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Abstract. An implementation of a novel low-mach number treatment for high-order
finite-volume schemes using arbitrary hybrid unstructured meshes is presented in this
paper. Low-Mach order modifications for Godunov type finite-volume schemes have
been implemented successfully for structured and unstructured meshes, however the
methods break down for hybrid mesh topologies containing multiple element types. The
modification is applied to the UCNS3D finite-volume framework for compressible flow
configurations, which have been shown as very capable of handling any type of grid
topology. The numerical methods under consideration are the Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-
Oscillatory (WENO) schemes for two-dimensional mixed-element type unstructured meshes.
In the present study the HLLC Approximate Riemann Solver is used with an explicit
TVD Runge-Kutta 3rd-order method due to its excellent scalability. These schemes (up
to 5th-order) are applied to well established two-dimensional and three-dimensional
test cases. The challenges that occur when applying these methods to low-mach flow
configurations is thoroughly analysed and possible improvements and further test cases
are suggested.
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1 Introduction

Obtaining accurate solutions in an efficient manner for a wide-range of flow prob-
lems where the compressible Navier-Stokes are used is the main goal of the majority of
the numerical methods and schemes developed in this context. The most challenging
part of the development of all the high-resolution numerical schemes used is that they
should be adaptive. Adaptive in the sense of identifying regions of sharp-gradients often
encountered in compressible flows, and preventing or eliminating any spurious oscilla-
tions that can occur and contaminate the solution; but at the same time they should be
adaptive and achieve high-order of accuracy in smooth regions of the flow. However
there is a delicate balance between the two requirements and is dependent upon the spa-
tial discretisation method, the shock-capturing algorithms, the grid types, the Riemann
solvers, the time-stepping algorithms and the quadrature rules used for integration to
name a few.

The first generation numerical methods for unstructured grids exhibited lower accu-
racy and were computationally more demanding than structured grids. However, the nu-
merical methods for unstructured grids have matured and numerous elegant approaches
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and algorithms have been developed in the finite
volume framework for a wide range of applications for Computational Fluid Dynam-
ics(CFD). Other state-of-the-art approaches are also available, such as the Discontinu-
ous Galerkin (DG) [14, 15, 2, 16, 11, 17], and Spectral Finite-Volume (SFV) methods
[18, 19, 20, 12, 21, 22] that have been successfully applied for CFD applications. For
the finite volume framework the first class of high-resolution methods developed for un-
structured grids included the ENO type schemes [23, 24], followed by the WENO type
schemes [25, 26, 27, 28]. In the WENO case, the high-order accuracy was achieved by
non-linearly combining a series of high-order reconstruction polynomials arising from
a series of reconstruction stencils. Recently, a class of WENO type methods [9, 8]
has been successfully extended to hybrid unstructured meshes with various geometri-
cal shapes such as tetrahedrals, hexahedrals, prisms, and pyramids. The schemes can
achieve the very high order of spatial accuracy across interfaces between cells of dif-
ferent types, and at the same time essentially non-oscillatory profiles are produced for
discontinuous solutions. This gives greater flexibility to handle complex geometrical
shapes in an efficient and accurate manner.

For the majority of the finite-volume numerical methods for compressible flows their
dissipation characteristics are proportional to the speed of sound, therefore the low Mach
number features are damped by the numerical scheme as noted by [29]. This is particular
important at regions of the flow where the Mach number is low such as close to the wall
at the boundary layer, and at vortices arising from shear layers.

In the present paper we present a modification to the output of the reconstruction,
or the input of the Riemann solver in order to remove the Mach number dependence,
and improve the resolution at low-Mach regions of the flow. It has to be noted that the
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subject modification is different in nature from a preconditioning step used for changing
the flow variables, since our main motivation is not to relax the restriction in terms of the
time-step size, but rather to increase the resolution at the low-Mach regions. The original
modification proposed by [29] is not directly transferable to any grid-type since different
mesh elements have different dissipation characteristics, therefore a unified modification
is implemented that is suitable for all element types and through the computational
results presented we demonstrate the difference between the original modification, and
the revised one. The nice feature of this modification is that is quite simple to implement
in any compressible code, for any numerical scheme that uses a Riemann solver and the
additional computational expense is negligible.

2 Governing Equations

The compressible inviscid Navier-Stokes equations are solved; writen in compact
form as:

∂U(x, t)

∂t
+∇Fc(U) = 0 (1)

where U is the vector of the conserved mean flow variables; Fc , is the inviscid flux
vector given by:

U = [ρ, ρu, ρv, ρw, ρE]T ,

F x
c =

[
ρu, ρu2 + p, ρuv, ρuw, u(E + p)

]T
F y
c =

[
ρv, ρuv, ρv2 + p, ρvw, v(E + p)

]T
F z
c =

[
ρw, ρuw, ρvw, ρw2 + p, w(E + p)

]T
(2)

In the above equations, ρ is the density; u, v, w are the velocity components in x, y and
z Cartesian directions, respectively. Calorically perfect gas is assumed where the total
energy per unit mass is computed according to the equation of state asE = p/ (γ − 1)+
(1/2)ρ(u2 +v2 +w2), where p is the pressure, the ratio of specific heats is set as γ = 1.4
for air at normal atmoshperic conditions.

3 Numerical Framework

The discretization in a domain Ω is achieved by combining conforming arbitrary
shaped elements of volume |Vi|. Integrating Eq. (1) over a mesh element using the
finite-volume formulation the following ordinary differential equation is obtained

dUi

dt
= − 1

|Vi|

Nf∑
l=1

Nqp∑
α=1

Fn,l
c (U(xα, t))ωα|Al| (3)
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where Ui is the volume averaged conserved variables in a volume element, Nf is the
number of faces per element, Nqp is the number of quadrature points used for approx-
imating the surface integrals. |Al| is the surface area of the corresponding face, and α
corresponds to different Gaussian integration points xα and weights ωα over the face.
The weight and distribution of the quadrature points depend upon the Gaussian rule
order, higher integration rule will result in enhanced intercell flux approximation. The
convective flux tensors are defined as:

Fn,l
c = F x

c nx + F y
c ny + F z

c nz (4)

where nx, ny and nz are the Cartesian components of the normal vector on the intercell
surface. The intercell fluxes are computed based on volume averaged quantities which
are obtained by an interpolation technique. The solution is obtained by a polynomial re-
construction from cell-averaged data. The following sections describe the methodology
adopted for space and time discretization.

3.1 Spatial Discretization

The spatial discretisation is based on the approach of [8, 9], which is suitable for
unstructured meshes with various types of element shapes in 2D and 3D, and it has been
previously used successfully for laminar, transitional and turbulent flows [13, 30, 31, 32,
33]. Therefore, only the key characteristics of this approach are going to be described
in this paper. The main objective of the reconstruction process is to build a high-order
polynomial pi(x, y, z) of arbitrary order r, for each considered element Vi that has the
same average as a general quantity Ui. This can be formulated as

Ui =
1

|Vi|

ˆ
Vi

U(x, y, z) dV =
1

|Vi|

ˆ
Vi

pi(x, y, z) dV. (5)

The reconstruction is carried out in a transformed system of coordinates in order to
minimize scaling effects that appear in stencils consisting of elements of different size
as well as to improve the condition number of the system of equations [13, 8]. The
transformation is achieved by decomposing each element into tetrahedrals.

The reconstruction polynomial at the transformed cell V ′i is expanded over local poly-
nomial basis functions labeled as φk(ξ, η, ζ), which are given by

p(ξ, η, ζ) =
K∑
k=0

akφk(ξ, η, ζ) = U0 +
K∑
k=1

akφk(ξ, η, ζ) (6)

where ξ, η, ζ are the coordinates in the reference system, ak are the degrees of freedom
and the upper index in the summation of expansion K is related to the order of the
polynomial r byK = 1

6
(r+1)(r+2)(r+3)−1 for 3D andK = 1

3
(r+1)(r+2)−1 for
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2D . For computing the degrees of freedom ak, a minimum of K cells is required in the
stencil in addition to the target cell. Using the minimum possible number of cells in the
stencil,M ≡ K, may produce ill-conditioned systems, hence usingM = 2·K improves
the robustness of the method as described in [8, 34]. A linear least-square method is
adopted to enable the system of equations of 6 for the unknown degrees of freedom
ak. The final form of the linear system is solve with the QR decomposition algorithm.
Discontinuous solutions are often encounter in external aerodynamics, thus limiting
functions are essential for maintaning numerical stability and suppress any spurious
oscillations. Two approaches are assessed in this work the MUSCL and the WENO
schemes.

3.1.1 MUSCL

The MUSCL scheme is employed in this work is partially based on the Barth and
Jespersen slope limiter. The design of the scheme requires the minimum and maximum
values in the stencil’s neighborhood, i.e., Umin

i = min(Ui, Ul) and Umax
i = max(Ui, Ul),

where l = 1, ..L; L is the total number neighbors of element i. The gradient of a general
quantity is defined as ∇Ui and is an approximation of the solution gradient inside the
element i. The gradient is computed during the reconstruction process by incorporating
information from the entire central stencil. The scheme can be written as

Uiα = U c
i + φi∇Ui · xα (7)

where U c
i is the value for the general quantity at the element centroid and xα are the

coordinates of the quadrature point. The limiter seeks the minimum value of the slope
limiter for all the quadrature points that satisfy the following conditions

φi = min(φi,m1
, φi,m2

, ...φi,M) (8)

Then, the limiting function is applied, composed by three different states according
to the difference of the reconstructed value at the quadrature points of the considered
element U(i,α) and each of its neighbors Ul, yielding

φi,α =


min

(
1,
Umax
i − Ui,α
Ul − Ui,α

)
, if Ul − Ui,α > 0

min

(
1,
Umin
i − Ui,α
Ul − Ui,α

)
, if Ul − Ui,α < 0

1, if Ul − Ui,α = 0

(9)

3.1.2 WENO

WENO schemes use a non-linear combination of various reconstruction polynomials,
where each polynomial is weighted according to the smoothness of its solution. The
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polynomials are given by

pweno
i =

ms∑
m=1

ωmpm(ξ, η, ζ) (10)

where ms is the total number of WENO stencils. Substituting back to Eq. (6) for
pm(ξ, η, ζ), we obtain the following expression

pm (ξ, η, ζ) =
K∑
m=0

a
(m)
k φk(ξ, η, ζ) (11)

Using the condition that the sum of all weights is unity, yields

pweno
i = U0 +

K∑
k=1

(
ms∑
m=0

ωma
m
k

)
φk(ξ, η, ζ)

≡ U0 +
K∑
k=1

ãkφk(ξ, η, ζ)

(12)

where ãk are the reconstructed degrees of freedom; and the non-linear weight ωm is
defined by [13, 8, 34]:

ωm =
ω̃m

ms∑
m=0

ω̃m

where ω̃m =
λm

(ε+ Im)b
(13)

The smoothness indicator is given by

Im =
∑

1≤|β|≤r

ˆ

Ẽi

(
Dβpm(ξ, η, ζ)

)2
(dξ, dη, dζ) (14)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight, and
D is the derivative operator. The smoothness indicator is a quadratic function of the
degrees of freedom (amk ) and can be expressed as a universal mesh-independent oscilla-
tion indicator matrix as defined in [34]. The WENO reconstruction can be carried out
in terms of conserved or characteristic variables. In this work, the conserved variables
have been employed to assess the low-Mach number reconstruction modification. The
various reconstruction polynomials arise from different sets of stencils that satisfy some
geometrical conditions. The reader is referred to [9, 8] for the definition of geomet-
rical sectors., and references therein, for a detailed explanation of the different set of
geometrical conditions and WENO characteristic reconstruction.
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3.2 Low-Mach Number Modification

Our low-Mach number modification follows the previous work of [29], where the left
and right state of the reconstructed velocities is modified in a linear way with respect to
Mach number, so when the Mach number approaced zero the arithmetic mean of them
is used in the following manner:

u∗L =
(1 + z)uL + (1− z)uR

2

u∗R =
(1 + z)uR + (1− z)uL

2
z = min(1,max(ML,MR))

(15)

The Mach numbers are calculated based on the velocity magnitude of all the velocity
components independent of the normal direction in which the flux is computed. How-
ever we investigate two approaches one where all the component of the reconstructed
velocities are modified as the original implementation [29], and a second one where
only the velocity components normal to the face are modified, based on the findings
of [29] where it was highlighted that the tangential velocities require more numerical
dissipation than the normal components.

3.3 Fluxes Approximation

Having reconstructed the cell-averaged solutions, the intercell fluxes can be eval-
uated. The Riemann problem is solved with the approximate Harten-Lax-van Leer-
Contact (HLLC) solver of Toro [35]. The HLLC solver is also employed for the con-
vective part of the turbulence transport equation. The HLLC flux function is given by

F̂
HLLC


F̂−, if 0 ≤ S−,

F̂ ∗− = F̂− + S−
(
Ŵ ∗− − Ŵ−

)
, if S− ≤ 0 ≤ S∗,

F̂ ∗+ = F̂+ + S+
(
Ŵ ∗+ − Ŵ+

)
, if S∗ ≤ 0 ≤ S+,

F̂+, if 0 ≥ S+,

(16)

where

Ŵ ∗± = ρ±
(
S± − u±

S± − S∗

)


1
S∗

v±

w±

E±

ρ±
(S∗ − u±)

(
S∗ +

p±

ρ±
(
S± − u±

))
ν̃
ρ±


(17)
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Ŵ ∗± is computed either for the considered element “−”, or for its neighbour “+” and
the wave speeds are estimated according to the sign.

3.4 Temporal discretisation

Having constructed the numerical fluxes Fn,j as expressed in the semi-discrete con-
servative formulation, the next step involves the advancement of the solution in time.
The explicit SSP Runge-Kutta 3rd-order method [36] has been employed for the time
integration

Ui
1 = Ui

n + ∆t ·Ri (Ui
n)

Ui
2 = 3

4
Ui

n + 1
4
Ui

1 + ∆t
4
·Ri (U

1)

Ui
n+1 = 1

3
Ui

n + 2
3
Ui

2 + 2∆t
3
·Ri

(
Ui

2
)


(18)

with Ri being the residual.
The time step ∆t is computed as follows

∆t = K min
i

hi
Si · Vi

, (19)

where hi is the radius of the inscribed sphere of each cell i and Vi its corresponding
volume, K ≤ 1/3 is the CFL number for unsplit finite-volume schemes [35], and Si is
the maximum propagation speed in each cell i given by

Si = spx · nx + spy · ny + spz · nz, (20)

where

spx = |u+ a| , , spy = |v + a| , spx = |w + a| ,

with n = (nx, ny, nz) being the outward unit normal vector and a is the speed of sound.

4 Results

This section presents the results obtained for a variety of cases to illustrate the influ-
ence of the low-mach modification compared to the previously implemented version.

4.1 2D Vortex Evolution

The two-dimensional vortex evolution problem is an important case to consider for
convergence and accuracy. This is a well used problem for low-Mach testing and illus-
trating the power of high order methods, [37].

8



N.Simmonds, P.Tsoutsanis, and A.Gaylard

Y

D
e

n
s

it
y

2 0 2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

m3_LM1

m3_LM2

m3_NoLM

w5_LM1

w5_LM2

w5_NoLM

Reference

Figure 1: Density plots using a MUSCL 3rd and WENO 5th order schemes for the the
vortex evolution flow problem on a quadrilatel mesh at t = 2s

We examine a square domain of area Ω = 100, [0,10]x[0,10], with periodic boundary
conditions. The mean flow of the problem is ρ = 1, P = 1, u = 1, v = 1, therefore
there is a diagonal flow through the domain moving to the top right corner. The flow is
pertubated by an isotropic vortex in the u and v fields with a temperature T = P

ρ
and no

pertubation in the entropy S = P
ργ

, i.e. δS = 0. The pertubations are given by

(δu, δv) =
ε

2π
e0.5(1−r2)(5− y, x− 5)

δT = −(γ − 1)ε2

8γπ2
e1−r2

r2 = (x− 5)2 + (y − 5)2

The solution is computed at t = 2s for both low-mach corrections using a 3rd order
MUSCL scheme and a 5th order WENO scheme. These are compared to the initial
solution t = 0s on the same grid of quadrilateral elements with 32x32 elements. From
Fig. 1, it can immediately been seen that the higher order WENO 5 scheme reduces the
noticeable dissipation of the MUSCL scheme, with and without the low-mach correc-
tions. The influence of the low-mach corrections on the 3rd order MUSCL simulations
is higher and a clear difference can be seen in its absence resulting in less dissipation. It
is noted that for this particular test case there is not a large difference between the two
modifications.
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(b) Low Mach-number Modification of normal and tangential
velocity components
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(c) Low Mach-number Modification of normal velocity com-
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Figure 2: Pressure Coefficient plots using a WENO 3rd order scheme for the flow past
a 2D cylinder at t = 200s
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4.2 2D Low Mach number past a Cylinder

Examined is the steady-inviscid problem of flow past a circular cylinder with radius
R=1. This is cut out of a cylindrical computational domain of radius R=20, with a free-
stream inflow of Mach number M∞ = 0.1, density ρ∞ = 1 and the pressure p∞ = ρ∞

γ
,

where γ = 1.4. The flow is initialised with a flow direction parallel to the x-axis.
The simulations were undertaken on two different mesh topologies, a completely

triangular mesh with a linear piecewise construction for the cylinder and a hybrid mesh
with prism cells near the wall of the cylinder before moving to triangular cells. The
computations were ran until t = 200s when the initial transients would have vanished
and the residuals would have converged.

The numerical simulations on the fully triangular mesh did not suffer the same dis-
sipation that can be found in the hybrid mesh. Presented in Fig. 2 are the hybrid mesh
and pressure coefficient Cp distribution on a medium grid of containing 960 quadrilat-
eral and 3316 triangular elements, computed using a WENO 3 reconstruction scheme. It
can be seen that both the simulation without any treatment and the simulation using the
second treatment suffered dissipation and did not exhibit the symmetry expected from
this case. The presence of the first low-mach modification gives a much more accurate
solution, with a clear symettry about x = 0.

4.3 2D Cylindrical Explosion

The presented case of an explosion in two dimension is outlined by Toro [35] as a
classical Riemann solver problem. Contained within a square domain [0, 2] × [0, 2],
exists a circle of radius r = 0.4 centered at (1,1), whose internal initial conditions vary
from it’s external initial conditions.

(ρ, P ) =

{
(0.125, 0.1) r > 0.4

(1, 1) r ≤ 0.4
, u = v = 0, r2 = x2 + y2

The solution is the result of a circular shock occurring from the Riemann problem
which propagates outwards from the centre, this is followed by a circular contact discon-
tinuity that propagates in the same direction. This is turns leads to a circular rarefaction
travelling in the opposite direction to the aforementioned flow features. Over time the
shock wave and contact discontinuity will become weaker, resulting in the contact dis-
continuity to stop and travel inwards while the rarefaction wave with reflect when it
reaches the centre.

The solution presented in Fig. 3 was obtained after running the solution until t = 0.2.
A reference solution for density was computer by solving the 1D problem on a very fine
grid. The results indicate that the solver is capable of resolving the shock within 2-3
cells on the unstructured grid and 3-4 on the structured grid, without the need for a low-
mach correction. The results using the WENO 5 reconstruction demonstrate that both
low-mach corrections can be implemented without inducing any other numerical errors.
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Figure 3: Density plots using Weno 5 numerical scheme with and without the low-mach
corrections on both structured and unstructured grids.

5 Conclusions

The conclusion drawn from the subject study are listed below:

• A low-Mach number correction to the reconstruction of finite-volume numerical
schemes improves the dissipation characteristics of the schemes

• A direct implementation of the original low-Mach number modification of [29]
can not be used for all types of elements since they have different dissipation
characteristics

• A revised modification is presented since the reconstructed tangential velocity
components require more dissipation than the normal velocity components with
respect to the interface between two cells

• The subject modification is quite robust to be utilised for all Mach number flows
since it is not producing any spurious oscillations at regions of high-Mach number
that can contaminate the solution.
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