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Abstract 
This article presents in an informal way some early results on the design of a series of paradigms 

for visualization of the parallel execution of logic programs. The results presented here refer to the 
visualization of or-parallelism, as in MUSE and Aurora, deterministic dependent and-parallelism, as 
in Andorra-I, and independent and-parallelism as in &-Prolog. A tool has been implemented for this 
purpose and has been interfaced with these systems. Results are presented showing the visualization 
of executions from these systems and the usefulness of the resulting tool is briefly discussed. 

1 Introduction 

The dimculty of parallel programming and the lack of cost-effective parallel hardware have been 
traditionally considered the main hindrances to the wide spread use of parallelism. While cost-effective 
parallel computers are now appearing in the marketplace, the lack of software able to exploit parallelism 
in an efncient way is still an important bottleneck. In general, making a good program for a parallel 
machine is much more difncult than for a sequential one, because of the need of studying data 
dependencies and perhaps having to adapt the algorithm to particular topologies. High level languages 
have been traditionally aimed at freeing the programmer from such low-level tasks, but imperative 
languages do not ftilfill this requirement, and machine-specific synchronization primitives have to be 
frequently manually used to direct flow control when such programs are parallelized. 

Logic programming allows the development of a new generation of languages able to exploit the ftill 
potential of parallel computers in a transparent manner. The proximity of the declarative and procedural 
semantics of logic languages, together with the (theoretical) lack of flow control, makes them more 
amenable to analysis and automatic parallelization. This kind of evolved compiling tools, together with 
engines to execute parallel logic programs, could make true the users dream of being able to write 
a program which runs both in an sequential and in a parallel computer, achieving the best possible 
performance in both cases without having to give much — if any — thought to the parallel execution. 
But such a dream is a nightmare for the people who design and implement such systems. Programmers 
who develop parallel systems have to deal with concrete machines and ensure that the execution model 
is correct and fast, and that it has been properly implemented. Programmers developing high-level tools, 
such as parallelizing compilers, have to ensure that the parallelized programs retain sequential semantics, 
if this is desired, and that their execution is safe. Final users would also like to understand what happens 
in the core of the processing engine, for that understanding can help them to adopt a programming style 
which, while retaining sequential semantics, will be more adequate for parallel processing. Thus, it is 
important to develop tools to facilítate these tasks. 

All programming environments have some tools to help users and developers. When creating 
new and more evolved programming paradigms, it is necessary to have also new and more evolved 
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programming tools. The development of parallel logic environments has to deal actively with issues 
like load balancing, scheduling, correctness of parallel programs, etc. Therefore, there is a need for a 
new generation of debugging and analysis tools at the same level that those being developed. In this 
paper we will introduce one prototype of a tool of such class, aimed at exploring and understanding the 
intricacies of parallel logic program execution. It would be desirable for such a tool to be: 

• Intuitive and understandable for people not highly skilled in parallel processing. 

• Accurate and flexible, for those who will use it to verify the operational behavior of a particular 
implementation. 

• Easy to extend, so that it can be developed as needed in order to visualize new execution 
paradigms. 

Looking for a parallel process representation paradigm which fulfills these requirements it is natural 
to arrive to graphical visualization as a solution. There are two main reasons for this: on one hand, 
parallel process visualization has been used firom the early times of parallel processing to explain parallel 
algorithms, and, on the other hand, visual information is easy and fast to understand. Thus, we claim 
that parallel visualization can be effectively used as the basis for a tool aimed at a better understanding 
of parallel processing firom the point of view of the skilled programmer and the final user. This is 
the approach taken in the VisAndOr tool, which we will describe here. It should be noted that this 
is only a partial view of the possibilities of VisAndOr, because it is still being improved and open to 
the appearance of new parallel execution paradigms. In particular, in this paper we concéntrate on 
the capabilities of the tool for analyzing the parallel execution of the MUSE, Aurora, Andorra-I, and 
&-Prolog systems [AK90b, AK90a, Sze89, SCWY90, SCWY91, HJ90, Her86, HG91]. 

The rest of this paper is structured as follows: in Section 2 there is a brief overview of some existent 
approaches to parallel process visualization, together with a description of the VisAndOr approach. In 
Sections 3, 4 and 5 the visualization of the parallel programming systems MUSE, Aurora, Andorra-I and 
&-Prolog firom the VisAndOr perspective is discussed. Some topics in which VisAndOr can be helpful 
are described in Section 6. Additional topics in which the events approach can be useful are sketched in 
Section 7. Details about the VisAndOr implementation, capabilities and working environment are given 
in Section 8. Finally, Section 9 describes conclusions and future work. 

2 Process Visualization 

Graphical visualization has been with Computer Science since its inception, mainly because of its 
representation power. One example is the graphical representation of finite autómata which has been 
found to be useful and accurate at the same time. A carefully designed representation should also 
lead to a better comprehension of parallel process behavior and, subsequently, to easier debugging and 
implementation of a real parallel system. In the next section we will have a brief look to some existing 
visualization paradigms, and after that we will focus on the VisAndOr approach. 

2.1 A Review of Visualization Systems 

Briefly, the target of visualization systems is to display data in a comprehensible and meaningful 
manner. The data may have been gathered prior to displaying or generated and processed just-in-time. 
Unlike the representation of physical phenomena, the visualization of computer processes must map 
abstract relations between entities (namely programs, messages, scheduling strategies...) into a more 
concrete representation — think of the finite autómata example, in which discrete functions are given the 
appearance of a graph. Sometimes this mapping is merely a make-up (for example, bar charts obtained 
firom load data), but even in this case, the flexibility and intuitiveness that visualization offers is enough 
to fill the gap between raw data and high level human perception. In this section, we will just mention 



some existing systems aimed at studying run time execution characteristics. We will no pay attention 
to pretty-printing programs or flow-chart generators, which give a static visión of static text. For a 
complete discussion on a suitable taxonomy of software visualization systems, the reader is referred to 
[PSB92]. 

One of the most well known software visualization systems is BALSA (and its most recent versión, 
BALSA II) [Bro88]. This system allows users to watch the run-time evolution of data structures of 
a Pascal program. The statement being executed is highlighted in the code. Animation is achieved by 
calis previously inserted by the user in the source code. This is an example of a system which shows 
actual step-by-step sequential execution and data structure changes, but that has the drawback of not 
being transparent to the user, because of the need of source code transformation. 

The Transparent Prolog Machine [EB88] is an interpreter which displays automatically a running 
trace of the program being executed. It has many good details, such as being able to show coarse-grained 
or fine-grained views and a good treatment of meta-predicates. This, together with a careful graphic 
design, makes it a very good tool to understand and study the sequential Prolog execution model. The 
source code being studied does not need any modification at all. 

The ParaGraph1 tool by Heath and Etheridge [HE91] is a graphical display system for visualizing 
the behavior and performance of parallel programs on message-passing multiprocessors. It takes as 
input execution profile data obtained during an actual run of a parallel program on a message-passing 
machine, and the resulting trace data can then be replayed pictorially with ParaGraph to provide a 
dynamic depiction of the behavior of the parallel program. 

The ParaGraph tool by Aikawa et al. [AKK+92] is aimed at tuning the Parallel Inference Machine 
(PIM) [GSN+88]. Its main purposes are low-level (processor) profiling, i.e., discovering how a given 
(set of) processor(s) distribute its (their) time in a program execution, and high-level (shoen) profiling, 
which attempts to discover how many times goals are reduced or suspended. ParaGraph gathers profiling 
data during program execution using primitives of the KL1 [UC10] language. 

Finally, the VISTA tool [Tic92] intends to give effective visual feedback to a programmer tuning a 
concurrent logic program. Its inputs are a trace file obtained during execution and a source program. The 
results obtained with VISTA have the peculiar shape of a snail shell, due to the mapping of the (parallel) 
search tree into a polar coordínate system. This system, which represents deterministic dependent 
and-parallelism, was developed using some ideas from VisAndOr's forerunner, VISIPAL. 

The tools cited above are not the only ones with merit enough to be mentioned, but they give us a 
starting point to find where VisAndOr fits. As we can infer, there are some tools which need programs to 
be rewritten and some others that do not. While some tools are oriented to sequential processing, other 
tools are mainly devised to visualize parallel processing (although, in general, they are able to deal with 
sequential execution as a special case). Last, but not least, there are tools which are oriented towards 
machine-level profiling2 and tools which are aimed at showing a given execution paradigm regardless 
the underlying architecture. This rough división is not exclusive: the classes do overlap among them. 

So, where does VisAndOr fit in? We will give some overall characteristics, using the taxonomy 
given in [PSB92], before we expand on how VisAndOr is designed: 

Scope: VisAndOr can visualize arbitrary parallel Prolog program executions: currently, or-parallel 
programs, Independent and-parallel programs and dependent deterministic and-parallel programs 
— possibly also with or-parallelism. The inner algorithms do not pose limit to the size 
and/or complexity of such programs. Only the available memory and numerical accuracy of 
the computer can introduce restrictions. The tool is still being developed to encompass more 
execution paradigms. In general, tree, fork-and-join, and non-structured task organizations can be 
represented in time. 

1 There are two different visualization tools with the same ñame: the one we are currently referring to and the ParaGraph by 
Aikawa et al., described in [AKK+92], which we refer to below. 

2i.e., processto processor mapping, message-passing schemes, etc. 



Contení: VisAndOr performs program visualization, not code visualization. Data visualization can 
often be naturally inferred due to the nature of the Prolog execution model. The information is 
completely gathered at run-time. What is shown is an abstraction (a process dependency graph) 
of the parallel execution. 

Form: The graphic output consists mainly of a sketch of the search space traversed during execution. 
Color is effectively used (although VisAndOr can also run on monochrome displays), together 
with icons and identifiers. The view is static, but conveys the whole history of the execution. 

Method: No source modification is needed, and the data gathered at run-time is used to feed VisAndOr 
as a batch job. The user does not need to be familiar with the code being traced neither to 
understand the pictures ñor to obtain them. 

Interaction: Navigation through a large picture can be accomplished by zooming in and out. As we 
have said before, VisAndOr presents the whole execution in a single snapshot; accurate time 
measurements can be easily performed. There is as yet no automatic way to perform data elisión. 

Effectiveness: The visual metaphor used is quickly understood, and it has been reported to be useful. 

In the following sections we will extend on the basic VisAndOr concepts, mainly the notion of event 
tracing and the parallelism versus time representation through a process dependency graph. 

2.2 The event mechanism 

The VisAndOr process visualization paradigm is based on the idea of event. Roughly speaking, an event 
describes a relevant point in the execution, together with the information needed to distinguish it from 
any other event in the same execution. Typically an event contains its type, a time stamp and some 
additional pieces of information. 

VisAndOr takes as input trace files containing events, usually gathered during actual execution. An 
event is generated when an interesting point in the execution is reached. The notion of "interesting 
point" is, of course, different for every execution paradigm. But, as can be expected, typical events for 
parallel logic programs execution are fork, join, success, fail, cut, etc. Trace files are the only input that 
VisAndOr needs and understands. This approach has some interesting characteristics: 

• Essentially no program transformation is needed (except for starting and stopping the tracing of 
events and saving them into a file). Other approaches to visualization need major changes to 
the programs to be analyzed, because they are based on the idea that the program itself draws 
its execution. Although such transformations can be minimized by carefully choosing drawing 
primitives, most times the transformation depends on the algorithm and the data structures used 
and needs the user to have previous knowledge of the source program. Since in the VisAndOr 
approach the events are generated at a lower level, the program source can remain almost 
unchanged. Of course, this assumes that the implementation can be modified to genérate the 
events. Alternatively, the program transformation approach can always be taken. 

• There is no need to have direct access to the program or system being studied during visualization. 
Since the events can be dumped to trace files, an execution can be visualized at any place, without 
need for the program or system that generated it. 

• VisAndOr is easily extensible. When a new parallel computation paradigm is to be visualized, 
VisAndOr only has to be extended to understand the traces generated by it. Sometimes this is 
not needed, and a program can perform the necessary translation to a format understandable by 
VisAndOr. 



• In fact, real systems are not required. Since VisAndOr only requires execution traces, such traces 
can be generated by a simulator or obtained through any type of processing of otherwise actual 
traces. 

It is important to ensure that the execution is affected as little as possible by the tracing of events. 
This is relatively easily achieved in general by storing the events in a table in main memory (dumping 
only to a file at the end of the interesting part of the execution) and calling a fast, low level system 
primitive to obtain time stamps. 

The mechanism of events has been found to be flexible and reliable, and has been used in other 
visualization systems. 

2.3 VisAndOr basics 

In this section we will describe how an execution is shown in VisAndOr, and what facilities VisAndOr 
offers to the user. 

The current implementation of VisAndOr shows a static view of a whole execution. In order to do 
this, time is represented as a spatial coordínate (the Y axis), advancing from top to bottom; the execution 
is shown as a dependency graph. This graph is similar, but not equal, to the usual and-or tree: what 
is shown here is the work actually being done in parallel at each time, as well as the available work. 
For example, let us think of an or-parallel execution (see, for example, Figure 1). Whenever different 
alternatives are found for a given branch, this branch is split. Horizontal dashed lines show the point 
in the time where the alternative was found; vertical dashed or thick lines represent or-parallel search 
paths. If a given branch does not contain alternatives up to the success or failure, it will be shown as a 
single line. Since we are tracing or-parallel tasks, the conjunctive goals in the bodies are not shown: 
they appear as a single straight line, unless alternatives exist for them. A similar scheme is used to 
depict Andorra-I and &-Prolog parallelism. 

In general, no matter what execution paradigm is being studied, the number of active tasks (i.e., 
tasks in which active work is being done) can be different than the total number of tasks. This can be due 
(as in the execution models we are studying) because the number of processors is different (in general, 
smaller) than the number of processes or because of some other reasons, i.e., due to suspensión of goals. 
The strategy used in VisAndOr to signal this is very simple: a thick line means a working processor, 
whereas a thin dotted line means that there is work available, but no processor available to work on it. 
In a color display a different color is assigned to each processor. 

Sometimes a more detailed view of the events which happened in an execution is needed: for 
example, think of the end of a single line in an or-parallel execution. To know whether wether it 
represents a failure or a success, additional information is needed. This information is provided by 
VisAndOr in the form of icons. Icons are optionally placed in the points where events have happened, 
so that events that have no immediate or obvious effect on the parallel execution can be easily detected. 
Typical examples of such events are a cut or a change in the scheduling priority for a given task. 
Identifiers can also be attached to the branches in order to help to identify (specially in monochrome 
displays) which processor is working on each task. In paradigms where the number of agents (i.e., 
the number of WAMs) can be different from the number of workers (i.e., processors) the agents to 
processors and agents to tasks mapping can also be displayed using different identifiers for the agents. 
VisAndOr also has a zooming capability to aid in the detailed study of local phenomena. 

The shape of the graph depends on the type of execution being visualized. Or-parallel execution 
looks like a tree; Independent and-parallel execution has also to show the join of independent tasks, 
and is therefore a planar graph, and Andorra-I parallelism exhibits both or-parallelism and deterministic 
and-parallelism, which can be visualized as a variation of a tree 

In the following three sections we will focus on how VisAndOr shows program executions, taking 
as examples of parallel logic languages the MUSE, Aurora, Andorra-I, and the &-Prolog models. The 
features above mentioned, as well as others not yet referred to will be explained with examples taken 
from real executions. 
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Figure 1: Orparallelism: an Aurora trace 

3 Visualization of or-parallelism (MUSE and Aurora) 

Or parallelism occurs when the different clauses of a given predícate are explored simultaneously, i.e. 
in the parallel execution of different or branches of the resolution tree. The entities which perform 
the parallel exploration of the or branches are called workers. Each worker is a complete WAM with 
extensions to allow parallelism. 

Two models will be used to show the VisAndOr approach to or-parallelism visualization: the MUSE 
model, developed at SICS [AK90b, AK90a], and the Aurora system, developed at the University of 
Bristol [Sze89]. Results (from the purely visualization point of view) are quite similar in both cases. 

3.1 VisAndOr and or-parallelism 

The representation of orparallelism in VisAndOr takes the formofatree (Figure 1), in which the whole 
execution is shown. Time is represented as a linear function of the space from the start of the tree, i.e. 
the time coordinate runs from top to bottom. Vertical thick lines are active workers, whereas vertical 
dashed lines represent clauses waiting for an idle worker. In a color display, each worker appears in 
a different color; if a black and white display is being used, the worker number can be displayed next 
to each execution line. Horizontal dashed lines represent the existence of múltiple choices for a given 
predicate. 

Just at first sight, the amount of thick lines provides an intuitive estimation of the degree of 
parallelism achieved. The information contained in the tree helps to understand the benefits of parallel 
execution: it is clear how múltiple workers are active at a time. The overall visión of the execution 
helps to understand the "big picture" of the parallel execution. In order to tune the system, the zooming 
capabilities of VisAndOr can be used to perform micro-analysis. VisAndOr supports currently two more 
aids to tuning analysis: worker analysis and events analysis. 

Worker analysis in intended to figure the active work that a given worker performs. Of course, this 
could be done by finding out the ratio between the time that worker has been active and the sum of 
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Figure 2: A working worker 
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Figure 3: A lazy comrade 
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Figure 4: A zoom with icons 

the times of all the workers. But this raw figure cannot give a reason why a hypothetical unbalanced 
load happens. Considerable help can be obtained from the previous history of such worker and from 
the current state of the computation. VisAndOr uses a simple mechanism to uncover the story and 
computational environment of a worker: to show with a thick line only the worker being studied. In 
Figures 2 and 3 the same MUSE execution is shown, but two different workers have been highlighted. 

What can be inferred from both figures? It is easy to see that the worker in the Figure 2 has been 
active all the time; but a look at Figure 3 shows that there is a gap in which the selected worker has 
not been active. This inactivity lasts enough to perhaps conclude that there was no work available or, 
depending on the scheduler used, that there were considerable scheduling delays. Careful analysis of 
issues like this can be of invaluable help when implementing, debugging and tuning parallel systems. 

Another type of analysis that VisAndOr offers is event analysis. VisAndOr has the ability of 
displaying the events that define the execution. Usually, such events include special points in the 
execution which have to be carefiílly treated, such as success, failure, cuts and or forks. VisAndOr 
shows such events as icons located at the appropriate points in the tree. Figure 4 is a example of a 
zoom with icons displayed. Start of active working is signaled with a small arrow pointing towards 
bottom, the creation of alternatives are shown with circles and the successful and failing or branches are 
distinguished with a sad face and a twinkling star. A way of measuring actual times using the mouse is 
included to aid in the analysis of such figures. The position of the section being displayed in the whole 
graph is depicted by the dashed square in the graph summary in the top right córner of the figure. 

3.2 ViMust 

The VisAndOr approach to logic programs visualization is static, i.e., the whole tree corresponding to 
a given execution is shown. The complementary model, in which the part of the tree being explored is 
shown as in a movie is being experimented at SICS, continuing along the lines of the original WAM-Trace 
tool [DL87] developed at Argonne National Labs in the context of Aurora. The program, called MUST 
[SS90], can show snapshots of MUSE executions as well as animations of such executions. The tree 
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Figure 5: ViMust: MUST and VisAndOr working together 

shown by MUST corresponds to the actual path being explored in parallel, and contains information 
about the state of each worker. VisAndOr and MUST can work together through a simple protocol 
which allows each one to send messages to the other asynchronously. VisAndOr indicates the point 
displayed by MUST with a horizontal line and answers to the messages sent by MUST to move the line. 
Conversely, the bar can be moved from VisAndOr with the mouse, and MUST receives the appropriate 
message to show a snapshot of the execution as required. Figure 5 is a snapshot of the resulting system 
which has shown to be of great use at SICS. 

4 Visualization of Andorra-I 

Andorra-I [SCWY90, SCWY91, HJ90] is a logic language which allows or parallelism and Dependent 
a«d parallelism (DAP) between a restricted class of goals, namely determínate goals. Andorra-I workers 
are divided into teams. Two different teams work on different or branches, and all workers in a 
given team work in the same or branch. The workers into a team work on determínate parallel goals. 
A goal can be found to be literally deterministic at compile time, and therefore it its determínate; 
otherwise, finding out whether a goal is determínate or not is responsibility of a worker in the team, 
designated as the master. The other workers in the same team are designated as slaves. Determínate 
parallel conjunctive goals are executed in DAP and eagerly by the master and the slaves, whereas 
non-determinate conjunctive goals are reduced sequentially by the master. 

Figure 6 shows the execution of an Andorra-I program. Or parallelism visualization is similar to 
that of MUSE, and parallelism visualization of work by slaves is done by drawing lines adjacent to the 
one of the master. Each one of these lines represents a slave which helps the master. Figure 7 represents 
a zoom of the same execution where and-parallel slaves can be observed. It is to be noted that slaves 
finish and join their master without a "nested loops" structure, i.e., a slave can finish before an and 
sibling which started later than it. Studying the behavior of masters and slaves is very interesting in 
Andorra-I, in particular in the development of flexible two-level scheduling scheme (the or scheduler 
among teams and the and scheduler between workers of a team), an área in which VisAndOr is being 
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Figure 6: An Andorra-I execution 
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Figure 8: Sequential andParallel execution together 

effectively used at Bristol. 
Another characteristic issue of Andorra-I which can benefit from the overall visión given by 

VisAndOr is the determinacy study. In general, determinacy of goals can only be partially determined at 
compile time, so run-time checks turn outto be necessary to exploit parallelism. But in some executions 
the time spent for such checks can be wasted, if the goals are always not determínate or, converse ly, if 
the goals are always determínate. VisAndOr allows to see the overall effect of these issues. 

5 Visualization of &-Prolog 

&-Prolog [Her86, HG91] is an implementation of the Independent and parallelism scheme [DeG84], 
which relies both on compile-time analysis and on run-time checks to ensure the correctness of the 
parallel conjunctive execution of goals in the body of a clause [HR92]. 

The visualization of &-Prolog programs follows the same general patterns already seen: vertical 
axis is time, horizontal axis is parallelism. When two workers fork and join has also to be shown3. This 
is done by using dotted horizontal lines. Figure 8 shows, at the left, a sequential execution or a 4 x 4 
matrix multiplication; it is easy to see how only one worker is active at a time, and also the general 
shape of the execution: four groups of four vector multiplications. Atthe right, the same execution, but 
with four processors. The processes which before were sequential now overlap in time. The rightmost 
snapshot retains the time scale of the leftmost one, so that execution times can be easily compared. The 
total amount of time in microseconds is shown in the upper right córner, and it corresponds to the height 
of the dashed frame surrounding the execution graph. The time with four processors is not exactly one 
fourth of the corresponding with only one, due to sequential components and scheduling time. 

6 Applications of VisAndOr 

The previous sections where mainly aimed at showing the basic characteristics of VisAndOr. Some 
áreas in system development in which VisAndOr can be of help were briefly referred to. In this section 
we will address such topics as well as others which, although not being directly related to the MUSE, 
Aurora, and Andorra-I models, can be studied with the help of VisAndOr. 

3When only the CGE annotation is used in &-Prolog to express run-time checks, only nested fork and join events can be 
expressed (for ways expressing arbitrary graphs see [MH89]). With CGE annotations, when a worker finishes a task, the task 
remains suspended, waiting for its siblings to finish. 



Understanding parallel execution: As a pedagogical tool, VisAndOr can be used to help to the 
understanding of parallel execution of logic programs. The impact of the parallelism conditions and the 
number of available processors become clear when visualization is used. 

Simulation and remote systems study: The VisAndOr approach does not need the real system to 
be useful. Trace files are enough to study the behavior of a given system. This can seem a non-scientific 
issue, but in practice this is a major advantage. In particular, the executions shown here were obtained 
at SICS (for the MUSE system) and Bristol (for Andorra-I and Aurora), and sent by e-mail. In addition, 
MUSE traces were initially designed for MUST, and they simply had to go through a simple translation 
in order to be processed by VisAndOr. 

Another advantage which derives firom the use of event files is that no real system is needed. A 
simulator could genérate traces to be used in VisAndOr. It is also possible that traces obtained using 
real systems be processed to obtain different execution profiles. This is because a trace file includes 
all the relevant elements to reconstruct an execution. Once the real execution has been reconstructed, 
some aspeets (i.e., scheduling time) could be changed in order to obtain hypothetical traces of the same 
program under different conditions. 

Parallel system debugging: Implementing a parallel execution system is a very error-prone task, 
and debugging a parallel system can become agonizing using standard tools. This is specially true 
when such tools have been designed to work at a very low level. The generation of events in a parallel 
system can be used to give us a trace of the execution, where it is the programmer who decides what 
is relevant and what is not relevant. Under this perspective, VisAndOr can be used as a high level 
debugger customized to reflect the needs of the programmer. As VisAndOr shows the real execution, 
mistakes of a higher level of abstraction and overheads can be easily discovered and measured, because 
the low-level details are hidden. 

Scheduling: Scheduling is a major issue in parallel execution, and the benefits of a good and fast 
scheduler are very important [Cal88, AK90a, Dut91, But88]. But scheduling has a dynamical nature, 
and understanding such behavior is a key to designing good scheduling policies or to work out improved 
schedulers firom existent ones. For example, a flexible scheduler for Andorra-I will allow workers to 
migrate from one team to another depending on the amount of work available in each team. This 
dynamic behavior is very difficult to predict prior to real execution, and even after an actual execution, 
issues like paging rates and system load can be very different from one run to another. The "big picture" 
of VisAndOr allows the programmer to concéntrate on the interaction of high-level ideas withouttaking 
into account the minor changes introduced by spurious phenomena. 

Benefit of Parallel Processing: Sometimes it is not desirable to run in parallel runnable processes, 
because of the time and work spent in scheduling and preparing the tasks. The target of granularity 
analysis [DLH90, Tic88] is to find out when parallel execution is convenient in practice. The analysis 
performed usually uses recursion depth as the parameter which decides between parallel and sequential 
execution. But there are more conditions to be taken into account. In programs in which parallel 
execution conditions cannot be worked out at compile time, some tests have to be performed at run time. 
Even more, the same program with the same initial cali pattern and date could, in principie, be scheduled 
in a different way in different machines. This could be due, for example, to different operating system 
capabilities, different architecture, etc. So there are at least three main threads which interact very 
strongly: 

1. Different schedulers have different behavior according to the particular situation of the computation 
and working environment. 

2. Systems that perform run time checks can show very different degrees of parallelism in the same 
program if different initial calis are performed. 

3. Even with the same cali pattern, initial data greatly influences the time spent in the parallelism 
checks and, to a lesser degree, setting up the tasks. 



An analytical solutionto the practical problem is almost impossible, because of the large number of 
independent variables involved. A possible solution is to study the behavior of programs in different 
machines and conditions. Again, VisAndOr turns out to be an appropriate tool. System-dependent 
conditions, like page faults, and data-dependent conditions, like time spent in parallelism checks, can be 
easily discovered with a graphical tool. 

7 Extending the Event Driven Scheme 

Visualization is not the only topic in which the event driven scheme is useful. Dumping data tailored to 
different needs is a flexible way of interfacing tools with engines, each tool having its own view of the 
execution's skeleton. For example, a tool to depict the inner state of the parallel WAMs in &-Prolog, 
for debugging and low-level tuning, is currently under development. This tool is intended to be helpful 
in the assesment of the correctness of parallel backtracking and garbage collecting algorithms. The 
approach taken to interface this tool with the &-Prolog engine is the same as in VisAndOr: an event file 
is generated during program execution, to be consulted later. Different events and related information 
are needed in this case, but this is only a minor point in the framework. 

The events currently recorded for VisAndOr can be directly used for purposes other than visualization. 
IDRA, a tool already developed in our working group [FH92] uses as inputthe same traces that VisAndOr 
does, but with a different purpose. IDRA finds out the optimal processor allocation for a given parallel 
execution; all the data needed for this purpose is contained in the VisAndOr traces. With this information, 
an optimal scheduling and the corresponding speedup is computed for a given number of processors 
(finite or infinite). A new trace corresponding to that scheduling can be generated, which can in turn be 
visualized with VisAndOr. The speedup obtained with this trace, compared with the one obtained in a 
real parallel system, is a valuable indication of the quality of the actual scheduling algorithm. 

8 Implementation Details and Related Problems 

We have seen how VisAndOr represents a few paradigms of parallel execution of logic programs. In 
this section we will have a look at some implementation details and features. Some of these features 
have already been mentioned, but we will repeat them here, together with some others not yet alluded 
to. Some of them are even subjectto changes and improvements. 

• In a color display, VisAndOr uses a different color for each CPU. 

• Numbers and characters can be displayed next to the active agent lines. This allows distinguishing 
among them in an black and white display. This is also useful for paradigms where WAMs and 
workers are not intimately associated. 

• Events relevantto each execution paradigm can be displayed using icons. 

• The time between two points in the display can be determined by simply selecting the two points 
with the mouse. 

• The time scale (i.e., the time corresponding to each pixel in the screen) can be retained from one 
trace to another, so that execution times can be graphically compared. 

• The picture can be dumped to a printer or to a PostScript file. 

• Zooming in and out is possible. In this case navigation through the execution can be performed 
with slide bars or using the dashed rectangle which appears into the small window at the upper 
right córner. This small window always shows the complete execution. 



• VisAndOr can communicate bidirectionally with MUST. Commands can be sent and received in 
order to synchronize both tools. The dialog can be maintained while MUST and VisAndOr still 
respond to the X-Windows system. 

VisAndOr is written in C and runs under the X-Windows environment. It has been constructed 
using the Xt library and the Athena Widgets. They have been found to be useful, but sometimes the lack 
of flexibility when defining graphic objects became a problem. The inner structure is quite modular. 
Each feature is accessed through a cali back routine activated by the corresponding button or menú item. 
The execution events are internally stored in a virtual space which is mapped to the real screen when a 
change of scale is requested. This can lead to problems when a zoom of a small región is requested, due 
to the lack of virtual memory in some X-Windows servers. 

The difficulty of adapting the &-Prolog emulator to dump traces was not very high, although in the 
Sun Sparc implementation a problem arised which can also happen in other architectures. Time has to 
be consulted each time an event is to be recorded. Unlike machines like the Sequent Balance, in which 
the time is stored in a memory position, so that Consulting it was very quick, Sun OS needs a system cali 
to be performed. It was found that this system cali could take a sizeable proportion of the total process 
time, so the absolute times were much higher when tracing. This effect was balanced by taking into 
account how long each system cali lasted and subtracting it firom the actual time. 

9 Conclusions and Future Work 

We have presented in an informal way some early results on the design of a series of paradigms 
for visualization of the parallel execution of logic programs. The results presented here refer to the 
visualization of or-parallelism, as in MUSE and Aurora, deterministic dependent and-parallelism, as in 
Andorra-I and independent and-parallelism as in &-Prolog. We have reported on a tool, VisAndOr, 
which has been implemented for this purpose and has been interfaced with these systems. Results have 
been presented showing the visualization of executions from these systems and the usefulness of the 
resulting tool has been briefly discussed. The approach used to interface the engines can be understood 
as an instance of a more general system of extracting the execution skeleton. This representation can be 
used for purposes other than visualization; on the other side, simulated or "massaged" executions can be 
depicted using the same interface. 

VisAndOr is still to be improved both in the implementation dimensión and in the conceptual 
(visualization design) dimensión. In the implementation dimensión, new features like processor 
utilization, idle times, etc., much in the style of ParaGraph [HE91] can be added. In the conceptual 
dimensión, an extensión to VisAndOr to support several other forms of parallelism and their combinations 
is planned. Independent and+or parallelism visualization is being studied; a 3-D scheme (one dimensión 
for time, the other two for and and or processing) is considered. Dependent and parallel execution 
models need the producer-consumer relation and the suspensión of goals to be visualized in a clear 
manner; this is an issue in which much can still be done. 
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