each modification 
of the logic program that yields a program satisfying a given intensional update 
must be represented by one of the extensional Updates generated by the method. 
We rely on results we established in the framework of the Satchmo project [7] for 
establishing the soundness and completeness of our approach. 

The article consists of seven sections, the first of which is this introduction. We 
give definitions and make working hypotheses in Section 2. In Section 3, we for-
mally introduce the notion of'intensional update'. We formalize intensional update 
realization as deduction in non-Horn logic in Section 4. In Section 5, we describe 
the Satchmo approach to deduction in non-Horn theories. We apply this approach 
to realizing intensional Updates in Section 6. In Section 7, we outline salient char-
acteristics of our approach and we indicate directions for further research. 

2 Definitions and Hypotheses 
We consider clauses of the form II *— L i A ... A L n where H is an atom and the L t s 
are literals. Abusing the terminology, we call such a clause definite for emphasizing 
that H is not a disjunction. A clause is a fact if n = 0. If p is the predicate occurring 
in II, the clause is said to define p. 

We consider logic programs P consisting of finite sets C1(P) of clauses and of 
finite sets of integrity constraints. We do not assume any particular semantics 
for logic programs with non-positive rule's bodies. The formalization of intensional 
Updates we give is independent from the semantics. It applies in particular to sets of 
clauses with a binary semantics — e.g., stratified, locally stratified, or constructively 
consistent set of clauses [3] — as well as to clauses with a ternary semantics — e.g., 
well-foundecl sets of clauses [30], 

Given a logic program or theory P, £ ( P ) dcnotes the language of P, i.e., the set 
of predicate, function, variable, and constant Symbols occurring in P. 7 { ( P ) denotes 
the Herbrand base of P, i.e., the set, of ground atoms that can be constructed with 
the symbols in £ ( P ) . ^(P) denotes the set of well-formed formulas expressed in the 
language £ ( P ) of P. If P is a logic program, then T(P) denotes the set of ground 
literals that are provable from C1(P) according to the considered semantics. If F 
is a closed formula, we shall write P |= F if 7~(P) h F where h denotes the 
provability relationship of classical logic. Italic lower case letters denote variables, 
roman lower case letters and words are used for constants, predicates, and function 
symbols. Capital letters denote formulas, logic programs, and theories. 

In this study, we consider stalte and dynamic integrity constraints. Static in-
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tegrity constraints are closed formulas in the same language as clauses. They are 
used for stating properties that are not expressible by means of clauses, e.g., dis
junctive information. Classically, they are not used for generating answers to query, 
but as specifications of the logic program. A logic program P is said to be consis-
tent if, for all static integrity constraints F of P we have P |= F. Dynamic integrity 
constraints are defined in Section 3. 

A dependency relationship on the predicates of a logic program is inductively 
defined as follows. A predicate p depends on each predicate occurring in the body 
of a clause defining p, and on each predicate on which one of these body predicates 
depends. A predicate which depends on itself is said to be recursive. A logic 
program is recursive if one of its predicates is recursive. 

In Section 5, we consider implications A i A . . . A A n => C i V . . . V C m with non-
atomic, disjunctive conclusions. The predicate of a conclusion literal Cj depends 
on the predicates of premise literals A;s. In a set of implications, a predicate 
p depending on another predicate q also depends on the predicates on which q 
depends. p is recursive in a set of implications S if it depends on itself in S. A set 
of implications is recursive if one of its predicate is recursive. 

We consider quantified queries, in particular for expressing integrity constraints. 
We assume that the quantifications are restricted [5], i.e., roughly quantified expres-
sions have the following forms V.r. R => F, V X -«R, 3a: S A F, or 3 x S where F is 
a formula and where R and S are atoms or conjunetions of atoms containing x , 
more generally, R and S are ranges for x [5]. In order to ensure termination of 
construetive proofs of universally quantified expressions, we assume moreover that 
the R expressions ad mit finitely many answers. Restricted quantifications can be 
evaluated with the following meta-programs: 

forall(X, R => F) :- not (R, not F). exists(X, G) :- G. 

Assuming that 'false' is an undefined atom — its evaluation always fails — permits 
us to represent formulas of the form Vx -iR, where R is a ränge for x , as forall(X, 
R => false). 

We constrain the syntax of logic programs on which intensional Updates can be 
defined by precluding extra-logical, "side-efiect" predicates such as '!', 'assert', or 
'retract'. This hypothesis should not be considered as a restriction, since this study 
aims to free Logic Programming from extra-logical aspects. 

3 Intensional Updates as Logical Theories 
A logic program P and an updated version Pnew of it can be viewed as two distinet 
logical theories. According to this "timeless" view, a declarative expression of an 
update of P resulting in P n ew is a logical formula, or a finite set of logical formulas 
defining P n e w in terms of P. In other words, it is a set of formulas in the language 
£ ( P ) U £ ( P n e w ) . m order to express such formulas, it is necessary to distinguish 
£ ( P ) from £ ( P n e w ) - We propose to rely on a unary meta-predicate for defining 
a language for intensional Updates. More precisely, we define a set .FnewCP) of 
formulas as an extension of JT(P) based on a unary meta-predicate 'new'. 

Definition 3.1 G i v e n a logic p r o g r a m P, the set of f o r m u l a s ^"new(P) is recursively 
defined as follows: 

. F e jF„ew(P) i f F e H ? ) 

. new(F) e ^„ e »(P) i f F e ^(P) 
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• - F G ^„ew(P) t f F G ^new(P) 
• F 0 G € ^new(P) ' / F E ̂ new(P), G G ^new(P), and 0 is a logical 

conneciive 
• Qx F G ^new(P) t / F e /"(P), x is a variable in £(P) free in F, and Q 

denotes V or 3 

The 'new' meta-predicate can be vievved as "prefixing" assertions related to 
the new, updated logic program. Note that no quantifications of meta-variables 
are allowed in ^ r

n e w (P) . This restriction ensures that intensional Updates have a 
first-order logic semantics. 

Definition 3.1 also gives a language for dynamic integrity constraints. Such con
straints are considered in databases for defining legal updating transactions. They 
relate the new, updated database to the previous one. Like intensional Updates, 
they can be defined as closed formulas in J~new(P)• 

Definition 3.2 An integrity constraint of a logic program P is a closed formula in 
^new(P)- An integrity constraint is said to be static if it belongs to Otherwise, 
it is called a dynamic integrity constraint. 

Intuitively, an intensional update is a formula that defines 'new' expressions. It 
might seem reasonable to restrict intensional Updates to sets of implicative formulas 
like 

professor(g) A teach(x, lp) => new(qualified-for-tenure(x)) 

in which the 'new' expression appears only in the consequence. However, a natural 
expression of some updating intention may require a more general syntax, as shows 
the classical example of dynamic integrity constraint: 

Vxx'iy salary(#, y) A new(salary(i*i, y)) x\ > x 

In fact, the only necessary restriction is that 'new' must occur in the formulas 
defining the intensional update, i.e., the formulas must belong to the difference set 
^new(P) \ ^(P). 

Definition 3.3 Lei P be a logic program with set of integrity constraints IC. An 
intensional update I o/P is a logical theory consisting of: 

• a sei of closed formulas U C ^ F n e w ( P ) \ called the definition ofl 

• T(P) U {new(F) | F G IC O ^(P)} U {F | F G IC \ ^(P)} 

The second point of Definition 3.3 ensures that the static integrity constraints, 
i.e., the elements of IC O ^"(P), and the dynamic integrity constraints, i.e., the 
elements of IC \ ^"(P), are satisfied in the theory defining 'new'. The intensional 
Updates of a given program are uniquely characterized by their definitions. There-
fore, we shall sometimes name them after their definitions. 

4 Abduction via Deduction 
In this section, we formalize the notion of 'realization' of an intensional update 
in logic. Intuitively, a realization is a set of updating Operations, or 'extensional 
update', that yield a logic program satisfying the updating intention. We consider 
updating Operations consisting of fact insertions and removals. Fact insertion is a 
simple way to extend the intensional definition of a predicate. Consider for example 
the following program: 
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p(x) <- q(x) A -ir(x) q(a) 
s(x) <— q(x) A u(x) u(a) 

The intensional update defined by new(p(b)) can be realized by inserting the fact 
p(b), or by inserting the fact q(b). 

In some cases, the first of these insertions is excluded. In databases for example, 
it is often desired to keep certain relations Virtual, i.e., defined only by non-factual 
clauses. The following definition provides us with a language for expressing dynamic 
integrity constraints imposing such a condition. 

Definition 4.1 L e i P be a logic program. A n extensional update E of P is a set 
of expressions 'remove(A)' or 'insert(A)' where A 6 7i(P)- A n extensional update 
is consistent if i t does not c o n i a i n 'remove(A)' and 'insert(A)' for a same atom 
A. T h e logic program obtained by updating P according to a consistent extensional 
update E is P E = (P U {A | insert(A) € E}) \ {A | remove(A) € E ] 

It is possible to give a semantics to inconsistent extensional Updates by defining 
priorities between insertions and removals. For example, relying on the definition 
of P E given in Definition 4.1, one can interpret E = {remove(A), insert(A)} like 
{remove(A)}. Alternatively, one could define P E as (P \ {A | remove(A) € E}) U 
{A | insert(A) € E} and interpret E as {insert(A)}. More sophisticated priorities 
are sometimes considered — e.g., in [29, 28]. Priority relationships between inser
tions and removals compromise the declarativity of the update language. For this 
reason, we do not consider inconsistent extensional Updates. 

Definition 4.1 provides us with a language for expressing dynamic integrity con
straints precluding certain modifications of the program. For example, the formula 
Vx -ansert(p(x)) forbids to extend the definition of a unary predicate p with facts. 

In the following definition, we define the 'new' meta-predicate in terms of the 
extensional update 'insert' and 'remove' meta-predicates. We rely on a 'clause' 
meta-predicate which is assumed to ränge over the non-factual clauses of the logic 
program under consideration. Similarly, we use a 'fact' meta-predicate ranging over 
the facts of the considered logic program. 

Definition 4.2 L e i P be a logic program and I a n intensional update. Np fi is the 
theory consisting of the f o l l o w i n g f o r m u l a s , where A denotes a n atomic f o r m u l a i n 
F ( P ) , and F and G denotes formulas i n 

(1) new(A) [3B clause(A <— B) A new(B)] 
V [fact(A) A -remove(A)] V insert(A) 

(2) new(F V G) new(F) V new(G) 
(3) new(F A G) <=> new(F) A new(G) 
(4) new(Vx F) Vx new(F) 
(5) new(3x F) <=> 3x new(F) 
(6) new(-iA) [VB clause(A <— B) => new(-»B)] 

A [fact(A) remove(A)] A ->insert(A)) 
(7) new(-.(F V G)) <=> new(-iF) A new(-iG) 
(8) new(-.(F A G)) <=> new(-iF) V new(-iG) 
(9) new(-iVx F) <^> 3x new(->F) 
(10) new(->3x F) Vx new(-»F) 

The following proposition establishes the correctness of Definition 4.2. 

Proposition 4.1 Let P be a logic program, E a n extensional update o/P, and F a 
f o r m u l a i n /"(P). P E |= F if and only if (T(P) U E U N P , i) h new(F). 
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Corol lary 4.1 Let P be a logic program and E a n extensional update o /P . (T(P) 
U E U Npj) is consistent and has exactly one H e r b r a n d model. 

Intuitively, an extensional update E realizes an intensional update I if the for
mulas defining I are true in the updated program P E - The following definition 
formalizes this intuition. We recall that IC O JF(P) and IC \ ^"(P) are respectively 
the sets of static and dynamic integrity constraints. 

Definition 4.3 L e i P be a logic program, let IC be its sei of integrity constraints, 
and let I be a n intensional update o/P defined by a set U of f o r m u l a s . A realization 
o/I is a consistent extensional update E such that: 

(T(P) U E U Np.i) h F for a l l F € U 
(T(P) U E U N P I I ) h F for all F € IC \ JF(P) 
(T(P) U E U Np'i) h new(F) for a l l F G IC D JF(P) 

If the intensional update I is defined by a formula new(F), by Proposition 4.1 a 
realization of I is an extensional update E such that P E |= F. The more complex 
definition given above is needed since general intensional Updates may refer to the 
logic program prior to the update. 

Some realizations can be "subsumed" by others and only "minimal" realizations 
are of interest. Consider for example the following logic program P: 

p ( x ) <— T ( X ) A S ( X ) r(a) s(a) t(a) 
q ( x ) *- t ( x ) A u ( x ) r(b) s(b) u(a) 

The intensional update defined by iiew(Vi* p ( x ) => q ( x ) ) is realized by the follow
ing extensional Updates E i and E2. Intuitively, E i "subsumes" E 2 . 

E i = {insert(t(b)), insert(u(b))} 
E2 = {insert(t(b)), insert(u(b)), insert(t(c)), insert(u(c))} 

Definition 4.4 Let P be a logic program and I a n intensional update o / P . A n 
extensional update E of P is a minimal realization of I if and only if none of the 
strict subsets o / E realize I. A procedure for generating the realizations of intensional 
Updates is said to be complete if i t exhaustively generates a l l minimal realizations. 

We conclude this section by citing some properties of minimal realizations. 
An intensional update may have no, or several minimal realizations. This follows 

directly from the fact that intensional Updates are, in general, non-Horn theories. 
Some minimal realizations of intensional Updates may be infinite, even if the con
sidered logic program is free of function symbols. Finally, some intensional Updates 
may have infinitely many minimal realizations. 

The following proposition gives a sufficient condition for finiteness properties of 
intensional update realizations. 

Proposit ion 4.2 Let P be a logic program and I a n intensional update o /P . 7/P 
and I a r e not recursive, then I has finitely many m i n i m a l realizations and they a r e 
a l l finite. 
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5 Definite Clauses for Disjunctive Reasoning 
In this section, we outline the Satchmo theorem prover [22] which implements de
duction in disjunctive, indefinite theories by means of definite meta-clauses. 

We assume that the formulas are in implicative form. For ground formulas, 
this form can be derived from the clausal form as follows. A clause ->Ai V . . . V 
-<An V C i V . . . V C m with positive literals Cjs is represented by the implication 
A i A . . . A A n => Ci V . . . V C m . Completely positive clauses (n = 0) and completely 
negative clauses (m = 0) are respectively expressed as true C i V . . . V C m and 
A i A . . . A A n =>• false. 

Satchmo computes from a set of implications I the minimal sets of atomic formu
las that are logically consistent with I. For example, the set {q false, true =$> p, 
p => q V r V s} gives rise to derive two such sets of atoms: {p, r} and {p, s}. If 
there are no such sets, Satchmo fails: This reports inconsistency. Satchmo performs 
disjunctive and hypothetical reasoning. 

The disjunctive and hypothetical reasoning is implernented in Prolog by the 
following program. Calling <satchmo([], M)' successively binds the variable M to 
the minimal models — represented as lists of atoms — of the set of implications 
defined with the infixed binary predicate '=>'. Conjunctions and disjunctions are 
expressed a la Prolog with Y and ';', respectively. The atom 'true' is the Prolog 
built-in which is always satisfied, while 'false' is an undefined atom: Its evaluation 
therefore always fails. 

satchmo(Ml, M2) :- evaluate(M, (AI, A2)) :- !, 
P => C, evaluate(M, AI), 
evaluate(Ml, P), evaluate(M, A2). 
not evaluate(Ml, C), !, evaluate(M, (AI ; A2)) :- !, 
not (C = false), ( evaluate(M, AI) 
satisfy(A, C), ; evaluate(M, A2) ). 
satchmo([A | Ml] , M2). evaluate(M, A) :-

satchmo(M, M). member(A, M). 
evaluate(M, true). 

satisfy(A, (A ; D)). 
satisfy(A, (B ; D)) :- !, 

satisfy(A, D). 
satisfy(A, A). 

The procedure 'satchmo' first searches the implications P => C. When an im
plication is found the body of which is satisfied by the atoms in the list M l (test 
'evaluate(Ml, P)'), its head is evaluated over M l ('evaluate(Ml, C)'). If C is not 
satisfied by M l and is not the atom 'false', then one of its components A is selected 
('satisfy(A, C)') and added to M l . The search for unsatisfied implications is pur-
sued through the recursive call ('satchmo([A | Ml], M2)'). As soon as no unsatisfied 
conclusions can be generated, i.e., as soon as the test 

evaluate(Ml, P), not evaluate(Ml, C) 

fails, the second clause for 'satchmo' succeeds and returns as second argument the 
constructed list of atoms.1 

This program has been published in [22] in a slightly different style. It is the 
basic program of the theorem prover Satchmo. It is applicable to proving theorems 
in non-ground theories, provided their formulas are expressed as Skolemized and 
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range-restricted implications [22]. Range-restriction can be achieved with any set 
of formulas by introducing a new predicate 'dorn' describing the domain of the 
already constructed set of atomic formulas, and by adding auxiliary implications 
[22). 

Skolemization is acceptable in refutation theorem proving because a theory T is 
inconsistent if and only if a Skolemized form Sk(T) of T is inconsistent. However, 
Skolemization may have an undesirable side-effect if Satchmo is used for generating 
the minimal sets of atomic formulas that are logically compatible with a consistent 
theory. Consider for example the following logic program, the intensional update 
new(p(a, b)), and the constraint -• insert(p(a, b)): 

P(*> y) <- q(y) A p(x, z) q(b) 

By Definition 4.2, we have: new(p(x, y ) ) =4> 3z new(q(y)) A new(p(x, z ) ) . If 
the existential variable z is represented the Skolem function i ( x , y ) , new(p(a, b)) 
implies new(p(a, f(a, b)) which in turn implies new(p(a, f(a, f(a,b))), etc. No finite 
realizations are found. Such realizations however exist, e.g., {p(a, a)}. 

We first define the implicative form for formulas with explicit existential quan
tifications. Then, we give a version of the procedure Satchmo for such implications. 

Definition 5.1 A f o r m u l a F is i n implicative form if F = A i A ... A A n 

C i V ... V C n where the A\s a r e atoms (possibly 'true' t /n = 1 ) or existential 
formulas i n conjunciive f o r m , and where the CjS a r e atoms (possibly 'false' if m 
= \ ) or existential formulas i n conjunciive f o r m . A n existential f o r m u l a G is i n 
conjunctive form if G = 3x A i A ... A A n or G = 3x k\ A ... A A n A F 
where the A\s a r e atoms or existential formulas i n conjunciive f o r m containing the 
variable x and where F is a f o r m u l a i n implicative f o r m . 

One can show that syntactical transformations permit to rewrite any first-order 
theory as a set of formulas in implicative form. 

A procedure constructing all minimal sets of atomic formulas consistent with 
a set of formulas in implicative form is obtained by first trying to instantiate the 
existential variables over the already constructed domain and with a new domain 
value. So does the 'satchmo.l' procedure given below. In contrast with 'satchmo', 
'satchmo_r stores the formulas in a list which is dynamically modified. 

Calling 'satchmo_l(S, [], [], M)' successively binds the variable M to the finite 
models — represented as lists of atoms — of a list S of range-restricted formulas in 
implicative form. We assume that calling 'new_value(X)' instantiate X with a term 
which is not in the current domain. 

In [22], we have given a leveled version of Satchmo which achieves completeness 
with respect to inconsistency: If a set of Skolemized formulas in implicative form 
is inconsistent 'leveled Satchmo' will report it in finite, indefinite time. Although 
it is complete with respect to inconsistency, 'leveled Satchmo' may fail to construct 
the minimal sets of atoms consistent with a recursive set of implications. This is 
because, in presence of Skolem functions, a consistent set of formulas has always 
infinite Ilerbrand models (Skolem-Löwenheim Theorem). In such a case, 'leveled 
Satchmo' can very well start the construction of an infinite model before building 
finite models. 

As shown in [7], an exhaustive procedure for constructing minimal models — 
i.e., a procedure generating each minimal, finite model in finite but indefinite time 
— requires to abandon the depth-first search strategy of Prolog for a breath-first 
strategy. 
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Proposit ion 5.1 W h e n evaluated under a breadth-first strategy, 'satchmo.l' is a 
sound and exhaustive procedure for generating m i n i m a l , f i n i t e models. 

satchmo_l(Sl, S3, M l , M3) :-
member(P => C, Sl) , 
evaluate(Ml, P), 
not evaluate(Ml, C) , !, 
not (C = false), 
satisfy(Sl, S2, M l , M2, C), 
satchmo_l(S2, S3, M2, M3). 

satchmo_l(Sl, S3, M l , M3) :-
member(exists(X, F), Sl), 
not evaluate(Ml, F), 
satisfy(Sl, S2, M l , M2, exists(X, F)), 
satchmo_l(S2, S3, M2, M3). 

satchmo_l(S, S, M , M). 

evaluate(M, exists(X, F)) :- !, 
evaluate(M, F). 

evaluate(M, (AI, A2)) :- !, 
evaluate(M, AI), 
evaluate(M, A2). 

evaluate(M, (AI ; A2)) :- !, 
( evaluate(M, AI) 
; evaluate(M, A2) ). 

evaluate(M, A) :-
member(A, M). 

evaluate(M, true). 

satisfy(S, [F | S], M , M , exists(X, F)) :-
member(dom( X), M). 

satisfy(S, [F | S], M , [dom(X) | M], exists(X, F)) :- !, 
new.value(X). 

satisfy(S, S, M , [A | M], (A ; D)). 
satisfy(S, S, M l , M2, (B ; D)) :- !, 

satisfy(S, S, M l , M2, D). 
satisfy(S, S, M , [A, | M], A). 

6 Intensional Update Realization 
In this section, we propose an implementation of Definition 4.2 by means of formulas 
in implicative form to be processed by 'satchmo.l'. We rely on the meta-predicates 
'ground^atom', 'base_atom', and 'satisfied'. A call 'ground.atom(A)' succeeds when 
A is an ground atom. 'base_atom(A)' holds if A is a ground atom the literal of which 
does not appear in the head of any rule. 'satisfied' refers to a meta-interpreter which, 
given a logic program P and and an extensional update M , simulates evaluation 
against the updated program P M - We do not give these programs here, since they 
are rather simple (an implementation of'satisfied' is given under the name 'new' in 
[6]). We assume moreover that the procedure 'evaluate' is extended with the clause 
evaluate(M, F) :- satisfied(M, F). 

For the sake of simplicity and without loss of generality, we assume that the 
existential quantifications are explicit in the bodies of rules in the object logic 
program: If a variable x does occur only in the body of a program clause, then this 
body must have the form 3x F . 

new((F, G)), not (F, G) => new(F). 
new((F, G)), not (F, G) => new(G). 
new((F ; G)), not (F ; G) => new(F) ; new(G). 
new(forall(X, R => F), R, not F => new(not R) ; new(F). 
new(exists(X, F)), not F => exists(X, new(F)). 
new(A), basejitom(A), not A => insert(A). 
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nevv(A), ground^atom(A), 
not A, clause(A, B) => insert(A) ; new(B). 

new(not (F, G)) => new((not F ; not G)). 
new(not (F ; G)) => new((not F, not G)). 
new(not forall(X, R => F)) => new(exists(X, (R, not F))). 
new(not exists(X, (R, F)) => new(forall(X, R => not F)). 
new(not A), groundjatoni(A), A => remove(A). 
new(not A), ground ̂ atom(A), 

clause(A, B), not (B = true), B => new(not B). 
insert(A), remove(A) => false. 
ne\v(false) => false. 

The procedure 'satchmo.!' must be constrained such that only 'insert', 'remove', 
and 'new' atoms are collected in the list representing the set of atoms under con-
struction. It is also necessary to restrict the instantiation of existential variables 
over new constants to those variables that occur in 'new' expressions. The first re
striction is enforced by an additional test, the second by distinguishing two kinds of 
existential quantifications, depending whether the variable occurs in a 'new' atom 
or not. We do not give the program specialized in this way: It follows easily from 
'satchmo.l'. 

Since the implications given above implement Definition 5.1, we have by Propo
sition 4.2: 

Corol lary 6.1 T h e finite m i n i m a l realizations of a n intensional update to a logic 
program a r e exhausiively generated when the above-defined implications a r e pro-
cessed with (specialized) 'satchmoj.' under a breadth-first evaluation strategy. 

The meta-interpreter 'satisfied' reflects the evaluations of the underlying system, 
and therefore conveys its restrictions. If the object rules are recursive, Prolog cannot 
be used because the evaluation may never stop. If the object logic program contains 
negative premise literals and is not hierarchical, a Prolog-like evaluation may be 
incorrect. However, it suffices to consider, in place of Prolog, a top-down reasoning 
method that correctly handles recursive or non-hierarchical programs for obtaining 
a correct evaluation of 'satisfied' expressions and hence a correct generation of 
intensional update realizations — such procedures are described, e.g., in [4, 3]. 

We conclude with an example. The reasoning is illustrated on the figure below. 
The branchings of this figure express alternative hypotheses that are made during 
disjunction processing. 

Clauses and Facts: 
q(x) <— T ( X ) A - ' S ( X ) 

s(x) *— T(X) A 3y t(x, y) A -*u(x) 
P(a) r(a) 

r(b) 
t(a, b) 
t(a, c) 

Intensional Update: 
Vx p(x) => new(q(x)) 

Integrity Constraints: 
Vx insert(q(x)) =£• false 
Vx r(x) A insert(u(x))=> false 

7 Conclusion 
We have investigated an approach aiming to free Logic Programming from procedu
ral Updates. We have proposed the concept of'intensional update' for specifying an 
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update without defining its procedural execution. Thus, intensional Updates depart 
in their principle from the Prolog side-eflect 'assert' and 'retract' predicates, and 
from the update primitives proposed in [1, 2] for bottom-up Logic Programming. 

Intensional Updates generalize database 'view Updates'. While view Updates 
permit one to express ground, atomic updating intentions, intensional Updates are 
more general. They give rise to express updating intentions involving quantifiers. 
Intensional Updates also give rise to relating the updated logic program to the 
version prior to the update. Therefore, they are more general than the Updates 
considered in [17, 11, 25, 19]. 

remove(p(a)) new(q(a)) 

I ' I 
insert(q(a)) new(r(a) A ->s(a)) 

I I 
false new(r(a)) 

nevv(->s(a)) 

, 1 , 
insert(u(a))) new(-i( r(a) A 3y t(a, y) ) ) 

I I 
false new(-»r(a)) V new(-> 3y t(a, y ) ) 

, 1 , 
new(-»r(a)) new(-< 3y t(a, y ) ) 

I I 
remove(r(a)) new(-it(a, b)) 

new(-*t(a, c)) 

false remove(t(a, b)) 
remove(t(a, c)) 

In order to be effective, intensional Updates must be translated into changes 
of the logic program, or 'extensional Updates'. In this study, we have considered 
extensional Updates consisting of fact insertions and removals, although the same 
framework also gives rise to handling 'exceptiohs' to rules and clause deletions. We 
have investigated the reasoning involved in generating minimal extensional Updates 
that realize an intensional update. This reasoning is not deductive, but abductive. 

We have formalized abduction as deduction in a meta-theory. Then, we have 
applied a specialized version of the theorem prover Satchmo [22] to process the 
disjunctive formulas of this formalization. Relying on results we established for 
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Satchmo [7], we have established the completeness of the abductive intensional 
update realization method. 

This study is related to the large amount of articles on database view Updates, 
that we cannot all cite here. The generation of realizations for view Updates has 
been formalized in [14]. This article does however not describe any implementa
tion. [20] proposes a declarative expression of sequential Updates and investigates 
the hypothetical reasoning they require, which is close to that performed by the 
meta-Interpreter mentioned in Section 6 and [6]. The article [31] investigates the 
control of concurrent database Updates by considering updating intentions instead 
of procedural definitions. 

The methods described in [17, 11, 25, 19] also consider intensional Updates. How
ever, they do not handle dynamic integrity constraints, nor do [17, 25, 19] address 
completeness issues. [17, 11] propose to handle static integrity constraints according 
to a 'generate-and-test' scheme: Realizations are first generated without consider
ing the constraints. Then, those violating some of the constraints are rejected. In 
contrast, the method we proposed interupts as soon as possible the construction of 
constraint violating realizations. 

There are interesting links between the method we proposed and logic-based 
diagnosis. On the one hand, the concept of intensional update realization is ex-
tremely close to that of diagnosis: Invalidating a literal is in fact similar to assum-
ing a disease or a malfunction. On the other hand, Satchmo can be used as a — 
in some respect, improved — truth maintenance System and can therefore serve 
for consistency-based diagnosis as it is shown in [16j. In [26] it is argued that the 
two diagnosis paradigms — consistency-based and abduction — are "fundamentally 
different" and require "different ways to think about a domain". However, we have 
shown that the reasoning involved in both paradigms can be performed with the 
same inference engine, namely Satchmo. There are nevertheless slight differences: 
They are expressed through the meta-logical implications of Section 6. 

Further research should be devoted to several issues. First, it would be desirable 
to investigate if emciency could be improved through other implementations of 
the same principle, in particular for data intensive applications. Second, the two-
state language we have proposed for expressing intensional Updates and dynamic 
constraints could be extended into a n-state language for applications with historical 
data. We think that the formal treatment of intensional Updates given in this article 
should provide one with the appropriate formal basis for such an extension. Finally, 
it would be desirable to investigate how preferences between realizations can be 
declaratively and elegantly expressed. A proposal in this direction has been made 
in [29]. 
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Notes 
1 : In Section 6, 'evaluate' is applied on quantified formulas. A variance test must 
replace unification in 'member', for preventing undesirable bindings such as X:b and 
Y:a from 'forall(X, p(X, a) => q(X, a))' and Torall(Y, p(b, Y) => q(b, Y))'. 

2 : The program called Momo in [16] is identical with Satchmo up to unsubstantial 
changes, and not only based on a basic principle described in [22] as it is claimed 
in [16]. 
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