14 research outputs found

    MULTIPLE TARGET TRACKING USING CHEAP JOINT PROBABILISTIC DATA ASSOCIATION MULTIPLE MODEL PARTICLE FILTER IN SENSORS ARRAY

    Get PDF
    ABSTRACT Joint multiple target tracking and classification is an important issue in many engineerin

    Decentralized kalman filter approach for multi-sensor multi-target tracking problems

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Doğru pozisyon ve hedeflerin sayısı hava trafik kontrol ve füze savunması için çok önemli bilgilerdir. Bu çalışma, çoklu sensorlü çoklu hedef takibi sistemlerindeki veri füzyonu ve durum tahmini problemlerı için dağıtık Kalman Filtreleme Algoritması sunmaktadır. Problem, radar olarak her biri kendi veri işleme birimine sahip aktif sensörlerin hedef alanını gözlemlemesini esas almaktadır. Bu durumda her bir sistemin iz sayısı olacaktır. Çalışmada önerilen dağıtık Kalman Filtresi, başta füze sistemleri olmak üzere savunma sistemlerinde hareketli hedeflerin farklı sensörlerle izlerini kestirmek ve farklı hedefleri ayrıd etmek için kullanmaktır. Önerilen teknik, çoklu sensör sisteminden gelen verileri işleyen iki aşamalı veri işleme yaklaşımını içermektedir. İlk aşamada, her yerel işlemci kendi verilerini ve standart Kalman filtresi ise en iyi kestirimi yapmak için kullanılmaktadır. Sonraki aşamada bu kestirimler en iyi küresel bir kestirimi yapmak amacıyla dağıtık işlem modunda elde edilir. Bu çalışmada iki radar sistemi iki yerel Kalman filtresi ile uçakların pozisyonunu kestirmek amacıyla kullanılmakta, ardından bu kestirimler merkez işlemciye iletilmektedir. Merkez işlemci doğrulama maksadıyla bu bilgileri birleştirip küresel bir kestirim üretmektedir. Önerilen model uygulama olarak dört senaryo üzerinde test edildi. İlk senaryoda, tek bir hedef iki sensor tarafından izlenirken, ikincisinde, iki hedeften oluşan uzay herhangi bir sensor tarafından izlenmekte, üçüncüsünde, iki hedefin de herhangi bir sensor tarafından aynı anda izlenmesi, son olarak ise iki sensörden her birinin toplam üç hedeften herhangi ikisini izlediği senaryo göz önüne alınmıştır. Önerilen tekniğin performansı hata kovaryans matrisi kullanılarak değerlendirildi ve yüksek doğruluk ve optimal kestirim elde edildi. Uygulama sonuçları önerilen tekniğin yeteneğinin, yerel sensörlerce belirlenen ortak hedeflerin merkezi sistem tarafından ayırd edilebildiğini göstermiştir.For air traffic control and missile defense, the accurate position and the numbers of targets are the most important information needed. This thesis presents a decentralized kalman filtering algorithm (DKF) for data fusion and state estimation problems in multi-sensor multi-target tracking system. The problem arises when several sensors carry out surveillance over a certain area and each sensor has its own data processing system. In this situation, each system has a number of tracks. The DKF is used to estimate and separate the tracks from different sensors represent the targets, when the ability to track targets is essential in missile defense. The proposed technique is a two stage data processing technique which processes data from multi sensor system. In the first stage, each local processor uses its own data to make the best local estimation using standard kalman filter and then these estimations are then obtained in parallel processing mode to make best global estimation. In this work, two radar systems are used as sensors with two local Kalman filters to estimate the position of an aircraft and then they transmit these estimations to a central processor, which combines this information to produce a global estimation. The proposed model is tested on four scenarios, firstly, when there is one target and the two sensors are tracking the same target, secondly, when there are two targets and any sensor is tracking one of them, thirdly, when there are two targets and any sensor is tracking both of them and finally, when two sensors are used to track three targets and any sensor tracks any two of them. The performance of the proposed technique is evaluated using measures such as the error covariance matrix and it gave high accuracy and optimal estimation. The experimental results showed that the proposed method has the ability to separate the joint targets detected by the local sensors

    Mathematical Models and Monte-Carlo Algorithms for Improved Detection of Targets in the Commercial Maritime Domain

    Get PDF
    Commercial Vessel Traffic Monitoring Services (VTMSs) are widely used by port authorities and the military to improve the safety and efficiency of navigation, as well as to ensure the security of ports and marine life as a whole. Technology based on the Kalman Filtering framework is in widespread use in modern operational VTMS systems. At a research level, there has also been a significant interest in Particle Filters, which are widely researched but far less widely applied to deliver an operational advantage. The Monte-Carlo nature of Particle Filters places them as the ideal candidate for solving the highly non-linear, non-Gaussian problems encountered by modern VTMS systems. However, somewhat counter-intuitively, while Particle Filters are best suited to exploit such non-linear, non-Gaussian problems, they are most frequently used within a context that is mostly linear and Gaussian. The engineering challenge tackled by the PhD project reported in this thesis was to study and experiment with models that are well placed to capitalise on the abilities of Particle Filters and to develop solutions that make use of such models to deliver a direct operational advantage in real applications within the commercial maritime domain

    Suivi Multi-Locuteurs avec des Informations Audio-Visuelles pour la Perception des Robots

    Get PDF
    Robot perception plays a crucial role in human-robot interaction (HRI). Perception system provides the robot information of the surroundings and enables the robot to give feedbacks. In a conversational scenario, a group of people may chat in front of the robot and move freely. In such situations, robots are expected to understand where are the people, who are speaking, or what are they talking about. This thesis concentrates on answering the first two questions, namely speaker tracking and diarization. We use different modalities of the robot’s perception system to achieve the goal. Like seeing and hearing for a human-being, audio and visual information are the critical cues for a robot in a conversational scenario. The advancement of computer vision and audio processing of the last decade has revolutionized the robot perception abilities. In this thesis, we have the following contributions: we first develop a variational Bayesian framework for tracking multiple objects. The variational Bayesian framework gives closed-form tractable problem solutions, which makes the tracking process efficient. The framework is first applied to visual multiple-person tracking. Birth and death process are built jointly with the framework to deal with the varying number of the people in the scene. Furthermore, we exploit the complementarity of vision and robot motorinformation. On the one hand, the robot’s active motion can be integrated into the visual tracking system to stabilize the tracking. On the other hand, visual information can be used to perform motor servoing. Moreover, audio and visual information are then combined in the variational framework, to estimate the smooth trajectories of speaking people, and to infer the acoustic status of a person- speaking or silent. In addition, we employ the model to acoustic-only speaker localization and tracking. Online dereverberation techniques are first applied then followed by the tracking system. Finally, a variant of the acoustic speaker tracking model based on von-Mises distribution is proposed, which is specifically adapted to directional data. All the proposed methods are validated on datasets according to applications.La perception des robots joue un rôle crucial dans l’interaction homme-robot (HRI). Le système de perception fournit les informations au robot sur l’environnement, ce qui permet au robot de réagir en consequence. Dans un scénario de conversation, un groupe de personnes peut discuter devant le robot et se déplacer librement. Dans de telles situations, les robots sont censés comprendre où sont les gens, ceux qui parlent et de quoi ils parlent. Cette thèse se concentre sur les deux premières questions, à savoir le suivi et la diarisation des locuteurs. Nous utilisons différentes modalités du système de perception du robot pour remplir cet objectif. Comme pour l’humain, l’ouie et la vue sont essentielles pour un robot dans un scénario de conversation. Les progrès de la vision par ordinateur et du traitement audio de la dernière décennie ont révolutionné les capacités de perception des robots. Dans cette thèse, nous développons les contributions suivantes : nous développons d’abord un cadre variationnel bayésien pour suivre plusieurs objets. Le cadre bayésien variationnel fournit des solutions explicites, rendant le processus de suivi très efficace. Cette approche est d’abord appliqué au suivi visuel de plusieurs personnes. Les processus de créations et de destructions sont en adéquation avecle modèle probabiliste proposé pour traiter un nombre variable de personnes. De plus, nous exploitons la complémentarité de la vision et des informations du moteur du robot : d’une part, le mouvement actif du robot peut être intégré au système de suivi visuel pour le stabiliser ; d’autre part, les informations visuelles peuvent être utilisées pour effectuer l’asservissement du moteur. Par la suite, les informations audio et visuelles sont combinées dans le modèle variationnel, pour lisser les trajectoires et déduire le statut acoustique d’une personne : parlant ou silencieux. Pour experimenter un scenario où l’informationvisuelle est absente, nous essayons le modèle pour la localisation et le suivi des locuteurs basé sur l’information acoustique uniquement. Les techniques de déréverbération sont d’abord appliquées, dont le résultat est fourni au système de suivi. Enfin, une variante du modèle de suivi des locuteurs basée sur la distribution de von-Mises est proposée, celle-ci étant plus adaptée aux données directionnelles. Toutes les méthodes proposées sont validées sur des bases de données specifiques à chaque application

    Multipath assisted positioning using machine learning

    Get PDF
    The multipath propagation of the radio signal was considered a problem for positioning systems that had to be eliminated. However, a groundbreaking new approach called multipath assisted positioning caused a paradigm shift, where multipath propagation improves the positioning performance. Moreover, the multipath assisted positioning algorithm called Channel-SLAM shows the possibility of using a single physical transmitter in a multipath environment for positioning. In this thesis, I open a discussion on some problems that have vital importance for multipath assisted positioning algorithms with a focus on pedestrian positioning. Using the idea of multipath assisted positioning, I present a single frequency network positioning algorithm. I evaluated the single frequency network-based positioning algorithm for positioning in a real scenario using a terrestrial digital video broadcasting transmission. I propose a novel pedestrian transition model utilizing the inertial measurements from a handheld inertial measurement unit. The proposed pedestrian transition model improves the precision and reliability of the Channel-SLAM. Comparing the proposed transition model with the Rician transition model previously used in Channel-SLAM quantifies the performance improvement. This thesis proposes a joint data association technique that overcomes the strong dependence on the radio channel estimation algorithm used in Channel-SLAM. The joint data association allows reusing the previously observed virtual transmitters after an outage of multipath component tracking. The evaluation based on the walking pedestrian scenario shows that the joint data association algorithm provides superior positioning precision. The virtual transmitter position estimation yields a significant computational load in Channel-SLAM. I propose a method that represents the virtual transmitter by a Gaussian mixture model and learns its parameters. The evaluation shows that the proposed method outperforms the previous approach while decreasing the computational load. Also, the current methods for radio channel estimation yield a considerable computational load that prohibits a real-time deployment. The thesis investigates the possibility of using artificial neural networks trained to estimate the number of multipath components and corresponding delays in a noisy measurement of a channel impulse response. The artificial neural network-based delay estimator provides a superresolution performance and faster runtime than the classical approaches. The precision of the trained artificial neural network architecture is evaluated and compared to the Cramer-Rao lower bound theoretical limit and classical channel estimation algorithms

    Real-time people tracking in a camera network

    Get PDF
    Visual tracking is a fundamental key to the recognition and analysis of human behaviour. In this thesis we present an approach to track several subjects using multiple cameras in real time. The tracking framework employs a numerical Bayesian estimator, also known as a particle lter, which has been developed for parallel implementation on a Graphics Processing Unit (GPU). In order to integrate multiple cameras into a single tracking unit we represent the human body by a parametric ellipsoid in a 3D world. The elliptical boundary can be projected rapidly, several hundred times per subject per frame, onto any image for comparison with the image data within a likelihood model. Adding variables to encode visibility and persistence into the state vector, we tackle the problems of distraction and short-period occlusion. However, subjects may also disappear for longer periods due to blind spots between cameras elds of view. To recognise a desired subject after such a long-period, we add coloured texture to the ellipsoid surface, which is learnt and retained during the tracking process. This texture signature improves the recall rate from 60% to 70-80% when compared to state only data association. Compared to a standard Central Processing Unit (CPU) implementation, there is a signi cant speed-up ratio

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account

    Tracking of Animals Using Airborne Cameras

    Full text link

    Particle Filtering Methods for Subcellular Motion Analysis

    Get PDF
    Advances in fluorescent probing and microscopic imaging technology have revolutionized biology in the past decade and have opened the door for studying subcellular dynamical processes. However, accurate and reproducible methods for processing and analyzing the images acquired for such studies are still lacking. Since manual image analysis is time consuming, potentially inaccurate, and poorly reproducible, many biologically highly relevant questions are either left unaddressed, or are answered with great uncertainty. The subject of this thesis is particle filtering methods and their application for multiple object tracking in different biological imaging applications. Particle filtering is a technique for implementing recursive Bayesian filtering by Monte Carlo sampling. A fundamental concept behind the Bayesian approach for performing inference is the possibility to encode the information about the imaging system, possible noise sources, and the system dynamics in terms of probability density functions. In this thesis, a set of novel PF based metho
    corecore