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Abstract

The logic programming language framework Kernel Andorra Prolog is de�ned by
a formal computation model. In Kernel Andorra Prolog, general combinations of
concurrent reactive languages and nondeterministic transformational languages may
be speci�ed. The framework is based on constraints.

The languages Prolog, GHC, Parlog, and Atomic Herbrand, are all executable in
the Kernel Andorra Prolog computation model. There are instances of the frame-
work in which all of these languages are embeddable.

1 Introduction

For some time now, the main e�orts of logic programming language-design and im-
plementation have been aimed towards either optimisations of Prolog, and AND/OR
parallelisations thereof, or (more or less at) concurrent committed choice lan-
guages. Preliminary research has shown that general combinations of these language
types introduce new di�culties, a�ecting both language design and implementation.

Nevertheless, research in these two subareas is maturing, and the time has come
to tackle the problem of their combination. Several languages of this kind have
appeared recently, such as basic Andorra [12, 11], at Andorra Prolog [3], and
Pandora [1], but none of these are fully general.

In this paper, a logic programming language framework called Kernel Andorra

Prolog is de�ned. Kernel Andorra Prolog is speci�cally designed to include the
Prolog and committed choice language paradigms, allowing the speci�cation of fully
general combinations.

1.1 Design Goals

The following are the main design goals for the Kernel Andorra Prolog framework.

Formal De�nition

Kernel Andorra Prolog and its computation model should be formally de�ned.
The motivation for the current description is primarily to be clear-cut, not to

indulge in formalism. The model presented here will be further re�ned in the future,
e. g. by including issues like granularity, and the control principles of the model
(see section 5) will be formally speci�ed.

Subsumption

The languages Prolog, GHC, Parlog, and Atomic Herbrand, should be subsumed
by Kernel Andorra Prolog. There should be a single instance of Kernel Andorra
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Prolog into which the majority of programs written in these languages are easily and
automatically translatable. One such language will be called the Andorra Prolog
User Language.

This means that the programming paradigms from all camps are available in a
single language|the reactive concurrent paradigm as well as the transformational.

E�cient Implementation

The Andorra Prolog User Language mentioned above should lend itself to e�cient
implementation on both single- and multi-processor architectures, in the latter case
in such a way that the major forms of parallelism are exploitable.

Preliminary investigation suggests that this goal is quite feasible [11, 5], al-
though a �rst implementation is likely to be somewhat slower than state-of-the-art
implementations of existing languages.

Explicit Control

Control should be explicit in Kernel Andorra Prolog.
Explicit control will simplify meta-programming, program transformation, and

dataow analysis.

Constraints

Kernel Andorra Prolog should be based on a constraint framework.
Our description uses the concept of constraints for generality, as does [8]. An

instance of this framework using substitutions and uni�cation is straightforward.

1.2 Our Design

The languages in the proposed family are guarded de�nite clause languages, with
deep guards, and three guard operators (wait, cut, and commit).

In general, the machinery of deep guards is necessary in nondeterministic lan-
guages, for selecting a single solution, or collecting all solutions for a given goal.
In particular the generalisation to deep guards is essential to achieve the goal of
simultaneously subsuming Prolog and exploiting independent and dependent paral-
lelism. Deep guards can also be used to encapsulate nondeterministic transforma-
tional parts of a program while maintaining a reactive indeterministic computation
at an outer level.

The computation model is a generalisation of the Andorra Model for pure def-
inite clauses [10, 4]. The Andorra Model exploits implicit and-parallelism in the
execution of de�nite clauses. The generalised model features a carefully controlled
nondeterminism, which is available uniformly in a computation.

The framework has as parameters the constraint system used, and the chosen
set of constraint operations with their respective activation conditions. Also, in
some speci�c cases, sequential ordering between goals is necessary to achieve the
desired synchronisation e�ects.

1.3 Outline of Contents

The paper is organised as follows:
In section 2, a setting is given, describing the simple view of constraints used,

and a model for logic programming in general.



In section 3, the basic Andorra Model is presented. It gives priority to deter-
ministic computation, which is seen as less speculative. Deterministic goals may be
reduced in parallel, thus extracting implicit and-parallelism.

In section 4, our language and its computation model are shown. Our language
adds deep guard evaluation and the pruning operators cut and commit to the basic
model.

In section 5, the control of the computation model is described. It is a general-
isation of the Andorra Model.

In section 6, some constraint operations are introduced.
In section 7, several user-languages are summarised as instances of our kernel

language when speci�c constraint operations are used.
Section 8 contains a short discussion.

2 A Computation Model for Logic Programs

In this paper, we will develop a computation model for logic programs that allows
a high degree of parallelisation. This is done in a stepwise manner. First, a compu-
tation model for basic logic programming is described. It is then extended to reify
clause search. We also introduce our (simple) view on the rôle of constraints in our
language.

A computation in logic programming is a proof-tree, obtained by input resolution
on Horn clauses. The states are negative clauses, called goal clauses. The program
to be executed consists of an initial state, the query, and a (�nite) set of program
clauses. The computation proceeds from the initial state by successive reductions,
transforming one state into another. In each step, an atomic goal of a goal-clause is
replaced by the body of a program clause, producing a new goal clause. When an
empty goal clause is reached, the proof is completed. As a by-product, a substitution
for the variables occurring in the query has been produced.

2.1 Constraints

For generality, and to satisfy the design goals, the concept of constraint will be
used instead of substitution. A constraint is a formula in some constraint language.
The constraint formulas are closed under conjunction. The computation model
presupposes a constraint system, which is a set of special predicate symbols from
which constraints may be built, a constraint theory (T C) describing properties
of these predicates, and mechanisms that decide the following two properties|
satis�ability and restriction (\entailment"). A constraint � is satis�able if T C j=
9(�). The constraint � does not restrict � (outside V ) if T C j= � ! 9V (�). (Here,
and in the following, we use 9V to denote existential quanti�cation over the variables
in V .) The true constraint is a variable-free constraint formula true which is true
in the constraint theory, i. e. T C j= true.

A constraint system may also (optionally) be supplied with a mechanism that
reduces a constraint to some simpli�ed, sometimes normal, form. A mechanism
combining the decision of satis�ability with the reduction to normal form is often
called a constraint solver.

For example, the equality predicate =/2 is the only predicate in the usual
Herbrand constraint system, where equality is axiomatised by Clark's equality the-
ory, expressing the free interpretation of terms, and the uni�cation algorithm pro-
vides the constraint solver.



We disallow program clauses that de�ne a predicate symbol in the constraint
system.

2.2 A Basic Model for Logic Programming

The notions of states and computation are expressed in terms of a formal computa-
tion model. We would like to model the actual computation, and reify aspects that
are relevant in this context.

However, the model is abstract. This is mainly in the sense that some structures
are implicit, which will necessarily be explicit in a real implementation, such as
scheduling information, but also in the sense that some structures will be explicit,
which can be made implicit in a real implementation, such as some copies of goals.

States are formalised in terms of objects called con�gurations. A computation is
a (possibly in�nite) sequence of con�gurations obtained by successive applications
of rewrite rules that de�ne valid state transitions. A con�guration is, as described
above, a sequence of atomic formul�, called atomic goals, and an associated satis-
�able constraint. This object is called an and-box, and it is de�ned and introduced
into a con�guration as follows.

hcon�gurationi ::= hand-box i

hand-box i ::= and(hsequence of atomic goalsi ; hconstrainti)

The Greek letters � and � denote constraints. An and-box of the form and(; �)
will normally be written as �, and an and-box with the true constraint is normally
written as and(hsequence of atomic goalsi). The letters A and H denote atomic
goals, and B, C, and D, denote sequences of atomic goals. The concatenation
operation on sequences is \;" . We will also overload the use of the letters A and H
to denote a sequence with a single atomic goal. It should be clear from the context
which use is intended.

We could, of course, mix constraints with other goals, but we choose not to
do so, because when we will describe Kernel Andorra Prolog constraint goals will
denote constraint operations rather than constraints.

The single rewrite rule that is used is the clausewise reduction operation,

and(C;A;D ; �) ) and(C;B;D ; � ^ (A = H));

where H :- B is a program clause for which the constraint � ^ (A = H) is satis�-
able, in which variables are renamed apart from the variables in the con�guration.
Observe that B might be an empty sequence.

The initial con�guration is an and-box containing the query, the initial sequence
of atomic goals, together with the true constraint. The con�gurations that have
empty sequences of goals are �nal. The constraint of a �nal con�guration is called
an answer. An answer describes a set of assignments for variables for which the
initial con�guration holds, in terms of the chosen constraint system. In general, for
an answer to be interesting, it is presented in some kind of normal form.

2.3 A Model Reifying Nondeterminism

For completeness, it is necessary to explore all �nal con�gurations that can be
reached by reduction operations from the initial con�guration. If this is done,
the union of the sets of assignments satisfying the answers contains all possible
assignments for variables that could satisfy the initial goal.



Especially, it is necessary to try all (relevant) program clauses for an atomic goal.
This is quite implicit in the above formulation. The computation model is nonde-
terministic. This clause search nondeterminism will necessarily be made explicit in
a real implementation. Therefore, to ful�l our design goals, the computation model
is extended to make clause search nondeterminism explicit.

This is done by grouping the alternative and-boxes by or-boxes.

hcon�gurationi ::= hgoali

hgoali ::= hand-box i j hor-box i

hand-box i ::= and(hsequence of atomic goalsi ; hconstrainti)

hor-box i ::= or(hsequence of goalsi)

An occurrence of an or-box is called a (global) fork. The symbol \fail" denotes an
empty or-box.

In the context of logic programming a computation rule will select atomic goals
for which all clauses will be tried. This computation rule nondeterminism will
remain in the model. We will reify the clause selection nondeterminism that appears
when selecting possible clauses for an atomic goal.

The corresponding rewrite rule, called de�nitionwise reduction, creates a global
fork, in which all the possible and-boxes that would be the result of clausewise
reduction operations on a selected atomic goal are contained.

We rewrite by the de�nitionwise reduction operation,

and(C;A;D ; �) ) or(. . . ; and(C;Bi; D ; � ^ (A = Hi)); . . .);

where Hi :- Bi are the clauses for which the constraint �^ (A = Hi) is satis�able, in
which variables are renamed apart from the variables in the con�guration. When
no clause is applicable, an or-box with no alternative and-boxes, the empty or-box
(or fail), is produced. The atomic goal A is then said to fail.

De�nitionwise reduction is su�cient to describe SLD-resolution. In section 4, a
model that is extended with guard evaluation is introduced. In the next section, the
Andorra Model will be introduced, as its control principles are the main inuence
for the control of our extended model.

3 The Andorra Model

The Andorra model gives priority to deterministic computation over nondetermin-
istic computation, as nondeterministic steps are likely to multiply work.

The Andorra model divides a computation within and-boxes into deterministic

and nondeterministic phases. First, all atomic goals for which it is known that at
most one clause would succeed are reduced using a single clause (clausewise) during
the deterministic phase. (These goals can be reduced in and-parallel.) Then, when
no such goal is left, some goal is chosen for which all clauses are tried (de�nitionwise);
this is called the nondeterministic phase. The computation then proceeds with a
deterministic phase on each or-branch.

The key concept here is the notion of determinacy. An atomic goal is said to
be deterministic when there is at most one candidate clause that would succeed for
the goal. As soon as it is known that an atomic goal has become deterministic, the
goal can either be reduced by a single clause, or fail, if it was known that no clause
would apply. It is not considered to be an error if the mechanism for detecting the



determinacy of goals fails to detect that a goal is deterministic. In general, nothing
less than complete execution will establish this property.

The Andorra model has a number of interesting consequences.
Firstly, the Andorra model allows deterministic goals to be run in and-parallel,

extracting implicit and-parallelism from the program.
Secondly, the notion of determinacy in the Andorra model gives a reasonably

strong form of synchronisation. As long as a goal is able to produce data determin-
istically, no consumer of this data is allowed to run ahead (if it does not know what
to consume). This allows speci�cation of concurrent processes.

Thirdly, the Andorra model reduces the search space by executing the determin-
istic goals �rst. Goals can fail early, and the constraints produced by a reduction
can reduce the number of alternatives for other goals. This has proved to be very
relevant for the coding of constraint satisfaction problems [6, 9, 1, 4, 12].

The Andorra model in items:

� An atomic goal fails if it is known that no clause would succeed for the goal.

� An atomic goal can be reduced using a single clause when it is known that all
other clauses would necessarily fail for the goal.

� When no goal is known to be deterministic, all clauses in its de�nition are
tried for some goal.

Normally, a clause is known to fail for a goal if simple primitive goals occurring in
the clause, like head uni�cation, =/2, </2, atomic/1 , and the like, are known to
fail in the given context of the goal.

Example Consider the well-known quick-sort program

qsort([],R,R).

qsort([X|L],R0,R) :-

partition(L,X,L1,L2),

qsort(L1,R0,[X|R1]),

qsort(L2,R1,R).

partition([],C,[],[]).

partition([X|L],C,[X|L1],L2) :-

X < C, partition(L,C,L1,L2).

partition([X|L],C,L1,[X|L2]) :-

X >= C, partition(L,C,L1,L2).

Execution of a goal qsort([2,3,1],L,[])will be completely deterministic, and the
Andorra model will extract parallelism as follows. The goals have some arguments
suppressed for the sake of brevity. The goals with a nonvariable argument are
deterministic. All deterministic goals are reduced in one step.

?- qs([2,3,1]).

?- p([3,1]), qs(L1), qs(L2).

?- p([1]), qs(L1), qs([3|L2']).

?- p([]), qs([1|L1']), p([]), qs(L1''), qs(L2'').

?- p([]), qs(L1'''), qs(L2'''), qs([]), qs([]).

?- qs([]), qs([]).

?-

The model extracts quite a lot of potential parallelism.



4 The Extended Computation Model

We now de�ne a computation model that will take advantage of the principles
underlying the Andorra model to control nondeterminism in a \deep" concurrent
language.

First, the language and the con�gurations are de�ned. Then, the rewrite oper-
ations that start guard execution, perform commit, etc, are described. The control
of the computation model is de�ned in section 5, where its relation to the Andorra
Model will be clearly visible.

4.1 The Kernel Andorra Prolog Language

The kernel language clauses are de�nite clauses augmented with guard operators.
Each clause contains exactly one guard operator.

hguarded clausei ::= hhead i :- hguardihguard operatorihbodyi

hhead i ::= hvariable-pure atomic goal i

hguard i; hbodyi ::= hsequence of atomic goalsi

hatomic goal i ::= hvariable-pure atomic goal i j hconstraint goal i

hguard operatori ::= `:' j `!' j `j'

The guard operator \:" is called wait, \!" is called cut, and \j" is called commit.
Cut and commit are called pruning operators.

For the generality of the argument, the following semantic description does not
depend on how \head uni�cation" is performed or even on the appearance of terms.
Therefore, guarded clauses are assumed to be normalised in the sense that all user-
de�ned atomic goals will have the variable-pure form p(v1; . . . ; vn). In the head, vi
are di�erent variables called formal parameters. In the body, vi may be repeated,
and are there called actual parameters. The variables in a clause that do not occur
among the formal parameters are called local variables.

Uni�cation and the like are performed by primitive constraint operations. A con-
straint operation may block its constraint until its activation condition is satis�ed.
Some constraint operations are described in section 6.

A guarded clause de�nes predicate p=n if the head of the clause has the form
p(v1; . . . ; vn). A de�nition consists of a �nite sequence of guarded clauses de�ning
the same predicate, which all have the same guard operator. A program is a �nite
set of de�nitions.

4.2 The Kernel Andorra Prolog Computation Model

The computation model of Kernel Andorra Prolog allows arbitrarily deep guard
evaluation.

In the treatment that follows, there is a need to know whether a variable is
local or external to an and-box. This knowledge is necessary in order to specify the
behaviour of the various constraint operations as well as some of the rewrite rules.
The reason is that Andorra computation will be quite lazy on guessing (nondeter-
ministically) the value of external variables, and some constraint operations will
block if they try to impose constraints on external variables. Therefore and-boxes
will be indexed by a set of variables which are the variables local to the box. We
will sometimes omit the indexing of and-boxes when it is irrelevant.



A box called choice-box is introduced that holds a sequence of guarded goals

being evaluated. Choice-boxes are grouped with atomic goals, forming a new kind
of goal called local goals, which are the legal members of and-boxes. Since the
guarded goals in a choice-box will all have the same guard operator, a choice-box
may be quali�ed by the name of the guard, e.g. a commit choice-box.

hcon�gurationi ::= hgoali

hgoali ::= hand-box i j hor-box i

hlocal goali ::= hatomic goali j hchoice-box i

hand-box i ::= and(hseq. of local goalsi ; hconstrainti)hset of variablesi

hor-box i ::= or(hsequence of goalsi)

hchoice-box i ::= choice(hsequence of guarded goalsi)

hguarded goali ::= hgoalihguard operatorihsequence of atomic goalsi

In a guarded goal, the goal preceding the guard operator is called the guard, and the
sequence of atomic goals following it are called the body. The symbol \fail" will be
used to denote the empty or-box and the empty choice-box regarded as collapsing
to the same object. An occurrence of an or-box is still called a global fork, whereas
an occurrence of a choice-box is called a local fork . Finally, the following syntactic
category is convenient.

hsubcon�guration i ::= hgoal i j hlocal goali j hguarded goal i

The subgoals of a subcon�guration G are de�ned as follows:

1. G is a subgoal of G,

2. the subgoals of G1; . . . ; Gn are subgoals of and(G1; . . . ; Gn ; �)V , of
or(G1; . . . ; Gn), and of choice(G1; . . . ; Gn),

3. the subgoals of G are subgoals of G % B, where \%" is a guard operator.

Each subgoal has an environment, de�ned as the conjunction of the constraints of
all the and-boxes in which the goal occurs.

Computation is modelled by rewrite rules de�ned in the following sections. The
rewrite rules are applied to occurrences of subgoals of a con�guration. Thus, a
rewrite rule

Left ) Right

is to be understood as de�ning a transition

G[Left] ) G[Right]

on a con�guration G, in which one occurrence of subgoal Left is replaced with Right.
The basic rewrite rules are those performing local forking and promotion. Local

forking on an atomic goal is responsible for initiating local computations, while
promotion communicates the results of a local computation to the siblings of the
goal that started the local computation.

In the following, the Greek letter � denotes a single goal. The letters B, C, and
D denote sequences of local goals, P , Q and R denote sequences of goals, and S and
T denote sequences of guarded goals. The symbol `%' denotes a guard operator.
The letters V and W are sets of variables.



4.3 Primitive Constraint Rules

A constraint subgoal may be rewritten by one of the following two rules, corre-
sponding to successful execution and failure.

Some constraint operations, corresponding to the actions of existing languages
like Prolog, GHC, Parlog, and Atomic Herbrand, are described in section 6.

The notation op(�) denotes a constraint operation op applied to the primitive
constraint �. (The constraint � may optionally be the result of a \built-in" proce-
dure, working in the environment of the constraint operation.)

Constraint Imposition

An and-box may be rewritten by

and(C; op(�); D ; �) ) and(C;D ; � ^ �);

if the activation condition of op(�) is satis�ed, and � ^ � is satis�able.

Constraint Failure

An and-box may be rewritten by

and(C; op(�); D ; �) ) fail;

if � is inconsistent with the environment of op(�).

4.4 Local Forking

Local forking is the creation of a choice-box. An atomic subgoal is replaced by a
choice-box which contains guarded goals that are derived from the clauses de�ning
the goal. The guards of these guarded goals are then available for further evaluation.

Compared to section 2, head uni�cation is reduced to simple parameter passing.
Therefore we perform the substitution immediately.

Local Forking

An atomic subgoal A may be rewritten by

A) choice(and(G1 ; true)V1 % B1; . . . ; and(Gn ; true)Vn % Bn);

using the sequence of clauses Hi :- Gi % Bi de�ning A (in order), in which the
actual parameters of A are substituted for the formal parameters of Hi, and where
the local variables Vi are renamed apart from other variables in the con�guration.

4.5 Deterministic Promotion

The �rst promotion rule is deterministic promotion, which extracts the single re-
maining guarded goal in a choice-box, after completion of guard execution. It
promotes its constraint and moves the body of the guarded goal to the surrounding
and-box.



Deterministic Promotion

An and-box may be rewritten by

and(C; choice(�V % B); D ; �)W ) and(C;B;D ; � ^ �)V [W

if � ^ � is satis�able.

4.6 Pruning and Indeterministic Promotion

If the guard of a guarded goal in a pruning choice-box is successful, some or all of
its siblings will be pruned. Eventually, its body might replace the choice-box by
deterministic promotion. The combination is called indeterministic promotion.

The cut operator \!" prunes branches to the right after a successful guard ex-
ecution of the branch. The commit operator \j" prunes all other branches after a
successful guard execution of the branch.

Cut and Commit

choice(P; � ! B;Q) ) choice(P; � ! B)

choice(P; � j B;Q) ) choice(� j B)

The actual promotion is performed by the deterministic promotion rule.

4.7 Nondeterministic Promotion

The successful guard branches in a wait choice-box are extracted by nondetermin-

istic promotion. A new or-box is created, which has two branches. In the �rst
branch, the choice-box is replaced with the body of the extracted solution. In the
second branch, the rest of the choice-box remains.

It sometimesmatters whether branches are ordered or unordered. The semantics
of cut requires that the branches in a global fork are ordered, otherwise this is
unnecessary. We de�ne the following concepts to keep track of these needs.

A subgoal is in an ordered context if it occurs in a cut choice-box which is also the
closest surrounding pruning choice-box. Otherwise, it is in an unordered context.

Nondeterministic Promotion

We may rewrite an and-box by

and(C; choice(P; (�V : B); Q); D ; �)W )

or(and(C;B;D ; � ^ �)V [W ; and(C; choice(P;Q); D ; �)W );

if � ^ � is satis�able. In an unordered context, this rule may select any successful
branch. In an ordered context, the sequence P is restricted to be empty. Then the
rule selects the leftmost solution. Note that this does not introduce any incomplete-
ness as the cut operation needs a successful leftmost branch.

4.8 Normalisation Rules

In a deep computation, inconsistent environments must be detected, failures must
be propagated, and alternative solutions of guards must be dealt with. This is done
by the following rules for environment synchronisation, failure propagation, and or
within a choice reduction.



Environment Synchronisation

and(B ; �) ) fail;

if the conjunction of � with the environment of the and-box is unsatis�able.

Failure Propagation

and(B; fail; C ; �)) fail

choice(S; (fail% B); T ) ) choice(S; T )

Or within Choice Reduction

choice(S;or(�; P ) % B; T ) ) choice(S; � % B;or(P ) % B; T )

These rules propagate the consequences of the local forking and the promotion rules.

5 Control of the Computation Model

In this section, the control of the Kernel Andorra Prolog computation model is
de�ned. A precise de�nition is given in terms of admissible computation steps.
First, the relationship with the basic Andorra Model is discussed.

5.1 Determinacy Detection

The heuristic of the Andorra Model is that any deterministic step should be pre-
ferred to a nondeterministic step (within the same and-box), as the latter is likely
to multiply work.

In the Andorra Model, there is a determinacy detector that examines all atomic
goals. It tries to establish that a goal is deterministic, basing its conclusion on
compile time information extracted from the de�nition for the goal.

In the Kernel Andorra Prolog computation model, the equivalent of determinacy
detection for an atomic goal is local forking of the goal and the subsequent rewrite
steps applied to and within the resulting choice-box. Any of these steps can poten-
tially make the choice-box reducible by deterministic promotion or normalisation.

Thus, in the generalised model, the deterministic phase of an and-box should
involve performing local forking, and as much computation as possible within the
resulting choice-boxes, to detect determinacy, and also all deterministic promotions
and normalisation rewrites that become applicable as a result of the determinacy
detection.

5.2 Blocking and Pruning

The Kernel Andorra Prolog language has two extensions that complicate determi-
nacy detection: blocking constraint operations, and pruning guard operators.

A natural extension of the Andorra Model is that nondeterministic promotion
of an and-box should be postponed until all deterministic computation has ceased
in siblings and parents that might a�ect constraints in the box.

Indeterministic promotion is a potential source of (unnecessary) incompleteness.
Decisions are easily made that are inconsistent with what is produced by computa-
tion on a sibling or parent level.



A natural extension of the Andorra Model is that pruning of a choice-box is
postponed until all deterministic computation has ceased in siblings and parents
that might a�ect constraints in the box, and thereby the determinacy of the choice,
or the constraint on which the indeterministic choice is based.

A constraint �V is quiet if it does not restrict external variables, i. e.

� ! 9V (�V );

where � is the environment of �V . Otherwise, the constraint is noisy. A guard
execution is quiet (noisy) if it reduces to a quiet (noisy) constraint. An application
of a pruning rule is quiet (noisy) if the successful guard is quiet (noisy).

The key property of quiet pruning is that the constraint on which it is based
cannot be a�ected by computation performed outside the pruned choice box. As will
be seen, quiet pruning can be ensured by the use of proper constraint operations.

5.3 Kernel Andorra Prolog Computations

We summarise the above discussion in precise terms as follows.
Local forking, deterministic promotion, normal form rules, and constraint rules

are called guess-free rules. Nondeterministic promotion and pruning are called
guessing rules.

A subgoal G is stable if no guess-free rules are applicable to or within G, and
no constraint � of an and-box or a constraint operation occurring in G restricts
variables outside V , where V is the union of variables local to and-boxes in G in
which � occurs.

The following rule applications are admissible.

� An application of a guess-free rule is always admissible.

� An application of nondeterministic promotion is admissible i�

1. it is applied to (or to a subgoal of) a stable subgoal, and

2. there are no admissible applications of guessing rules to proper subgoals
of the rewritten subgoal, i. e. it is innermost.

� An application of pruning is admissible i�

1. it is applied to (or to a subgoal of) a stable subgoal, or

2. the solution on which the pruning is based is quiet.

A Kernel Andorra Prolog computation is a (possibly in�nite) sequence of con�gura-
tions. It is obtained by successive admissible applications of rewrite rules, starting
with an initial con�guration of the form and(A1; . . . ; An ; true)V , where V contains
the variables that occur in A1; . . . ; An.

This de�nition provides the minimum control which is characteristic for our
computation model. Further restrictions, such as sequential execution of goals and
leftmost nondeterminate promotion (as in Prolog) may be imposed to achieve de-
sired control e�ects.



6 The Primitive Constraint Operations

In this section, some primitive constraint operations are introduced. They are de-
�ned by their activation conditions. These conditions express, using entailment, how
constrained (or instantiated), the arguments are required to be before execution.

A speci�c instance of Kernel Andorra Prolog will have just a few of these op-
erations combined in a disciplined way. In fact, a random combination of these
operation might lead to unpredictable behaviour, since for instance some combina-
tions are not commutative. Section 7 discusses possible user languages.

We introduce four constraint operations. They have their motivation as being
the operations used by the languages we seek to subsume.

Ask The Ask operation is only activated if its constraint is quiet. This opera-
tion is used by the Parlog ==/2 operation and by Ask operations in Atomic
Herbrand.

Tell0 The Tell0 operation may impose new constraints on local variables (the zeroth
level). It is used by GHC.

Tell1 The Tell1 operation may impose new constraints on local variables and on
any variables that are local to the closest parent and-box (on the �rst parent
level). It is similar to Tell in Atomic Herbrand.

Tell! The Tell! operation is an unrestricted constraint operation, as found in Pro-
log. It may impose new constraints on any variable at any time.

Formally, this is expressed as follows. The and-box � contains the constraint oper-
ations op(�),

� = and(. . . ; op(�); . . . ; ��)V� :

The and-box � has a closest parent and-box � (where we assume the or-reduced
form),

� = and(. . . ; choice(. . . ; � % B; . . .); . . . ; ��)V� :

When there is no parent and-box its constraint is assumed to be true and its set of
local variables empty.

The activation conditions for the above constraint operations follow. The envi-
ronment of the constraint operation op(�) is �.

Ask The constraint � imposes no new constraints on any variable, i. e. � ! � ^ �.

Tell0 The constraint � imposes no new constraints on variables external to �, i. e.
9V�� ! 9V�(� ^ �).

Tell1 The constraint � imposes no new constraints on variables external to � and
�, i. e. 9(V� [ V�)� ! 9(V� [ V�)(� ^ �).

Tell! No condition.

The conditions are not shown in their minimal logical form, but rather in a form that
shows how the scope of the operations grows from Ask to Tell1. Another interesting
variant of a tell-uni�cation operation which will be used in the next section is the
following.

Tell(!=j) A constraint operation of this type may only restrict variables that are

local to and-boxes within the closest surrounding pruning choice-box.

This operation has a dynamic blocking behaviour.



7 Possible Instantiations of the Framework

The following are possible user languages sharing the Kernel Andorra framework
with restricted use of primitive operations. The following list is by no means com-
plete and the presentation is very dense. A detailed treatment will be presented in
another paper, where basic Prolog (Prolog without assert and retract) is treated.
All languages presented may have a user-oriented syntax where the constraint op-
erations are implicit. The constraint domain used is Herbrand. For veri�cations of
the remarks below on the formal properties of these languages, see [2].

Quiet Directional Andorra Prolog

In the quiet directional user language, the only constraint operation used is Tell0.
It is used both in the guard and the body. This is a nondeterministic language that
subsumes GHC. The nondeterministic procedures using wait-guards are used in a
speci�c output mode since the guard is quiet. The language can be implemented
very e�ciently because no satis�ability test is needed when constraints are combined
by promotion rules, and the detection of stable boxes is simpli�ed. Blocking on
external variables is easy, because there is a single place where an external variable
can become instantiated.

Pure Andorra Prolog

The basic Andorra model for de�nite clauses is achieved by the use of Tell1 oper-
ations. A de�nite clause is translated into a wait-guarded clause where the head
uni�cation and all primitive goals of the de�nite clause are extracted and their Tell1
version is formed and inserted as the at guard of the corresponding guarded clause.

Quiet Andorra Prolog

A very useful language is achieved by a combination of the above two languages.
Pure clauses translated as above combined with the quiet guarded language (the
quiet directional Andorra Prolog) gives a nondirectional language and still preserves
the property that all guards are quiet. Observe that this property holds even if pure
procedures are called from within the deep guards.

Reactive Quiet Andorra Prolog

The subset of the above language where goals in the body of commit or cut clauses
are strictly calls to cut or commit procedures, and there are no restrictions on
the type of procedures a goal in a guard may call is a reactive language. In this
language nondeterministic computations are always encapsulated within guards,
and no global nondeterminism is introduced.

Atomic Andorra Prolog

For this language we introduce a sequencing operator `&' between goals. This
includes `quiet Andorra Prolog' as a subset. The language consists of guarded
clauses where a guard now has the following form: G & t, where G is a quiet
guard as before and t is a sequence of Tell1 operations on primitive constraints.
Again, the combination preserves the property that the G-part of the guard is quiet.
The language allows noisy pruning in a shallow way and can still be implemented



reasonably e�ciently. This language subsumes Atomic Herbrand and allows the full
use of the Andorra model.

The Core User Language Andorra Prolog

The language currently called the Core User Language within the PEPMA Project
allows wait-guards to be noisy while constraining pruning guards to be quiet. It
is obtained by using Tell(!=j) operations uniformly in all guarded clauses. We have

written several nice examples, �nite domain constraint and the like, in this language.

8 Related Work

Vijay Saraswat de�ned a language CP [7] that provides among other things deep
guards, an operator called \don't know commit", related to our \wait" operator, and
the concept of blocks, which are similar to and-boxes. One of the main di�erences
between CP and our work is our control of when to promote nondeterminism. This
is also true of Saraswat's thesis [8]. Also, we emphasise fully interleaved execution
in a language with deep guards. However, Kernel Andorra Prolog is de�nitely a
concurrent constraint language.

The main inuence for the Kernel Andorra Prolog model was the basic Andorra
Model proposed by David H. D. Warren [10]. The �nal result owes much to the
mutual exchange of ideas within the PEPMA Esprit Project, where Warren has
been considering an Extended Model, based on the basic Andorra Model, which is
closely related to Prolog, and in which the kind of control that is expressed using
constraint operations and wait guards in our language is largely implicit.

9 Discussion

We have presented a language framework that, at least in principle, will subsume
the major families of logic programming languages. It is nevertheless reasonably
compact and homogeneous.

Simple implementations of some of the instances of this framework will not
achieve the speed of some implementations of more restricted languages. It is
our belief that these speeds (and better) will be reached by advanced compilation
techniques, based on dataow analysis, and recognition of cases corresponding for
example to Prolog and FGHC. This remains to be shown. Our preliminary imple-
mentation study suggests that the execution speed of a �rst general single-processor
implementation of Atomic Kernel Andorra Prolog will be close to the speed of Pro-
log for deterministic at computation within an and-box. This will be the topic of
future papers.
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