67,440 research outputs found

    Implementation of a low-mach number modification for high-order finite-volume schemes for arbitrary hybrid unstructured meshes

    Get PDF
    An implementation of a novel low-mach number treatment for high-order finite-volume schemes using arbitrary hybrid unstructured meshes is presented in this paper. Low-Mach order modifications for Godunov type finite-volume schemes have been implemented successfully for structured and unstructured meshes, however the methods break down for hybrid mesh topologies containing multiple element types. The modification is applied to the UCNS3D finite-volume framework for compressible flow configurations, which have been shown as very capable of handling any type of grid topology. The numerical methods under consideration are the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-Oscillatory (WENO) schemes for two-dimensional mixed-element type unstructured meshes. In the present study the HLLC Approximate Riemann Solver is used with an explicit TVD Runge-Kutta 3rd-order method due to its excellent scalability. These schemes (up to 5th-order) are applied to well established two-dimensional and three-dimensional test cases. The challenges that occur when applying these methods to low-mach flow configurations is thoroughly analysed and possible improvements and further test cases are suggested

    Numerical study of the 2D lid-driven triangular cavities based on the Lattice Boltzmann method

    Get PDF
    Numerical study of two dimensional lid driven triangular cavity flow is performed via using lattice Boltzmann method on low Reynolds numbers. The equilateral triangular cavity is the first geometry to be studied, the simulation is performed at Reynolds number 500 and the numerical prediction is compared with previous work done by other scholars. Several isosceles triangular cavities are studied at different initial conditions, Reynolds numbers ranging from 100 to 3000, regardless of the geometry studied, the top lid is always moving from left to right and the driven velocity remains constant. Results are also compared with previous work performed by other scholars, the agreement is very good. According to the authors’ knowledge, this is the first time that MRT-LBM model is used to simulate the flow inside the triangular cavities. One of the advantages of this method is that it is capable of producing at low and high Reynolds numbers.Peer ReviewedPostprint (published version

    An infrared spectroscopy study of the conformational evolution of the Bis(trifluoromethanesulfonyl)imide ion in the liquid and in the glass state

    Get PDF
    We measure the far-infrared spectrum of N,N-Dimethyl-N-ethyl-N-benzylammonium (DEBA) bis(trifluoromethanesulfonyl) imide (TFSI) ionic liquid (IL) in the temperature range between 160 and 307 K. Differential scanning calorimetry measurements indicate that such IL undergoes a glass transition around 210K. DFT calculations allow us to assign all the experimental absorptions to specific vibrations of the DEBA cation or of the two conformers of the TFSI anion. We find that the vibration frequencies calculated by means of the PBE0 functional are in better agreement with the experimental ones than those calculated at the B3LYP level, largely used for the attribution of vibration lines of ionic liquids. Experimentally we show that, in the liquid state, the relative concentrations of the two conformers of TFSI depend on temperature through the Boltzmann factor and the energy separation, ΔH, is found to be ≈2 kJ/mol, in agreement with previous calculations and literature. However, in the glassy state, the concentrations of the cis-TFSI and trans-TFSI remain fixed, witnessing the frozen state of this phase

    Addressing the challenges of implementation of high-order finite volume schemes for atmospheric dynamics of unstructured meshes

    Get PDF
    The solution of the non-hydrostatic compressible Euler equations using Weighted Essentially Non-Oscillatory (WENO) schemes in two and three-dimensional unstructured meshes, is presented. Their key characteristics are their simplicity; accuracy; robustness; non-oscillatory properties; versatility in handling any type of grid topology; computational and parallel efficiency. Their defining characteristic is a non-linear combination of a series of high-order reconstruction polynomials arising from a series of reconstruction stencils. In the present study an explicit TVD Runge-Kutta 3rd -order method is employed due to its lower computational resources requirement compared to implicit type time advancement methods. The WENO schemes (up to 5th -order) are applied to the two dimensional and three dimensional test cases: a 2D rising

    Hybrid Entropy Stable HLL-Type Riemann Solvers for Hyperbolic Conservation Laws

    Full text link
    It is known that HLL-type schemes are more dissipative than schemes based on characteristic decompositions. However, HLL-type methods offer greater flexibility to large systems of hyperbolic conservation laws because the eigenstructure of the flux Jacobian is not needed. We demonstrate in the present work that several HLL-type Riemann solvers are provably entropy stable. Further, we provide convex combinations of standard dissipation terms to create hybrid HLL-type methods that have less dissipation while retaining entropy stability. The decrease in dissipation is demonstrated for the ideal MHD equations with a numerical example.Comment: 6 page
    • …
    corecore