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Visual tracking is a fundamental key to the recognition and analysis of human be-

haviour. In this thesis we present an approach to track several subjects using multiple

cameras in real time. The tracking framework employs a numerical Bayesian estimator,

also known as a particle filter, which has been developed for parallel implementation on

a Graphics Processing Unit (GPU). In order to integrate multiple cameras into a single

tracking unit we represent the human body by a parametric ellipsoid in a 3D world.

The elliptical boundary can be projected rapidly, several hundred times per subject per

frame, onto any image for comparison with the image data within a likelihood model.

Adding variables to encode visibility and persistence into the state vector, we tackle the

problems of distraction and short-period occlusion. However, subjects may also disap-

pear for longer periods due to blind spots between cameras fields of view. To recognise

a desired subject after such a long-period, we add coloured texture to the ellipsoid sur-

face, which is learnt and retained during the tracking process. This texture signature

improves the recall rate from 60% to 70-80% when compared to state only data associ-

ation. Compared to a standard Central Processing Unit (CPU) implementation, there

is a significant speed-up ratio.

University Web Site URL Here (include http://www.hw.ac.uk)
University Web Site URL Here (include http://www.hw.ac.uk)
Department or School Web Site URL Here (include http://www.macs.hw.ac.uk)


To Mom, Dad and Wa

ii



Please note this form should bound into the submitted thesis.  
 
Updated February 2008, November 2008, February 2009, January 2011 

ACADEMIC REGISTRY 

Research Thesis Submission 
 
 

 

Name: WASIT LIMPRASERT 

School/PGI: Mathematical & ComputerScience 

Version:  (i.e. First, 

Resubmission, Final) 
Final Degree Sought 

(Award and 
Subject area) 

PhD in Computer Science 

 

 

Declaration  
 
In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 
 

1) the thesis embodies the results of my own work and has been composed by myself 
2) where appropriate, I have made acknowledgement of the work of others and have made reference to 

work carried out in collaboration with other persons 
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic 

versions submitted*.   
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made 

available for loan or photocopying and be available via the Institutional Repository, subject to such 
conditions as the Librarian may require 

5) I understand that as a student of the University I am required to abide by the Regulations of the 
University and to conform to its discipline. 

 
* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis 

is submitted. 
 

Signature of 
Candidate: 

 Date:  

 

 

Submission  
 

Submitted By (name in capitals):  

 

Signature of Individual Submitting:  

 

Date Submitted: 

 

 

 

For Completion in the Student Service Centre (SSC) 
 

Received in the SSC by (name in 

capitals): 
 

Method of Submission  

(Handed in to SSC; posted through 
internal/external mail): 

 

 

E-thesis Submitted (mandatory for 

final theses) 
 

Signature: 

 

 Date:  

 



Acknowledgements

I would like to express my very great appreciation to Professor Andrew Wallace

and Professor Greg Michaelson, my research supervisors, for their patient guidance,

enthusiastic encouragement and useful critiques of this research work.

I wish to thank various people for their contribution to this project; Dr Manuel

Martinello, Dr Claire Morand, Ms Eleonora Arca, Mr Komsan Kanjanasit, Ms Sirisuda

Buatongkue and Ms Sushma Bomma, for their valuable support in the dataset acquisi-

tion; Dr Paolo Favaro for allowing me to use his cameras in order to obtain the DEC11

dataset. I am particularly grateful for the intrinsic calibration crosschecking given by

Mr Daniele Perrone. I would also like to extend my thanks to the technicians of the

EPS workshop for their help in camera installation and IT staff of the MACS school for

software resources.

Finally, I wish to thank my parents and my wife for their support and encouragement

throughout my study.

iv



Contents

Abstract i

Acknowledgements iv

List of Figures x

List of Tables xiii

Symbols xiv

1 Introduction 1

1.1 Problems and specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Distraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Short time disappearance . . . . . . . . . . . . . . . . . . . 4

Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Scalability of the camera network . . . . . . . . . . . . . . . 4

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory 6

2.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Similarity and distance . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Review on Visual Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Appearance Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1.1 Boundary and Region . . . . . . . . . . . . . . . . . . . . 12

Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Parametric shape . . . . . . . . . . . . . . . . . . . . . . . . 13

Region and Silhouette . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.2 Spatial pattern . . . . . . . . . . . . . . . . . . . . . . . . 14

Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Stable feature points . . . . . . . . . . . . . . . . . . . . . . 14

Wavelet basis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

HOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



Contents vi

LBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

HOG+LBP . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Gabor feature . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.3 Adaptive image . . . . . . . . . . . . . . . . . . . . . . . 16

Database of images . . . . . . . . . . . . . . . . . . . . . . . 16

WSL image . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1.4 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1.5 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Visual hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 State Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.1 Maximum-Likelihood . . . . . . . . . . . . . . . . . . . . 19

2.2.2.2 Maximum a Posterior . . . . . . . . . . . . . . . . . . . . 20

2.2.2.3 Bayesian Estimator . . . . . . . . . . . . . . . . . . . . . 21

2.2.2.4 Data Association . . . . . . . . . . . . . . . . . . . . . . . 21

Probability data association . . . . . . . . . . . . . . . . . . 21

Shortest path . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.5 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Background Segmentation . . . . . . . . . . . . . . . . . . . 23

People detection . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Mean-Shift method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Numerical Bayesian estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1.1 Importance sampling . . . . . . . . . . . . . . . . . . . . 35

2.5.1.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1.3 Inversion sampling . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Markov Chain Monte Carlo methods . . . . . . . . . . . . . . . . . 38

Drawbacks of MCMC . . . . . . . . . . . . . . . . . . . . . 39

Parallel MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.3 SIR Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

State variables . . . . . . . . . . . . . . . . . . . . . . . . . 41

Transition functions . . . . . . . . . . . . . . . . . . . . . . 41

Prior density . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Likelihood function . . . . . . . . . . . . . . . . . . . . . . . 42

Posterior density . . . . . . . . . . . . . . . . . . . . . . . . 42

Re-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.4 Likelihood and Similarity measure . . . . . . . . . . . . . . . . . . 44

2.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.2 Camera calibration method . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Hardware comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8.1 Research direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents vii

3 Development of Multi-Target Multi-Camera tracking 60

3.1 Single person tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 SIR Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Data-structure . . . . . . . . . . . . . . . . . . . . . . . . . 63

Likelihood function . . . . . . . . . . . . . . . . . . . . . . . 63

Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Transition function . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.2 Basic similarity measure . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.3 Experiment and result . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Fast Ellipsoid projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Ellipsoid projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.2 Texture mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Ellipsoid Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Vertex base ray tracing: . . . . . . . . . . . . . . . . . . . . 80

Parametric ellipsoid ray tracing: . . . . . . . . . . . . . . . 81

3.3.1 Silhouette similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Ownership of a pixel . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.3 Texture learning and texture likelihood . . . . . . . . . . . . . . . 86

3.4 Our Particle Filter for Multiple Target Tracking . . . . . . . . . . . . . . 90

3.4.1 Likelihood with distraction suppression . . . . . . . . . . . . . . . 90

3.4.2 Visibility state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Sequential Implementation 94

4.1 Multiple Target Detection and Tracking Framework . . . . . . . . . . . . 95

4.1.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Sequential Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Experiment on Sequential Implementation . . . . . . . . . . . . . . . . . . 102

4.3.1 Advantage of using texture similarity . . . . . . . . . . . . . . . . . 103

4.3.2 Accuracy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.3 Computing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Parallel Implementation 117

5.1 Parallel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.1 GPU architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Global memory . . . . . . . . . . . . . . . . . . . . . . . . . 121

Constant memory . . . . . . . . . . . . . . . . . . . . . . . . 121

Shared memory . . . . . . . . . . . . . . . . . . . . . . . . . 121

Texture memory . . . . . . . . . . . . . . . . . . . . . . . . 121

Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

CUDA programming . . . . . . . . . . . . . . . . . . . . . . 122

5.1.2 Parallelism methods . . . . . . . . . . . . . . . . . . . . . . . . . . 123



Contents viii

5.1.2.1 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.2.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.2.3 Skip ahead . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.2.4 Use of fast memory . . . . . . . . . . . . . . . . . . . . . 129

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Speed evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Tracking in a disjoint camera network 138

6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Assignment problem . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.2 Spatial association probability . . . . . . . . . . . . . . . . . . . . 145

6.3.3 Texture association probability . . . . . . . . . . . . . . . . . . . . 146

6.4 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Recall rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.1 Experimant 1: spatial-only . . . . . . . . . . . . . . . . . . . . . . 149

6.4.2 Experiment 2: texture-only . . . . . . . . . . . . . . . . . . . . . . 150

6.4.3 Experiment 3: combining spatial and texture . . . . . . . . . . . . 150

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.1 Evaluation by using PETS09 . . . . . . . . . . . . . . . . . . . . . 151

Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Data Association . . . . . . . . . . . . . . . . . . . . . . . . 151

Measure recall rate . . . . . . . . . . . . . . . . . . . . . . . 152

Output from data association . . . . . . . . . . . . . . . . . 152

6.5.2 Evaluation by using DEC11 dataset . . . . . . . . . . . . . . . . . 155

6.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6.1 Result 1: spatial-only data association . . . . . . . . . . . . . . . . 156

6.6.2 Result 2: texture-only data association . . . . . . . . . . . . . . . . 157

6.6.3 Result 3: Spatial-texture data association . . . . . . . . . . . . . . 157

6.7 Recall Precision and F-measure . . . . . . . . . . . . . . . . . . . . . . . . 160

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Conclusion 165

Contribution 1: Likelihood from ellipsoid projection . . . . 165

Contribution 2: Analysis of the tracking framework . . . . . 166

Contribution 3: GPU acceleration . . . . . . . . . . . . . . 166

Contribution 4: Spatial-Texture data association . . . . . . 167

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Pan-tilt-zoom cameras . . . . . . . . . . . . . . . . . . . . . 167

Appearance descriptors . . . . . . . . . . . . . . . . . . . . 168

Optimising the GPU implementation . . . . . . . . . . . . . 168

Adaptive combining factor for the spatial-texture cost func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . 168



Contents ix

A LM Optimization 169

A.1 LM Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

STEEPEST DESCENT METHOD . . . . . . . . . . . . . . 170

GAUSS-NEWTON METHOD . . . . . . . . . . . . . . . . 170

LM METHOD . . . . . . . . . . . . . . . . . . . . . . . . . 171

B Appendix DEC11 dataset 174

B.1 Generating Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.2 Refining coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.3 Extrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.4 Calibration parameters DEC11 . . . . . . . . . . . . . . . . . . . . . . . . 186

Camera1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Camera2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Camera3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Camera4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Camera5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Camera6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C EM330 dataset 189

C.1 Hardware and software requirements . . . . . . . . . . . . . . . . . . . . . 190

C.2 Calibration parameters EM330 . . . . . . . . . . . . . . . . . . . . . . . . 190

Camera1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Camera2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Camera3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

D Distance and similarity 193

Bibliography 194



List of Figures

2.1 Tracking system consists of the apprearance descriptor and the state es-
timator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Components of visual tracking. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Mean-shift seeking density peaks. In this example, uniform kernels are
applied to perform gradient ascending over density function resulting in
two stationary points at final step. . . . . . . . . . . . . . . . . . . . . . . 25

2.4 An approximation of
∫ x=1
x=0

√
1− x2dx by MC integration method . . . . . 35

2.5 Generating an sample by Rejection sampling method . . . . . . . . . . . . 37

2.6 Inversion sampling transforms a uniform distribution to the objective dis-
tribution f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Three steps of SIR particle filter algorithm from top to bottom: likelihood
evaluation, re-sampling and dynamics transition. . . . . . . . . . . . . . . 43

2.8 A pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Projection from a 3D point (qx, qy, qz) to a 2D point (pu, pv) on an image
plane at z = 1. Note that translation and rotation are removed to simplify
the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Relation between 3D coordinate system (x,y,z) and pixel coodinate system
(u,v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 SIR particle filter consists of 3 functions likelihood, re-sample and transition. 62

3.2 Data structure of the state S. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Chi-square distribution (blue) and its cumulative function (green) . . . . 66

3.4 Cross-section of cylindrical model. . . . . . . . . . . . . . . . . . . . . . . 67

3.5 A rectangle on bottom-left is an example projection of the cylindrical
cross-section model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Black solid line is ground truth and red markers are the estimated trajec-
tory in meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 From top-left to bottom-right, tracking results of frame 290, 300, 310,
320, 330, 340, 350 and 360. Particles on ground floor show estimated
position where green is high weight. The tracker was distracted in the
last two frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 A top-view of the projection system, eye-point ê, position of ellipsoid ê
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Chapter 1

Introduction

Visual information from our eyes is a very important observation that goes to our brain

for planning. Visual perception has a major influence on our intelligent evolution. Adult

humans perform visual tracking in almost all tasks and visual tracking is a key for higher

level processes such as navigating, learning and recognition. Visual tracking allows

human to reduce very rich information from the surrounding environment and mentally

process only sufficient useful information. Humans are able to perform face tracking at

a very early age because it is so important for survival. In most activities we need to

perceive objects around us and we need to concentrate on a single object, for example

reading the bus number on a moving bus, playing any ball game, hunting, and so many

more.

Visual tracking is a fundamental element in navigation and spatial intelligence. Around

1983, Jean Piaget, a psychologist, studied cognitive development in children[1]. He sug-

gested that an infant acquires visual tracking ability when around one year-old. When

two years-old, they have the ability to understand that a disappeared object continues to

exist; the ability is called object permanence. Object permanence indicates that infants

are able to recognise an object for a short period and also able to estimate location,

although the object disappears. This ability is the simplest form of tracking developed

by experience. Piaget believed the ability to perform tracking was created by learning

mechanisms and stimuli such as moving objects. Even the origin of our perception is un-

clear but it it definitely clear that tracking ability plays a vital role in survival and brings

1
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about a higher level of intelligence for planning and interacting with the surrounding

environment.

In a human eye, the fovea [2] is a very small region in the eye containing cone cells

(photo sensitive cells) that are responsible for colour vision. The rod cells work best in

dim light and capture gray-scale images. In the fovea all cone cells are concentrated in

a small area[3], and so the eye captures colour image very sharp at middle. In order to

retrieve rich detail from the surrounding scene, the eyes move from point to point quickly

to collect information of the scene. This is known as saccadic eye movement [4]. In order

to recreate perception of a detailed scene, those observations must be mentally merged

into a single world. In order to acquire information from a moving subject, the eyes must

follow the subject in a short period of time, which is called smooth pursuit movement [5]

allowing the brain to extract features from a moving subject in a distracting environment.

This tracking ability is central to our perception in a dynamic environment.

In machine learning, tracking is a necessary ability for classification and learning.

Classification methods require an input feature vector, which is a constant dimension

(number of elements). However, the input from a camera is huge and always has missing

data due to occlusion. A tracking system has to concentrate on particular subjects.

It needs segmentation and localisation methods to separate a considered subject from

the surrounding objects. For example, we can use a histogram as a feature vector for

classification. Computing the histogram of an entire image is quite easy. However,

calculating the histogram of a single person in a crowded scene is relatively much more

difficult because the bounding area of the person must be estimated first. In this case,

a tracking program can give the bounding box of the person. Alternatively, a tracking

system can perform segmentation by manipulating an estimated bounding contour such

as active contour [6, 7].

In surveillance, people tracking systems are deployed for behaviour analysis or de-

tecting anti-social behaviour. The activity of a person could be identified by a history

of locations in a time series. For example, tracking is applied to detect abandoned bag

in [8]. Tracking also can be applied to capture human joint motion in order to create

realistic motion in computer graphics. These are a few examples from many possibilities

for applying visual tracking for obtaining and interpreting the surrounding environment.



Chapter 1. Introduction 3

To be precise, visual tracking is performed to find the position or the boundary of

subjects by extracting information from a sequence of images captured by cameras. The

outputs of a tracking system are bounding boxes or estimated positions corresponding

to real subjects. In this thesis, we will show an approach to create multi-target tracking

and recognition using probabilistic inference.

In addition we have applied parallel processing to accelerate the tracking process.

Normally a tracking module must be integrated with consequence decision and machine

control modules to create responsible interaction between the machine system and real

world. Therefore the tracking module has to perform quickly to minimize delay for an

instant response. Considering the accuracy of a real-time tracking system, a system with

low frame rate has a large time-gap between observations. The time-gap brings about

uncertainty due to the lack of observation within the gap. So the tracking accuracy is

influenced by the frame rate of the observations. Increasing the frame-rate results in

reduced uncertainty from the observation.

One promising technology is to exploit a graphics processing unit (GPU) in a real-time

tracking application. To compare a GPU with CPU, a mid range GPU model can deliver

a huge number of GFLOPS (billion floating point operation per second). For example

the NVIDIA GeForce GTS250, which we will use in this thesis, can theoretically reach

705 GFLOPS (128cores) at 4.9Watt per GFLOPS [9], whereas the CPU Intel Corei7

965 (4cores) can perform at 69 GFLOPS at 5.3Watt per GFLOPS [10]. In terms of

the computational performance parallel computing in a GPU overtakes the multi-core

CPU. Concerning power efficiency, the CPU also consumes more power per GFLOP

than the GPU because the power dissipation of a processing unit increases linearly with

the clock frequency. In the GPU there are many hundreds of cores running at 1.6 GHz,

whilst the CPU runs at about twice speed and at higher power. Hence, the GPU is a

good candidate for our tracking implementation in both the speed and power efficiency

aspects.

1.1 Problems and specifications

In this thesis, we consider and try to solve four major problem in visual tracking. We use

the camera video in order to estimate the position of subjects and recreate the complete
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trajectories of all subjects.

Distraction is a major problem in multiple targets tracking. The tracking system

must be able to distinguish individual subjects and estimate individual trajectory.

Short time disappearance is absence of observation due to obstruction between

the subject and the camera or the mutual occlusion between subjects. Specifically, the

subject cannot been seen from a camera for a few seconds (less than 5 seconds). This

can be tackled by multiple cameras and a probabilistic model.

Speed is an important factor. The minimum frame rate of CCTV and industrial

camera is 7.5 fps (frame per second). The system should operate faster than or equal to

this speed.

Scalability of the camera network is important for the real application, where the

covered area is very large. An overlapping camera network, where all subjects must be

visible to all cameras, has the drawback that the coverage area is limited. In contrast,

a disjoint camera network can cover a large area. The coverage is proportional to the

number of cameras.

1.2 Thesis structure

In Chapter 2, we review recent visual tracking methods and the hardware for our pro-

totype implementation. We also compare and justify these methods in order to design

a real-time tracking prototype.

In Chapter 3, the development of tracking theory and design will be explained. This

includes a proposed parametric ellipsoid model, which is theoretically faster than the

traditional vertex base by about 10 times because of the simplicity of pixel-wise calcula-

tion. We compare our parametric ray-tracking approach with the standard vertex base

and show speed improvement analytically. We also design the likelihood model to tackle

distraction and short time disappearance.
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In Chapter 4, we design and evaluate the tracking algorithm. The implementation of

the tracking framework on a CPU is evaluated with various dataset. The computational

time of sub-functions is also measured for further comparison.

In Chapter 5, the tracking framework is transfered from a CPU to a GPU and mea-

sured speed performance. We show speed improvement of around 4 times compared to

the CPU implementation.

In Chapter 6, we also consider data association in order to link broken trajectories,

where subjects leave and re-enter the observation areas. The situation consists of many

segments of trajectories. The discontinuity of trajectories makes the particle filter frame-

work unable to track or recall the subject after a long term disappearance. We calculate

the association cost function from the state variables and texture signature, which is

obtained by the tracking framework from Chapter 5. The detected subject can be either

a new subject or re-appearing subject. The system has to categorise detected subjects

based on cost measurements. Development and evaluation of the data association is

discussed. From the experiment in Chapter 6, the recall rate is around 80% when tested

by standard dataset and our own dataset.



Chapter 2

Background Theory

A tracking algorithm estimates the position of a dynamic object through two steps,

prediction and verification. We consider the process of prediction and verification in

this chapter and we try to classify various methods of tracking in order highlight the

key ideas of the thesis.

2.1 Tracking

Trcking is an estimation process, which is normally considers the position of a desired

subject. In order to estimate the position we need to perform two activities; prediction

and evaluation. Evaluation can be made by calculating the distance or similarity mea-

surements. Given some observation the system can verify a prediction by measuring

the similarity between it and an observation. Detection is the simplest form of subject

localisation. Detection has to test all possible positions in a considered space. Detection

has to consider everywhere in the search space.

2.1.1 Similarity and distance

From the history of mathematics, several distance and similarity measurements have

been introduced to tackle specific problems. Distance and similarity measurements are

calculated normally in observation space, where the observation data is compared with

the hypothesis data. There are many ways to measure the distance and similarity. In

6
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order to choose a suitable metric we must known the data type of the observation, for

example, whether the observation is expressed by a vector or a set, and the geometry

of the data structure. When we deal with estimation such as curve fitting, where all

samples are equally important, the squared Euclidean distance is normally selected as a

error metric. The squared Euclidean distance always returns the positive and produces

quadratic cost function, which is easy to be integrated with error optimiser, such as

minimum mean square estimator.

A distance (or dissimilarity) of two vectors can be expressed by the distance. Let

dis(X,Y ) denote the distance between vectors X and Y , which are vectors of real num-

bers in n dimensions X ∈ Rn and Y ∈ Rn. The distance between two sets also can be

computed. The two sets are denoted by A and set B, so the distance is dis(A,B). We

can determine the distance by choosing one from many methods e.g. [11–17], please see

Table D.1. The table shows just a fraction of all possible formulas to compute the dissim-

ilarity. Euclidian distance has been used extensively in geometry and square Euclidian

distance has also been used in many regression methods such as linear regression. Cosine

similarity is computed from the inner product and normalised by the magnitudes. The

correlation similarity [13] is almost identical to cosine similarity. Sometimes counting

the mismatched elements between two sets can form a useful measurement such as the

Hamming distance [15]. Bitwise comparison between two sets is surprisingly important

when dealing with missing elements of data or scaled images. The distance between two

unequal cardinality sets can be measured by the Jaccard [16] or Hausdorff distance [17].

The selected similarity measurement or distance is varied depending on the assumption

and application.

The similarity measurements or distances can reflect how well the prediction fits to

the observation. And the ultimate goal of every kind of estimation is to measure the

satisfaction between prediction and observation.

2.1.2 Prediction

In tracking problems [18], a state vector expresses position, velocity or the status of an

object. To generate a prediction of the position of a target, all parameters involved in

position transformation in the time domain must be added into the state vector. So,
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prediction of the object state can be estimated by the state vector and the dynamic

model of the object.

The simplest assumption is that a prediction of position in a successive frame is near

to the previous position. This assumption is effective when object density is low. As

long as the subject appears near by the prediction position, the tracker can follow the

subject. However, a problem arises when the subject moves faster or within to a noisy

environment. In a noisy environment, false detection can easily occur and the tracker

is distracted by nearby objects. Once the tracker is distracted by other objects, it very

likely to fail in the near future. The problem can be solved by including more information

in the state vector. In a hyper-dimensional state space, the probability of two subjects

being in the exactly same state is very rare. Therefore, increasing the dimension of the

state vector reduces the distraction rate [19, 20]. Adding more information needs more

computational power. So we need to find a good state representation to minimise the

complexity.

A good prediction can reduce the searching space and increase the computational

speed. When the complexity level of the state is limited by computational power of

the hardware, increasing the dimension of state space is not a good solution. The state

prediction from the prior knowledge is a fundamental key of modern tracking methods.

The prediction defines a searching scope. In early research on multi-target tracking

such as joint probabilistic data association[21] (JPDA) and probability multi-hypothesis

tracking [22] (PMTH) , the area of high probability in which the subject could occur,

also called the gate, was considered in order to prevent distraction by other objects. The

gating technique is a data association method that allows a decision module to link any

nearby subjects with in the scope of the tracker centroid. Basically, the gates removes

irrelevance detections from consideration. The gate prediction allows us to narrow the

search space and makes tracking more effective. A good model of prediction leads to

high performance of tracking and detection. Further discussion on state prediction will

be added in Section 2.2.2.
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2.2 Review on Visual Tracking

In this section, we consider the ideas of prediction and verification. Verification needs a

mathematical model or appearance descriptor (AD) in order to calculate the similarity.

The AD is mathematical model or data structure to express the perception of the subject,

which is obtained from observation images. The AD expresses detail of the observation

and transfers to next process. The AD is a kind of language to represent the object. For

example, “a small red circle” can express an image of an apple.

The prediction is an attempt to estimate unknown parameters. In visual tracking,

the unknown parameters can be expressed by a state vector. The state vector expresses

position and dynamic condition of the subject, which is usually independent from AD.

For example, “a small red circle on top left of the image”. Hence we know both the AD

(a small red circle) and the state vector (top left of the screen). If we have to track the

apple on the screen, we know the kind of the object, and we have to find the unknown

position.

In people tracking, the AD is usually independent from the state vector. In order

to obtain prediction and verification functionalities, a tracking system consists of the

AD and the state vector. We will separate the physical state vector from the AD and

classify related work by these two features. Figure 2.1 shows two main ingredients (AD

and the state estimator) of a visual tracking system. Visual tracking can be made from

a AD and a estimator. We will discuss the combination of the AD and the estimation

to make a tracking system in Section 2.2.1 and Section 2.2.2.

 

Visual Tracking 

Appearance Descriptor 

 
-Boundary 

-Spatial Pattern 

-Adaptive image 

-Colour 

-3D model 

 

 

State Estimator 

 
-Maximum Likelihood 

-Maximum a Posterior 

-Bayesian/Monte Carlo 

-Data association 

-Detection 

Figure 2.1: Tracking system consists of the apprearance descriptor and the state
estimator.
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In this review, previous research related to visual tracking will be classified based on

theirs ADs and state estimators. The AD is a composition of different data structures

to express the appearance of a subject. A subject can be represented by a point, a

region, a set of salient points, an image template, a colour histogram or a 3D model.

The most complex descriptor expresses an accurate image of the subject but it requires

huge computational power. There is a trade-off between accuracy and computational

speed.

A projected image of a subject is constructed by two parts, the AD and the state. To

minimise complexity of the system, the AD is normally assumed to be invariant in the

time domain (and from different views in case of multi-view tracking). This assumption

reduces the number of unknown parameters of the AD from the equation. The invariant

descriptor is useful in solid object tracking, where shapes and corners are fixed with

the centroid [23, 24]. However, in people tracking scenarios such an invariant descriptor

does not exist or is impossible to express by a numerical model because a human body

requires a huge number of parameters in order to express the constantly changing body

and variation of clothes. As an invariant descriptor assumption cannot express reality.

A possible solution is to learn the AD form the input sequence during tracking [25, 26]

and express the subject by a collection of images. A similar approach was applied in

multi-target tracking in [27].

The AD can be constructed in several ways to express perception of reality. The

simplest form of the AD is a point or a coordinate in state space, all subjects are

identical. We are possibly able to distinguish those subjects by their trajectories and

current state but it very ambiguous in practical situations. The method has been used

in airborne radar tracking for decades [22] because radar instruments produced only

the detected position. The ordinary method to classify airborne targets was to place

a transmitter in the target, which sends a decoded signal to identify itself; it is also

known as secondary radar. In primary radar, the airborne has no transmitter. In order

to classify the object depth information is extracted by a synthetic aperture technique

[28]. Because the point representation is indistinguishable, more appearance is required.

In static scenarios, state estimation can be done without prior knowledge from the

previous state because the state is never changed. The simplest method to estimate the

static state is using maximum likelihood. The maximum likelihood involves optimization
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of state values that make maximum probability. In order to use maximum likelihood

method the likelihood function must be assumed. If the distribution of the state values

are Gaussian, the mean value that makes maximum likelihood can be computed from

normal average [29].

In dynamic scenarios, the state of the subject is constantly changed. The dynamic

prediction is required in this case. The Bayesian state estimator is an estimation method,

which is able to include dynamic model of the state variables. The famous Bayesian

state estimator, the Kalman filter [30], was introduced in 1960. The state transition in

the time domain and the measurement were assumed to have additive Gaussian noise.

The Kalman filter procedure consists of prediction and updating. Unlike maximum-

likelihood, instead of using only current measurements to update the state, the update

procedure involves the previous state in the time domain and current measurements.

The current measurement is modeled to have a linear relationship with the current

state. The current state depends on only the previous state, this model is also known

as a first order Markov process. We will discuss about the estimation method in more

detail in Section 2.2.2.

In next section we will explore the AD in visual tracking from related work. We

classify pre-existing works by theirs appearance descriptor and state estimator as shown

in Figure 2.2. Hence, we may discuss the same tracking method twice; the first time in

the appearance descriptor (Section 2.2.1) and again in the state estimator (Section 2.2.2).

2.2.1 Appearance Descriptors

A gray-scale image expresses intensity of light as an array of pixels. Each pixel has

an intensity value, which is normally stored in digital format. The raw image data is

large and difficult to process directly. So we need a good descriptor to express objects.

Appearance descriptors in the literature can be classified into five categories.

• Boundary describes a subject by lines and curves of its boundary

• Spatial pattern considers the spatial pattern in the subject region

• Adaptive image expresses a dynamic subject by a collection of images

• Colour considers spectrum property of the subject
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Figure 2.2: Components of visual tracking.

• 3D model includes 3D shaped, scale and orientation into an appearance descriptor

2.2.1.1 Boundary and Region

Canny edge detection [31] can extract edges from a gray-scale image. The light-weight

appearance descriptor of the edge image is easy to be manipulated by a subsequent

procedure such as an active contour method [6] . The active contour can also find out

a subject boundary based on an intensity image.
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Contour A contour represents the boundary of a subject. The subject image is

transformed to an image of cost function, sometimes called an energy, that represents

the boundary of the subject.

The active contour was introduced in computer vision in 1988 with the name Snake

active contour [6] by Michael Kass and his colleagues. The contour was represented by

points and lines between them. The Snake procedure is based on energy minimisation.

The energy was determined from a linear combination between bending of a contour

and intensity of the image at contour lines. By adjusting arbitrary coefficients in the

energy function Kass could make the contour behave like a membrane or thin plate and

it moved slowly converging to the edge or black lines on the image. The Snake active

contour can be applying to visual tracking such as lips motion. However, the Snake

active contour is unable to handle a large distance change of a subject relative to the

previous position. The large displacement traps the contour points in a local minimum

state. The Snake active contour is not suitable for tracking but it can play an important

role in medical image segmentation, because the displacement of the organs does not

change too much. Active contour idea were extended in many versions, e.g. [7, 32] In [7],

Zezhi Chen extended the Snake idea by including colour dissimilarity between a subject

template and a region in an image. The point-like contour in the Snake Contour was

replaced by a binary bitmap image (all pixels are 0 except the pixels on contour are 1).

Thus, the method can perform segmentation of an object in colour images efficiently.

However, the large displacement problem is still disregarded. In [7], we can see that the

centroid of a subject in image sequences is in almost exactly the same position.

Polygon The simplest way to express a subject is drawing lines around the subject.

In [33], Kim use rectangular template to represent subjects with a particle filter. Tang

[34] showed a tracking system using thermal imaging and a particle filter.

Parametric shape A circle and an ellipse can also be used to represent a subject.

Parametric object detection such as Hough detection [35] can detect parametric shapes

by processing an intensity image or an edge image. An ellipse is a flexible shape (height,

width and orientation) that can fit many forms of the subjects. Because of flexibility

and a small number of parameters, the ellipse model was used in tracking in many works

[36–39].
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Region and Silhouette Unlike the boundary representation, the region representa-

tion considers the pixels inside the boundary. This representation is closely related to

the segmentation method, a process to classify individual pixels into subsets based on

information at pixel-level. The segmentation method extracts objects from an image

of a complex scene. Segmentation can use various kinds of information to compute a

silhouette of the subject, for example, an intensity image [40], texture information [41],

a depth image [42], colour in Luv space [43], etc.

2.2.1.2 Spatial pattern

The spatial pattern is computed by convolution[44] between an image and a 2D pattern

template. The method to extract the spatial pattern is also called a convolution filter.

The convolution filter also have different name depending on the pattern template, such

as the gradient filter, the corner filter, the local binary patter filter [45], etc.

Optical flow is a tracking process at pixel-level. There are two classical methods to

compute the optical flow, the Horn-Schunck[46] and Lucas-Kanade[47] methods. They

are based on constant illumination and velocity smoothness. Horn and Schunck solved

the velocity vector or flow by the calculus of variations. In contrast, Lucas and Kanade

used the least square method. It is inconvenient to call these two methods “tracking”

because they don’t actually follow a object. In fact, the methods compute flow for every

pixel. In order to perform tracking, optical flow has to be combine with a segmentation

method. Cooperation between optical flow and segmentation can be found in [48, 49]

(optical flow with active contour), [50] (optical flow with background subtraction), etc.

Saliency can be detected by a feature detector such as a corner detector[51] or a

Laplacian filter. Unlike optical flow the feature point representation considers only high

detail surfaces, also known as saliency surfaces. Some feature point tracking methods

were extended from the optical flow methodologies such as [52, 53]. The appearance

descriptor in this class consider only the high detailed area of a image.

Stable feature points Normal feature detection is sensitive to change in scale and

orientation. In order to perform tracking or recognition we need a stable feature, which
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is invariant to scale and orientation. The scale-invariant feature transform, or SIFT [54],

is a scale and orientation invariant feature detector. SIFT used Difference of Gaussian

(DoG) filters to keep the desired frequency feature points form many feature points in

a image, called extrema in scale space. Then it detects saliency by the Laplace filter.

Because DoG is highly sensitivity to edge and appearances of edges are changed by

rotation, all edges need to be removed. The remaining feature points is expressed by a

magnitude of gradient and the orientation. The SIFT is stable in scale and orientation

transformation so it can recognise static object robustly [54, 55]. Herbert Bay improved

the speed of SIFT by using Haar wavelets and called the new version SURF (Speeded

Up Robust Feature) [56]. SURF is significantly faster than SIFT and it has been used

in many applications, for example in tracking [57].

Wavelet basis The wavelet feature or basis is a spatial frequency orthogonal basis,

where each feature is orthogonal to each other (convolution of two different bases equals

zero). Viola and Jones developed fast Haar-like basis computation by using the integral

image[58, 59]. The basis feature and the integral image makes detection and tracking

faster [26, 60].

HOG The Histogram of Oriented Gradient (HOG) [61] is a vector feature, where each

element of the vector is a bin of a histogram constructed by counting a gradient vector

in particular direction in an image region. The HOG was applied to people detection in

[61] and the result was reliable with detection rate 84-89% at 0.01% false alarm.

LBP The Local Binary Pattern (LBP) is a binary coding to describe the relative

intensity of neighbour pixels. It was developed for texture classification [45, 62]. It was

extended for people detection and called semantic LBP [63].

HOG+LBP Combining HOG and LBP was studied to improve people detection.

This study showed reliable results with 97.9% detection rate at 0.01% false alarm. People

detection is applied to people counting in [64].

Gabor feature A Gabor function is an oriented wavelet pattern. The Gabor filter

has been found in the primary visual cortex [65, 66]. Daugman[67] stated that “Simple
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cells in the visual cortex of mammalian brains can be modeled by Gabor functions”.

Gabor features were applied to face recognition and gave reliable results [68, 69]

2.2.1.3 Adaptive image

Database of images Collective appearance descriptors can be acquired during the

tracking process. Since, the subject appearance is dynamic, a static template cannot

express the reality of a constantly changing shape of a human body. A pool of templates

could be cumulatively acquired during the tracking process. The data structure of a

template pool is a key to make fast similarity computation. In [25, 70], an average

and an Eigenbasis of images were used as templates and these templates were generated

during the tracking process. Using different sets of averaged images is a fast and effective

solution. However, computing the Eigenbasis of an image is a time-consuming task.

Constructing the template pool during tracking also appeared in in Kalal’s works

[26, 60]. Kalal used a Binary pattern (a Haar-like feature) of a gradient map as a

appearance descriptor. The descriptors are generated and saved to long-term memory

by detection, tracking and learning mechanisms. In the tracking module an observation

image in the tracker boundary is compared to all features in the database. To perform

matching between the dynamic appearance and the template in the database, Kalal

proposed three strategies.

• Absolute, the system accepts a new feature when the similarity between the new

feature and the stored features is larger than a threshold. In other words, the a

distance between two appearances in feature space is smaller than a threshold.

• Change, the association module checks continuity in feature space between a pre-

viously accepted feature’s volume and the current observation. It makes the ac-

ceptance region dynamically grow larger during the tracking process.

• Loop, when the acceptance volume in feature space spreads and eventually con-

verges to the initial location it is called a loop. In my opinion, the Loop accepting

strategy is redundant because the Change strategy can describe the Loop. So the

Absolute and Change strategies are capable to the classify whether to accept or

reject the observation.



Chapter 2. Background Theory 17

We can imagine that the acceptance feature volume keeps growing. Eventually it could

increase the false alarm rate because the volume is too large. In my opinion, the ac-

ceptance volume must be regulated by some mechanism to prevent over growing of the

acceptance volume in the case of tracking over long period tracking.

WSL image The WSL (Wonder Stable Lost) model is a probabilistic model to express

appearances of a subject occurring in a tracking sequence. The WSL model was firstly

introduced by Jepson in 2003[71]. The WSL consists of three modes stable, lost and

wandering. The stable mode images normally had small changes so the magnitude of

the wavelet feature [72] in the considered region is stable and the appearance can be

described by a Gaussian distribution. During tracking, the feature could be occluded

and the event was modeled by the lost model. The constantly change features did not

contribute to the tracking process and it was modeled as the wandering model. The

WSL model was used in other works, e.g. [73, 74].

2.2.1.4 Colour

Colour information is distinctive and can represent physical properties of surfaces. The

colour histogram was used in the mean-shift tracker[75], which consider colour histogram

of pixels inside a region. The mean-shift is widely used because of it’s simplicity and

robustness. The mean-shift will be described in detail in Section 2.3.

Colour is a useful information and there are so many ways to interpret colour. Colour

distribution on spatial domain is a useful combination to track and identify people. For

example, a cylindrical model with colour histograms for each vertical section of the

cylinder was a human model in [27]. Coloured rectangles were used in an articulated

human model [76]. Colour is a good method to separate sporting players from the field

[77], by using a colour segmentation method. Colour distribution on an image, which

is called spatiogram, were use for object tracking in [78]. Extension of the spatiogram

tracking was studied in [79].
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2.2.1.5 3D model

Vertices A human shape can be represented by a 3D model. In computer graphics

the 3D model is usually modeled by a set of vertices (a vertex is a point that links to

other points to form a polygon plan). The vertices are placed on an object surface in

3D space. The vertices model was used in a solid object tracking application [24]. In

fact it can be used in any kind of object tracking, such as faces [80], people [81], etc.

Visual hull A 3D subject’s surface can also represented by many silhouettes from

different points of view. It is also called a visual hull. This method can be used in order

to estimate positions of subjects. For example, Berclaz [82] computed the probability

occupancy map (POM) by using silhouettes from different views and the POM was used

in the subsequent Bayesian tracking method. The silhouette can be computed by a

background segmentation method [83, 84]. POM was also used in other work, e.g. [85].

2.2.2 State Estimators

State estimation related to visual tracking can be divided into five classes.

• Maximum Likelihood (ML) has no probability and transition model. The current

state depends only on the current measurement.

• Maximum a Posteriori (MAP) obtains the state estimation by Bayesian statistics

and the resulting estimation is expressed by a single state that maximises the

posterior probability.

• Bayesian Probability estimates the state by Bayesian statistic similar to MAP but

the result is represented by a posterior density instead of a single point of state.

The benefit of this method is that it can tell possible confidence region in the state

space, which is a single point cannot.

• Data Association has been introduced as early as 1995 [22]. The data association

method creates trajectories of the subjects by linking detected locations of the

same subject together. In [22], the nearby detections to a previous trajectory were

considered as the candidates and a probability model was modeled for selecting the

best candidate. The method has been improved by adding a complex appearance
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descriptor [26, 86]. Normally the data association method requires detection as a

primary input.

• Detection has a large scope search space and involves template similarity and

classification. The template similarity can be anything from a simple threshold

classification to a sophisticated discriminative learning model [61, 63, 87].

2.2.2.1 Maximum-Likelihood

Some tracking methods [6, 7, 32, 42, 75, 78, 79, 88] rely on the simplest assumption

that the position of an object in the future is near to the position of the current state.

Hence, the estimation of position depends on only the current observation regardless to

the previous state.

Sml = argmax
S

{L (X|S)} (2.1)

Equation (2.1) shows maximum-likelihood notation, where the likelihood function L (X|S)

is computed from a dataset X and the state S. The likelihood function need to be pre-

sumed by probabilistic modeling and the appearance descriptor. An object or a person

can be represented in many ways, so the likelihood ( which is defined by the appearance

descriptor) also can be expressed in many ways. In order to estimate the state, ML

computes the optimum state (Sml) that makes the synthetic appearance best match to

the observation image without using a prior probability function.

A person’s appearance can be expressed by a profile of their shape, colour histogram,

texture and etc. With the appearance descriptor of an observation, we can make an al-

gorithm perform tracking by maximising similarity. In maximum likelihood, the motion

model is excluded. Including a motion model in the algorithm could not improve the

result. The optimizer will search the local optimum and ignore the prediction from the

motion model.

Tracking by maximising likelihood will return a local optimum position of the highest

matching score between the observed AD in the tracker boundary and the template. The

boundary expresses the position and shape of the subject. The tracking algorithms in

this class perform as local optimisers, which search for a local optimum state. This

means the tracking method is likely to be trapped in a wrong local optimum when the
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landscape of the similarity function is changed quickly due to fast subject motion or

occlusion.

Examples of this class are mean-shift tracking [75], spatiogram tracking [78, 79] and

active contour methods [6, 7, 32, 37, 42]. These methods have no motion model and

no predicted position from the previous frame. Lack of prior position can make these

methods suffer from failure due to large displacement, fast motion or low frame rate.

The tracking methods in this class make one strong assumption that the appearance

from the previous frame is similar to the next frame. The assumption is too strong and

does not allow the subject to be absent, leading to failure when occlusion happens.

2.2.2.2 Maximum a Posterior

The maximum a posterior (MAP) applies the prior probability function in estimation and

the estimated state is represented by a single state vector. The method is very similar

to the maximum likelihood but the use of prior P(S) is included in the estimation as in

Equation (2.2).

Smap = argmax
S

{L (X|S)P(S)} (2.2)

For example, the expectation maximization (EM) algorithm consists of two steps, an

estimation step and a maximisation step. In the estimation step, an expectation of the

state is made (it is considered as prediction) and the maximum-likelihood is done in a

maximisation step. The EM algorithm was proposed by Dempster in 1977 [89] to tackle

the incomplete data problem in statistics. The incomplete data could be for example

the number of clusters or mean values of the considered population. This incomplete

problem is very similar to our tracking problem. The EM algorithm was also applied to

tracking applications, e.g. [71].

The similar technique, which involves prediction and likelihood-maximisation, can be

estimated by Bayesian interference. Some classic trackers, e.g. [22], applied Bayesian

interference in the estimation. However, the output of the estimation is a single state and

the estimation was done by cooperation between prediction and the maximum-likelihood

method. So, we can classified as a maximum a posterior (MAP) method. The MAP
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estimation represents the estimated state by a single vector, which makes calculation

fast, e.g. [40, 90].

2.2.2.3 Bayesian Estimator

In Bayesian estimation the posterior keeps the original probability density representa-

tion. The posterior density is proportional to a product between the likelihood and

prior density as in Equation (2.3). This estimator involves probability integration and

sampling method as will be discussed in more detail in Section 2.5.

Q(S|X) ∝ L (X|S)P(S) (2.3)

There are many ways to implement the Bayesian estimator, e.g. Kalman filter[36],

Particle filter [23–25, 33, 34, 70, 73, 80, 81, 85, 91] or representing density by grid-space-

map as in [27]. We will discuss Bayesian estimator again in more detail in Section 2.5.

2.2.2.4 Data Association

Detection and association are also solutions to the tracking problem. The strategy of

this method is similar to the name, which involves detecting subjects and associating

present detections with previous trajectories.

Probability data association Joint probability data association (JPDA)[21] and

Probabilistic Multi-hypothesis Tracking PMHT[22] are fundamental to modern multiple-

target tracking. They were designed for radar tracking. The radar instruments at that

period provided only detected positions. The idea of probability data association is

based on probability propagation in the state space. The associations were computed to

maximise the joint posterior probability of pairing between every individual trajectory

with every given detected position. In 1995, Roy Streit [22] proposed the PMHT. The

PMHT generated many hypotheses for a subject’s motion. To associate an observation

to a subject’s trajectory, PMHT used a gate, a circle in state space,which it could expand

due to uncertainty of estimation or covariance from a Kalman filter.
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Since people detection, e.g. [61], has been developed, the cooperation between ob-

ject detection and probability data association has been widely used in people tracking

applications, e.g. [86, 92]. The process starts with the detection module processing an

input image and passing all detected positions to a data association module. The de-

tected locations are matched to the previous trajectories by the association module by

optimising the probability or the cost function. The cost function can be modeled as a

probability diffusion in the state space [77, 82, 86]. To achieve a high accuracy the data

association tracking method relies on the performance of detection.

Detection modules reduce a half million pixel image to a few detection points. Each

detection point is classified as a false-alarm or a correct detection and then it is joined

to the existing trajectory or created as a new trace. Bayesian estimator such as Particle

filters or MCMC were used for optimising the association probability as in [77, 86].

In [82], a new detection is matched to a previous position by using the k-shortest path.

A temporal spatial grid of detection was saved and then a graph was generated from the

grid. A probabilistic model was used for computing the cost function between nodes.

A disjoint path algorithm was applied to find minimum cost paths. This association

involved probabilistic modeling and graph optimisation.

Shortest path In order to reduce complexity, the subject is represented by a single

vector and ignores the density function. A single point representation is light weight and

deterministic. Single target tracking can be done by a shortest path algorithm. In [93],

Yan showed how the Dijkstras shortest path algorithm was applied to data association

for tracking a tennis ball.

Multiple target tracking can also be computed by the data association method. When

the detection position is extracted from a raw image we can associate newly detected

points with existing trajectories. The simplest approach is to join a detected point to

the closest trajectory, similar to [93]. The computational complexity of combinatorial

calculation in data association increases with the number of trajectories and subjects.

For example, if we have N detected points and N trajectories the combinatorial associ-

ation can be computed in polynomial time O
(
N3
)

[94]. The problem is more difficult

when the distribution of detection points is dense and the number of trajectories is

unequal to the number of detected points. The association module must assign each



Chapter 2. Background Theory 23

new detected point to an individual trajectory and separate the false-alarms out from

consideration. Each connection has a cost, which is defined by the distance between the

previous trajectory and the detected point.

Matching N subjects to M categories is known as the assignment problem in logistics.

In 1955, Harold Kuhn [95] suggested that the Hungarian algorithm can be applied to

solve the assignment problem. However, the Hungarian algorithm described by Kuhn

was written in a manuscript which was implicit and not designed for computer program-

ming. In 1957, James Munkres [96] polished the Hungarian method and made a clear

explanation for any programmer.

A disadvantage of tracking by detection and data association is that a single point

cannot represent a probability density function. When a subject is visually blocked

or distracted, the observation is unclear and it is difficult to make a decision from the

current frame. The decision needs further observation. Some extra observations will be

measured in the next consecutive frames in order to gain confident to make a decision.

It is better to keep using the probability density and to not make any decision at any

uncertain step, which has insufficient observation for creating the subject trajectory.

Therefore, any method that applies best assignment can fail in a difficult situation and

an error will be amplified in the next frame [97].

Recognition Association between a previous trajectory and a detected subject can

be achieved by recognition. Single target tracking by recognition data association can

be found in [26, 98] However, there is lack of study in recognition in a multi-target

tracking scenario. In Chapter 6, we consider data association by the recognition in

multiple-target tracking context.

2.2.2.5 Detection

Background Segmentation The simplest method to detect a moving object is to

separate them from a static background by exploiting the technique called background

segmentation. An adaptive mixture of Gaussian (MoG) background subtraction [83] is

light weight and adaptable to changing illumination conditions. It automatically learns

and re-initialises the background model of intensity for every pixel. For pixels of the

static background, the intensity is described by a Gaussian distribution with a mean and
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a variance. The background model of a colour video sequence can be done with the same

technique. Once the background model is obtained, the moving object can be extracted.

The extraction method is called segmentation. Segmentation can be used in order to

detect moving objects. Other benefits of the MoG background segmentation method are

low complexity and pixel independent computation, which are easy to implement with

parallel programming.

The Wallflower [84] was another background segmentation method designed for high

accurate segmentation. The three layers of computation (pixel, region and frame) make

Wallflower highly complex. The dependency of the algorithm makes it difficult to im-

plement on a parallel platform. Background subtraction is a cheap and useful way to

detect a moving object. However, the cameras must be fixed in position. The static

camera constraint makes the method unpopular.

People detection The histograms of oriented gradients (HOG) human detection

was introduced by [61]. An improvement [99] of HOG offered high speed processing and

ability to detect multi-scaled people in an image. HOG detection [100] was implemented

on a GPU GeForce GTX 285 to process one 640 × 840 image at a maximum speed of

74ms (13fps). Improvement of people detection methods can be found in combination

of many features. For example HOG and LBP people detection in [64, 87] or visual hull

method in [101].

2.3 Mean-Shift method

The mean-shift method was introduced as a peak finder and later on it was applied

to the visual tracking problem. Mean-shift is a non-parametric iterative method to

find a peak of a probability density [102, 103]. The kernel is a standard template of

a probability function. The kernel K(x) can be any standard density function such as

uniform, parabolic or Gaussian.

The mean-shift has been used for seeking the peak of a density function P (x). The

illustration in Figure 2.3 shows how kernels move according to a density function from

a previous expectation value µo to the new expectation value µ. The new expectation

of x in a density function is computed from a product between P (x) and a kernel at
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previous location µo. The mechanism performs peak seeking similar to gradient ascent,

where the kernel moves towards the high density area. From the Cheng study Equation

(8) in [103], the update equation of the mean in integral form is Equation (2.4).

µ =

∫
x.P (x).K(x− µo)dx∫

K(x− µo)dx
(2.4)

The mean-shift is useful when dealing with a distributed dataset and we have to estimate

the peak of P (x), where the data population distributes as an unknown density P (x).

In short, the mean-shift computes the new mean by using the previous mean and the

integration over the spatial space. In the case of a single peak density function, the new

mean always moves to a higher density area. If the density function at position µo is

increasing respective to x, the kernel will move to the right and vice versa. Therefore,

if we keep updating the mean in this fashion the new mean will stop at a peak of the

density function. The property allows us to perform gradient ascent to search for a peak

as in Figure 2.3.

Figure 2.3: Mean-shift seeking density peaks. In this example, uniform kernels are
applied to perform gradient ascending over density function resulting in two stationary

points at final step.
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In 2000, Dorin Comaniciu [75] applied the mean-shift to visual tracking . In his work,

the density function P (x) is replaced by a similarity function called The Bahattacharyya

coefficient. The Bhattacharyya coefficient is the similarity between a template colour

histogram, m = [mb]; b = 1, 2, · · · , and a current colour histogram of the tracker re-

gion, n(µ) = [nb(µ)]; b = 1, 2, · · · , where the tracker at position µ is computed from

Equation (2.5), where b is a histogram bin index.

P (µ) =
∑
b

√
mb.nb(µ) (2.5)

The histogram m and n() is weighted by an Epanechnikov kernel. A function δib is 1

when colour vector at position xi falls in a histogram bin b, otherwise 0. So a histogram

of colour can be computed by summation of δib for all i. A bin b of the centre weighted

histrogram n(µ) was defined as Equation (2.6), where K() is an Epanechnikov kernel.

nb =
∑
i

K

(
xi − µ
h

)
δib (2.6)

K(x) =

3
4(1− x2), |x| ≤ 1

0, |x| > 1
(2.7)

The vector n is a vector representing colour histograms of pixels in the tracker kernel

region. If we maximise P (µ) by changing µ, we will get strong similarity between vector

m and n. In order to maximise similarity, Comaniciu used a Taylor’s series to expand

the Bhattacharyya coefficient when n is slightly changed.

P (nb(µ)) ≈ P (nb(µo)) +
∑
b

{nb(µ)− nb(µo)}
∂P (nb(µo))

∂P (nb)
+ · · · (2.8)

= P (µo) +
∑
b

{nb(µ)− nb(µo)}
∂(µo)

∂nb
(2.9)

=
∑
b

√
mbnb(µo) +

1

2

∑
b

{nb(µ)− nb(µo)}
√

mb

nb(µo)
(2.10)

P (µ) =
1

2

∑
b

√
µbnb(µo) +

1

2

∑
b

nb(µ)

√
mb

nb(µo)
(2.11)
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The derivative of P is set to zero.

d

dµ
P (µ) =

1

2

∑
b

√
mb

nb(µo)
.
d

dµ
nb(µ) (2.12)

0 =
3

4

∑
b

[√
mb

nb(µo

∑
i

xi − µ
h2

δib

]
(2.13)

0 =
∑
i

[
(xi − µ)

∑
n

δib

√
mb

nb(µo)

]
(2.14)

0 =
∑
i

(xi − µ)wi (2.15)

where

wi =
∑
b

δib

√
mb

nb(µo)
(2.16)

From Equation (2.15), he computed a new mean. The optimal new mean can be

written in short form as Equation (2.17).

µ =

∑
i xiwi∑
iwi

(2.17)

This approach is similar to Newton’s method in optimisation: first, expand the cost

function by a Taylor series then set the derivative of series to zero and solve for the new

location.

Mean-shift tracking is well known because of it’s low computational complexity and

high accuracy. It is a combination between a similarity measure and optimization.

However, mean-shift tracking is unable to solve some practical problems, for example,

rotation around an axis which is perpendicular to camera direction. Rotation reveals a

new surface of the subject and the colour histogram of the new surface is often different

to the template. Distraction from other surfaces, which have similar colour, and occlu-

sion can still lead to failure of this method. Occlusion, motion model and short-time

disappearance were disregarded in this method.

2.4 Kalman Filter

The Kalman filter [30] is a well known Bayesian estimator, which has been applied

in machine control intensively for over five decades. A Kalman filter is a recursive
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error optimizer where distributions of the state variables are assumed to be Gaussian

distribution. It was designed to estimate the state variables of a linear stochastic system

(a linear system with some noise perturbation).

The Kalman filter was proposed by Rudolf Emil Kalman in 1960 [30]. The original

Kalman filter was designed for linear system, where the state vector x contains informa-

tion of target subject such as position and velocity. A measurement vector y contains

information detected by sensors. The vector y is modeled by state x and a projection

matrix G. Usually the state of the system is unobservable, so, G expresses a physical

relation between the hidden state and the measurement vector.

xt = Fxt−1 + v (2.18)

yt = Gxt + w (2.19)

The prediction of a state is generated from a previous known condition by the transition

function F. The prediction is also known as the prior, which needs to be verified by

observation. The present state vector xt linearly depends on the previous state vector

xt−1 and a Gaussian noise perturbation v. A linear operator F transforms the previous

state xo to the new state x as in Equation (2.18). The prediction could be as simple

as ballistic motion. Measurement y is a function of x, where the observation function

G transforms state x to measurement y. The measurement also has additive Gaussian

noise w.

The Kalman Filter has prediction and update steps. The state vector x is a stochas-

tic variable so it is expressed by mean µ and covariance Σ. In the prediction step,

these Gaussian parameters (µt and Σt) are predicted by linear transformation F. The

covariance is transformed by Equation (2.21). Q is the covariance of the noise, Q =〈
(v − v̄)(v − v̄)T

〉
=
〈
vvT

〉
. Note that the covariance Q and R can be fixed or varying

depending on an individual application.

µ̃t = Fµt−1 (2.20)

Σ̃t = FΣt−1F
T + Q (2.21)
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Then the predictions µ̃ and Σ̃ are corrected by supporting observations as in Equa-

tion (2.22) and Equation (2.23). The predicted mean µ̃t is corrected by error (yt−Gµ̃t)

with the Kalman gain K. The covariance is also reduced by factor KG.

µt = µ̃t + K(y −Gµ̃t) (2.22)

Σt = (I−KG)Σ̃t (2.23)

The Kalman gain K is computed from the equation below.

K = Σ̃tG
T(GΣ̃tG

T + R)−1 (2.24)

R =
〈
wwT

〉
(2.25)

The learning rate of a Kalman filter is adaptive as it varies from time to time according

to covariances Σt and R. The Kalman gain matrix K controls the learning rate of the

Kalman filter. In [18], Welch and Bishop showed that when the covariance of observation

noise R is near zero, the Kalman gain K will converge to the inverse of matrix G.

lim
R→0

K = G−1 (2.26)

And if the covariance R is large the gain will drop to zero and makes no update.

lim
Σe→0

K = 0. (2.27)

In practice, the covariance R is initialised to be relatively large, so K is about G−1.

Eventually K gradually approaches zero by reduction of the covariance R.

Uncertainty increases in prediction and decreases by verification. The determinant

of a covariance matrix expresses the uncertainty of the stochastic variables. In the

prediction step of Equation (2.21) because of noise Q, the determinant of the predicted

covariance Σ̃t is increased from the previous state, det(Σt−1) < det(Σ̃t). In the correction

step, Equation (2.23), the determinant of the predicted covariance is smaller or equal to

the corrected covariance, det(Σ̃t) ≥ det(Σt). One can prove this by using the fact that all

covariance matrices are positive definite matrices and the determinant of a covariance

matrix is a positive number. The determinant of a covariance matrix expresses the

volume of uncertainty in state space. The uncertainty increases in the prediction step
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and decreases in the update step. After, several iterations the uncertainty converges to

an equilibrium that is characterised by the Q, R and the observations.

The Kalman filter was modified for non-linear problems because many practical prob-

lems in engineering are non-linear. The Extended Kalman filter approximates a tran-

sition function F by the first-order Taylor series, which is useful for approximating

non-linear systems. Another variation the Unscented Kalman filter [104] transforms the

stochastic variables, in which makes the nonlinear becomes a linear problem.

The Kalman filter cannot perform tracking without an detection module. Normally

the measurement vector is produced by an instrument. For example a radar system

detects aircraft and sends the position to a Kalman filter to estimate the state vector.

Similarly, an object detector can detect a object from a video sequence and pass the

detected position to Kalman filter. Tracking by using the Kalman filter relies on the

accuracy of the detector. We have to suppress the miss detection rate and false alarm rate

to be significantly small. Applying a Kalman filter to visual detection rely on accuracy

of the detection. So the detection module is a necessary part of Kalman tracking. A

people detection module is normally constructed by matching between a template and

an observation. The traditional Kalman tracking considers the state estimator and

detection separately.

In addition, the Kalman filter does not allow us to exploit visual features and is

unable to make full utilization of the images. The detection module cut out so much

useful feature information. In multiple target tracking, distraction cannot be fully solved

by using only information of detected position, especially, when two subjects are close

and moving in the same direction. The state vectors of these subjects are very close in

state space. So distraction is inevitable in position-only tracking. Therefore, applying

a Kalman filter alone to multiple target tracking suffers from serious distraction. Other

features must be used in order to identify the subjects. Without a feature vector it

is difficult to follow the same subject amongst many subject, where all subjects are

represent by points.

In literature, single target tracking can be done by cooperation between the Kalman

filter and feature points detection, e.g., [105, 106]. Kalman tracking is a very light

weight computation and works quickly. However, using a Kalman filter in multiple target

tracking is fairly problematic. A comparison in [107] showed that the performance of
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a Multiple Hypothesis Kalman Filter is lower than a Hybrid Joint Separable Particle

filter. Distraction from nearby objects confuses the system and it is unable to associate

each observation to each tracker. The particle filter or a numerical Bayesian estimator

will be discussed in Section 2.5.

2.5 Numerical Bayesian estimator

Bayesian tracking framework represents the state by a probability density. Unlike

Kalman filter, the probability can be any shape it is not strict with Gaussian distri-

bution. The posterior density (confirmation) is a product between prior density (predic-

tion) and likelihood function (similarity measure). The prior density defines the bound-

ary of search in state space. The confined boundary improves the searching efficiency

compared to exhaustive search in normal detection method. Surely, exhaustive search

will take a long time to complete all possible locations especially in a high dimensional

state space. Prediction can reduce the search volume. But the problem is how we can

generate prediction.

The state estimator needs a probabilistic model to predict a future state from the

current state. The transition process of the state in the time domain is known as a

stochastic process. Stochastic modeling is common when we are dealing with uncer-

tainty and we can find it in many fields of study, e.g. in finance [108], biology [109] and

engineering [110].

A common method to generate a prediction is combining deterministic information

and randomness. The deterministic solution from a mathematical model gives an expec-

tation value of the state, where the perturbation of an unknown factor is represented by

random noise in state space. Given a particular density function of the previous state,

the added noise makes the shape of the density function wider (the variance increases).

However normally the added noise has zero mean, which has no effect on the mean of the

density after addition. In a small interval of time the subject motion is similar to ballis-

tic motion and we can assume that the new position depends on the previous position

and velocity. Tracking by a probabilistic model usually uses prediction and similarity to

generate a confirmed density function. In Bayesian statistical inference the distribution

of prediction, similarity and confirmation is called as the prior, likelihood and posterior
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densities, respectively. Bayesian theorem of conditional probability describe that the

posterior density function increased linear proportion to a product between the prior

and likelihood density functions.

In the maximum likelihood method, a large set of observations is stored and the

standard average and variance will be computed according to the presumed likelihood

distribution. A drawback of the maximum likelihood method is that it needs large

memory storage. In a real-time estimator such as the Kalman filter, an observation is

used once in an iteration and then it will be deleted. Only the state is stored in memory

and this state will be used in the next iteration. This method is also call recursive

Bayesian estimation.

To explain prior, likelihood and posterior let us consider an example. Imagine we

are going to estimate the distance of a static object by using a sonar instrument which

returns a distance measurement for every time frame. Due to wind turbulence, the

instrument rarely gets a exact distance between the observer and the subject. So we

estimate the distance by applying a probabilistic interference model. Let the observation

of a position vector be denoted by x. Assume the wind turbulence makes the observations

distributed as a Gaussian function with mean µ and standard deviation σ. An objective

is to recursively estimate µ and σ from a series of observations. In this case, x is

a measurement and state of the system are µ and σ. The stochastic state variable

of x is represented by a Gaussian function with a mean µ and a standard deviation

σ. The prior density P(µ, σ) is a function of µ and σ. The likelihood function is

defined as the probability of measurement set x to occur given prior parameters of

the probability density function [111]. So the likelihood is simply a probability on the

Gaussian distribution function. The likelihood function is denoted by L (x|µ, σ).

Q(µ, σ|x) =
L (x|µ, σ)P(µ, σ)

P(x)
(2.28)

L (x|µ, σ) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2 (2.29)

P(x) is difficult to determine because it depends on a particular problem, which is

difficult to model. In fact if we know P(x) it is unnecessary to calculate the posterior

because P(x) itself could describe the position of the subject. If we know P(x), we could

estimate the mean from P(x) directly. So, it seems we need to compute the posterior
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Q(µ, σ|x) from a function containing an unknown element. In probabilistic modeling, if

we cannot predict the density function the best we can do is to assume it as a uniform

distribution and make P(x) constant. The uniform P(x) assumption is acceptable in

Bayesian interference [112]. Therefore, the posterior estimation Q(µ, σ|x) is computed

from Equation (2.30).

Q(µ, σ|x) ∝ L (x|µ, σ)P(µ, σ) (2.30)

In order to visualise the problem, let the prior is represented by a table, where µ

and σ are varied by row and column. Each element in the prior table comes from the

the prior density, e.g. uniform distribution. In another table, the table of likelihood

function, each element is computed by inserting x, µ and σ into the Gaussian function.

Once we have two tables, which express prior and likelihood, the posterior probability

is element-wise multiplication of two tables. In order to compute the the expectation of

µ and σ, the posterior integration is computed as shown in Equation (2.31) and 2.32.

〈µ〉 =

∫∫
µ.Q(µ, σ|x) dµdσ (2.31)

〈σ〉 =

∫∫
σ.Q(µ, σ|x) dµdσ (2.32)

We can estimate the distance by searching a peak from the posterior density or com-

puting the expectation 〈µ〉 as shown in Equation (2.31). The posterior may have many

peaks in a non-Gaussian problem. The expectation value is computed from integration

over µ and σ. It seems difficult to implement integration on a computer because even

in this simple case we have 2 dimensional integration for an unknown variable. Com-

puting the high-dimensional integration directly with a standard method such as the

midpoint method is slow. However, with the right tool, such as Monte Carlo method,

the integration can be computed easily.

Before we move forward we need to realise that the state variables is usually esti-

mated from indirect measurement (the state variables cannot be measure directly). The

unobservable state is called the hidden state, which needs to be measured indirectly by

using the conditional probability and transformation between the state space and the

measurable space. In computer vision the observation is a 2D image, whereas the state
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space can be a position in the 3D world coordinate systems. So, the measurement in-

volves transformation between the 2D and 3D coordinate system. Transformation from

world to image coordinates will be described in Section 2.6.

2.5.1 Monte Carlo methods

Monte Carlo integration [113, 114] or the MC method is a simple idea to perform nu-

merical integration by randomly examining the considered function. A set of samples

xi ∈ Rm, where i = 1, 2, · · · , are drawn from a distribution to cover the considered

function boundary. The resulting estimation is as Equation (2.33), where V is a volume

of the boundary covering f(x), and V has dimension m+1. N is the number of samples.

∫ x=1

x=0
f(x)dx ≈ V

N

N∑
i=1

f(xi) ;x ∼ U(0, 1) (2.33)

For example, in Figure 2.4 we would like to calculate an integration of a function

f(x) =
√

1− x2 from x = 0 to x = 1 by the MC method. First we have to draw many

samples of xi from a uniform distribution, which generates samples uniformly in a square

region from x = 0 to x = 1 and from y = 0 to y = 1. We then compute the summation

of f(x). The area V in this case is unity. The symbol ∼ describes that a set of samples

x = {xi; i = 1, 2, · · · , N} are drawn from a uniform distribution in range x = 0 to x = 1

and the uniform distribution is denoted by U(0, 1).

When m (dimension of x) is high the MC method is relatively faster than the mid-

point or the trapezoid integration method [115] (page 443). The standard mid-point

integration method has the number of summation operations (summing all elements)

equal to the dimension m, and the computational complexity increase exponentially

relative to the dimension growth. In contrast, the MC method has a single summation

operator. In terms of convergence, the error of the MC estimation is proportional to the

inverse of the square root of N . When the size of samples N is large enough, the error

converges to zero as in Equation (2.34), where var 〈f(x)〉 is a variance of the function

f(x).

error = V

√
var 〈f(x)〉

N
(2.34)
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Figure 2.4: An approximation of
∫ x=1

x=0

√
1− x2dx by MC integration method

The MC method requires a good boundary approximation. The boundary must cover

the considered density function. In the case of a very broad distribution, the probability

density function usually has large areas of low density. It is worthless to sample in a

region which has density near zero, because sampling at a low density location makes

a tiny increment to the integration. Therefore, it is inefficient to sample the function

around the low density regions.

2.5.1.1 Importance sampling

The importance sampling method, e.g. [116], has been proposed to solve wasteful uniform

sampling. The key idea of importance sampling is to emphasis sampling in high density

areas. Even though the subject function is unable to be known exactly, we can manage to

get a good guess. This prediction may need more information depending on the problem

domain. Once we can estimate a subject function f(x) by g(x), we can estimate the

integration by using importance sampling.

∫
f(x)dx =

∫
f(x)

g(x)
g(x)dx (2.35)

=
Vg
N

N∑
i=1

f(xi)

g(xi)
;xi ∼ g(x) (2.36)
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where the Vg is the volume under function g(x). In general Vg is normalised to 1 for every

probability density function. Transforming from integration to summation by sampling

from density function g(x) allows us to remove g(x) from the integration.

An integration of a multiplication between two functions is called the inner product.

An inner product between a prior and likelihood is a posterior density function as shown

in the beginning of this section. From the importance sampling technique, the inner

product of two functions can be formed by summing f(x) and drawing samples from

g(x). ∫
f(x)g(x)dx =

1

N

N∑
i=1

f(xi) ;xi ∼ g(x) (2.37)

As an example from Equation (2.31), we can use importance sampling to estimate an

expectation value by substituting the likelihood for f(x) and the prior for g(x). Since

we know the prior density, we can calculate the expectation value from Equation (2.40).

〈µ〉 =

∫∫
µ.Q(µ, σ|x) dµdσ (2.38)

〈µ〉 ∝
∫∫

µ.L (x|µ, σ)P(µ, σ)dµdσdx (2.39)

〈µ〉 ∝ 1

N

N∑
i=1

µiL (xi|µi, σi) ; (µi, σi) ∼ P(µ, σ) (2.40)

For measurement xi, the prior parameters (µi, σi) are sampled proportional to prior

density P(µ, σ) and the expectation is estimated as in Equation (2.40). In order to draw

samples according to an arbitrary prior density, we can use rejection sampling or inverse

transform sampling.

2.5.1.2 Rejection sampling

In 1951, John Von Neumann used rejection sampling [117] to generate samples for

Monte Carlo methods. A key idea of rejection sampling is producing a sample x from a

standard random generator such as uniform or normal distribution then rejecting some

samples with a probability which is proportional to the rejecting-to-accepting ratio, see

Figure 2.5. Note that the x is an unknown variable of a function not a measurement

from the previous example.
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The distribution g(x) is chosen from a standard random generator and multiplied by

an arbitrary constant C to make C.g(X) cover f(x). First we sample xo from density

g(x). When we draw a vertical line at xo we can calculate f(xo) and the envelope

C.g(xo). Then a random variable u is generated from anther uniform random generator

U(0, 1). If the height ratio of f(x0)/C.g(x0) is larger than u, the sample xo will be

accepted, otherwise xo will be rejected and regenerated until the condition is met.

The rejection method generates many redundant samples and many samples are

rejected. So this method is inefficient.

Figure 2.5: Generating an sample by Rejection sampling method

2.5.1.3 Inversion sampling

In 1986, Luc Devroye used inversion sampling [118] to generate samples from any par-

ticular density function. For any particular probability density function f(x) we can

calculate the cumulative density function F (x), which is monotonically increasing up

to 1. We can transform a uniform distribution to f(x) by using the inverse function

of the cumulative function as Equation (2.41) and 2.42. Figure 2.6 shows the inversion

sampling process.

x ∼ f(x) (2.41)

x = F−1(u) ;u ∼ U(0, 1) (2.42)

This method has no rejection, so it can generate samples efficiently. The inversion

method has been used in the SIR particle filter [119] in the re-sampling step.
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Figure 2.6: Inversion sampling transforms a uniform distribution to the objective
distribution f(x)

2.5.2 Markov Chain Monte Carlo methods

In 1970, Hasting [120] suggested the Markov-chain model could be applied to MC in-

tegration. This is a Markov Chain Monte Carlo (MCMC) sampling method. MCMC

emphasises how to produce a series of samples, which is called a chain. In the chain,

the next sample is dependent on the previous sample in the series. MCMC combines

MC with a sample chain generator. The chain is automatically produced to explore a

high dimensional state space without human intervention.

From the importance sampling method, a large portion of samples should fall in a

high density area. To achieve the importance sampling strategy, the MCMC sample

generator constructs a proposal density, which is similar to the envelope function in the

rejection sampling method, and generates a sample by the rejection sampling method.

The rejection sampling method in MCMC is also called the Metropolis-Hastings algo-

rithm. The algorithm makes a chain of samples populated around a high density region.

In a high dimensional state space, a landscape of a density function usually consists

of several peaks and many low density regions. The chain is likely to be trapped in

a peak and unable to jump to other peaks because the Metropolis-Hastings algorithm

rejects all low probability sampling. So, it is unlikely to get good sampling in the desired

direction. Almost all of the samples will be rejected when the chain attempts to move
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across the low density region between peaks. The chain is trapped in the same region

and unable to explore new dense areas.

To solve the problem we have to reduce number of choices (dimension) and consider

one particular dimension for each sample. Moving in a single dimension is more likely to

get the dense region because of a lower number of choices. Searching in one dimension

reduces the search space exponentially compared to searching directly through a joint

density in higher dimension. The technique that considers one-by-one dimensions for

each step is also known as Gibbs sampling.

The success of MCMC relies on a sampling method that explores over dense areas and

has a small chance to visit low density regions. Furthermore the chain transition has to be

unbiased in the time domain, which means that the probabilities of a sample propagating

forward in time to next position and back to the original are equal. This balance

transition, also called detailed balance, is a key for MCMC to reach an equilibrium state

[121]. Normally the chain initially needs some period to explore the entire landscape to

make the sampling satisfy the detailed balance condition. The initial exploration period

is called the burn-in period.

To extend MCMC to generate samples with varying dimension, the dimension of the

state vector itself may be unknown, for example, estimating the number of clusters in

dataset [122] or determining the number of peaks in a LIDAR signal [123]. In these

cases, the MCMC sample chain has to leap from Rn space to Rn−1 or Rn+1. In 1995

Peter Green [124] proposed an algorithm designed for jumping between dimensions called

Reversible Jump Markov Chain Monte Carlo (RJMCMC). The transition of the chain

in this method is in balance, which means the possibility of reducing and increasing the

dimension are equal. So the equilibrium of sampling can express a true density function.

RJMCMC methods are very useful to examine statistical interference when a number

of parameters is varying.

Drawbacks of MCMC Those variation of MCMC methods can investigate density

function even in the case of varying the number of dimensions. However, there are at

least two significant drawbacks: the chain sampling and sensitivity in initialization.
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Parallel MCMC In real-time application such as tracking, the parallel MCMC is

desired. The sequential process of the chain sampling makes a parallel implementation

difficult. The MCMC chain must be split into many chains and processed in parallel.

Splitting the chain may cause dependencies between chains, where samples from different

chains are accidentally equal and make two chains have the same trace. The random

generator performing on each processor could generate overlapping chain. Parallel chain

MCMC has been discussed in [125, 126] and the authors emphasised random generation

on each processor. If we could generate random sequences, which make the numbers

in all sequences distributed uniformly, we could program MCMC in a parallel fashion.

Quasi-random sequences such as [127, 128] can be applied in MC integration effectively

because it produces uniformly distributed samples. They are called sequenced because

the new number is computed from the previous number and we can also perform the

skip-ahead of the sequence. Imagine we have a random sequence with size N and we

have two identical processing cores. Some random seed number is used for generating

the first partition of sequence in the first processor. For the second processor, a seed

number is set to the half way (N/2) in the sequence. With the skip-ahead method it

can be guaranteed that numbers in the two sequences are uniform and the chains never

overlap. The skip-ahead function in the CURAND library [129] is one example to show

that it is possible to implement skipping in the random sequence.

The ideal of multi-chain MCMC is similar to the particle filter which will be discussed

in Section 2.5.3. In a particle filter at a particular time, many samples are generated

and tested simultaneously.

2.5.3 SIR Particle filter

The particle filter represents the prior (or the posterior) density by a set of many points.

The points are distributed in state space according to the density function. The points

are similar to particles in space so it is called the particle filter. There are many variations

in the particle filter family and they have been influenced by the MC technique.

The Sequential Importance Resampling (SIR) particle filter was introduced in [119]

and applied to visual tracking in [23]. The SIR particle filter is well known because the

sampling strategy is effective. The particle filter is also called a Sequential Monte Carlo

method because it processes a series of observations but the samples are generated in
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parallel. Instead of using the single chain of samples the SIR particle filter produces a

lot of samples at the same time. In every frame an observation is fed to the particle filter

and parameters are estimated sequentially in time domain. No record of observations is

saved and in each frame only a current observation is considered. The word “sequential”

comes from processing a series of observations. However, it is possible to implement the

sampling in the particle filter in a parallel version because all particles are generated at

the same time.

To describe the SIR PF algorithm let us consider the following example. Assume we

are going to measure the state of a moving car by using a Sonar instrument, which can

return distance X between the object and the observer every period ∆t.

State variables Let X be the measurement distance and we need to recursively

estimate the position and velocity. To separate the noisy measurement X from estima-

tion state, we represent the estimation of state by expectations of position and velocity

S = (〈X〉 , 〈U〉).

Transition functions the dynamic of the car is modeled by two simple equations of

motion as shown in Equation (2.43) and Equation (2.44). These state transformations

in time domain are called transition functions. The noise E is drawn from a Gaussian

distribution. The dynamic model assumes that in a small interval of time the determin-

istic car position depends only on velocity. The noise in the velocity equation represents

unknown acceleration, which makes the velocity state dispersed in state space.

〈X〉t = 〈X〉t−1 + 〈U〉t−1 .∆t+ EX ; EX ∼ σX .
√

∆t.N (0, 1) (2.43)

〈U〉t = 〈U〉t−1 + EU ; EU ∼ σU .
√

∆t.N (0, 1) (2.44)

Prior density Once we have the dynamic model we can construct the prior den-

sity from the stochastic transition functions. In general, to reduce computational com-

plexity the current state (〈X〉t , 〈U〉t) is modeled to depend on only the previous state

(〈X〉t−1 , 〈U〉t−1) as a first-order Markov chain. When the noise is added to the model,

the system has been changed from a linear deterministic system to a stochastic system.

The state variables are now represented by a distribution in joint state space. The dis-

tribution of the state variables is prediction and is also called a prior density. In order
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to express the density function, the particle filter uses many of distributed state vectors,

P(S) = {Sn;n = 1, 2, · · · }. Single state Sn is also called a particle state with a particle

index n.

Likelihood function Each particle state is evaluated. If we assume the the mea-

surement distributes as a Gaussian, the likelihood is a probability of the measurement

occurring given the distribution. The likelihood is computed from the probability func-

tion and the measurement as in Equation (2.45). Note that in order to simplify the

problem, the variance is excluded from the state variables (unlike Equation (2.29)).

L (X|〈X〉 , 〈U〉) =
1

σ
√

2π
e−

1
2
(
X−〈X〉

σ
)2 (2.45)

Posterior density In order to represent the posterior, each particle in the prior

density is multiplied by the likelihood individually. The prior particles have the same

weight but the posterior particles have different weights according to the likelihood

function. So the posterior density is represented by a set of weighted particles in the

state space.

Re-sampling To prevent a particle from spreading to a low probability region, the

re-sampling method is applied as suggested in the importance sampling method, Sec-

tion 2.5.1.3. Then the process is repeated by transforming the particles to the next

iteration using the transition function.

Figure 2.7 shows the process of the Particle filter. A prior density P(S) is represented

by a set of particles. Then the likelihood L (X|S) of each particle is evaluated. The

resulting likelihood of a particle Sn is denoted by the weight wn. A mass distribution of

the particles is computed from the position of the particles and their weight. The mass

distribution is an approximation of a posterior density. Particles for the next iteration

are produced from the posterior by inversion sampling described in Section 2.5.1.3.

Then particles are transformed by a dynamic model in Equation (2.43) and 2.44. After

applying the dynamic model all weights will be reset and the particles will represent the

prior density of the next frame.
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Figure 2.7: Three steps of SIR particle filter algorithm from top to bottom: likelihood
evaluation, re-sampling and dynamics transition.

We can also use a particle filter to estimate the discrete state. In the case of a discrete

state model, we can apply a Markov chain model to regenerate the discrete state instead

of the dynamic motion model.

The likelihood computation is an interface between observations and the prior density

in a Bayesian framework. We can apply a particle filter to any problem as long as we can

model the transition and likelihood functions. The likelihood definition in [111] needs

probabilistic modeling. Probabilistic modeling of subject appearance is difficult and can

also have a normalising problem. Thus, the likelihood is computed by similarity between

an observation image and a synthetic image (image generated from the state and the

appearance descriptor).
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2.5.4 Likelihood and Similarity measure

Harris’s likelihood [111] is the probability of occurrence of an configuration x = {x1, x2, · · · , xN}

given prior density g(x; θ), where θ is a set of parameters to characterise the density

shape.

For example, the prior density is a normal density g(x;µ, σ) with mean µ and stan-

dard deviation σ. Measurements produce an observation configuration {x1, x2, · · · , xN}.

Then we can determine the likelihood as a series of products of g(xi;µ, σ) for every xi.

L (x|µ, σ) = C
N∏
i=1

g(xi;µ, σ) (2.46)

This likelihood definition is directly derived from probabilistic theory. However, we

have a problem with the normalising factor C. The likelihood is a density function ,so

integral over the prior parameter space {µ, σ} should be 1. However, the normalising

factor C depends on the number of measurements N and it is really important in order

to deal with the case of varying N observations. The likelihood function also depends on

nuisance parameters, such as the variances of each state. These cause normalizing the

likelihood function to be difficult. The likelihood is usually unnormalized so it shouldn’t

be called as a probability density.

Therefore in many visual tracking implementations, the likelihood is approximated

by similarity or dissimilarity measures without concerning the normalising factor [24,

34, 81]. The similarity function is non-negative everywhere. To compute the similarity

between an observation image and a synthetic image, we need to define the data structure

of an image first.

An image consists of many pixels arranged in horizontal (u) and vertical (v) directions.

Each pixel is denoted by I(pu, pv), where {pu, pv} is a pixel coordinate. A particular pixel

I(pu, pv) may have a vector or a scalar value. For example, a pixel constructed from red

green and blue channels, I(pu, pv) = {r, g, b} ∈ R3. The colour vectors {r, g, b} is in a

space field (p = {pu, pv}). The vector could be any other form such as a gradient value,

I(pu, pv) = {dIOdu ,
dIO

dv } ∈ R2, computed from a gray scale image IO.



Chapter 2. Background Theory 45

The vector array of image I(pu, pv) can be such histogram, a Haar feature, optical

flow etc. An image is constructed from a vector array I(pu, pv) in 2D space p = (pu, pv).

The dimension of a pixel vector can be large as I(p) = {Ii; i = 1, 2, .., imax}.

So, one possible method to compute similarity is the product of the exponential of

dissimilarity [81, 130]. For example, the likelihood between an observation image IA(pA)

and a synthetic image IB(pB; θ) generated by prior parameter θ could be computed from

the product sequence as Equation (2.47).

similarity =
∏

p=pA∩pB

exp
{
−dis

[
IA(p), IB(p; θ)

]}
(2.47)

2.5.5 Summary

The Bayesian estimator calculates the posterior density of the state from the prior

density and likelihood function. The numerical estimation involves generating random

samples according to the prior density. In the particle filter, the prior density is repre-

sented by a set of particles, which allow the process to be made parallel. One fact we

need to keep in mind is that the numerical method of the estimator is highly complicated

due to the huge number of samples required. It is a great challenge to implement the

method in real-time. In visual tracking, computing the likelihood function is a relatively

slow process due to large input data.

2.6 Camera Calibration

In order to perform tracking in a multi-camera network, all subject positions must be

described in the same coordinate system. If we cannot unify the representation of the

subjects in state space, integrating observations from many cameras is impossible. In

this work, tracking by multiple cameras always describes the subject state in the exact

location of a real world coordinate system rather than in an image coordinate system.

The camera calibration unifies all camera coordinate systems into a single system. The

calibration also allows us to use the ray-tracing method to generate a synthetic image

in order to compute the likelihood function.
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Figure 2.8: A pinhole camera model

Consider Figure 2.8 which is a basic pinhole camera model of a light ray from a

surface of an object projected on to a film or a sensor. The sensor surface is also called

the image plane. The pinhole camera consists of a small hole at the origin o that allows

light rays pass to the image plane. The distance between the hole and image plane is

denoted by f . Modern cameras have optical lenses in order to condense more light to

the low sensitive sensor. The large optical lenses make modern cameras able to work

in a dark environment. In modern cameras the distance f is approximately equivalent

to the distance between the image plane and the centre of the lens. The lenses can

bring about barrel and pincushion distortion to a projected image. Barrel distortion is

normally found in commercial lenses. They project a perfect square to be bent out on

the edges similar to a barrel shape. For narrow lenses, such as a lens with less than 30

degree of view on the diagonal, the distortion is negligible. The classic pinhole camera

model has no distortion as the light goes in a straight line.

Figure 2.9 shows a transformation between point q and p, where the distance between

the red plane and origin is unity because the focal length is normalised. The fixed plane

z = 1 represents the image plane and the coordinate system (u, v) is a pixel coordinate

on the image plane. All light rays must pass through the origin o so it is equivalent to

an aperture of the pinhole camera. This model can also describe a narrow view modern

camera, where the distortion is very small.

In [131], Hartley suggested that Tsai’s camera model [132] can be described in matrix

form. Here the 3-by-4 matrix is known as a projection matrix P , which transforms a

point q in a 3D world coordinate system to a point p in a 2D coordinate system on an

image plane. The projected coordinate on the image plane p = [pu pv]
T is expressed
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Figure 2.9: Projection from a 3D point (qx, qy, qz) to a 2D point (pu, pv) on an image
plane at z = 1. Note that translation and rotation are removed to simplify the model.

by homogenous coordinates. The homogenous coordinate system reduces the vector

dimension by normalising the third element to a unit. pw is pointing to the same

direction as z and always normalised to 1 to represent the fixed location of image plane

in z direction. Therefore, the pw cannot be represented on the image plane. Note that

the vector p has 3 elements to represent a line of a light ray and is projected to the

image plane by normalising p = 1, which is an intersection between the ray and the

image plane.


pu

pv

pw

 =


α γ εu

0 β εv

0 0 1



R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3



qx

qy

qz

1

 (2.48)

The relation of p and q is described by a linear system in Equation (2.48). The

projection matrix P is a product between an intrinsic matrix K and extrinsic matrix

[R, t]. The intrinsic matrix K describes an internal property of the camera and an

extrinsic matrix [R, t] explains the translation and orientation of the camera relative

to the reference origin point. It means moving or rotating the camera change [R, t]

but does not affect K. The matrix P has 11 unknown parameters inherited from K

and [R, t] matrices. In order to calibrate P, we need to know α, β, γ, εu, εv, t1, t2, t3 and
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three angles of rotation matrix.

p = K[R, t]q (2.49)

p = Pq (2.50)

It is easy to work with in pixel units so the intrinsic parameters (α, β, γ, εu, εv) are

converted from standard length to pixel units. Therefore, the focal lengths α and β are

in pixel units. Spacing between two neighbour photo-receptors in u and v directions are

denoted by du and dv. In some cameras du and dv are unequal. The focal lengths in

pixel units are shown in Equation (2.51) and eq focal beta.

α =
f

du
(2.51)

β =
f

dv
(2.52)

A camera direction z passing from origin o intersects the image plane at the image centre

(εu, εv), as shown in Figure 2.10. The parameters εu and εv are the centre point of the

camera in pixel units (the normal vector pointing out from image plane at pixel (εu, εv)

is exactly directed to the camera centre o). The parameter γ describes skewness between

pixel axes (u, v) on an image plane. Typically, γ = 0, which means u and v are exactly

perpendicular.

Methods to estimate intrinsic and extrinsic parameters are known as camera calibra-

tion. In 1987, Tsai [132] developed coplanar calibration method, which is very flexible

and easy to replicate, and later Zhang [133] simplified and popularised Tsai’s method.

A flat chessboard, which can easily be produced by a normal printer, was used in the

method. Compared to non-coplanar calibration it uses a 3D object such as a cube and

the method faces a difficulty to produce a 3D calibration object which can easily be

deformed. In the case of using a chessboard, we can draw many squares on it and place

it on a flat floor, which is quite simple. The coplanar method has become popular in

recent research [134–137].
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Figure 2.10: Relation between 3D coordinate system (x,y,z) and pixel coodinate
system (u,v).

2.6.1 Homography

To make this thesis self-contained, I will briefly describe Zhang’s method [133]. In the

coplanar calibration method the feature points in 3D are on a flat plane. To simplify

the problem all corner points are set at z = 0. A point q is a corner on a chessboard and

point p is a projected corner in a pixel coordinate system. The setting makes qz = 0.

So, we can remove the third column of the rotation matrix from the Equation (2.48).


pu

pv

pw

 =


α s εu

0 β εv

0 0 1



R11 R12 t1

R21 R22 t2

R31 R32 t3



qx

qy

1

 (2.53)

A 3-by-3 matrix that transforms a point on a flat plane to anther flat plane is called a

homography matrix H [131]. The product K[R, t] is a homography as all points on a

chessboard are in the same flat plane. In order to solve all 11 camera parameters, we

need at least 11 independent equations. A pair of projecting points from the chessboard

to the image plane gives 2 equations in the u and v components. In order to compute a

homography matrix, which contains 8 unknowns, we need at least 4 pairs of points. At

least 3 homography matrices must be constructed before determining the 11 unknown

camera parameters.
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p = λHq (2.54)

H =


H11 H12 H13

H21 H22 H23

H31 H32 H33

 =


hT
1

hT
2

hT
3

 (2.55)

A homography matrix H transforms q to p ,where hT
i is a row vector in H and λ is a

homogeneous normalising factor. H has 8 unknowns and 1 normalising factor. For each

pair of points (p and q) we can produce 2 equations. Therefore we need at least 4 pairs

of p and q in order to get an exact solution of matrix H.

The method to solve H is known as direct linear transformation (DLT) [131, 132].

Because p is a homogeneous coordinate, therefore, p−Hq 6= 0. However, p and Hq

are parallel, so their cross product is zero.

0 = p×Hq (2.56)

0 =


pvh

T
3q− pwhT

2q

pwhT
1q− puhT

3q

puh
T
2q− pvhT

1q

 (2.57)

Then we can rearrange the equation to a linear equation system Mh = 0, where

M =

 0 0 0 −pwqx −pwqy −pw pvqx pvqy pv

pwqx pwqy pw 0 0 0 −puqx −puqy −pu

 (2.58)

and

h =
[
H11 H12 H13 H21 H22 H23 H31 H32 H33

]T
. (2.59)

The 2-by-9 matrix M is constructed from a pair of p and q. Note that pw and H33 are

normalised to 1 by λ. If we capture an image, which has 4 different pairs of p and q,

we can construct 8 rows of matrix M and able to solve H. It means the chessboard

must have at least 4 landmark points. However, in practice many landmark points are

used to reduce error. In the case the the number of equations is larger than the number

of unknowns it is known as an over-determined system. Singular value decomposition
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(SVD) is applied to solve over-determined system equation Mh=0. Therefore, we can

calculate a Homography H from a chessboard image.

In order to solve 11 camera parameters many Homography matices are used.

2.6.2 Camera calibration method

In Zhang’s camera calibration method [133], the procedure starts by expressing a copla-

nar projection (Equation (2.53)) by the homography matrix.

[
h1 h2 h3

]
= λK

[
r1 r2 t

]
(2.60)

From Equation (2.60), the column vectors of the rotation matrix are

r1 =
1

λ
K−1h1 (2.61)

r2 =
1

λ
K−1h2. (2.62)

Using the fact that columns of the rotation matrix are orthogonal to each other.

rT1r2 = 0 (2.63)

rT1r1 − rT2r2 = 0 (2.64)

Then, substituting the rotation vectors.

h1K
−TK−1h2 = 0 (2.65)

h1K
−TK−1h1 − h2K

−TK−1h2 = 0 (2.66)

Let B = K−TK−1. Note that B is a symmetric matrix which has 6 unknown parame-

ters. From the equations Equation (2.65) and 2.66, Zhang constructed a linear equation

system Ab = 0 (b is unknown).

 A12

A11 −A22

b = 0 (2.67)
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where

b =
[
B11 B12 B22 B13 B23 B33

]
(2.68)

Aij =
[
hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3

]

So far, from a homography matrix we can generate two rows of matrix A. In order

to solve 6 unknowns in B, we need 3 independent homography matrices equivalent to

3 images of the chessboard captured by the same camera. Using more images gives a

smaller error and again in order to solve an over-determined problem, the SVD method

is exploited. As described in [133], once vector b is computed, all intrinsic parameters

can be calculated by using Equations from 2.69 to 2.74.

εv =
B12B13 −B11B23

B11B22 −B2
12

(2.69)

λ = B33 −
B2

13 + yo (B12B13 −B11B23)

B11
(2.70)

α =

√
λ

B11
(2.71)

β =

√
λB11

B11B22 −B2
12

(2.72)

s = −α
2βB12

λ
(2.73)

εu =
sεv
β
− α2B13

λ
(2.74)

The extrinsic parameters can be computed by Equations 2.75 to 2.78.

r1 = λK−1h1 (2.75)

r2 = λK−1h2 (2.76)

r3 = r1 × r2 (2.77)

t = λK−1h3 (2.78)

We can also refine the final solution by any least square error optimisation such as

Levenberg-Marquardt optimiser to get a smaller error.
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2.7 Hardware comparison

The computational power from the specification of a standard CPU, for example the

Intel Corei7 965 (4cores) can provide up to 69GFLOPS [10]. The computational power

is limited by the small number of cores, which is insufficient for 3D tracking.

An alternative platform is a Field Programmable Gate Array (FPGA), which provides

flexibility and more computation power. For example, the computational power of the

Virtex-6 SX475T, a high-end FPGA, was estimated at 450GFLOPS [138]. Another

model the Virtex-7 from Xilinx [139] can process up to 5,335 GMAC/s (Giga Multiply-

Accumulate Operations per Second). A FPGA is a collection of logic gates and registers,

which can be programmed as any kind of digital circuit. A FPGA is very useful in

Digital Signal Processing (DSP), which involves basic arithmetic operations such as

multiplication and addition. In the 3D tracking problem special functions such as inverse,

square root and logarithm are very common. Some projects have used FPGA in visual

tracking for example [140, 141] but they were restricted to a 2D feature basis because

of difficulty of implementing the special functions. The special functions such division

[142, 143], square root [144] and trigonometric functions [145] are difficult to optimise

and require a significant number of slices (physical resource on a FPGA). In a FPGA,

a complex algorithm such as 3D tracking, which involves the inverse of matrix and

trigonometric functions, it is extremely difficult to make the framework from scratch.

These functions can be found in a commercial library but implementing and testing them

still requires many tools. Designing and implementing a FPGA application requires

sophisticated tools and digital circuit design experience. These make implementing 3D

tracking on a FPGA difficult. For example, in order to perform 3D tracking, the ray

tracing method requires special arithmetic circuits. We can construct the operators

in a FPGA but it requires huge number of logic gates to make a FPU as showed in

Table 2.1. The Virtex-6 SX475T has 74,400 slices, from Table 1 in [146], (elementary

blocks to construct a digital circuit). Table 2.1 shows the resource requirement for each

operation, from Table 29 in [147]. This gives an idea of how much we can do with

the Virtex-6 SX475T. The ray tracing of a single subject needs up to a million floating

point operations (combination of addition, multiplication and dividing). If we do not

reuse the hardware resources (slices), we may not have sufficient resources. In short,
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implementing 3D tracking in a FPGA may face two major problems; complexity of low

level design leading to delay in development and also the physical resource limitation.

Even though the FPGAs showed the best speed performance and highest power

efficiency in many evaluations [148, 149], the evaluations were conducted on specific

applications, which is unfair for CPU and GPU. In [148], Kestur studied Basic Linear

Algebra Subprograms (BLAS), which involved multiplications and additions. In [149],

they studied random number generator, where the FPGA used binary operations; in

contrast CPU and GPU used special functions for mapping the distribution. These

evaluations did not consider the special functions. Implementing the special functions

requires large amounts of hardware resource (slices). CPU and GPU architectures ded-

icate a portion of the area on a silicon chip for implementing these special functions.

The unit is called the Special Function Unit (SFU).

Table 2.1: The resource requirement to implement floating point operations

Operation Resource1 (slices)

Multiply 692
Add/Subtract 626
Int32-to-Single 224
Single-to-Int32 233
Single-to-Double 68
Compare 19
Divide 1,366
Sqrt 809

For decades ray tracing has been a fundamental technique in Computer Graphics

and has been applied in many applications, such as 3D gaming, engineering computer

aided design or simple visualization. A special device attached to a standard computer

has been designed for rendering millions of pixels in a second and is called a Graphics

Processing Unit (GPU). A high-end GPU such as the Nvidia Tesla C2050 [150] or AMD

FireStream 9270 [151] can provide computational power beyond a TeraFLOPS, which

is much more than our requirement.

Another way for reusing the physical resources is to construct processing units, such

as a Von Neumann architecture or a stream processing unit, from those available slices.

The MicroBlaze [152] under the trade mark of Xilink is a processor constructed from logic

gates in a FPGA and requires software to control it. In short, processor units are created

1The Single-Precision (32bit) operations are speed optimised and no DSP slice usage
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inside the FPGA and the FPGA acts as a multi-core processor. In order to construct one

MicroBlaze core in the Virtex-6 family we need about 300 to 1600 slices[152], excluding

other peripherals. Roughly we can build 6 MicroBlaze cores in the Virtex-6 and each core

has FPU IEEE 754 compatibility (included addition, multiplication and dividing). The

normal CPU and MicroBlaze are slightly different but they are logically identical. Those

cores are extensions of Von Neumann processors. So applying MicroBlaze is similar

to using a CPU. The difference is just the type of processor. In fact the MicroBlaze

operates at around 250MHz, whereas the Intel CPU performs at over 3GHz. It seems

we are getting back to multi-core CPU option but this time we have to spend more

money on programable silicon hardware and more effort to make our own multi-core

architecture, which is already there in the market.

Table 2.2: CPU GPU and FPGA comparisons

Hardware Implementation Speed Performance Power efficiency

CPU Easy Low Low

GPU Medium Medium to high Medium

FPGA Hard High High

2.8 Summary

Figure 2.2 shows the components of tracking systems. A tracking system needs an ap-

pearance descriptor and a state estimator. A tracking system could be as simple as

the mean-shift [75], which consists of a state estimator (maximum-likelihood) and an

appearance descriptor (colour histogram). A tracking system may also be made from

sophisticated components such as Tracking-Learning-Detection in [26], which is con-

structed from an appearance descriptor (wavelet templates) and a complex state esti-

mator ( a combination of detection, motion estimation and data association). From this

study we believe these two components (an appearance descriptor and a state estimator)

are necessary in every tracking system.

In single camera (monocular) tracking, the fundamental problems of scale and ori-

entation can be solved by invariant features, such as SIFT [54]. However, SIFT does

not work well with a deformable object such a human body. Feature points detection

is not suitable for people tracking. People detection at the current state-of-the-art has

a detection rate of 97.9% at false alarm 0.01%, which is very promising. However, the
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people detection needs data association to make a tracking system. Detection cannot

create the trajectory of a person; it needs data association to link several detections into

paths. The method is very useful in non-calibrated camera systems. In such systems

integrating data between many camera seems impossible. Moreover the people detection

usually creates detection parameters from training method. Varying the point of view

from side-view to top-view affects the detection performance. Whilst solutions for the

challenge of reliable detection are still being developed, we use a Bayesian estimator in

this work.

In order to integrate data from different cameras into a single system, the cameras

have to be calibrated. A grid base visual hull likelihood such as a probability occupancy

map (POM) in [101] is a fast method. POM generates the probability density of people

occupying a grid-space on a ground floor. However, its accuracy of position estimation

relies on the resolution of grids. Estimation by the grid base is a fast computation

including converting a visual hull to an occupancy map on a ground floor, however, the

method cannot perceive some useful information such as spatial-pattern and colour.

Table 2.3: appearance descriptor comparison

Descriptor Advantage Disadvantages

Boundary

-unable to keep useful features
-low complexity -the boundary is not always
-fast computation obvious, requires segmentation

method

Spatial -keep only rich detailed features -inconsistent with different
pattern by removing low detailed data camera orientations

Adaptive -highly complex
image -high detail description -uses large memory to describe

a subject

Colour
-captures true physical property -illumination sensitive
of the object surface -requires white balance correction

3D model
-model consistent with -complex likelihood function
multiple cameras

Table 2.3 shows a comparison between different appearance descriptors. The non-

3D descriptors (boundary, spatial pattern, adaptive image, colour) are defined without

considering the camera model. They typically do not require camera calibration and are

very useful in a mobile platform, where the camera model changes rapidly. The boundary

is the simplest form of an appearance descriptor, which has low complexity and is a fast
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descriptor. Extracting the boundary of the objects typically is not straightforward and

requires a sophisticated segmentation method in order to get an accurate boundary. The

boundary extraction requires more information about the environment to judge whether

a pixel is on the subject or is a static obstruction. Obtaining an accurate boundary is

difficult due to the surrounding object and constantly changing shape of peoples bodies.

However, the approximation of shape, such as parametric shapes, region and silhouette,

can be very useful as described in Section 2.2.1.1.

An adaptive image descriptor keeps many details from observation images which

causes the computational complexity and memory utilization to be high. Applying this

descriptor in multiple target tacking in real-time is limited by the complexity. Further-

more, the adaptive image is always obtained from a camera, but is unable to explain any

variation of camera orientation. The image template pool is built to cover the variation

of appearances. The implementation of searching a large template pool is complex.

Colour description of subject appearance can capture the actual surface property of

the subject. However, estimating the real colour is challenging because the true colour

can be estimated after correcting the illumination conditions, such as white-balance and

sensitivity in each colour channel.

An image normally consists of large portions of plain and flat areas. These plain

areas contribute nothing to the tracking system. In order to remove the plain areas, the

spatial pattern uses feature filtering to remove the plain areas and keep only a few feature

points. The spatial pattern keeps rich detail with moderate complexity. The drawback

of this method is that the spatial feature is defined in the image pixel coordinate system.

So, the feature or signature of a subject is expressed in the pixel coordinate system and

this make integrating data from different camera orientations significantly difficult.

The non-3D descriptors cannot express the variation of target appearances under

different camera orientations. Including the 3D model into the descriptor allows a mul-

tiple camera tracking system consistently perceive all observable images. Therefore, the

camera calibration and 3D model is at the centre of this project.

The objective of this thesis is to track people in a 3D environment. The adaptive

image and spatial pattern are inconsistent when many cameras are used. We will not
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use adaptive image and spatial pattern because of the data integration constraint. We

are going to use the boundary, colour and the 3D model as a primary observation.

For the state estimator, the maximum likelihood (ML), the maximum a posteriori

(MAP), detection and data association are approximations of the Bayesian estimation.

In short, the Bayesian estimator is a complete description of these methods and gives

better estimation. The reason for using ML and MAP approximations is that Bayesian

estimation requires higher computational power. This problem can be solved by choosing

a hardware platform that can provide higher computational power. A Bayesian estimator

offers two advantages; complete description for probability density and the ability to

integrate various form of probabilistic models. In Section 2.5, the numerical Bayesian

estimator is discussed in more detail.

2.8.1 Research direction

In this thesis we study the Bayesian tracking method in a calibrated camera network.

The Bayesian estimator with a vertex-base 3D model is widely used for tracking but

the main drawback is the complexity. The vertex-base body template is a common

appearance descriptor in 3D people tracking. The template can be any shape because

the vertex template is very flexible. The flexible always comes with the cost that the

vertexes projection is a time-consuming task compare to a parametric shape.

Unlike previous methods, we use a parametric ellipsoid model, which makes estima-

tion faster. Comparison between a vertex-base and a parametric-base are discussed in

Section 3.3 We apply Bayesian estimation to obtain accurate results compared to the

grid base detection method. We exploit the benefit of Bayesian estimation that it can

be modeled by various probabilistic models. Thus, we are able to include useful prob-

abilistic models such as membership probability and colour-texture signature into our

likelihood model. The parametric ellipsoid model and the texture signature make our

tracking novel and reliable.

In order to compare our approach to others, we start with the PETS evaluation [153],

which provides dataset and evaluation scores as summarized in Table 2.4 (MOTA=multiple

object tracking accuracy). From Table 2.4 a tracking algorithm is constructed from var-

ious appearance descriptors and state estimators.
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Table 2.4: MOTA comparison with results in [153]

Author MOTA Appearance description Estimator

Arsic09 22% 3D vertex model Detection[154]
[154] Detected volume in x,y and time Data association (Normalized cuts [155])

Berclaz09 79% 3D visual hull Detection (POM [101])
[156] 2D positions in ground plane Data association (LP [156])

Breitenstein09 75% Spatial pattern (HOG+ISM) Detection
[157] 2D positions in image plane Data association

2D positions in image plane Bayesian (Particle filter)

We also implemented our tracking in a GPU to accelerate the computation. From the

review above a GPU can improve the speed significantly compared to a CPU. A GPU

delivers computational power of around 10 times more than a CPU. GPU implementa-

tion is a medium difficulty compared to the low level design of a FPGA implementation,

which is very difficult and may cause delay to the research. We decided to implement

the tracking framework on the GPU.

The acquired texture is also applied to recognition as described in Chapter 6. The

recognition remembers subjects after leaving and re-entering the scene. This shows

that cooperation between a tracking and a recognition system can lead to a smarter

recognition system.



Chapter 3

Development of Multi-Target

Multi-Camera tracking

The chapter starts with a study of single target tracking system in a 3D environment

using background segmentation. The primary objective was to perform single target

tracking in the 3D environment.

From related work such as [23, 75] performed tracking in 2D, which estimate position

of an object in pixel coordinate system. The 2D tracking overlook the camera model

and perform tracking in the pixel coordinate system. The 2D tracking use single camera

and unable to extent to multi-camera tracking because the 2D tracking done not have

geographic information to indicate relationship between cameras.

We included 3D model camera calibration into our single target tracking for two

reasons; accuracy and scalability. In real world people motion is limited on the floor

and usually in urban environment the floor is flat. We can make a sensible motion of

people on a flat floor. The motion model of people on a flat floor is more sensible than

motion model on people in pixel coordinate. The 3D tracking include perspective effect

as a camera model. We know that two people moving at same velocity can be projected

into different velocity in the pixel coordinate. The further subject from camera appears

to be slow in image plan. If we do not take the camera model into account, the motion

model and other appearances, e.g. perspective size and orientation, will be predicted

unrealistically. Furthermore, the 3D tracking is able to extend to multi-camera tracking

60
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because the camera model give the geographic information of the cameras. Integrating

more cameras into the tracking system can be done systematically.

Tracking in a 3D environment usually uses points-like human template (vertexes) such

as [81, 158], which requires hundreds of vertexes to represent an entire human body. In

Section 3.2, we are going to present a fast method to generate a human template by using

a parametric ellipsoid model. The human body is represented by an ellipsoid surface in

3D, which needs few parameters to process and makes computation light. The ellipsoid

also allows us to learn the texture of a human body as it became as a good identity for

recognition.

After the first experiment in single target tracking, our objective was extended to

multi-target and multi-camera tracking. It was a significant change and much more

work was required. The simple single target tracking framework was redesigned for the

multiple target tracking problem. New problems of distraction and short-time disap-

pearance will be considered in Section 3.4. To deal with these problems, we design the

probabilistic model and distraction suppression mechanism will also be described in Sec-

tion 3.4. This chapter will describe the algorithm design and our contribution in using

and ellipsoid model in tracking method. Implementation and evaluation of the multiple

target tracking will be discussed later in Section 4.

3.1 Single person tracking

In this section we consider tracking a single person . In order to provide a gentle in-

troduction to 3D tracking, some practical problems such as occlusion, distraction and

detection will be disregarded. The practical obstacles will be considered later in Sec-

tion 3.4.

This tracking system is based on Bayesian statistics (a state estimator) and 3D el-

lipsoid (an appearance descriptor). To estimate the state of a subject by posterior

estimation, the SIR particle filter[23] is a good candidate because it allows us to model

dynamics and appearance of a target. The most interesting property is that the algo-

rithm can be parallelised almost directly.
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3.1.1 SIR Particle filter

The Sequential Importance Resampling (SIR) particle filter[23] is in a family of Monte

Carlo estimation as described in Section 2.5.3. An objective is to approximate a posterior

density function when a prior and a likelihood function are available. To achieve an

effective sampling method, the particle filter exploits prediction or a prior density. The

prior density is expressed by a set of points in state space, a point is called a particle.

Then a weight of each particular particle is computed from the likelihood function (or

similarity between observation and a synthetic image generated from the particle). The

resulting weight and the particle distribution represent a mass distribution of the particle

cloud and the mass distribution represents posterior density. A particle in a high density

region of the posterior represents high confidence in the state. Once the posterior is

computed, the system can determine the output state from the expectation value or the

maximum posterior method. In order to prepare the prediction for the next generation,

the set of particles representing the posterior density is re-sampled and then transformed

by a transition function. An objective of re-sampling is to generate samples proportional

to the density because a particle in the dense area will contribute more accuracy as

described in Section 2.5.1.1. The transition function can be modeled by the physical

and statistical dynamics of the subject. Finally, all weights of particles are equalised so

the particle cloud represents a prior density of next generation and the process repeats

again.

Figure 3.1: SIR particle filter consists of 3 functions likelihood, re-sample and tran-
sition.
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Figure 3.1 shows the process of the SIR particle filter. At time t a state vector is

denoted by St. A prior density function P (St) and the observation Image It are fed

to the likelihood function to produce a posterior density P (St|It). The posterior is re-

sampled and transformed by the transition function to generate the prior density of the

next generation P (St+1).

Figure 3.2: Data structure of the state S.

Data-structure The particle filter uses the distribution of particles to represent

the probability density function. So the subject state is expressed by nmax particles.

Consider data-structure of the state vectors and weights, the nth particle is a column

vector of the state Sn,t ∈ Rmmax , where each value in a dimension stores a physical

attribute of the subject. Note that the time index t will be dropped because we are

considering only single iteration.

Likelihood function In Algorithm 3.1, every single particle Sn is tested by the

similarity measure. A value of similarity between a particle and observation is saved

in a particle weight wn. A combination between a set of particles and a set of weights

builds the mass distribution in state space, which expresses the posterior density.

Algorithm 3.1: Likelihood function

1 Input: An observation image I and a particles set S
2 Output: A set of output weight w
3 For n = 1 to nmax

4 Generate a synthesis image Is from a particle Sn

5 Calculate a similarity value between the synthesis Is and the observation Io and
save the similarity to wn

6 End
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Resampling The re-sampling generates a new set of S by the inversion sampling

method as described in Section 2.5.1.3. The cumulative sum of weight (csw) is calcu-

lated. Note that the sum of all weights must be normalised to 1. The csw is a function

of n and it is monotonically increasing with respect to n. According to the inversion

sampling method, a dummy set of numbers {ui;ui = i
nmax
} is created, which are uni-

formly distributed. The range of csw(n) and ui is from 0 to 1. So ui can be mapped to

csw(n). A new sample index n′ is sampled by inversion sampling.

u = csw(n) (3.1)

n′i = csw−1(ui) (3.2)

csw−1 is not a bijection function so that a single ui could generate many n′i depending

on slope of csw(n). The more weight wn the more the slope of csw(n) and the more the

number of children. This method is called resalmpling [112]. The re-sample produces a

new set of S. The child particles S′n′ are at the same position as their mother particles

Sn and the number of children is proportional to the weight wn. Algorithm 3.2 shows

detail of the re-sampling method.

Algorithm 3.2: Re-sample function

1 Input: S and w
2 Output: S′

3 Allocate memory for csw
4 Compute sum of weight sumw←

∑nmax

n=1 wn

5 For every n
6 Normalise weight by wn ← wn/sumw
7 End
8 csw1 ← w1

9 For n = 2 to nmax

10 cswn ← cswn−1 + wn

11 End
12 i← 0
13 For n = 1 to nmax

14 u← (n− 0.5)/nnmax

15 While u > cswn
16 i← i+ 1
17 End
18 S′n = Si

19 End
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Transition function Then the child particles are transformed by the transition func-

tion as sumarised in Algorithm 3.3. In the single target tracking problem, the state vector

consists of the position on the ground floor plane and the velocity. The transition is a

simple equation of motion.

Sn,t =


posx

posy

velx

vely

 (3.3)

Sn,t+1 =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

Sn,t +


σpxWpx

σpyWpy

σvxWvx

σvyWvy

 (3.4)

The noise of velocity and position are modeled as the 2D Wiener processes [159],

{Wpx,Wpy} and {Wvx,Wvy} are joint 2D Wiener processes of position and velocity,

respectively. And variances (σpx, σpy, σvx and σvy) control the distributions of the noise.

Algorithm 3.3: Transition function

1 Input: S′n
2 Output: Sn

3 For every n
4 Apply deterministic transformation Sn ← AS′n,t
5 Add noise to state vector Sn ← Sn + σW
6 End

3.1.2 Basic similarity measure

In this section we will discuss a primitive version of the similarity measure for single

target tracking In order to compare the observation and a synthetic image, some useful

pixels were extracted from the original image. Background segmentation was exploited

to separate moving people from a static scene. The adaptive mixture of Gaussian (MOG)

model [83] was used for background learning. Each pixel p of observation It was processed

by a MOG filter. After 100 frames (t = 1 to 100) the MOG could estimate means µc,p
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and variances σ2c,p of three colour channels c = {1, 2, 3} (red, green and blue) of the

pixel p. Then we used Chi-square test to separate the static background pixels from the

dynamic foreground pixels.

Qt,p =
3∑
c=1

(
It,c,p − µc,p

σc,p

)2

(3.5)
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Figure 3.3: Chi-square distribution (blue) and its cumulative function (green)

Considering a particular pixel, Q is distributed as a Chi-square distribution. We can

a set threshold base on probability. Figure 3.3 shows that 99% of observations of Qt,p are

less than 11.36. This means 99% of measurements that come from the static background

are in the range 0 < Q < 11.36. Normally, the moving objects has a distinctive colour

comparing to the background. So, we can separate the static background from moving

object by the Chi-square threshold.

Ift,p =

0 , Qt,p < 11.36

1 , 11.36 ≤ Qt,p
(3.6)

A foreground image If was generated by the segmentation method as described above.

Then similarity measure is computed using Jaccard index between If and a synthetic

image Is.
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In order to produce the synthetic image Is, a rectangular plane was generated by

vertical cross-section of a cylinder as shown by Figure 3.4. Note that the height and

width of the cylinder were fixed. The normal vector n of the rectangular surface does not

has vertical components and it always points to the camera. This rectangular surface is

generated by mapping 4 corner points of a cross-section model in real-world coordinates

into the image plane as shown by Figure 3.5. In this experiment, state variables are

the position of the cylinder centre on the ground plane and the velocity on the ground

plane.

1.8m

0.4m

Figure 3.4: Cross-section of cylindrical model.

Figure 3.5: A rectangle on bottom-left is an example projection of the cylindrical
cross-section model.
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The corners of the rectangular model in the world coordinate system were projected to

the image plane by the camera projection matrix P. The projected template M consists

of 4 points (corners), where each point is expressed by a column vector in Equation (3.7).

The r and h are radius and height of the cylindrical model.

M =


0 0 0 0

−r −r r r

0 h 0 h

1 1 1 1

 (3.7)

Before the projection, the template M is transformed by rotation matrix to make

the surface alway faces to the camera. The rotation matrix is generated from the unit

normal vector (n = [nx, ny]
T), which is determined by the location of camera and the

state position vector, [posx, posy]T, as shows in Figure 3.4. The position vector is also

used as a translation vector to shift the template from the origin to the position. Note

that m is a homogeneous coordinate system so the third element must be normalised to

1. Therefore, the 4 points of m on image plane can be computed from Equation (3.8).

Note that the projection of the model is a quadrilateral consisting of 4 corners, which

need to be 90 degrees.

m = P



nx −ny 0 posx

ny nx 0 posy

0 0 1 0

M

 (3.8)

Once the 4 points are projected, the ratio of foreground pixels in the quadrilateral

over the total area was calculated. The ratio is the similarity between If and Is, where

Is is a synthetic image of the quadrilateral and If is the foreground image. If is

generated from the observation and the background model, whereas the rectangle image

Is is generated from the particle state.

For the nth particle the likelihood is calculated form the ratio and stored in the weight

wn as Equation (3.9), where the quadrilateral image is generated by a particle Sn. The

quadrilateral image is denoted by Isn. The sensitivity αmakes similarity function sharper.
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wn =

(
|If ∩ Isn|
|Isn|

)α
(3.9)

The particle filter used 512 particles so two thousands corners were produced in each

single observation image. The computation cost is relatively high when compare to

maximum-likelihood method.

3.1.3 Experiment and result

In the experiment of single target tracking, the SIR particle filter was implemented with

512 particles and sensitivity α = 5. The program was implemented in MATLAB and

tested on the PETS09 dataset [160].

PETS09 provides both intrinsic and extrinsic camera parameters in xml files. How-

ever, the dataset gave the orientation in terms of Euler angle [Rx Ry Rz] (a 3-by-1

vector), so it was converted to a 3-by-3 rotation matrix. The conversion method can

be found in the xyz (pitch-roll-yaw) Euler Angles convention method[161] as shows in

Equation (3.10).

R =


cosRycosRz cosRzsinRxsinRy − cosRxsinRz sinRxsinRz + cosRxcosRzsinRy

cosRysinRz sinRxsinRysinRz + cosRxcosRz cosRxsinRysinRz − cosRzsinRx

−sinRy cosRysinRx cosRxcosRy


(3.10)

The program was tested on a work station computer with a 2.4GHz CPU. Its running

speed was about 0.2 frames per second (fps). The system required an initialization

position by manually selecting a subject.

Figure 3.6 is an example result from many repetitive tests. The estimation was very

close to ground truth in the early period of tracking. Until around frame 300 the subject

was occluded by another person and the static object led to drifting of the estimation.

The tracker sought the subject and oscillated around the ground truth towards the

end period of tracking. The drifting was about 2m away from the ground truth but it

appeared as a few pixels (20 pixels) in the image plane. When the angle between the

camera direction and the ground plane is small it amplifies the error from a few pixels in

the vertical direction on the image to a huge distance on the ground plane. If the camera



Chapter 3. Development of Multi-Target Multi-Camera tracking 70

angle increases the error distance should decrease. Another solution is to design a new

similarity measure, which produces higher precision measure in the vertical direction on

the image plane.

Figure 3.6: Black solid line is ground truth and red markers are the estimated tra-
jectory in meter.

Figure 3.7 shows a capture screen of the program during execution. The captured

screen at frame 350 shows a distraction from the person on the right side resulting in a

loss of target in the next frame. The result shows many problems.

• Firstly, the drifting effect due to the imprecise similarity measure in the vertical

direction in the image plane leads to a large error in the radial direction to the

camera. When a subject is further away from the camera the angle between the

ground plane and a direction from the camera to the target is small and caused

larger error. It is similar to find an intersection between 2 lines where the angle

between them is really small and the intersection point is hard to detect perfectly.

• Secondly, the similarity measure computation is slow at 0.2 fps so it is far from a

practical real-time application. The number of particles can be reduced but this

will affect the precision. So reducing the number of particles is not a good idea.

The similarity measurement must be improved in term of speed and precision.
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Figure 3.7: From top-left to bottom-right, tracking results of frame 290, 300, 310,
320, 330, 340, 350 and 360. Particles on ground floor show estimated position where

green is high weight. The tracker was distracted in the last two frames.

• Thirdly, the system is not fully automatic as it requires human to select a subject
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position to initialise the tracker. Applying the object detection method can full-

fill this requirement. This means that detection and tracking function must run

concurrently. So, more computation power is required to achieve a higher frame

rate.

• Finally, distractions from other moving objects are inevitable. In order to solve this

problem, the tracking system must know all subject positions in the scene. Once

we know the positions of all subjects, the overlapping between their silhouettes

can be predicted and handled effectively.

3.2 Fast Ellipsoid projection

In previous sections, the simple tracking method was implemented and tested. The

problems, precision, distraction and speed, have been identified. The problems are

caused by a too simple template model. In this section we will introduce a new likelihood

function based on an ellipsoid projection which can prevent those problems that occurred

in the simple tracking. The new model can measures the similarity more precisely to

suppress the distraction problem.

3.2.1 Ellipsoid projection

A surface of a human body is approximated as an ellipsoid model, which is a stretched

sphere in a particular direction. An equation of a unit sphere is shown in Equation (3.11),

where a point q = [qx qy qz]
T is on the unit sphere surface.

q2x + q2y + q2z = 1 (3.11)

We can stretch each dimension by applying a scaling factor as in Equation (3.12) and

this is known as a ellipsoid equation. The scaling factor ax, ay and az are radii for the

x, y and z directions, respectively.

(
qx
ax

)2

+

(
qy
ay

)2

+

(
qz
az

)2

= 1 (3.12)



Chapter 3. Development of Multi-Target Multi-Camera tracking 73

We can express the ellipsoid in a matrix form as in Equation (3.13).

qTAq = 1 (3.13)

The scaling matrix A consists of the inverse of the radii as shown in Equation (3.14)

A =


1
a2x

0 0

0 1
a2y

0

0 0 1
a2z

 (3.14)

The ellipsoid can be translated from an origin point to a particular position s as shown

in Equation (3.15) and this equation is used as the human body template.

0 = 1− (q− s)TA(q− s) (3.15)

In order to project the ellipsoid template to the image plane, the ray tracing technique

of ellipsoid projection [162] has been extended. The ray tracing method is originally

from computer graphics and used to generated an artificial image from a predefined

3D environment. By setting a camera at a particular location in 3D space, a ray that

passes though the camera origin and a pixel can be determined. In Section 2.6 the

camera model and calibration method have been reviewed. The origin point of a camera

coordinate system is a point that all light rays must pass through, also known as an eye-

point. The ray tracing projection draws a ray (a line in 3D) from the eye-point passing

through a pixel and continuing further until the line intersects some surface. Once the

ray meets a surface, the pixel colour and intensity are determine by the surface property.

For example, if the ray meets a red cube in 3D space the pixel is assigned to be red. So,

we need to know how to compute the eye-point and the direction.

In the camera model the extrinsic parameters explain the orientation and translation

of the camera. The camera coordinate system can be expressed in term of a world

coordinate system as in Equation (3.16).

qcamera = Rqworld + t (3.16)

qworld = RT(qcamera − t) (3.17)
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From the camera model we know that the eye-point is an origin point in the camera

coordinate system, qcamera = 0. So, we can compute the eye-point, which is denoted by

eworld, from Equation (3.18). The eworld is position of the origin of the camera model.

eworld = −RTt (3.18)

Next the intrinsic matrix K transforms a coordinate qcamera on the image plane to a

pixel coordinate pimage = [px py 1]T.

pimage = Kqcamera (3.19)

qcamera = K−1pimage (3.20)

Substitute Equation (3.20) into 3.17.

qworld = RT(K−1pimage − t) (3.21)

Then the ray direction d is computed from the coordinate qworld and the eye-point

eworld.

d = qworld − eworld (3.22)

d = RTK−1pimage (3.23)

In summary, we can compute the eye-point and the direction from Equation (3.18)

and Equation (3.23), respectively.

A line in 3D space is a representation of light ray which is constructed from the

eye-point and the ray direction. The ray is a collection of infinite points that meets

the condition in Equation (3.24), where d is a unit vector of the ray direction and τ is

the distance from the eye-point to the ellipsoid surface. Note that we have to drop the

subscript ()world to simplify the equation and we are now considering every vector in the

3D world coordinate.

q(τ) = e + τd (3.24)
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The equation of ray, Equation (3.24), is inserted in the ellipsoid, Equation (3.15) and

the output is Equation (3.25).

0 = 1− τ2dTAd− 2τdTA(e− s)− (e− s)TA(e− s) (3.25)

0 = ατ2 + βτ + γ (3.26)

Where

α = dTAd (3.27)

β = 2dTA(e− s) (3.28)

γ = (e− s)TA(e− s). (3.29)

From Equation (3.26), there are three cases that determine the root and each case

corresponds to a particular intersection situation as in the list below.

1. The roots τ are two different real numbers which means the ray intersects

the ellipsoid surface twice.

2. The root τ are two different imaginary number which means the ray never

intersects the ellipsoid.

3. The root is a single real value when the ray just touches the ellipsoid

surface.

We are considering the third case when the ray intersects the ellipsoid once which implies

that the ray touches the ellipsoid at a boundary. We can construct a projection of the

ellipsoid silhouette on the image plane by rays that meet the third condition. A general

form of the root of a quadratic equation is

τ =
−β ±

√
β2 − 4αγ

2α
(3.30)

The root is a single real value when the discriminant β2−4αγ is zero, where B = A(e− s)

and I is the identity matrix.

β2 − 4αγ = 4[dTA(e− s)]2 − 4[dTAd][(e− s)TA(e− s)− 1] (3.31)

= 4dT
[
BBT −BTBI + A

]
d (3.32)
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Next Equation (3.23) is substituted into Equation (3.32).

β2 − 4αγ = 4pTK−TR
T [

BBT −BTBI + A
]
RTK−1p (3.33)

= 4pTEp (3.34)

The conic matrix E is symmetric. It transforms a pixel coordinate to a scalar ψ,

which can identify whether the ray from p intersects the ellipsoid or not. When ψ is

positive, the τ has two roots and the ray intersects the ellipsoid surface twice. The ray

never intersects the ellipsoid if ψ is negative value. In the special case when the ray

intersects once, the function ψ = 0 defines an elliptical bounding box of the projected

ellipsoid.

ψ =
β2 − 4αγ

4
(3.35)

ψ = pTEp (3.36)

The scalar function ψ is a function of the pixel coordinate (pu, pv). The conic function

in the matrix form has been transformed to a scalar form to reduce the complexity of

computation. In the likelihood computation, the ψ value on each considered pixel must

be calculated and the scalar form improves speed a lot. If the pixel-wise computation is

complex the global computation is much more complex, so, we have to reduce complexity

from the pixel level. The Equation (3.36) needs 12 multiplications and 8 additions,

whilst, Equation (3.37) has 6 multiplications and 8 additions. For huge number of pixels

the different is amplified and results in a speed gain of several milliseconds.

ψ = 1−A(pu − cu)2 −B(pu − cu)(pv − cv)− C(pv − cv)2 (3.37)

The scalar coefficients, A,B and C, characterise size and orientation of the ellipse. The

centre point (cu, cv) can be computed from the derivative of ψ in Equation (3.36) with

respect to pu and pv because the ψ is a convex function and has a peak at the centre.

The centre position is computed from the conic matrix E.

cx =
E12E23 − E13E22

E11E22 − E2
12

(3.38)

cy =
E12E13 − E11E23

E11E22 − E2
12

(3.39)
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The major and minor radii (a and b) are calculated from Equation (3.41) and Equa-

tion (3.42).

E∗ =

E11 E12

E12 E22

 (3.40)

1

a2
= −λ1

det E∗

det E
(3.41)

1

b2
= −λ2

det E∗

det E
(3.42)

Where λi and Vi = [V1i V2i]
T are an eigenvalue and a corresponding column eigenvector

of the E∗. The coefficients in Equation (3.37) are computed from the eigenvectors and

radii. So we can compute all five parameters in Equation (3.37).

A =
V 2
11

a2
+
V 2
11

b2
(3.43)

B = 2

(
V11V21
a2

+
V12V22
b2

)
(3.44)

C =
V 2
21

a2
+
V 2
22

b2
(3.45)

To summarise this section, the ellipsoid model represents a human body surface in

a 3D world and a light ray is computed from a direction vector d and the eye-point e,

which are derived from a camera model. The ray is expressed in term of τ , which is the

distance from the eye-point to the ellipsoid surface. τ is root of the quadratic function

and the special case is when the ray touches the ellipsoid and that defines the boundary

of the ellipsoid projection on image. We constructed the boundary contour equation ψ

which is a general form of ellipse equation. The ellipse equation can be simplified to a

scalar function and it has lower complexity compared to the vertex form.

In next section, we will described texture mapping, which was used as a feature in

tracking and allowed the system to perform recognition.

3.2.2 Texture mapping

The ellipsoid surface is a 2D closed surface in 3D space. The colour distribution on

the 2D surface is called a texture image as in computer graphics. There are so many

method to map a point in a coordinate system to another system. The ellipsoid surface
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in not flat and a 2D Euclidean coordinate system is unable to represent position on

the ellipsoid surface. A coordinate of an ellipsoid surface is mapped to a cylindrical

coordinate system, which makes the coordinate on the surface manageable.

We used a cylindrical coordinate system to map a point on the ellipsoid surface to the

texture image because the cylindrical mapping makes a uniform distribution of points

on an ellipsoid surface [163]. A benefit of using a uniform distribution mapping is that

each pixel on a texture image represents an equal surface area on the ellipsoid surface.

All pixels of the texture image are equally important.

To calculate a point on an ellipsoid surface, which intersects a ray, we have to re-

consider Equation (3.26). The distance τ must be calculated and then intersection

point in 3D Euclidean space will be mapped to a 2D cylindrical coordinate. In order to

computer surface to surface mapping, we scale the ellipsoid to a unit sphere. It makes

calculation much easier.

The scaling factor is a square root of A, where ax,ay and az are radii of the ellipsoid.

A
1
2 =


1
ax

0 0

0 1
ay

0

0 0 1
az

 (3.46)

From Equation (3.26) we can express this in a scaling space d̂ = A
1
2 d and ês = A

1
2 (e− s).

0 = −d̂Td̂τ̂2 − 2d̂Têsτ̂ + (1− êTsês) (3.47)

Before the τ̂ is solved the direction vector d̂ must normalised to a unit, let d̄ = d̂
|d̂|

.

Now we can compute the distance τ̂ and the intersection coordinate u = [u1 u2 u3]
T on

an ellipsoid surface from Equation (3.48) and 3.49.

τ̂ = −d̄Tês −
√
ψ (3.48)

u = ês + τ̂ d̄ (3.49)
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Figure 3.8: A top-view of the projection system, eye-point ê, position of ellipsoid ê
and the direction vector d̂.
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Figure 3.9: Transforming Euclidean coordinate to Cylindrical coordinate.

The unit vector u = [u1 u2 u3]
T points from the centre of the unit sphere to its surface

as shown in Figure 3.9.

z = u3 (3.50)

θ = tan2(u2, u1)− θo (3.51)
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We can transform the coordinate system from Euclidean to a cylindrical coordinate as

in Equation (3.50) and 3.51. The function atan2(x, y) is a arctangent function and the

θo is a facing angle of the subject, which is approximated by the velocity of the subject.

3.2.3 Summary

In this section, we model a human body as a 3D ellipsoid. The 3D ellipsoid is transformed

to a 2D ellipse and the transformation allows us to calculate a contour function ψ

in parametric form. The parametric ellipse contour function will accelerate silhouette

likelihood computation. We use a scaling transformation to make an ellipsoid to be

a sphere in order to calculate the distance τ . When τ is computed we can find the

intersection coordinate on the unit sphere. Then the intersection coordinate on the unit

sphere surface in Euclidean coordinate system is transformed to a cylindrical coordinate

system to make uniform texture mapping. Finally, we can map ellipsoid surface to the

texture image in the (z, θ) coordinate system.

3.3 Ellipsoid Likelihood

In this section, we will use the parametric ellipse contour function in order to compute

the likelihood. The ellipse Equation (3.37) is an elliptical boundary on an image plane.

The elliptical boundary is used in the likelihood calculation by computing the fill-in

ratio as in simple tracking in Section 3.1.2. The likelihood also includes other features

such distraction suppression and a texture similarity measure.

The computation of the parameters in an ellipse function is more complex than in

the previous rectangular model but the ray-tracing calculation for quadrilateral surface

is more complex than the ellipse function. When considering many pixels in a boundary,

the ellipse function will be faster. To show the complexity of ray tracing in the case of

a rectangular plan model constructed from 4 vertexes. : in [164] (page 482-491), the

rectangular template is constructed from 4 points (4 vertexes or 2 triangles).

Vertex base ray tracing: The procedure to compute ray tracing for a vertex model

is below.

(1) The triangles are rotated and translated to a desired position.
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Figure 3.10: Ray tracing of an ellipsoid in 2 cameras system.

(2) The distance from the camera to the plane is computed.

(3) The intersection point is expressed in term of vectors of edges of the

triangle, also called barycentric coordinates.

(4) The linear equation are solved to get the intersection point in barycentric

coordinates.

(5) If the barycentric coordinates are in the range between 0 to 1, so the

ray intersects the triangle.

The template preparation in step (1) is computed for every frame and steps (2)-(5) are

computed for every pixel.

Parametric ellipsoid ray tracing: in contrast, ray tracing for an ellipsoid model

as below requires complex preparations in step (1) and (2), but requires a simple com-

putation at the pixel level in steps (3) and (4).

(1) The conic matrix E is computed from Equation (3.33), which includes

translating the ellipsoid to the desired location.

(2) The ellipse parameters A,B,C, cu, cv are computed.

(3) The contour level ψ is computed.

(4) It is checked whether ψ is in the range from 0 to 1 or not, if so the ray

intersects the ellipsoid.

Computation of ray tracing in a vertex base is expensive at the pixel level, whilst the

ellipsoid model is cheaper. This makes the ellipsoid model more suitable for real-time

tracking.
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Table 3.1: Mathematical operation requirements for intersection calculation per ob-
ject per p pixels

Number of instruction calls

Add/Sub Product Division Binary Sqrt Trigonometry

(1) 9v 12v - - - -

Vertex base (2) 5np 6np 1np - - -

v vertexes (3)-(4) 55np 36np 1np - - -

n planes (5) - - - 2np - -

Total 9v + 60np 12v + 42np 2np 2np - -

(1) 87 50 - - - -

Parametric (2) 21 39 4 - 1 6

Ellipsoid (3) 7p 6p - - - -

(4) - - - 1p - -

Total 108 + 7p 89 + 6p 4 1p 1 6

Table 3.1 shows a comparison of operations required in a traditional vertex base [164],

where the object is constructed from v vertexes and n planes. The number of pixels p

to perform ray tracing is usually varying in range between a few thousands and millions

of pixels. In the rectangular simple model, the model is constructed from 2 planes and

4 vertexes (n = 2 and v = 4). We assume that p = 100, 000 pixels. Table 3.2 shows

the total number of instruction calls in a unit of million. This estimation shows the

difference of complexity, where the parametric ellipsoid ray tracing is about one order

of magnitude faster than the vertex base.

Table 3.2: Comparison of the total number of calls in a unit of million, where n=2,
v=4 and p=100,000

Number of instruction calls ×106

Add/Sub Product Division Binary Sqrt Trigonometry

Vertex 12.0 8.4 0.4 0.4 0.0 0.0

Ellipsoid 0.7 0.6 0.1 0.0 0.0 0.0

3.3.1 Silhouette similarity

The Ellipsoid projection becomes more effective when considering a large number of

pixels. This efficiency is based on the fact that the projection of an ellipsoid is an ellipse

contour function as showed in Figure 3.11. Therefore, we can express an ellipsoid as a

contour function that leads to a light complexity at the pixel level.
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ψ(x, y) = 0

ψ(x, y) > 0

ψ(x, y) < 0

Figure 3.11: Ellipse Contour.

The second advantage of using the ellipsoid model is that we can scale the ellipse

contour kernel by simply reducing the level of the contour ψ as shown in Figure 3.11.

The boundary transformation by setting different contour values the method is also

called level-set method. When the value of level-set reduces the elliptical bounding box

is scaled up and this allow us to expand the considered region, to include a low level

area that has low a probability to detect any foreground pixels. In this thesis, the

kernel integration between a synthetic image and a foreground image are treated as a

log-likelihood.

From the likelihood definition Equation (3.53), a template foreground pixel density

function g(pi, S) is constructed from state S and an observation foreground pixel density

f(p). Note that the data structure If is a binary image, where a static background pixel

at pi is denoted by If (pi) = 0 and an active foreground pixel on a moving objects has

If (pi) = 1. {
If (p) > 1

}
∼ f(p) (3.52)

In Equation (3.53), pi is a linear memory address of a pixel (i determined from coordinate

u and v, i = u + v × umax). The logarithm function transforms multiplication to

summation and Equation (3.55) is expressed in kernel integral form.

L
(
If |S

)
=

∏
i

g(pi, S) ; pi ∼ f(p) (3.53)

log
[
L
(
If |S

)]
=

∑
i

log[g(pi, S)] (3.54)

log
[
L
(
If |S

)]
=

∫
f(p). log[g(p, S)]dp (3.55)

If we assume the template distribution of the foreground pixel is Normal distribution,

the kernel will be a quadratic function as simple as the ellipse contour function. Let the
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kernel be ψ and the foreground density function f(p).

log
[
L
(
If |S

)]
=

∫ {
If (p) > 1

}
.ψ(p, S) dp (3.56)

Considering the image region from −0.5 < ψ < 1, a pixel in a positive contour region

contributes a positive value to a log-likelihood summation. In contrast a pixel in a

negative contour penalises the log-likelihood. Including the negative region into the

likelihood computation improves accuracy of the likelihood function by penalising any

misaligned pixel in the negative region. Figure 3.12 shows positive and negative contour

regions which can prevent the drifting effect occurring in the previous simple tracking

method.

Figure 3.12: An ellipse kernel projected on a foreground image. Red area is positive
contour, 0 ≤ ψ, and blue region is negative contour, −0.5 < ψ < 0.

However, from our experiment the distribution of active pixels in the elliptical bound-

ary is not similar to Normal distribution. The active pixels spread uniformly in the

boundary. So, we had to change from Normal distribution to Uniform distribution.

This makes ψ in at positive region of the ellipse contour to be constant. The uniform
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kernel, ψu in Equation (3.57), is used instead of the function ψ.

ψu =


1 ; 0 ≤ ψ

−ε ;ψ > 0

(3.57)

Another advantage of using an ellipsoid model to represent a human body is that it

allows us to detect overlaps between different ellipses in an image very quickly by using

the ellipse centre and the radii. This allows us to detect overlaps and model interaction

between ellipses in order to reduce the distraction problem.

3.3.2 Ownership of a pixel

Imagine that there are two subjects being tracked and we are considering a pixel, which

is at overlap region. The ray from the camera eye-point intersects both ellipses for all

pixels in an overlap region. The pixels contribute the positive gains to both ellipses.

But in fact the ownership of the pixel belongs to only one ellipse.

We have tested 2 ideas to solve the overlap interaction problem. In the first method,

the closest ellipsoid from the camera is the owner of the pixel. This method is reasonable

when you imagine that a ray from a camera intersects the closest object and the fur-

ther objects are occluded. However, the method gives potential to the closest ellipsoid

(nearest from the camera) to invade the further ellipsoids. The closest ellipsoid takes

over the surrounding pixels that should belong to the further object. This leads to the

drifting of the further object. On the image plane, further ellipsoids are pushed away

from the closest due to this mechanism. The method normally perceives two people as

single closer (bigger) person. To overcome this problem, we used the second method;

ownership of the pixel is shared equally by all intersecting ellipsoids. If the ray from the

pixel intersects m ellipsoids, the pixel will contribute 1
m in a log-likelihood summation.

The normalising factor πab is area of the ellipse kernel.

log
[
L
(
If |S

)]
=

1

πab

∑
i

1

m
ψu(pi, S) ; pi ∼ f(p) (3.58)

log
[
L
(
If |S

)]
=

1

πab

∫
1

m
f(p).ψu(p, S) dp (3.59)
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The sharing ownership was better in the comparison experiment but it still not per-

fect. There was a small chance of distraction between subjects. However, this chance is

relatively low when compared to the simple tracking, which has no distraction suppres-

sion.

3.3.3 Texture learning and texture likelihood

We also used texture in the similarity measure to prevent the distraction problem. In

Section 3.2.2, we have described texture mapping between an ellipsoid surface and a

texture image. We assumed that the texture is consistence even when the human body

periodically changes. Because the motion of a body is periodic when we observe the

subject for a long period we can estimate the mean and variance of the colour distribution

of a particular surface area. Note that we assume that the facing angle of the ellipsoid

is in the same direction of as the velocity vector. Therefore, the colour distribution of a

pixel over a long period of observation can be estimated. We used the MOG method to

estimate the colour distribution as same as in the background segmentation. The colour

distribution estimation over time of a pixel in a texture image will be called texture

pixel colour estimation (TPC). The TPC consists of the means and variances of all the

colour channels. Immediately after initialising, the TPC is unknown, so the system

must cumulatively learn the TPC from observations. At this stage, the object position

estimation relies on the primary silhouette likelihood. After a certain period, the TPC

is captured and it is ready to be added into the likelihood calculation.

The texture likelihood is computed from the summation of matching score between

TPC and observation from ray tracing. In texture likelihood computation, we consider

all foreground pixels in the elliptical boundary. Each pixel, which meets the condition,

is used in the matching calculation. Any matching TPC is counted as positive and

mismatching pixel is negative. We used the Chi-square test with 3 degrees of freedom

for 3 colour channels.

Qz,θ =
3∑
c=1

(
Tz,θ,c − µz,θ,c

σz,θ,c

)2

(3.60)

The texture image is an array of TPC denoted by Tz,θ ,where the coordinate of the

texture image is (z, θ). µz,θ,c and σz,θ,c are a mean and a variance of TPC at (z, θ) of a

colour channel c. The means and the variances are computed by the MOG method[83].
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See the Chi-square test in Section 3.1.2. From the Chi-square distribution, the thresh-

old Q = 2.37 that makes 50% of observations having lesser Q than the threshold and

the other 50% having larger. Setting the threshold at Q = 2.37 makes the number of

matching pixels and mismatching equal. A distracted particle state will have the num-

ber of mismatch TPC, which decreases the likelihood. The particle filter will remove

the distracted hypothesis that generates the low likelihood and pushes the tracker back

to the correct position.

Before we are moving to the conclusion of the algorithm, it is necessary to explain

the data structure of the state. Figure 3.13 shows the data structure of the multiple

targets state, where a particle state is a concatenation of state vectors in multiple rows.

The column expresses the global state of all subjects being tracked in the scene.

Figure 3.13: Data structure of the multiple target state S.

From Equation (3.58), we can re-express the silhouette log-likelihood in position

region as Equation (3.61) and Equation (3.62). The texture log-likelihood is denoted by
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Γ3 in Equation (3.63).

Γa =
1

πab

∑
i

1

mi

{
If (p) > 1

}
{0 < ψ(pi, S)} (3.61)

Γb =
1

πab

∑
i

1

mi

{
If (p) > 1

}
{−0.5 < ψ(pi, S) ≤ 0} (3.62)

Γc =
1

πab

∑
i

{Qz,θ ≤ 2.37} − {2.37 < Qz,θ} (3.63)

The silhouette positive fill-in ratio (Γa), the silhouette positive fill-in ratio (Γb) and

texture matching ratio (Γc) are normalised by the area of the ellipse. In order to combine

silhouette and texture scores, we used a logistic function , [97] page 725. The new

likelihood differs from the conventional method that was described in Section 2.5.4, which

usually uses an exponential function to combine several measurements to a single value.

There are two good reasons to use the logistic function instead of exponential function.

First, the logistic gives output in the range -1 to 1, which does not explode as the

exponential function. The conventional method computes the weight from exponential

of similarity ( or minus of dissimilarity). When the similarity score is large, which

could happen when Γa > Γb, the likelihood weight will be larger than 1 and lead to

unsuitability of the re-sampling method. We have to control the likelihood weight in the

range between 0 to 1. In this case, the logistic offers the better stability. The second

reason is that the exponential function is highly sensitive to tiny change in coefficients of

the linear combination. That leads to difficulty of adjusting or learning the parameters.

The logistic function also has been applied for combining signals in the artificial neuron

network modeling because of smoothness and stability [165]. Equation (3.64) shows a

calculation of the final likelihood (or the particle weight).

w = logistic(co + c1Γ
a + c2Γ

b + c3Γ
c) (3.64)

logistic(x) =
1

1 + e−x
(3.65)

Algorithm 3.4 concludes our likelihood computation. It starts with loading camera

parameters to local memory. Next the nested for loops of n, p and k are proceeded.

The conic E is generated for each subject and each particle. The ellipse parameters are

computed from the conic and stored in local memory. Then ray tracing computation

for every active foreground pixel is calculated. The number of pixels in negative region
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Algorithm 3.4: Ellipsoid Likelihood

1 Input: I ;a colour image,
2 If ;the foreground image and
3 S = Sn,k ;a particles set
4 Output: w = wn,k ;a set of output weight
5 Load camera parameters (KR)−1 and e
6 For each particle n
7 E← conic((KR)−1, e, Sn) ;computing conic from Eq. 3.33
8 (A,B,C, cu, cv, a, b)← ellipse(E) ;computing ellipse parameters
9 Γa

k ← 0 ;a counter of positive region
10 Γb

k ← 0 ;a counter of negative region
11 Γc

k ← 0 ;a counter of texture matching
12 For each pixel p
13 If If (p) = 1
14 m← 0 ;number of overlaid ellipses on the pixel p
15 For each subject k
16 compute rectangular bounding box from radii a and b
17 If the pixel is in the bounding box
18 h← ψ(p) ;computing contour level fromEquation (3.37)
19 If h < 0
20 Γb

k ← Γb
k + 1

21 Else
22 m← m+ 1
23 compute texture coordinate (z, θ), from Section 3.2.2
24 compute Q by Eq.3.60
25 If Q < 2.37
26 Γc

k ← Γc
k + 1

27 Else
28 Γc

k ← Γc
k − 1

29 End
30 End
31 End
32 End
33 For each subject k
34 If 0 < h
35 Γa

k ← Γa
k + 1

m
36 End
37 End
38 End
39 End
40 For each subject k
41 area← πab
42 Γa

k ← Γa
k/area

43 Γb
k ← Γb

k/area
44 Γc

k ← Γc
k/area

45 wn,k ← logistic(c0 + c1Γa
k + c2Γb

k + c3Γa
k) ;Equation (3.64)

46 End
47 End
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Γbk of the subject k is counted. The number of pixels that matched the texture image is

counted and saved into Γck. And the number of the overlaid ellipses Γak is also calculated.

Finally, all counters are combined into a single value by the logistic function and stored

as the particle weight w.

3.4 Our Particle Filter for Multiple Target Tracking

In this section, we will emphasis on our particle filter framework which has been pro-

posed to solve two major dilemmas in multiple targets tracking application: distraction

problem, which can be solved by an improve likelihood function and the short-time dis-

appearing problem that can cause failure in tracking. Our objective is to bring about

a practical system that can process in real-time and give adequate accuracy (MOTA

around 80%).

A particle state is a global state of all subjects expressed by a concatenation column

vector. The process in the likelihood function computes all subjects, which are repre-

sented by a particle, at the same time. The ownership of a pixels computed from overlaid

ellipses that makes the multiple subject state no longer completely independent.

3.4.1 Likelihood with distraction suppression

In [19], Kreucher compared between applying joint state and independent state in the

multiple targets tracking problem.

The independent state represents each subject independently and the likelihood is

also computed independently. The independent Bayesian is accurate when subjects

are separate in the observation space, however, it suffer from severe distraction when

subjects are overlaid in the observation space.

In contrast, the joint state expresses all subjects by a single long vector and com-

putes the likelihood globally. When the state vector is joined, the number of dimension

of state space increases and leads to an explosion of the searching volume in the state

space. The problem is also known as the curse of dimensionality [166]. So, the joint

state particle filter requires more particles to cover the enlarged searching volume to
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maintain the same accuracy. It is impractical to process in real-time. Kreucher sug-

gested an alternative method where the joint likelihood computation is necessary only

when targets are interacting with each other. The interaction can be easily detected by

determining the Euclidean distance between them. In our method we detect interaction

in the observation space (image coordinate) by checking the intersection of the ellipses

contours and using ownership computation.

The independent particle filter faces a major problem of distraction but for the joint

state this is unsolvable in real-time. If a tracking system is unable to perform in real-time

it could become useless in many applications. So we gave first priority to the speed. One

solution to solve the distraction problem is by including more useful features in the state

vector. Increasing the independent state helps the tracker to identify the subjects. With

additional features, an extra searching space is added and they slow down the process

but accuracy is improved significantly. In our tracking, the texture image of the subject

is acquired during tracking which is a unique feature that help to solve the distraction

problem. The texture image is initialised at the beginning period of tracking, during

this period the distraction suppression is a key to reducing the distraction rate at early

period of tracking. After the texture image is established by the learning process the

texture likelihood can contribute to the likelihood function.

Our strategy is to use the fast independent particle filter and attempting to prevent

distraction by improving effectiveness of the likelihood function. We expected high

precision when subjects are separate as a major advantage of the independent state over

the joint state. When the subjects are in close proximity the distraction suppression

must prevent the problem for a sufficient time to allow the tracking system to obtain

the texture image. Once the texture image is ready, the distraction rate is very low

because the texture of each person is distinctive.

3.4.2 Visibility state

The next problem is the short-time disappearing caused by occlusion. In a practical

scenario, some static objects such as a small tree or moving car can cause short-time

disappearing. The occlusion prevents our observation while the subject is still moving

behind the obstacle. Lack of observation increases the uncertainty of estimation over

time because an unknown state keeps changing. The occlusion can also cause distraction
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when a subject A is moving just behind an obstacle and another subject B is passing

nearby; the tracker of the subject A can be distracted and follow the subject B. Our

strategy is to let the subject A become invisible and give a small likelihood to the tracker

to prevent the distraction. So an extra variable, which is called visibility, has been added

into the state vector.

0.25

Invisible
vis = −1 vis = 1

Visible

0.25 0.750.75

Figure 3.14: Markov Chain Model of visibility state of a subject

Figure 3.14 shows a Markov Chain model of the visibility state of a subject, which

can either stay in same state with probability 0.75 or turn to an opposite state by 0.25

of probability. A state variable vis is in set {−1, 1} the visibility is used in order to

compute persistence level per. The transition of the visibility Markov Chain model and

persistence are expressed in equations below.

vist = vist−1 × b ;P (b = 1) = 0.75;P (b = −1) = 0.25 (3.66)

pert = pert−1 + vist−1 (3.67)

Therefore, we can estimate disappearing time and allow the tracker to keep the pre-

vious motion. Once, the persistence level drops below the threshold, the system will

decide to terminate the tracker.

3.5 Summary

From our primary tracking based on the quadrilateral silhouette model, we modified

the likelihood from a simple rectangular to a parametric ellipsoid projection method.

The ellipsoid projection method enables detection and tracking to be performed in 3D

instead of the conventional 2D method. The parametric ellipse function improves the

computation speed by reducing pixel-level calculations and minimizing memory utilisa-

tion to store the human model. The parametric ellipsoid approach significantly changes
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the way to compute the likelihood, where the parametric boundary can be computed

relatively faster than the vertex base model as estimated in Table 3.2. In addition,

the ellipsoid projection allows the system to obtain a texture image around a human

body and makes texture similarity measurement possible. The texture image expresses

a unique state and avoids the distraction problem.

To obtain the texture image the tracker must follow a correct target with high ac-

curacy at an early stage of tracking. High accuracy tracking during the early stage

is achieved by the ownership model, which is computed from ellipses overlaping. This

method is also call distraction suppression.

In Chapter 4, a sequential implementation and evaluation of the detection-tracking

system is discussed in detail. The parallel algorithm of the system is explained and

compared in Chapter 5.



Chapter 4

Sequential Implementation

In this chapter, we discuss the design and implementation of the tracking algorithm on

a standard CPU. Normally, a tracking program starts by manually selecting a target

as in our single tracking system as showed in Section 3.1 that makes the system not

fully automatic. So the system should consist of both detection and tracking modules.

Both modules are developed based on the ellipsoid model as described in Chapter 3

that allows many cameras to work together as a unit. In this Chapter, at the beginning

we consider these two modules individually and later they are combined into single

system. In order to make the tracking system perform fully automatically without

human intervention, the system must initiate tracking by exploiting object detection.

Our detection method will be described in Section 4.1.1. Our multiple people tracking

system has been built carefully by combining several methods, the tracking, the detection

method and extra strategies, as discussed in Chapter 3. The design is transfered to

a computer program and evaluated using various datasets including our own dataset.

There are calibration parameters available for all benchmark datasets that we are using.

So we can determine the subject position in 3D and measure the accuracy of the tracking

framework. This chapter consists of algorithm design, sequential implementation for a

standard CPU, performance evaluation and speed profiling . In Chapter 5 we will

compare the controlled sequential implementation with a parallel implementation on a

GPU (Graphics Processing Unit).

94
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4.1 Multiple Target Detection and Tracking Framework

The framework consists of detection and tracking modules that we will divide them and

consider separately. In the detection module, the original image from each camera is

processed to produce a foreground image and find a new subject. Simultaneously, the

tracking module continually estimates the state of the subject immediately after a new

subject is added until the subject is removed by persistence evaluation. A tracker is

activated by the newly detected subject. The entire process starts with the detection

function.

4.1.1 Detection

The detection function is based on a grid response, where many grids are located on the

ground floor: the collection of locations or grids is denoted by G. An ellipsoid model

with a vertical diameter of 1.7m and a horizontal diameter of 0.5m is placed on each grid.

Then the ellipse parameters are computed and a rectangular bounding box is calculated

for each ellipse. For each ellipse we need 4 corners to express the rectangular bounding

box. The set of all bounding boxes for all ellipses is denoted by R. The preparation of

R is done during initialisation at the beginning of the overall process.

Figure 4.1: Detection grids (yellow circles) and ellipsoids projection.
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Figure 4.2 shows the people detection module. For every frame, the original image

is captured and the MoG background model is estimated. Then foreground pixels are

extracted. Next the module computes the integral image J as described in [59, 167].

Using the integral image for kernel integration accelerates the method by pre-computing

all summations and then we can calculate the kernel integral at a specific location

by using the integral image as the lookup table. The pixel coordinates of top-left,

top-right, bottom-left and bottom-right of the rectangular boundary are denoted by

r = {p1, p2, p3, p4} and r ∈ R, respectively.

wg∈G =
J(p1)− J(p2)− J(p3) + J(p4)

Arec
(4.1)

Where Arec is the area of the rectangular detection bounding box and the integral image

is computed from the equation below.

J(px, py) =

py∑
y=1

px∑
x=1

If (px, py) (4.2)

The response weights {wg; g = 1, 2, · · · } of all grids for every camera are computed. Any

low response weights, which are less than a threshold of 0.65, are removed and a grid

with a global maximum response weight will be selected as a new target. The selected

position will activate a tracker. Only one subject can be added in a single time frame

to reduce the false alarm rate.

In order to activate a tracker all particles must be initialised. The initialisation defines

the prior density of the state of the new subject for the first time. Then the transition

function in the particle filter will generate the prior in the subsequent iteration. The

prior density of position is assumed to be a uniform distribution within a 1m radius on

the ground plane. The prior density of velocity is also drawn from a uniform distribution

with magnitude between 0 and 2ms−1 in all directions. Visibility is set to 1 and the

persistence level is maximum. The first generation of particles is evaluated by the

likelihood function and then the subject will be handled by the tracking module.
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Figure 4.2: Detection function. The rectangles and the round shapes are data and
operations, respectively

4.1.2 Tracking

Figure 4.3 is our modification of the SIR particle filter. The original SIR particle filter

has three components (likelihood, re-sampling and transition). In our framework the

likelihood involves calculation from many cameras. The likelihood weights from all

cameras are combined by the belief function. A subject that is visible in a camera may

not be visible to other cameras due to occlusion and limited field of view. Observations

from different cameras can cause conflict when an occlusion happens. So, combining all

likelihoods in the fusion function must consider the reliability from each camera. We
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Figure 4.3: Multiple targets tracking framework. The rectangles and the round shapes
are stored data and operation, respectively

used a simple criterion that the truthfulness from a particular camera depends on its

average of likelihoods computed from all particles of the considered subject observed by

the camera. A global likelihood w∗n,k is a sequence product of trusted likelihood weights

from different cameras. The subscripts e, n and k are indices of camera, subject and

particle index, respectively.

w∗n,k =
∏
e

w′e,k,n (4.3)

Equation (4.4) shows likelihood filtering based on the average of likelihood of all particles

measured from a particular camera. The likelihood weights we,n,k are filtered out by

considering their average with a threshold ε. A low average of likelihood (w̄e,k > ε)

suggests uncertainty of the observation which may be under occlusion or out of the field

of view. In case of untrusted observation from a camera, it is safer to replace all weights

by 1, this has no affect on the global likelihood. The likelihood fusion threshold ε is

relatively lower than the likelihood of invisible state to allow the particle of invisible

state to survive from the filtering process. This mechanism transfers the state of the
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subject from visible to invisible.

w′e,k,n =


we,n,k ; if (w̄e,k > ε)

1 ; otherwise

(4.4)

w̄e,k =
1

N

N∑
n=1

we,n,k (4.5)

In Figure 4.3, the filtered likelihood is combined using Equation (4.3). The combined

likelihood weights are passed to re-sampling and transition functions as same as in a

standard SIR particle filter. The details of the re-sampling and transition functions

have been described in Chapter 3. Transition() generates a new set of particles

that represent the prior density. In Remove(), the existence of a subject is decided

by considering the expectation persistence state. To avoid multiple-trackers focusing

on the same subjects, if any trackers occupy same space, the subject which has lower

persistence will be penalised by reducing the persistence. Therefore, the persistence can

be reduced by both invisibility mechanism and duplication of trackers. If the persistence

is lower than 0, the subject will be terminated and the corresponding tracker will be

deactivated (sleep mode). The next step of the process is Add() function, which listens

for a message from Detection(). If there is a new subject to be added, the Add()

function will initialise the particles. Finally, the texture model of each subject is updated

using the previous texture image and the current ray tracing observation as described

in Section 3.3.3. Then the process repeats by computing the likelihood again.

4.2 Sequential Algorithm

In conventional algorithm design, the algorithm is a sequence of instructions. A pro-

cessing unit processes each instruction one-by-one until the end of the program. The

reason for processing in sequence was that there was only a single processor that could

perform a single instruction at a particular time. A single worker can do a single task

in a time frame. However, the particle filter expresses the probability function by many

of particles. So, the processor has to perform similar tasks repeatedly in a sequential

mode.
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Figure 4.4: Background segmentation and particles on ground floor.

From summarized diagrams in Figure 4.2 and 4.3, the red round blocks are opera-

tions and the orange sharp blocks are stored data in memory. We can transform the

diagrams to Figure 4.5. The algorithm starts by initialising the grids, ellipses and

tracking parameters, then reading an image from a camera. The process computes the

detection function, which consists of MoG background learning and an kernel image

integration sub-function as shown in Figure 4.2. The colour image and the foreground

image are used as the input to the likelihood function. Read(), Detection() and

Likelihood() are repeated for every camera in the network. Next the likelihood

weights are combined in the Fusion() function, followed by the standard functions

of the SIR particle filter Re-sampling() and Transition(). Remove(), Add()

and UpdateTexture() are called before finishing the iteration of the current frame

and then calculations are repeated after reading images in the new frame. Each function

block is constructed from internal for-loops, which are processed sequentially.

4.2.1 Implementation

We implemented the sequential algorithm in C++ and used OpenCV in order to read

and display the output. The algorithms are fairly complex so we split the system into

several classes for the benefits of programming.
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Figure 4.5: A sequential algorithm of the detection tracking system.
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Figure 4.6: A class diagram of the detection tracking programm.
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Figure 4.6 shows 4 major classes of the program. The Camera class contains data

members such as camera geometric parameters, images and background model. Func-

tion members in the camera class are ReadParameters() and ReadImage() from the

local hard drive or a camera. The Camera class also has BackgroundUpdate() func-

tion. The Detection class focuses on calculating the grid detection response weights from

kernel integration. The detection function could detect a currently tracked subject, so

RemoveRepetitive() is a function to remove repeated detection (duplication track-

ers) of a current tracked subject. The particle filter class is the most complex class includ-

ing Likelihood(), Fusion(), Resampling(), Transition(), Remove() and

Add(). The computation involves the state of the subjects. MakeEllipse() is a pri-

vate function to calculate ellipse parameters from an ellipsoid model. The texture class

consists of a data member of texture images and two public function members, Reset()

and Update().

4.3 Experiment on Sequential Implementation

In this section, we discuss the precision and computation time of the system. The detec-

tion and tracking frameworks which are described in this chapter can be implemented as

sequential or parallel versions. A correct implementation must have identical results in

both versions. The speed profile results in this section will be compared with a parallel

implementation in Chapter 5 Both sequential and parallel systems have been tested with

the PETS09 dataset [160]. The Multiple Object Tracking Accuracy (MOTA) in [168] is

applied for evaluating our technique.

The MOTA is computed from the summation for all frames t of ft false alarm, mt miss

detection, st switch events and divided by gt total number of subjects in the reference

view. The MOTA is defined by the equation below.

MOTA =

(
1−

∑
t ft +mt + st∑

t gt

)
× 100% (4.6)

Figure 4.7 shows three types of failures in multi-target tracking that commonly happen

and are counted in the MOTA score. When a tracker is away from its subject by more

than 1m the miss detection and false alarm are counted.
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Figure 4.7: Events in MOTA , miss detection, false alarm and switch events.

4.3.1 Advantage of using texture similarity

In this section we compare the accuracy of two systems, where one uses texture in

likelihood computation and another does not. This configuration can be done by setting

the texture likelihood coefficient in the Equation (3.64). When the texture was used,

the coefficients in Equation (3.64) were c0 = −8, c1 = 20, c2 = −5 and c3 = 50. And

c3 was set to 0 when texture information was excluded. The coefficients were selected

by finding the optimal values that yield the highest MOTA score evaluated using the

PETS09 dataset and we kept using these values in all datasets.

The image sequence from the first and third cameras were used in this texture test.

All camera parameters from PETS09 in the xml files were exploited to get correct camera

parameters. The rotation matrices were computed by the Euler angles in the xml files

and Equation (3.10). The invisibility score in our tracking was set to 0.15 and the

likelihood fusion threshold was 0.01.
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Because the sequence of images for PETS09 is short compared to the background

learning period, which required about a hundred images, we extended the sequence by

running it backward from frame 794 to frame 0 to initiate the background model, then

started the tracking and recording the estimated state variables from frame 0. The

output state estimation is saved in a xml for every frame for further evaluation. There

were 795 frames and each frame has a collection of estimations of all current existing

subjects. The estimation was compared with ground truth, which was created manually

by inverse projection from the image coordinate to the ground plane coordinate system.

The evaluation method is similar to Figure 3.6.

The detection and tracking program was tested in two modes (with texture and

without texture) to see the effect of the texture similarity on tracking performance.

Each mode of tracking was repeated 10 times on the same input image sequence. Each

time the random seed number was set to the machine clock number. The Monte Carlo

method is sensitive to a random seed number so each test must have a different result.

Finally, The MOTA was computed statistically.

We have a small problem of uneven ground plane in PETS09 in the grass area. The

grass area is higher than the ground plane that was used in calibration. In Figure 4.8,

the projected ellipses of the lady on the green grass area in camera1 and camera3 are

inconsistent as the grass surface is not on the ground plane. The white balance of images

from camera3 were adjusted to make the colour consistent in both cameras.

Table 4.1: Comparing using and not using the texture similarity

f(%) m(%) s(%) MOTA(%)

with texture 5.20±3.64 3.76±1.48 0.26±0.14 90.7

no texture 7.16±5.33 5.83±2.60 0.46±0.37 86.5

Table 4.1 shows the advantage of using texture. We assumed the distribution of the

error in Table 4.1 is normally distributed. The uncertainty or the standard deviation

is denoted by the number after the symbol ±. The mean and the standard deviation

are computed from 10 times repeated experiments. In this set of experiments we used

0.5m for the detection grid spacing and (ax, ay, az)=(0.5m, 0.5m, 1.7m) for the ellipsoid

diameters. The overall MOTA result from tracking with texture is 4% better (but

not statistically significant at p-value 0.05). The texture similarity prevents the tracker

drifting away from the subject leading to a decrease in false alarm rate and miss detection
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Figure 4.8: Evaluating with PET09 dataset. First and second columns are result
sequences from camera1 and camera3, from top to bottom are frame 700th, 720th and

740th. The numbers over ellipse show ID and height in unit meter.

rate. In this experiment, the miss detection rate was significantly improved by the

texture likelihood (at p-value 0.05).

4.3.2 Accuracy evaluation

Reduction of the number of particles affects the precision and accuracy of the tracking

performance. We examined the effect by varying the number of particles from 128 to

256, 512 and 1024. We tested the tracking framework on 4 different datasets, PETS09,
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PETS06, PETS03 and EM330 (the last dataset was captured in our lab). In this set of

experiments we used 1.0m for the detection grid spacing and (ax, ay, az)=(0.5m, 0.5m,

1.7m) for the ellipsoid diameters.

Table 4.2: Error and number of particles.
.

Dataset nmax f(%) m(%) s(%) MOTA jest

PETS09 128 1.178 4.367 0.02 94.435 45∑
gt = 4923 256 1.300 3.555 0.05 95.095 45

jtrue = 17 512 0.934 5.139 0.02 93.907 37

1024 0.914 4.753 0.04 94.293 37

PETS06 128 3.853 3.395 0.06 92.692 21∑
gt = 4801 256 3.749 3.249 0.06 92.942 20

jtrue = 17 512 2.958 3.791 0.06 93.191 19

1024 3.395 3.812 0.06 92.733 19

PET03 128 0.210 5.672 0.03 94.088 71∑
gt = 36194 256 0.262 5.313 0.02 94.405 66

jtrue = 33 512 0.202 5.280 0.01 94.508 64

1024 0.262 5.274 0.02 94.444 62

EM330 128 9.024 15.311 0.15 75.515 19∑
gt = 1352 256 9.024 12.796 0.15 78.030 17

jtrue = 6 512 9.024 8.580 0.07 82.326 16

1024 9.024 15.163 0.00 75.813 17

Table 4.2 shows the results from the experiments. When the number of particles was

increased, the false alarm rate (f) was decreased in 3 datasets but in our dataset EM330

the false alarm rate is constant. The miss detection rate (m) was almost constant relative

to the growth in number of particles. In our opinion the miss detection rate reflects

the effectiveness of the detection module with only slightly effect from the tracking

module because the detection works independently from the particle filter. So varying

the number of particles should not affect the detection performance.

The switch event rate (s) is slightly low compared to the false alarm and missed

detection rates. Our framework tends to terminate a tracker before the switch event

happens. The removing mechanism breaks a trajectory into many sub-trajectories and

the switch event cannot report the errors. The number of sub-trajectories (jest) esti-

mated by the framework has been measured and shown in the last column, whilst the

true number of trajectories (jtrue) is noted in the first column. The number of esti-

mated sub-trajectories (jest) should be close to the true number (jtrue). The correctness
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of the number of trajectories implies accuracy of the tracking system to follow the same

subject and it should be included in the multiple object tracking accuracy metric. The

correctness of the jest was improved slightly by increasing the number of particles.

There were small improvements caused by increasing the number of particles. How-

ever, the crucial problem was that the system could not compute fast enough to return

an output before the next input. An increase in the number of particles can slightly

improve the accuracy but it may prevent the system running in real-time. In the next

section, a study of computing time that is affected by increasing the number of particles

will be discussed.

Figure 4.9 shows screen captures of the tracking results using 1024 particles. At the

middle of the scene the static sign post blocks the camera visibility. Subjects passing

behind the sign post could cause tracking failure. For example the green and brown

trackers can manage to track under the occlusion. However, our tracking framework

includes invisibility modeling that allows short-period disappearance and it can track

those targets with a low chance of failure.

Figure 4.10 shows mutual occlusion between two subjects. This situation normally

causes severe distraction. A dominant subject draws attention from another tracker and

leads to failure. Our tracking system integrates texture similarity, so each tracker knows

the unique corresponding subject.

Our system can scale the number of targets up to several subjects. Figure 4.11 shows

results from tracking a football match in PETS03. Tracking football players is relatively

easier than tracking people on a street because the clear green grass in background

makes background segmentation almost perfect.

Because the ellipses are derived from the 3D ellipsoids, our tracking system can

perform tracking for very close or very far subjects reliably. Figure 4.12 shows the

perspective scaling effect and our tracking system performance is still good.
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Figure 4.9: From top-left to bottom-right are frames 135th to 175th from PETS09.

 

Figure 4.10: From top-left to bottom-right are frames 1500th to 1560th from PETS06.
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Figure 4.11: From top-left to bottom-right are frames 1500th to 1560th from PETS03.

 

Figure 4.12: From top-left to bottom-right are frames 510th to 540th from EM330.
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4.3.3 Computing time

The speed test or profiling of each function is the most important test for a real time

application. In this section we consider the latency of each function and also study the

effect of input on the total speed. We vary the number of particles to be used in tests. In

each dataset, the number of targets and the number of active foreground pixels changing

over time allows us to measure the relation between them and the computing time. This

experiment has been tested on a work station computer with Intel Core i7 950 CPU at

3.07GHz. Measuring computing times with different machines always returns different

speeds at it depends on both clock frequency and architecture.

1 #include <iostream>
2 #include <time.h>
3 int main(){
4 static ofstream table;
5 table.open("table.txt");
6 for (int t=0;t<tmax;t++){
7 tick=GetTickCount();
8 function1();
9 table<<GetTickCount()-tick<<"\t";

10
11 tick=GetTickCount();
12 function2();
13 table<<GetTickCount()-tick<<"\n";
14 }
15 }

Listing 4.1: An example code for profiling the function1() and function2()

The detection module consists of pixel-level functions such as background learning

and integral image. As the detection module is constructed from repetitive simple in-

structions at pixel-level, so its complexity increases proportionally to the number of

pixels and the number of grids being used.

In the tracking module the likelihood computation is the most complex sub-function.

Over 80% of tracking computing time was spent on the likelihood function. The number

of active pixels and number of targets are key factors in the computing time of like-

lihood because of the nested for-loops in the likelihood function. Table 4.3 shows the

average time spent on each function of the tracking system. We used the timer function

GetTickCount(), which has low resolution at 16ms per tick. Listing 4.1 shows how to

measure the computation time of each function and save the output in a text file with
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Figure 4.13: Relation between likelihood computing time and number of particles.

a tab delimiter table formate. Some functions such as Fusion() and Remove() used

time smaller than the resolution, hence the computation time of those functions was

measured as zero. Note that Detection() and Likelihood() are computed once

per camera. If we have 4 cameras the functions will be called 4 times per iteration.

Table 4.3 shows the computation time per call of the framework. The computing time

of detection is relatively constant with respect to the increase of the number of particles

in all datasets. The likelihood computation time is approximately linear in proportion

to the number of particles, as in Figure 4.13. The computing times of Resampling()

and Transition() also rise when the number of particles increases.

Figure 4.14 shows the likelihood computation time of the experiments. The first col-

umn shows the linear relation between the likelihood computing time and the number

of active foreground pixels (pa). The graphs in the second column shows a linear rela-

tionship between the likelihood time and the number of subjects (k). From the nested

for-loops structure in the likelihood function, we can conclude that the likelihood com-

puting time increases when k,n or pa increase and the nested for-loop structure in the

algorithm suggests that the likelihood computing time can be expressed by the product
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of k, n and pa. Figure 4.14 shows a linear relationship between k, n and pa.

LikelihoodTime ∝ k × n× pa (4.7)

The result suggests that task parallelism can be done by dividing tasks according to

either k, n or pa. The parallel processing implementation is discussed in more details in

Chapter 5.

4.4 Comparison

A comparison of MOTA performance is available in PETS09 workshop [153]. Originally,

tracking algorithms considered only the position of detected subjects and overlooked

the ability of the tracking system to retain the ID of the subjects to create complete

trajectories. This ability is very important in multiple targets tracking problems. The

ability to retain the ID of subjects was brought to attention in 2008 by introducing the

MOTA[168]. Eventually, some researchers started to consider the ability to retain ID.

The MOTA result from the PETS09 workshop is showed in Table 4.4. Note that Berclaz

et al [101] gave the best MOTA (and other scores) from the evaluation [153].

Arsic [154] and Berclaz [101] used a detection method to transform images to a

detected position in the 3D world coordinate system. Thus, the rich information of pat-

tern and signature of subjects are overlooked. Breitenstein [157] included appearance

classification in data association before performing final estimation by a particle filter.

Including the appearance description exploits the advantage of subject signature. How-

ever, the 2D appearance descriptor is unable to be applied in multiple camera scenarios

because different cameras generate different appearances. Thus, camera calibration is

very important to make an accurate multiple camera tracking system. As in Table 4.4,

using a calibrated camera method [156] can yield higher MOTA than non-calibrated

method [157].
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Table 4.3: Profiling of sequential implementation to measure computational time in
millisecond evaluated from various datasets

Dataset Function
nmax

128 256 512 1024

PETS09

Detection 49.763 47.958 48.812 48.609

Likelihood 11.449 13.407 30.947 65.837

Fusion - - - -

Resampling 0.259 0.197 0.439 0.689

Transition 0.709 0.905 2.108 3.734

Remove - - - -

Add 0.020 0.019 0.020 -

UpdateTexture - - - -

PETS06

Detection 48.594 50.424 47.982 49.020

Likelihood 11.253 16.723 28.515 52.913

Fusion - - - -

Resampling 0.347 0.514 0.179 0.585

Transition 0.118 0.215 0.370 0.823

Remove - - - -

Add 0.010 0.004 0.005 -

UpdateTexture - - - -

PETS03

Detection 48.980 64.055 63.962 63.515

Likelihood 11.330 22.518 53.301 118.119

Fusion - - - -

Resampling 0.092 0.271 0.418 1.102

Transition 0.613 2.346 5.338 7.760

Remove - - - -

Add 0.012 0.006 0.006 -

UpdateTexture - - - -

EM330

Detection 32.947 33.510 32.652 33.129

Likelihood 13.700 17.294 36.573 69.777

Fusion - - - -

Resampling 0.074 0.054 0.129 0.702

Transition 0.036 0.054 0.223 0.713

Remove - - - -

Add - - - -

UpdateTexture - - - -
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Table 4.4: MOTA comparison with results in [153]

Author MOTA Appearance description Estimator

Arsic09 22% 3D vertex model Detection[154]

[154] Detected volume in x,y and time Data association (Normalized cuts [155])

Berclaz09 79% 3D visual hull Detection (POM [101])

[156] 2D positions in ground plane Data association (LP [156])

Breitenstein09 75% Spatial pattern (HOG+ISM) Detection

[157] 2D positions in image plane Data association

2D positions in image plane Bayesian (Particle filter)

Our method 93% 3D parametric model Detection to activate the tracker

3D parametric model+Texture Bayesian (Particle filter)

4.5 Summary

Our detection and tracking algorithm is based on the parametric ellipsoid as described

in Chapter 3. The parametric ellipsoid brings about a fast 3D likelihood computation

method, which was never been studied in the multiple target tracking environment.

A parametric model makes computation quicker as described in Section 3.3. The 3D

ellipsoid model allows observation from multiple cameras to be integrated effectively.

The advantage of a calibrated over a non calibrated system is accuracy shown in Table 4.4

(comparison between [101] and [157]).

In this chapter, we show that the MOTA of our tracking algorithm is higher than the

best method in PETS09 workshop report [153]. This is based on our unofficial evalua-

tion. In previous methods, detection was applied to transform the image observations

to a set of detected positions in space before performing data association to link the

existing trajectories with the detected position. This method is very common in multi-

ple target tracking. However, our method uses detection to activate the particle filter

and the particle filter uses a 3D model with an evolving texture signature to estimate

the state variables. Thus, the state variable and texture signature are combined into a

subject representation and eventually the state and signature together is used for likeli-

hood calculation, unlike [157], which considers state variable and appearance separately.

Integrating the texture signature into the likelihood function has the benefit that it can

reduce the error rate as shown in Table 4.1. In Breitenstein’s study [157], he also used
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classification to link detected subjects to trajectories but his work was based on 2D

features, so it is difficult to extend the work from the single to multiple cameras. Using

the ellipsoid texture learning method in our approach, the signature of all cameras can

be defined consistently across all cameras. This results in higher MOTA as shown in

Table 4.4.

We also studied the computational time of our framework for further parallel imple-

mentation. The parallel implementation divides the likelihood function into individual

particles. This is an optimal solution because the number of targets (16) is always less

than number of particles (512) . If we divide the likelihood function into individual

pixels, we have to save output of individual pixels and then combine these outputs into

a final likelihood value because of the nested structure of the for-loop in Algorithm 3.64.

This will increase the total memory transfer compared to dividing by particle.
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 Figure 4.14: Likelihood Latency time.



Chapter 5

Parallel Implementation

In this chapter we discuss designing and implementing a parallel version of the tracking

algorithm. In the particle filter, hundreds of particles express the probability density.

Each particle state requires a complex likelihood calculation, which is similar to ray

tracing in computer graphics. For a single subject, an area of the ellipse can be as large

as several thousand pixels when the subject is very close to the camera. On average

the number of calculations of ray-tracing in the likelihood computation is about 26

million, estimated from the average number of active pixels in an ellipse (10,000) times

the average number of subjects (5) times the number of particles (512). Considering

a frame rate of 7.5 fps, a number of floating point operations for each ray tracing

is 105 floating operations (using ellipsoid projection 7.5s−1 × 14operations). Please

see Table 3.1 for details of the estimation. On average, the likelihood function alone

requires computational power just below 27GFLOPS (Giga Floating Point Operation

Per Second). This is the number of operations for ray-tracing in the likelihood function

only. From our estimation the whole system including detection and texture update

requires up to 60 GFLOPS.

In Section 2.7 we gave a comparison and a justification for the target hardware

platform. In this project we used a midrange hardware platform in order to build

the prototype. The computational power from a specification of a standard CPU, for

example an Intel Corei7 965 (4cores) can provide up to 69GFLOPS [10]. Our requirement

is nearly reaching the theoretical maximum computational power of a standard CPU. A

117
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midrange GPU such as Nvidia GeForce GTS250 can process 705 GFLOPS (128cores)

[9], which is large enough for our tracking system requirement (60GFLOPS) at a normal

frame rate of CCTV (7.5 fps). The GPU programming is also much easier and quicker

compared to FPGA implementation as mentioned in Section 2.7. Due to the speed

limitation and the difficulty of implementation as described earlier, we have decided

to implement the tracking system on a GPU, which can deliver medium to high speed

performance and take shorter time for development. Our design, implementation and

testing is discussed in this chapter.

5.1 Parallel Design

For a worker a task can be performed in a sequential mode. When a number of worker

increase the task can be split and performed in a parallel mode, where many sub-

tasks are performed at the same time. The idea is very simple but in practice data

transfer between the workers or processing cores has a limit. This limit makes the task

splitting difficult and programmers have to concern about the different levels of memory

architecture in the target hardware.

The maximum speed-up ratio of parallel processing comparing to a sequential pro-

cessing can be predicted by Amdahl’s law [169]. The maximum speed (S) is expressed in

terms of the number of processors (N) and P a portion of code that can be parallelised

compared to the total instructions of the code. Note that different instructions need

different computational times so the portion P should be measured in units of time.

S =
1

(1− P ) + P/N
(5.1)

For example suppose 80% of a serial instruction code can be parallelised. Another

20% cannot be divided e.g. memory transferring or sequential algorithm. Assuming all

instructions use the same computational time then P will be 0.8. If we have 128 cores,
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we will get a maximum speed-up ratio S = 4.84.

S =
1

(1− 0.8 + 0.8/128)
(5.2)

=
1

0.2 + 0.00625
(5.3)

S = 4.84 (5.4)

The fraction P/N is small when N is large, so the speed-up can be approximated by

S = 1/(1− P ).

5.1.1 GPU architecture

In this section we consider the processing units and memory architecture of GPUs. We

have used the Nvidia GeForce GTS250. The Nvidia GPUs share a similar architecture,

although they can have variations in the size of memory, the number of cores or even

the number of bits of the FPU. The GTS250 is designed for processing single-precision

floating point numbers or 32 bit floating point numbers. Hence, a variable in a GTS250

GPU program cannot be Double-Precision (64bit). More extensive models, which meet

Nvidia CUDA compute compatibility of 1.2 [170] or higher, can process Double-Precision

numbers. For this project we do not need to use Double-Precision numbers.

A GPU processor consists of many multi-processors (MPs) and each MP has 8 stream-

ing processors (SP). The streaming processor is a special processor design for single

instruction multiple-data (SIMD) parallel processing. In GPU programing the main

computer is called the host and connected GPUs are called devices. Figure 5.1 shows

the internal connections between different parts inside a GPU. The host CPU connects

to the GPU via a controller or the global memory, so the CPU can access the instruc-

tion memory and the global memory but cannot access local memory, such as the shared

memory, directly. In order to load local data in the MPs from the device to the host,

the host has to send instructions to the device to perform a copy of the data from lo-

cal memory to the global memory and then it can read data from the global memory.

With the cooperation of the controller inside the GPU, the SP cores will be commanded

to store/load the data to/from the global memory. The local memory, such as shared
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Figure 5.1: CPU to GPU connection and internal connection inside an example GPU
(no practical GPU has 2 MPs).

memory and cached memory, are exploited in complex programming to improve the

communication speed because the latency of accessing global memory from SP cores is

huge: about hundreds of clock cycles, while, the latency to store/load shared memory

is much faster a few clock cycles. Table 5.1 shows the accessibility of host and SP cores

to read/write on different types of memory. The second column shows the size of the

memory.

Table 5.1: Characteristic of device memory of GTS250.

Memory Size
Cache Host SM Device Latency

size access access (clock cycles)

Global 1GB2 - R/W R/W 100

Constant 64KB1 8KB1 W R 1

Shared 16KB1 - - R/W 1

Texture 1GB2 8KB1 W R 1(hit)/100(miss)

1From CUDA programming guide [170], in appendix G.
2From datasheet and confirmed by our testing.
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Global memory The global memory is the largest memory. The global memory has

flexibility to be read or written by the host or the device. One drawback of exploiting

this memory in an application is its huge latency. Reading the global memory should

be performed in batch mode called coalesced access. The smallest chunk of data that

can be efficiently accessed by SPs is 64Byte for a device with compute compatibility 1.x

(from section 3.2 in [171]).

Constant memory The constant memory can be written by the host but it is read

only by SP cores. The constant memory has the ability to broadcast, which means all

SP cores can read the same address in constant memory. The broadcasting allows all

threads to read from same memory address. The broadcast ability is very useful when

a program needs some parameters in many calculations, for example a physics constant

in a simulation program or camera parameters in our work. Note that all threads must

read the same address at the same time. If some threads read from different locations

all threads will be serialised.

Shared memory The shared memory is located inside the MP unit so the SPs can

access it in a few clock cycles. However, the size of shared memory is very small, so

programmers have to design to apply this type of memory carefully. The shared memory

is divided into equally sized memory modules (banks). Each bank can be accessed by a

thread at a particular time. There are 16 banks in a device with compute compatibility

1.x [171], so, when many threads load the same memory bank the read conflict will cause

serialisation. However, if 16 threads (a half warp of threads) read the same memory bank

it will not conflict but the data will be broadcast to all 16 threads without serialisation.

This fact is very important in order to use shared memory efficiently.

Texture memory The texture memory is a cached memory, which means that a SP

core must search for needed data in local cache memory first before looking in the global

memory. If it cannot find the data in the local cache (known as cache-miss), the request

will be forwarded to the master controller to search in the global memory. If there is
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a cache-hit, the read time will be shorter than reading from the global memory: about

100 times.

Register There is another types of memory with is called a register. The register is

located inside every SP to store intermediate data after processing an instruction. The

register can be read/written by the same thread, other threads in different SP cannot

see this register.

CUDA programming Compute Unified Device Architecture or CUDA [170] is

programming platform and software architecture for parallel processing developed by

Nvidia. GPUs have been built in different configurations. In order to make pieces of

code works properly in any GPU, Nvidia created the CUDA standard so a program can

run on any CUDA-enabled GPUs. The standard is called compute compatibility. For

example the GeForce GTS250, which is used in this project, has compute compatibility

1.1. We can check the compute compatibility from the specification datasheet before

purchasing a GPU. There are hundreds of models of GPUs on the market and they

have different numbers of SP cores. To make the same code able to run on different

devices, CUDA introduced a logical structure of grids and thread-blocks. A grid is a

collection of many thread-blocks. And a function to be executed by a grid is called a

kernel function. Usually, processing in GPUs deals with huge amounts of data but with

the same operation, so each SP has to repeat the same series of instruction many times

on different data. A series of executed instructions is called a thread. The thread-block

is a pack of threads in a grid. The size of the thread-block cab be varied from a fews to

hundreds.

At a particular time a SP unit processes a thread and a MP unit processes many

threads in a thread-blocks as shown in Figure 5.2, where the vertical axis represents

the direction of time. If we draw a horizontal line, the line will cross 16 threads being

processed concurrently by 16 SPs of the hardware architecture in Figure 5.1. To complete

all threads in the grid, the blocks must repeat 4 times to complete 64 threads. Figure 5.2

shows how 64 threads can be processed by 16 SPs. Considering the logical meaning of

the thread-block and the grid, the number of threads per block (block-size) is 16 threads
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Figure 5.2: The logical thread-blocks are mapped to available 2 MPs.

as in Figure 5.2. One MP unit is always constructed from 8 SPs. This means a SP

has to perform the process twice to complete a thread-block and a MP unit processes 2

thread-blocks to finish a grid of 64 threads, referring to the physical layout in Figure 5.1.

When the number of MPs increases, the time consumption decreases. For example,

if we change the GPU to another one which has 4 MPs, which can process 32 threads at

the same time and use half of the previous time. The logical structure of thread-block

allows CUDA code to run on many variation of GPUs, with no need to indicate the

number of MPs. In short, we do not need to know the number of cores on a target GPU

before starting programming.

However, in order to optimize speed for a particular GPU, the best configuration

strongly depends on the physical infrastructure.

5.1.2 Parallelism methods

There are many methods to implement algorithms in GPU. In this section, we discuss

the four major techniques, which are applied in our tracking system; data parallelism,

reduction, skip ahead and cache memory.
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5.1.2.1 Data Parallelism

Michael Quinn classified two types of parallelism [172], data-parallelism and control-

parallelism. Control-parallelism splits hardware into many parts and dedicates a parti-

tion of hardware to do a specific task from a set of several tasks. An example of control-

parallelism is a task that consists of many independent subtask and many workers can

be allocated for different sub-tasks. Normally different processors performs different

operation on different data.

A special case of Control-parallelism is pipelining, where a series of instructions is

divided into smaller pieces and a worker is allocated to perform a piece of task. To

complete the whole task the data have to pass through all series of workers as similar

as assembly line. At particular time there are many chunks of data being processed

by those workers. This kind of parallelism is difficult to design. The total task must

be divided equally to prevent any bottle-neck in particular step and to make sure the

processing is finished before data is passed to the next worker. In high-level programing,

processing time is difficult to control because it is managed by the operating-system so

any interruption can cause delay and lead to unfinished false input to a successive worker.

Quinn also discussed data-parallelism, which means all workers do the same job on

different inputs. Data-parallelism was introduce before Quinn by Michael Flynn in

1966 [173]. Flynn’s taxonomy named data-parallelism as Single Instruction Multiple

Data (SIMD) processing. Eventually, Single Instruction Multiple Threads or SIMT was

described by Nvidia [170, 171]. The idea of SIMT is very similar to SIMD but SIMT has

thread branching control. So the SIMT is an extension of SIMD with a thread controller.

Data parallelism is simple to design and implement compared to the pipelining method

because all workers do the same job and they finish at the same time. Data-parallelism

is very useful when dealing with large numbers of inputs such as in image processing.

For example, if we would like to compute subtraction between two images, we could

pass the data of two pixels from the same coordinate of two images to an arithmetic

core to compute and save the output in the global memory. Each thread processes an

individual pixel coordinate independently. An example of CUDA programming on image

subtraction is shown in the listing 5.1.
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1 #define W 640 //width of the image
2 #define H 480 //height of the image
3 __global__ void kernelSubtract(int A[H][W], int B[H][W], int C[H][W]){
4 int x=blockIdx.x*blockDim.x + threadIdx.x;
5 int y=blockIdx.y*blockDim.y + threadIdx.y;
6 C[y][x]=A[y][x]-B[y][x];//subtraction
7 }
8 int main(){
9 int* h_A, h_B, h_C; //declaration pointers for host memory

10 int* g_A, g_B, g_C; //pointers for global memory on the device
11 h_A = (int*) malloc (H*W*sizeof(int)); //host memory allocation
12 cudaMalloc(&g_A, H*W*sizeof(int)); //device memory allocation
13 ...
14 //more lines for reading images to h_A and h_B
15 ...
16 //copying h_A to g_A
17 cudaMemcpy( g_A, h_A, H*W*sizeof(int),cudaMemcpyHostToDevice);
18 //copying h_B to g_B
19 cudaMemcpy( g_B, h_B, H*W*sizeof(int),cudaMemcpyHostToDevice);
20 //define block size and grid size
21 dim3 BlockSize(16,16,1);
22 dim3 GridSize(W/dimBlock.x,H/dimBlock.y,1);
23 //proceed the kernel function
24 kernelSubtract<<<GridSize,BlockSize>>>(g_A,g_B,g_C)
25 //copying g_C to h_C
26 cudaMemcpy(h_C,g_C,h*w*sizeof(int),cudaMemcpyDeviceToHost);
27 ...
28 //more lines for displaying the result
29 ...
30 //deallocate space in memory
31 free(h_A);
32 cudaFree(g_A);
33 }

Listing 5.1: An example of data-parallel code in CUDA

CUDA is extended from the standard C language and it supports some object oriented

functionalities in C++, such as polymorphism, default parameters, operator overload-

ing, namespaces, function templates and classes (for device compute compatibility 2.0)

[170]. Listing 5.1 shows the implementation of a data-parallel technique in the CUDA

language. The main function starts at line 8. The code begins with the declaration

of pointer variables for host and device. We normally use h for indicating pointer of

host and g for pointers to global memory on a device. For variables A, B and C their

pointers on the host and device are declared and allocated. For host pointers we can

use malloc(size) to allocate memory, where the size is counted in Bytes. In this

example, the pixel intensity is recorded in a 32 bit integer (4 Bytes) and the image has

width of 640 pixels and 480 pixels in height. So the size of an image is 640 × 480 × 4

Bytes. The memory allocation in a device can be made by using a CUDA function
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cudaMalloc(pptr,size), where pptr is a pointer of pointer to global memory. In

line 17 and 19 host images of A and B are copied to the global memory on the de-

vice by cudaMemcpy(target, source,size,direction). Then the dimension

of thread-blocks and a grid are specified in lines 21 and 22. Note that the dimension

of thread-blocks and a grid can be 3 dimensional. Next the kernel function is called

and the dimensions of a grid and block are placed in order between the angle brackets

<<<GridSize,BlockSIze>>>. The device processes and stores the output in g C.

Finally, the output is copied back to the host. Note that the memory allocation lifetime

is in the function scope. If allocations are made in the main function we must make

sure that they are deallocated immediately after use, otherwise the system will run out

of memory.

On the 3rd line, a new keyword global is added. The qualifier global

expresses that the function is executed on a device and callable from the host only.

Another type is device which is executed on a device and callable from the device

only. The built-in variables blockIdx and threadIdx are indexes of the current

thread-block and thread, respectively. The blockDim is the dimension of the block.

From these three local variables; blockIdx, threadIdx and blockDim, the local

thread can identify a global thread index effectively. So a local thread knows which pixel

it has to process: in the example the pixel coordinate is determined by the indexes. In

line 6, the input variables are read from the global memory and processed before the

output g C is written back to the global memory.

The Listing 5.1 gives an idea of how to implement a data-parallel process on a GPU.

Most of the functions in the detection modules are processed by this data-parallel

method, for example, background learning, foreground segmentation and image inte-

gration. The likelihood function is also implemented by this technique by splitting task

according to the particle index so a thread computes the likelihood function for a particle

state. Some variables are repeatably used in the likelihood calculation, such as camera

parameters, ellipse parameters, transition parameters and grids. They are stored in

constant memory for fast loading.
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5.1.2.2 Reduction

In a large system consisting of many clusters of machines the tasks are mapped to each

machine and the number of outputs is reduced to one. The idea of Map and Reduction

was presented in [174, 175]. The Reduction method was applied in our frame work.

Reduction is a computation to combine several inputs into an output, for example to find

the maximum number from a large collection of numbers or computing the summation

from many elements of data as in Figure 5.3. The Reduction technique is applied in

many functions, such as, in the detection function to select the maximum response and

in the re-sampling function for normalising the likelihood weights.

 

X 2 1 3 4 6 5 7 0 

3 7 11 7 

10 18 

28 sum(X) 

Figure 5.3: Compute summation by the Reduction method.

Mark Harris [176] suggested many possible techniques to optimise the Reduction

method on a GPU. He considered the divergence of the control flow in a process and

suggested methods to improve it by changing the read method from the shared memory.

We applied his techniques, to find a maximum grid response in the detection function

and to normalise the likelihood in re-sampling function. To summarise Harris’s methods,

he improved the Reduction process by;

• sequential-address data loading was the most effective method compared to the

interleaved-address,
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• processing and loading at the same time to reduce idle state during loading and

• decrease instruction overhead with the unroll for-loop.

The implementation involves 2 levels of Reduction. At the first level, many blocks

load data from global memory and then compute outputs of their blocks and store the

output on global memory. At the second level, a block loads all outputs of the first level

to its shared memory before computing a final output and storing it back into global

memory. It needs 2 levels because the shared memory cannot be seen from different

blocks, so one way to connect them is to store the output of the first level in the global

memory and then let a single block process the final result.

5.1.2.3 Skip ahead

The particle filter is derived from the Monte Carlo method and it generates samples

by using a random number generator (RNG). The RNG algorithms were designed for a

single processor by computing a series of numerical operators, such as low-discrepancy

Sobol’s sequences [128, 177]. The sequence was generated by appying a particular oper-

ator to a initial value and repeating to generate the sequence. The series of operations

cannot be efficiently processed by a parallel processor directly. In data-parallelism, the

task has to be divided into smaller pieces. To divide the process sequence, we have to

look at the nth step of the sequence. This is known as skip ahead or jump.

To achieve a good quality of uniform distribution with a low-discrepancy density

in any volume of state space, a quasi-random generator such as the Sobol sequence

[128] is exploited in the sampling method. The Sobol sequence can skip ahead to a

particular step as described in [129]. In [178], Bratley showed that the skip ahead can

be done by using the Grey code and a look up table of the direction numbers. The Sobol

sequence is analytic and able to compute the value the particular nth step. This makes

the parallel implementation of skip ahead possible. The skip ahead method is very

important in order to allow many threads generate uniform samples in a parallel mode.

In the project, we used a CUDA function curandGenerate() in [129] to generate
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Figure 5.4: (left) a series of xn are generated a sequential cascade process. (right)
skip ahead is applied to divide the series into shorter sequences

samples in the transition function. The CURAND library has a skip-ahead function

which is very useful in any parallel Monte Carlo simulation.

5.1.2.4 Use of fast memory

In order to minimise accessing time between cores and global memory, we used texture,

constant or shared memory in many functions in the program. In this section we will

explain where and how we applied the fast memory in the program.

In the detection module, the grid response function has thousands of grids and each

grid has to compute the detection response. The computation is divided according to the

number of the grid; each thread computes a grid response. So, there are many threads

that read the foreground image at the same address, which causes read conflicts. So the

foreground image must be stored in some fast memory, such as texture memory. We

used texture memory to store the foreground image. A texture data array is located at
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the same level of the global memory. The texture cache (the L1 cache of a MP) is bound

to the texture array.

Moreover, the constant memory is used to store ellipse parameters of all subjects from

previous iteration because the detection unit has to remove the present tracked subjects

from the detection list to prevent the multiple-occupiers. All threads have to know the

previous estimation result, which is expressed by ellipse parameters. The result is saved

in constant memory, so all threads can load the ellipse parameters by the broadcasting

method, which can prevent serialisation.

In the likelihood function, there are hundreds of particles and each particle is mapped

to a thread. The thread reads data from the same pixel at a specific time period.

Multiple reads from an address in the global memory can cause a read serialization

(non-coalescing). The data need to be stored in cache. The texture memory was used in

the likelihood function to store images. The likelihood function also uses a look-up-table

in constant memory for fast calculation of the distraction penalising factor .

These methods are a few examples from the whole framework. In the implementation,

the fast memory is also used for implementing other functions, which we cannot cover all

of them. From the given examples, a reader can get an idea of how to use different types

of memory in a specific algorithm. Further examples can be found in on-line sources or

books, for example [170, 171, 179].

5.2 Implementation

In our experiment, the functions in the tracking framework have been parallelised,

function-by-function, as described in the previous sections. Figure 5.5 shows the transfer

of all functions from the host to the device and processing all functions on the device.

Different algorithms in those functions perform best in sequential mode, whereas some

functions can be improved to gain speed-up through parallelism. All functions have

been implemented on the device to compare speed-up with the sequential algorithm in

Figure 4.5.
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Figure 5.5: Sequential diagram of a GPU implementation.

We expected significant speed-up because the two slowest functions in our framework

(detection and likelihood functions) can be parallelized by data-parallelism. Both of

them involve many inputs, grids and particles, which are all independent. The detection

function is divided into several grids and each grid is processed by a thread. Similarly,

the likelihood function has many particles and each thread processes the computation

of a particle. If the slow parts of the sequential implementation are parallelised that

should bring substantial speed-up.

5.3 Speed evaluation

We tested the sequential and parallel algorithm using in two platforms; the CPU at

3.1GHz (used only one core) and the GPU GTS250, which has 128 of cores at clock fre-

quency of 1.6GHz. The GPU was tested on the PETS09 dataset and we used the CUDA

profiler to measure computation time and memory utilisation in every kernel function.
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The CUDA profiler can measure useful information such as the utilisation of shared

memory, registers, grid size, block-size and processor occupancy. This information is

helpful in order to optimize computation speed.

Figure 5.6 shows a table of computation time for every function in the tracking

program. The first and second columns show functions and kernel functions. A function

can be constructed from many kernel functions, for example detection is constructed

from 6 kernel functions and one CUDA memory-transfer function. The third column

shows the GPU processing time per call of each kernel. The numbers in the third column

exclude communication between the device and the host, such as loading instructions

from the host and returning output to the host. The 4th column is the processing time

per call including communication to the host. The 5th column is the number of calls of

a kernel in the test, for example the likelihood function is executed 634 times. The 6th

column is the percentage of computation time that the program spends on each kernel.

Figure 5.7 shows the block-size, grid size and memory utilisation of the kernels. The

block-size is the number of threads in a block. The shared memory utilisation in the

5th column is the size in units of byte of the allocated shared memory for a block.

Intermediate data is stored in registers during kernel execution. An MP has 8192 built-

in registers and they have to be shared for all threads in a block. If the block-size

is too large, a thread will have insufficient registers and the GPU has to use global

memory instead, which makes it slower. The register utilisation per thread is shown in

6th column.

The CUDA occupancy calculator is a tool to help a programmer to optimise the

speed of CUDA program. It needs three inputs from the CUDA profiler to identify a

bottleneck and to determine a suitable block-size. The three inputs are;

• current block-size (the 4th column in Figure 5.7),

• size of allocated share memory per block (the 5th column in Figure 5.7) and

• the number of registers used by a thread (the 6th column in Figure 5.7).
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Function Kernel 
GPU Time 

per call 
Subtotal Calls 

%GPU 

time 

Init 

5.13ms 

generate_seed 1.12 1.56 1 0.00 

Kernel_BG_Reset 3.31 3.33 2 0.04 

Kernel_PF_ResetAll 0.15 0.18 1 0.00 

Kernel_PF_ResetParticle

s 0.00 0.02 2 0.00 

Kernel_TXT_Init 0.01 0.02 1 0.00 

Kernel_TXT_ResetSign 0.00 0.02 2 0.00 

Read 

20.29ms 

- 

 

20.00 

  
memcpyHtoD 0.03 0.29 1280 0.24 

Detection 

8.43ms 

 

Kernel_Cam_gBGR2gRGBA 0.81 0.83 634 3.51 

Kernel_CAM_BG_Update 6.35 6.37 634 27.45 

memcpyDtoA 0.06 0.06 2533 0.98 

Kernel_IntRow 0.81 0.84 634 3.50 

Kernel_IntCol 0.24 0.26 634 1.05 

Kernel_Det_KernelInt 0.01 0.03 634 0.03 

Kernel_DET_RemoveFP 0.02 0.04 56 0.00 

Likelihood 

13.6ms Kernel_PF_Likelihood 13.57 13.60 634 58.69 

Fusion 

0.09ms Kernel_PF_DataFusion 0.04 0.09 634 0.18 

Display 

o.22ms 

Kernel_PF_ShowParticles 0.06 0.10 317 0.13 

Kernel_RenderPBO 0.07 0.12 317 0.15 

Add 

0.31ms 

Kernel_Max1 0.00 0.03 317 0.01 

Kernel_Max2 0.01 0.03 317 0.01 

Kernel_PF_Birth 0.01 0.02 3 0.00 

Kernel_Det_Reset_W 0.00 0.02 316 0.00 

Kernel_PF_Debug 0.17 0.19 316 0.36 

memcpyDtoD 0.00 0.02 1264 0.03 

Resampling 

0.56ms 

Kernel_PF_Resampling 0.34 0.35 316 0.73 

Kernel_PF_ResetW 0.00 0.02 316 0.00 

Kernel_PF_GetExp 0.18 0.19 316 0.38 

TexUpdate 

0.30ms 

Kernel_PF_MakeEllipsePa

r 0.01 0.03 632 0.04 

Kernel_TXT_Update 0.24 0.27 632 1.04 

Display 

0.21ms 

Kernel_PF_ShowEllipse 0.06 0.08 28 0.01 

Kernel_TXT_ShowTxt 0.11 0.13 316 0.23 

Transition 

0.37ms 

gen_sequenced 0.05 0.07 316 0.10 

Kernel_PF_MakeTransitio

n 0.28 0.30 316 0.60 

Remove 

0.02ms Kernel_PF_Punish 0.00 0.02 10077 0.11 

Return 

0.06ms memcpyDtoH 0.02 0.06 2215 0.25 

Figure 5.6: Computation time of all kernel functions.
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Function Kernel 
%GPU  

time 

block  

size 
Share Reg Texture  

cache hit 

Texture  

cache miss 

warp  

serialize 

 

Init 

5.13ms 

generate_seed 0.00 64 36 15 0 0 0 
 

Kernel_BG_Reset 0.04 256 24 5 0 0 0 
 

Kernel_PF_ResetAll 0.00 16 32 6 0 0 0 
 

Kernel_PF_ResetParticles 0.00 16 32 3 0 0 0 
 

Kernel_TXT_Init 0.00 256 28 5 0 0 0 
 

Kernel_TXT_ResetSign 0.00 256 24 5 0 0 0 
 

Read 

20.29ms 

- 

 

   

  

 
 

memcpyHtoD 0.24    

  

 
 

Detection 

8.43ms 

 

Kernel_Cam_gBGR2gRGBA 3.51 256 28 5 0 0 0 
 

Kernel_CAM_BG_Update 27.45 128 28 32 0 0 0 
 

memcpyDtoA 0.98    

  

 
 

Kernel_IntRow 3.50 16 24 7 3.6E+06 1.2E+06 0 
 

Kernel_IntCol 1.05 16 32 6 0 0 0 
 

Kernel_Det_KernelInt 0.03 16 32 11 4.7E+03 2.7E+05 0 
 

Kernel_DET_RemoveFP 0.00 16 60 24 0 0 1.3E+05 
 

Likelihood 

13.6ms Kernel_PF_Likelihood 58.69 16 32 30 1.2E+08 1.8E+07 3.0E+04 

 

Fusion 

0.09ms Kernel_PF_DataFusion 0.18 16 36 7 0 0 1.1E+05 

 

Display 

o.22ms 

Kernel_PF_ShowParticles 0.13 256 36 6 0 0 9.2E+05 
 

Kernel_RenderPBO 0.15 256 24 8 1.1E+06 1.1E+06 0 
 

Add 

0.31ms 

Kernel_Max1 0.01 16 160 8 0 0 0 
 

Kernel_Max2 0.01 16 160 9 0 0 0 
 

Kernel_PF_Birth 0.00 16 40 16 0 0 0 
 

Kernel_Det_Reset_W 0.00 16 24 2 0 0 0 
 

Kernel_PF_Debug 0.36 16 32 6 0 0 0 
 

memcpyDtoD 0.03    

  

 
 

Resampling 

0.56ms 

Kernel_PF_Resampling 0.73 16 40 9 0 0 0 
 

Kernel_PF_ResetW 0.00 256 24 5 0 0 0 
 

Kernel_PF_GetExp 0.38 16 32 16 0 0 0 
 

TexUpdate 

0.30ms 

Kernel_PF_MakeEllipsePar 0.04 16 28 24 0 0 0 
 

Kernel_TXT_Update 1.04 1 32 32 0 3.1E+02 0 
 

Display 

0.21ms 

Kernel_PF_ShowEllipse 0.01 256 28 7 0 0 0 
 

Kernel_TXT_ShowTxt 0.23 256 28 6 0 0 0 
 

Transition 

0.37ms 

gen_sequenced 0.10 64 48 22 0 0 0 
 

Kernel_PF_MakeTransition 0.60 16 36 20 0 0 0 
 

Remove 

0.02ms Kernel_PF_Punish 0.11 1 40 2 0 0 0 

 

Return 

0.06ms memcpyDtoH 0.25    

  

 

 

Figure 5.7: Memory utilisation of all kernel functions.
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The inputs are entered in the CUDA occupancy calculator which draws three graphs of

the relation between processor occupancy and the three inputs. Each graph will let the

programmer know the bottle-neck of the kernel function. It also calculates a minimum

number of blocks per MP for the current situation.

There are three types of possible situations that the calculator can identify, lack of

blocks per MP, lack of registers or lack of shared memory. If the calculator indicates

the first situation, lack of block per MP, it means the block-size is too big. The block

size is large and unable to be allocated efficiently on each MP. Imagine we have 2 boxes

of pencils and we need to count a total number of pencils. We have 10 workers able to

count but the low number of boxes (packages) limits efficiency of the process. We can

improve efficiency by reducing the size of the package (the block-size).

The second and the third situations are lack of shared memory or registers. We can

solve this with two solutions. The first option is to minimize the use of intermediate

variables in the kernel functions. Sometimes a kernel function must be split into smaller

sub-functions. The second option is to reduce the block-size. When the block-size

reduces, the number of active threads per MP decreases. We have to reduce activity

because the physical resources are limited.

Our chosen device has compute compatibility 1.1 so it has been designed to compute

efficiently at 24 warps per MP or 96 threads per SP, from Appendix G of [170]. When an

MP processes 24 warps it shows that all SPs in a MP are busy or occupied by a task all the

time. However, the occupancy does not indicate inefficiency of loading from the global

memory or cache-miss. Loading must be considered individually by checking results from

the profiler. Texture cache-hits and cache-misses are shown in column 7 and 8. The last

column shows serialization due to memory bank conflict or control branching, which is

caused by control-flow, e.g. if-else. The kernel function may consists of if-else

control-flow. During executing some threads meets the if condition and some does not.

Thus the master controller has to send individual instruction branch to SP instead of

broadcasting the instruction to all SPs at once. It is called instruction serialisation.

From the table in Figure 5.6, the Kernel CAM BG UP and Kernel PF Likelihood

are the most complex as they consume more than 95% of the processing time. If we can
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increase the speed of both processes, the overall computation time will reduce signifi-

cantly. Table 5.2 compares the computation time between sequential and parallel imple-

mentations. There are improvements in Detection, Likelihood and Transition.

The performance of Resampling and Add functions become worse than the CPU im-

plementation, due to the sequential characteristics of those functions.

However, the processing times of these two functions are much smaller than the

computation times of Detection and Likelihood. So, decreasing speed in those

simple functions has an insignificant effect on the total speedup ratio.

Function
CPU GPU SpeedUp

time(ms) time(ms) ratio

Detection 48.81 8.43 5.8

Likelihood 30.95 13.60 2.3

Fusion - 0.09 -

Resampling 0.44 0.56 0.8

Transition 2.11 0.37 5.7

Remove - 0.02 -

Add 0.02 0.31 0.1

TextureUpdate - 0.30 -

Total1 82.3 23.2 3.5

Table 5.2: Comparing computation time between sequential and parallel processing.

5.4 Conclusion

We have discussed parallelising methods and implementation on a GPU. Due to the

characteristics of the detection and particle filter that have many elements of input, these

factors make increase in the overall speed-up ratio. We also optimised by exploiting fast

memory and varying the block-size to obtain maximum speed.

We tested the parallel tracking system on the GPU, which has 128 cores at clock

frequency 1.6 GHz. The sequential algorithm was tested on a single core of the CPU at

3.1GHz. Note that clock frequency of the CPU was about twice faster that the GPU.

The detection speed is improved 5.8 times ( or about 11 times, if the clock frequencies

1processing time of Fusion, Remove and TextureUpdate functions are neglected
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were the same) The Likelihood speedup is only 2.3 times due to serialisation and cache-

miss problems. From the slower GPU we still improve the overall performance to yield

3.5 times speed-up.

The parallel implementation is faster than the sequential implementation but it can be

faster than the current implementation. The parallel implementation needs improvement

to get rid of serialization and cache-misses. In Figure 5.7 there is a lot of serialization

(30,000 times) in the likelihood computation and there are many cache-misses. The

serialization and cache-miss emphasise that there is a lot of room to further improve the

GPU implementation.



Chapter 6

Tracking in a disjoint camera

network

The tracking framework described in Chapter 3 and Chapter 4 is able to handle short-

time occlusion by including the invisible state and the persistence level in the transition

mechanism. The mechanism allows subjects to disappear for a few seconds (normally

less than 2 seconds) but it cannot handle long periods of absence because this increases

the uncertainty of estimation and increases the rate of distraction. Thus, the particle

filter is unable to withstand a long period of disappearance. When a subject leaves

or disappears for a long period the particle filter has to terminate the trajectory. The

previous tracking framework is unable to identify re-appearing subjects, where there is

a large gap between broken trajectories. In order to make an association between those

broken trajectories we need a recognition system.

Figure 6.1 shows two configurations of camera networks. The joint field of view of

camera network has an intersection between field of views, whereas the disjoint camera

network has no connection between the camera views. In the disjoint network, the system

loses observability when a subject moves between a camera node and neighbouring nodes.

Previously, the coverage of camera nodes had to be continuous in a joint camera

network to prevent an unobservable region between camera views. However, a com-

plete continuous network or a joint camera network is not always practical and limits

138
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Figure 6.1: Coverage scalability of the joint and the disjoint network.

scalability. Obstacles and unobservable areas make a complete continuous configuration

problematic. In the case of outdoor tracking, a disjoint network is more probable and

free of installation constraints. However, tracking objects in a disjoint network is very

challenging due to the unobservable space. The trajectory of a subject is broken into

sub-trajectories and they must be linked together by data association or recognition.

A re-appearance event can occur in both joint and disjoint networks. Figure 6.2

shows trajectory transitions in a disjoint camera network. Subjects can re-appear in

the same camera node or in other nodes. We tackle two main scenarios; re-appearance

in a joint network and disjoint network. We are going to apply the Hungarian method

[96] to these scenarios to connect sub-trajectories together by using state vectors and

texture information. The matching score can be determined by spatial connectivity (a

previously detected trajectory and a new detected location) and texture similarity. Our

strategy is to exploit both spatial information and texture, which is acquired during the

tracking process. The method will be tested on standard and our own datasets.

6.1 Related work

When subjects are able to move across FOVs (Fields of View), the tracking problem is

more difficult compared to overlapping FOVs because of the unobservable gap. The non-

overlapping camera network is also called the disjoint camera network. The challenges
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Camera2 

Camera1 

Camera3 

Figure 6.2: Transition of Subjects in a disjoint camera network

of tracking in a disjoint camera network are acquiring an invariant signature from a

subject and assigning the correct ID to a subject.

View invariant appearance description is needed for recognition of the subjects. The

appearance descriptor is always affected by the orientation of the cameras. The appear-

ance descriptor of a subject may be totally different when it is captured from another

camera. Imagine a subject who wears a red shirt and blue trousers. If the subject is

captured by a camera from a side-view the colour histogram of the subject will consist

of half red and half blue. When the camera is moved to capture the subject from a top-

view, the colour histogram will be dominated the red colour. Thus, the colour histogram

is not invariant signature.

An invariant signature, which has the same appearnce in all cameras, is required

in disjoint tracking. In [180], Kang proposed a 2D representation to transform the

observation image to an invariant descriptor for disjoint camera network application.

The 2D represnetation includes colour and edge encoded in 2D image representation. In

[181], the 2D representation to express colour and spatial information of a subject was

used as a signature. The new colour space (CI-DLBP) was introduced to make colour

consistence in all cameras The colour distribution on the 3D model ,which is normally

baced on vertex base, is computational expensive and this make 3D representation never

been used in tracking in disjoint camera network.

The geometry and topology of a camera network can be acquired by either training

or proper calibration. The geometry or gegraphical information is very useful in order
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to link a previous trajectory to a newly detected subject. The prior trajectory can also

be applied to data association as in [182]. There, the topology network was modeled as

a graph where the edges were travel time between FOV.

Table 6.1: Selected methods of disjoint camera tracking

Ref Network topology AD Signature Tracking Trajectory Association

Javed03 Inter-camera travel time Colour histogram MAP HopcroftKarp [183]

[182]

Kang05 Calibration Colour spatial encoding Kalman JPDA

[180] Edge spatial encoding

Madden07 none Major Colour Detection Matching

[184]

LoPresti12 Inter-camera travel time Colour Historgram Kalman Dynamic Programming

[185] node-to-node probability

Lian12 none Colour spatial encoding Detection Matching

[181] Colour (CI-DLBP)

The appearance description signature is usually modeled by a histogram of colour

e.g. [182, 185] or features on image plane e.g. [180, 181]. Table 6.1 shows that the colour

is a popular choice for subject association. Other features such as edges are also used

as a signature. The colour histogram differs from colour-spatial encoding in that that

the colour-spatial encoding retains the spatial information of colour distribution on the

image. Camera topology and the previous and the newly detected positions is also a

key information to link broken trajectories to create a complete trajectory as described

in [180, 182, 185].

6.2 Our approach

In traditional methods, the network topology can be modeled as a graph consisting of

nodes and edges, where the edges represent inter-camera travel time or the probability

of subject transferring from node-to-node. This covers more information compared the

travel-time graph that the connection between FOVs is not single value as in the travel-

time graph model. If the gap between between FOVs is a parallel gap the travel-time

tends to be constant. However in practice, the gap is not necessary to be parallel gap,

the distance between the edges of FOVs can vary. Therefore, the travel-time variation
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depends on location of subject in the FOV. Unlike other work, we can predict the

arrival time by using prior speed and position in an actual 3D coordinate system from

the tracking described in Chapter 3.

The broken trajectories can be linked together based on signature only or on a com-

bination of the signature and the prior state. The prior state contains position and

velocity, which expresses subject motion on the ground plane. We call the state posi-

tions as the trajectory information to separate it from the signature information, where

the latter is invariant in all cameras.

The published evaluation of the methods in Table 6.1 were produced from different

datasets and metrics, which makes them difficult to be compared. In this work, we will

test our method using the standard PETS09 and our dataset, which is available on-line.

We propose to use the texture signature described in Chapter 3. The subject signature

we use here is the distribution of colour along the vertical direction of the ellipsoid

surface. We do not use the azimuthal colour distribution because of uncertainty of

the facing angle estimation. Hence, Our signature appearance description is invariant

under orientation and transition transformation. We add the 3D geometry of subject

and camera to the appearance model to make the signature appearance description

consistent across all cameras. This allows us to link broken trajectories.

The colour feature is sensitive to illumination conditions. Therefore, we allow illumi-

nation changes by reducing the resolution of the colour-spatial encoding. The ellipsoidal

surface is divided into 32 segments in the vertical direction (horizontal slices) and each

segment has a RGB histogram, 16×16×16 bins for RGB colour .

The trajectory spatial information is also considered as a key for recognition and

identification. We use prior knowledge from the previous tracked trajectories and new

detected trajectories. The trajectory data and the signature information are used for

computing the association probability or cost function as described in Sections 6.3.2 and

6.3.3 in order to link many broken trajectories in a particular time. Note that there can

be many trajectories and many new unknown subjects. The cost function is filtered by

threshold before computing the optimum association by the Hungarian algorithm.
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6.3 Theory

In single target tracking, an obvious presumption is that detections belong to the subject.

However, in multiple target tracking, we must determine ownership between detections

and subjects. Figure 6.3 shows the problem of association of the detection data with

 

Trajectories 

Detections 

time 

Figure 6.3: The data association problem; how do we link the detections with the
trajectories?

the previous trajectories. In this case three detections and three trajectories can be

associated using the shortest-path [82] algorithm or stochastic motion model [22]. Data

association was used in multiple target tracking as described in Section 2.2.2.4, which was

based on probability of ownership between a detection and a subject. The ownership

probability defines a relation between a detection and a trajectory (an owner). In a

particular time frame, many detections have to be linked with their trajectories and

we can model the ownership probability. For example, JPDA [21] and PMHT [22]

used only spatial probabilistic models to link detections (observation) to trajectories.

Unlike previous methods of tracking by detection and association in [22, 82, 93], this

study emphasises texture information, which is collectively acquired during the tracking

process. The problem of finding an optimal solution to link many detections to many

trajectories is similar to the assignment problem.
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6.3.1 Assignment problem

The Hungarian algorithm [95, 96] has been designed to solve the assignment problem,

which is to assign individual N workers to M separate tasks when those workers ask

for different pay for different jobs. The Hungarian algorithm computes an optimal

assignment that ensures all jobs are done within a minimum cost. The number of possible

combinations of assignments is M !
(M−N)! , where M ≤ N . So the optimal solution cannot

be solved effectively by exhaustive search. The Hungarian algorithm was introduced in

a logistics scenario by Kuhn [95] and it was revised and developed to a more general

algorithm by Munkres [96]. In a particular time frame, the number of freshly-detected

subjects is M and the number of known-missing subjects trajectory is denoted by N .

Note that M and N are not necessarily equal.

In our method, the cost of matching a new detected subject to a previous trajectory

is calculated from the similarity between the two textures and a spatial density diffusion

function (a gating function). The association cannot happen if the similarity cost is

lower than a threshold. This threshold enables a new unknown subject to be added to

the known subject database.
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1. A subject is detected 

2. Obtaining texture information 

3. No matching texture in database, a new ID is assigned to the subject 

4. The trajectory is terminated due to lack of observation 

5. The subject is detected again and texture is obtained 

6. An association probability is computed from the disjoint distance and 

texture similarity 

7. The association probabilities from all possible connections (all 

trajectories and detections) are entered in the Hungarian method to find 

the optimal solution  

Figure 6.4: Texture matching in a video sequence, the trajectory line is broken at
step 4.

Figure 6.4 shows our method of data association which is based on spatial and texture

information. The red segments of the trajectories show when a new subject is detected
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and the tracking system obtains a texture signature during tracking. The observed

texture is accumulated over time to generate a histogram signature. Once the tracker

fails to track, the histogram signature is stored in a database and checked against future

detections. Histogram signatures of any new detected subjects will be checked against

the previous known textures. When a histogram signature is found in a new trajectory,

the two trajectories will be connected and the previous trajectory ID will be given to

the detected subject.

6.3.2 Spatial association probability

The disjoint distance between the last position of the previous trajectory and a new

detected position gives a clue to form an association. In order to associate the detections

to the trajectories from the spatial information, we need to model the dynamics of the

subject. We observe that people tend to move at the same velocity and have slight

changes of velocity over time. We assume that human acceleration can be expressed by

a simple Wiener process [159]. Equation (6.1) shows that the acceleration of a subject

is a Wiener process (W) with a control variance σ.

dVel = Accel.dt+ σdW ; Accel = 0 (6.1)

〈Vel〉 =

∫
σdWdt = 0 (6.2)

var 〈Vel〉 =
〈
[Vel− 〈Vel〉]2

〉
=

∫
σ2dW2 = σ2t (6.3)

A stochastic variable consists of two parts; deterministic and stochastic parts. In Equa-

tion (6.1), the deterministic term is Acceldt and the stochastic term is σdW. In this

case, we set the expected value of the acceleration to be zero, Accel = 0 This came from

our assumption that people change velocity with minimum acceleration (force). If we

use the Wiener process as to represent the stochastic part, the expectation of the vari-

able will be the deterministic term. The variance will be the integration of the square

of the stochastic part. According to the Wiener process characteristic, dW.dt = 0 and

dW.dW = dt. From Equation (6.2), the expectation of Vel is zero, whilst the integration

of square of the stochastic part will be σ2dt3 as showed in and Equation (6.3).
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We can determine the expectation and variance of the velocity as shown in Equa-

tion (6.4) and 6.5. Applying a similar method to position we get the variance as a

function of (∆t)2. The expected value, 〈.〉, represents the deterministic component,

whereas the variance, var 〈.〉, expresses a boundary of randomness.

〈∆Vel〉 = 0 (6.4)

var 〈∆Vel〉 = σ2(∆t) (6.5)

〈∆Pos〉 = Velo∆t (6.6)

var 〈∆Pos〉 = σ2(∆t)2 (6.7)

We assume that the variances of the acceleration in the x and y directions are equal

(distributed as a 2D Wiener process). A 2D Wiener process is generated from a 2D

Gaussian probability density function, (page 46) in [159]. This assumption keeps the

expectation of velocity in same direction. The probability of detection occurring near

the mean is high and reduced relative to the outward distance. There is a very low

probability that a detected distance is beyond 2.5 times the standard deviation so a

threshold on distance is considered distance < 2.5σ(∆t). In order to reduce non-

relevant observations, only non-assigned subjects in the circle will be tested by the

data-association.

ηs(k, id) =
1

2πσ2(∆t)2
exp

(
−r2

2σ2(∆t)2

)
(6.8)

r2 = (Posxk − Posxid)
2 + (Posyk − Posyid)

2 (6.9)

Equation (6.8) shows the spatial association probability between a detected subject

index k and a trajectory index id.

6.3.3 Texture association probability

The tracking system is able to obtain a texture model from the surface of an ellipsoid by

texture mapping and estimation as described in Sections 3.2.2 and 3.3.3. The texture

signature consists of a 32-by-32 pixel array, where the row and the column of the texture



Chapter 6. Tracking in Non-Overlapping Views 147

correspond to the vertical coordinate and the horizontal azimuth angle of the ellipsoid

surface. Due to uncertainty of the facing angle estimation, the obtained texture is

scattered in a horizontal direction. So we created a histogram of RGB colour from

each row of the texture, keeping only the vertical spatial information. The histogram is

accumulated during the tracking period. From each row of the 32-by-32 arrays of many

time frames, we create a histogram in RGB colour space. A collection of histograms of

all rows forms a histogram signature. This histogram signature is accumulated from the

series of obtained textures. So after a short period of tracking the histogram signature

is built up progressively as shown in Figure 6.4.

Once a subject is detected, the texture learning process starts immediately. The

obtained texture will be checked against the histogram signature database by a Monte

Carlo technique. Because a camera cannot see the entire surface of the subject at once,

the pixels on the visible area are the available samples and they are tested by Monte

Carlo estimation in Equations 6.10 and 6.11. Let Tk(c) and Tid(c) be histograms in

colour space c of the detected subject (k) and the previous trajectory (id). Because

Tid(c) has small samples, the complete histogram cannot be constructed. In order to

estimate the inner product between two histograms, the importance sampling method

is applied. The integral of products between two density functions is estimated by the

sampling method of Equation (6.11), where a texture data association cost function of

each row z of the texture model is denoted by ηtz(k, id). Note that the texture coordinate

system is (z, θ) as described in Section 3.2.2. The averaged texture cost function from

all rows ηt(k, id) (without subscript z) is computed and used as a texture association

score.

ηtz(k, id) =

∫
Tk(c, z).Tid(c, z)dc (6.10)∫

Tk(c, z).Tid(c, z)dc =
1

imax

imax∑
i=1

Tid(ci, z) ; ci ∼ Tid(c, z) (6.11)
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6.4 Design of Experiments

In this study the texture models are produced on-line and no texture model is created in

advance. If the detection matches a trajectory texture model, the detected subject will

be assigned with the trajectory id. Otherwise, the classifier must add a new category (a

new subject) when there is no previous trajectory that matches a new detected subject.

The new subject will be added directly to the database with a new id, when the texture

is acquired with more than 30% of the total surface and has no match. Our classifier

is based on threshold and maximum association score. In order to study the effect of

spatial and texture scores, we consider these factors one by one in each experiment.

Recall rate To measure the recall rate, the assigned indexes (id) of all trajectories

are monitored. The id of the same person of every trajectory is recorded. The number

of correct connections is denoted by nc, which is the number of correct links between the

unidentified detected subject and the previous trajectory. The recall rate is calculated

from the ratio recall = nc/ntotal, where ntotal is a total number of time that a trajectory

is split as shown in Figure 6.5.
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Figure 6.5: Recall rate evaluation.
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6.4.1 Experimant 1: spatial-only

In this experiment, we used only the spatial association score ηs(k, id) in order to link

a detection to a trajectory. To compute the assignment problem, we generated the

cost function ηs(k, id) from Equation (6.8). For example, in a particular frame there

are 3 subjects that are detected (k = 1, 2, 3) and 2 trajectories that have no trackers

associated (id = 1, 2), so we can generate a cost matrix F from the ηs(k, id) as shown

in Equation (6.12).

F =


F1,1 F1,2

F2,1 F2,2

F3,1 F3,2

 (6.12)

where

F sk,id = ramp [ηs(k, id)− νs] (6.13)

The element of the cost matrix is a cost function F sk,id (the super script “s” denotes the

spatial information) is computed from the ramp function [186] with a threshold νs. The

ramp function is linear when the input is positive and zero when the input is negative.

ramp(x) =


x ; 0 < x

0 ; otherwise

(6.14)

After the matrix F is computed, we use the Hungarian method as described in Sec-

tion 6.3.1 to find the optimal solution. In this case, the optimal solution is a configu-

ration that maximises the total cost. In this experiment we vary the threshold νs from

1× 10−3 to 1× 10−2 and also alter the value of σ in Equation (6.8) between 0.6 and 1.4

m/s2. Then we measure the recall rate as described in Section 6.4.
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6.4.2 Experiment 2: texture-only

Next, we repeat the experiment as described in Section 6.4.1 but this time we consider

only the texture association score. The cost is computed from Equation (6.15).

F tk,id = ramp
[
ηt(k, id)− νt

]
(6.15)

In this experiment we vary the texture threshold νt from 5 × 10−3 to 5 × 10−2 and

measure the recall rate.

6.4.3 Experiment 3: combining spatial and texture

Again we repeat the procedure in Section 6.4.1. The combined cost function is computed

from the product of the spatial and texture cost functions.

F stk,id = ramp
[
(ηs(k, id))ξ × ηt(k, id)− νst

]
(6.16)

We choose the best value of σ from previous experiments. The factor ξ is a combining

factor to adjust importance between spatial and texture terms. We vary νst from 10−9

to 1 and ξ between 0.0 and 5.0. We would expect that the combination of cost function

improves the recall rate compared to the previous experiments that use single cost

function.

6.5 Evaluation

The data association method is evaluated using the standard PETS09 dataset and our

own dataset Dec11 (we explain the Dec11 dataset production method in Appendix B).

After obtaining the dataset we followed the evaluation method described in Section 6.5.1.

The experiment includes the effect of tuning parameters on recall rate.
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6.5.1 Evaluation by using PETS09

We consider a joint camera view network where people in the scene can move in and out

across the observable region. As stated, the previous tracking framework cannot handle

long periods of disappearance of subjects followed by re-appearance events.

In this experiment the broken trajectories were linked by the data association using

spatial and texture information as described in Section 6.4. We used image sequences

from the 1st and 3rd cameras of the PETS09 dataset to evaluate our data association

method by measuring a recall rate as described in Section 6.4.

Because the PETS dataset is fairly short, 795 frames or 106 seconds, it has a small

number of reappearance events. Therefore we extended the sequence by processing

forwards and backwards 4 times, from the first to the last frame, then backwards to

the first frame. This method resulted in a jerking motion at the first and last frames.

This is unrealistic and makes the trackers lose the subjects, breaking the trajectory and

affecting the tracker. However, the number of trajectory splits during the sequence is

far more than the number of splits due to the sudden motion change in the first and

last frame. In addition, the forwards-backwards testing affects the tracker but should

not affect the recall rate. The evaluation method consists of three steps, tracking, data

association and measuring the recall rate.

Tracking The first step is to perform tracking by using the ellipsoid model. The

output of state vectors and texture models of all active subject was stored in files. The

history of the trackers was stored in an xml file and processed by the data association

module.

Data Association The data association from Section 6.3 has been implemented

in Matlab. The data association computation included the spatial and texture cost

functions described in Section 6.3. The history of state vectors was used to generate

trajectories and the texture models were accumulated to produce the histogram signature

as discussed in Section 6.3.3. For each experiment, the output was saved in both image

and text formats for further investigation.
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Measure recall rate The recall rate was evaluated by the method in Section 6.4.

Note that we had many trajectories, so the number of correct assignments nc was counted

from all trajectories.

Output from data association Two frames of sample results are shown in Fig-

ure 6.6. The colour code and numbers in rectangular boxes represent the signature

indexes (id). The right panel shows the texture and connections between the current

trackers (left column) and the trajectory signatures (right column). The numbers on the

vertical axis are the tracker index k and signature index id, respectively. The histogram

signatures were accumulations of observations that were provided by the trackers. The

top-left panel represents the positions of subjects in units of a metre and the size of a

circle is the gating function. Any unknown subjects appearing in the gating circle were

tested and matched by spatial-texture data association. The black dot shows the direc-

tion of velocity of the tracked subject. In the 646th frame, a new subject is represented

by black small circles at a coordinate around (-8,0). In the next frame, the texture of

the subject was found and matched to id=2 (dark green colour). The images below on

the left show the re-projection of the 1st and 3rd cameras. The static occlusion due to

the tree can be solved by integrating multiple camera.
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Figure 6.6: Spatial-texture data association with PETS09 dataset, detail in text
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Figure 6.7: Data association with DEC11 dataset. These samples are taken from the
experiment2 with νt = 2× 10−2
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6.5.2 Evaluation by using DEC11 dataset

We repeated the experiments but this time we changed the dataset from PETS09 to

DEC11 (our own dataset). The procedure to generate the DEC11 dataset was described

in Appendix B.

6.6 Result

In PETS09 evaluation, we considered all subjects as in Figure 6.8 and measured the recall

rate by comparing the ground truth trajectory and assigned id of each sub-trajectory.

The series of result images is similar to those of Figure 6.6. We noted the frame index

and ID of individual subjects when the subject re-appeared again we compared the

assigned ID with the previous ID. If the ID was assigned correctly, the counter nc was

increased. The same recall method was used in DEC11. The subjects and captured

screen images are shown in Figure 6.9 and 6.7.

 

A B C D E F G H 

Figure 6.8: Subjects and their labels in the PETS09 sequence.

 
A B C D E 

Figure 6.9: Subjects and their labels in the DEC11 sequence.
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6.6.1 Result 1: spatial-only data association

Table 6.2 and 6.3 show the results of Experiment 1 in Section 6.4.1. The table shows the

recall rate with varying threshold νs and variance σ. In PETS09, the best parameters

are ν = 3× 10−3 and σ = 0.8[m/s2], which yield the recall rate of 62%. The maximum

correct recall rate in DEC11 is 64% with ν = 1× 10−3 and σ = 1.0[m/s2]

Table 6.2: Recall rate of the spatial-only data association (PETS09)

νs [×10−3]
σ[m/s2]

0.6 0.8 1.0 1.2 1.4

1 38 54 62 54 46

2 46 46 46 62 62

3 54 62 54 62 54

4 54 62 62 54 54

5 46 54 38 38 46

6 54 54 38 46 46

7 46 54 54 54 46

8 46 54 54 54 46

9 46 54 54 54 62

10 46 54 54 54 62

Table 6.3: Recall rate of the spatial-only data association (DEC11)

νs [×10−3]
σ[m/s2]

0.6 0.8 1.0 1.2 1.4

1 57 50 64 57 43

2 57 43 50 43 36

3 43 36 43 36 29

4 43 36 43 36 14

5 29 36 36 21 14

6 29 36 36 14 14

7 21 36 14 14 14

8 21 29 14 14 14

9 21 14 14 14 14

10 21 14 14 14 14
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6.6.2 Result 2: texture-only data association

In Experiment 2, we used only the texture cost function as described in Section 6.4.2.

Table 6.4 shows the recall rate measured from the datasets. The recognition method

worked more accurately in DEC11, which had a 79% correct recall rate.

Table 6.4: Recall rate of the texture-only data association (PETS09 and DEC11)

νt [×10−3] PETS09 DEC11

5 23 43

10 62 29

15 62 57

20 54 79

25 46 79

30 46 79

35 46 79

40 23 79

45 31 79

50 31 43

6.6.3 Result 3: Spatial-texture data association

The cost function in Section 6.4.3 was tested and the results are shown in Table 6.5 and

6.6. We believed there should be a higher recall rate from the combined cost function

but we did not see the peak in the second table. Thus, we decided to redo the experiment

with smaller increments of ξ and νst. The results are shown in Figure 6.10 and 6.11 In

PETS09, the recall rate was highest at 84.6% with log 10(νst) = −3.7 and ξ = 0.6. This

result shows that the combined cost function gives a better result compared to separate

cost functions. In case of DEC11, the peak was at 71.4% with log 10(νst) = −1.7 and

ξ = 0.0. However, the combining factor ξ = 0 means it is best to exclude spatial from

the cost function. The bigger ξ, the more emphasis on the spatial data as shown in

Equation (6.16).
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Figure 6.10: Results of the spatial-texture data association PETS09
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Figure 6.11: Recall rate of the spatial-texture data association DEC11
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Table 6.5: Recall rate of the 2nd combining method (PETS09)

νst [×10−8]
ξ

1.0 2.0 3.0 4.0 5.0

1 54 62 54 54 38

2 54 77 46 54 54

3 54 77 54 54 31

4 54 77 54 46 31

5 54 77 54 46 23

6 54 69 54 46 23

7 54 69 54 46 23

8 54 69 38 46 23

9 54 69 54 46 23

10 54 69 54 46 23

Table 6.6: Recall rate of the 2nd combining method (DEC11)

νst [×10−8]
ξ

1.0 2.0 3.0 4.0 5.0

1 57 57 21 21 14

2 57 50 21 21 7

3 57 43 21 14 7

4 57 43 21 14 7

5 64 43 21 21 7

6 57 50 21 21 7

7 57 50 21 21 7

8 57 50 21 14 7

9 57 50 21 7 7

10 57 50 21 7 7

6.7 Recall Precision and F-measure

Figures 6.10 and 6.11 show the recall, precision and F-measure of the experiments.

These measurements were also described in [187]. The recall is computed from the

number of correct assignments estimated by our algorithm (tp = nc) and the total

number of assignments of ground-truth (tp+ fn = ntotal) as showed in Equation (6.17).

The precision rate is a ratio between the number of correct assignments (tp) from the

algorithm divided by the number of total (tp + fp) assignments, where tp, fp and fn
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are true positive, false positive and false negative.

Recall =
tp

tp+ fn
(6.17)

Precision =
tp

tp+ fp
(6.18)

F =
2.recall.precision

recall + precision
(6.19)

According to Figure 6.5, Recall = nc/ntotal. The nc is the number of correct assign-

ments and ntotal is the total number of assignments. The recall has the same definition.

The patterns of recall, precision and F-measure are very similar because the tracking

system produces low miss rate (about 4% per frame) as described in Table 4.2. Thus,

the chance of a tracker missing the subject per sub-trajectory is very close to zero (a

product of miss rate per frame). This leads to nearly zero false negatives (fn) due to

miss detection. The only reason for a rise in fp and fn is faulty assignments, and those

assignments must be bijection (one-to-one correspondence) because of the Hungarian

algorithm constraint. Therefore, fn ≈ fp and recall ≈ precision and this makes

recall, precision and F-measure very similar.

We also plot the ROC graph to compare our classification data association with other

method such as [184]. However, the ROC graph is linear with a negative slope as showed

in Figure 6.12, which is unusual and it is resulted from the fundamental characteristic

of the data association algorithm.

Figure 6.13 shows association of a trajectory (A’) with 3 unknown subjects (A,B and

C). The correct association is a connection between the subject A and the trajectory

A’. For each trajectory the system can make a correct (left diagram) or wrong (right

diagram) connection. If it makes a correct connection tp = 1, otherwise fn = 1. So, we

can write Equation (6.20) for each trajectory.

tp+ fn = 1 (6.20)
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Figure 6.12: ROC computed from PETS09.
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Figure 6.13: Characteristic of our data association.

Once the system makes a wrong connection it immediately generates both fp and fn.

fp = fn (6.21)

The ROC plot is generated from the FPR(false positive rate) and the recall rate. The

FPR is computed from Equation (6.22).

FPR =
fp

fp+ tn
(6.22)

As you can see the denominators of Equations (6.22) and (6.17) are constants. Sub-

stitute Equation (6.21) in Equation (6.20) and use the fact that the denominators of
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Equation (6.22) and 6.17 are constant numbers. We can write Equation (6.25). P and

N are the numbers of positives and negatives, which are constants in every dataset.

tp+ fp = 1 (6.23)

Recall.P + FPR.N = 1 (6.24)

Recall = 1− N

P
FPR (6.25)

In conclusion, the ROC plot is not suitable for data association evaluation. Further-

more, our algorithm produces fp = fn, which makes recall equal precision. Moreover,

the recall rate that is computed from a specific dataset is certain and robust enough to

compare the performance of the algorithm. We produce recall rate that computed from

a standard dataset and our public dataset for the future comparison.

6.8 Discussion

In PETS09, using the spatial-only and texture-only returned a recall rate of 62% in both

cases. Many people wear similar clothes which led to indistinguishable texture and low

recall rate of texture-only data association when compared to DEC11 dataset.

In the disjoint network DEC11, the subject’s position was scattered and the texture

was more distinguishable compared to PETS09. This resulted in higher recall rate from

the texture-only cost function compared to the spatial-only experiment.

In PETS09, the combined cost function gave a better recall rate compared to the

use of individual cost functions. In DEC11, the best configuration is ξ = 0, which

suggests that the trajectory spatial information does not contribute to the best result.

The combined cost function is in a general form to switch between the spatial and the

texture information.

The best combining factor ξ was varied in different situations. In PETS09 people

have similar texture appearance compared to DEC11. In PETS09, spatial and texture

are both important for data association. In contrast DEC11 has a significant spatial gap
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between FOVs and this gap makes subject location uncertain. Therefore, the combining

factor ξ has to be varied to choose whether to emphasise texture or spatial information.

The variance σ, which comes from the stochastic model does not change much from

PETS09 to DEC11 . Figure 6.10 and 6.11 shows similar patterns and we believe this

pattern will be consistent in all dataset.

It require further study to confirm the consistency of the recall profile. The param-

eters (ξ, ν) must be adjusted from case to case for the optimum accuracy. It may be

necessary to use an on-line learning algorithm to adjust the parameters.

In conclusion, we show the new appearance descriptor which is consistence across all

cameras in the network. The consistency of descriptor allows matching between previous

trajectory and a new subject. Furthermore, it can link the broken trajectories of many

subjects to recreate the complete paths.
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Conclusion

From our review of tracking methods, a tracking method consists of the appearance

descriptor and the state estimator. We can use a combination of various appearance

descriptors as simple as edges or a 3D model. In order to integrate observations from

multiple-cameras, we use a 3D ellipsoid model. Our ellipsoid projection transforms

an ellipsoid surface in a 3D world to a quadratic equation in an image plane. The

quadratic function makes silhouette likelihood computation faster than a conventional

vertex base. In addition, memory utilisation is reduced dramatically. We choose the

SIR particle filter for the state estimator because it keeps details of probability densities

compared to the maximum-likelihood and maximum-a-posteriori methods. The particle

filter is based on the MCMC method. A difference of the particle filter from the MCMC

is that the particle filter generates multiple-sampling at the same time unlike the sample-

chain in the MCMC. Multiple-sampling makes the particle approach suitable in parallel

processing. We include position, velocity, visibility and persistence into the state vector.

The position and velocity are used for predicting the future position. The visibility and

persistence are designed for estimating existence of the subject.

Contribution 1: Likelihood from ellipsoid projection We show that the trans-

formation from a 3D ellipsoid to a 2D quadratic function can accelerate likelihood com-

putation compared to the conventional vertex base as described in Section 3.2. The

silhouette likelihood is the similarity between a subject silhouette and the quadratic

165
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equation to form an ellipse. The quadratic function is also used to determine interac-

tion between multiple-targets. The intersection between subjects in image plane can be

detected by deterministic ellipse functions. This allows us to estimates the sharing of

a foreground pixel between multiple-subjects as described in Section 3.3.2. The mem-

bership probability of a pixel belonging to an owner subject is modeled to suppress the

distraction problem. Distraction suppression allows the tracking system to learn the

texture appearance of the subject for long enough to generate a texture signature. Once

the texture signature is made the texture likelihood is applied. The texture likelihood

increase the accuracy of tracking significantly and can be used in recognition to link the

sub-trajectories into a complete trajectory.

Contribution 2: Analysis of the tracking framework In Chapter 4, we im-

plemented the tracking system in C++ and tested on a single core of the CPU with

3.1GHz. We measure computation time for individual sub-functions. Detection() and

Likelihood() are the two slowest sub-functions. The computation time of Detection()

increases linearly with the size of the image and the number of grids. Whereas the com-

putation time of Likelihood() is proportional to the number of particles, the number of

active pixels and the number of targets. Increasing the number of particles reduces the

rate of breaking of a trajectory but there is no significant improvement in false-alarm and

miss-detection rates. We also implemented the detection module to fulfill an automatic

detection and tracking.

We also tested the tracking framework with standard dataset and compared the

MOTA as showed in Table 4.4. Our approach produces higher accuracy compared the

other methods tested by the PETS09 dataset. The improvement comes from invariant

3D shape and texture signature which makes each subject distinguishable.

Contribution 3: GPU acceleration The sequential tracking program is transfered

to CUDA code, which is executed on a GPU with 128 cores at clock speed of 1.6 GHz. We

transfered all sub-functions to CUDA and measured the computation times. We applied

4 methods (data parallelism, reduction, skip ahead and local memory) to optimise the

computation time. The GPU implementation is not fully optimised according to the
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CUDA profiler. Serialisation and cache-miss are the major problems. However, we

achieved 3.5 times speedup from the lower frequency GPU compared to the 3.1GHz

CPU. The best configuration for real-time tracking using the particle filter is to process

Detection() and Likelihood() on the GPU and the remaining sub-functions on the

host. This pipe-lining on the host and device could improve the speedup ratio about

10%.

Contribution 4: Spatial-Texture data association In Chapter 6, we studied the

data association problem in joint and disjoint camera networks. The data association

links unknown subjects with pre-existing trajectories based on cost function. In order to

compare effectiveness of using between texture signature and spatial distance, we con-

ducted three experiments; spatial-only, texture-only and spatial-texture combination.

The spatial cost function is defined by a Gaussian probability density, where the vari-

ance is determined by the stochastic model of motion, and the texture cost function is

determined by the similarity between the colour-histogram of each horizontal section of

the ellipsoid. The cost functions are filtered by the Ramp function and the results is

used for constructing the cost matrix. The data association assignments between un-

known subjects and pre-existing trajectories finally are computed by Hungarian method.

The results show that the combination of spatial and texture improves the recognition

rate. The combined cost function gave a higher or equal recall rate compared to the

cost functions determined from spatial and texture separately. However, the combining

factor vary from case to case. The combining factor should be adjusted adaptively to

the situation.

7.1 Future work

Pan-tilt-zoom cameras This tracking framework was designed for a static camera

network, however, the framework can be extended for fixed position pan-tilt-zoom cam-

eras. The pan-tilt-zoom can be added to the camera projection model this extension

makes the system more robust and versatile.
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Appearance descriptors The primary input of our frame work is colour images,

which is sensitive to lighting condition. The illumination tolerant descriptor, such as a

gradient image, should used as the input instead of the colour images.

Optimising the GPU implementation At current state we made 3.5 times and

the main problems are serialisation and cache-miss. The algorithm and implementation

of likelihood function may need to be re-designed.

Adaptive combining factor for the spatial-texture cost function As the dis-

cussion in the Chapter 6, the best combining factor β depends on particular scenario.

Therefore, ξ should be determined at real-time. We hope the adaptive combining factor

should maintain recall rate around 80%.
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LM Optimization

A.1 LM Optimization

Optimization is an interesting topic for many fields of study. In Chapter 6 camera

calibration has been made by LM optimization. A well known non-linear (second order)

algorithm Levenberg-Marquardt(LM) has been developed based on steepest descent and

Gauss-Newton methods(see details in [188]).

A function F = F (x) is a general cost function which is the squared-error. In camera

calibration F is computed from the sum of error square in a back-projection image. The

function F is written as a function of error (f) as shown by Equation (A.1).

F (x) =
1

2
Σ |fi(xj)|2 =

1

2
fTf (A.1)

Note the Jacobian matrix J = dF
dx = dF

df
df
dx = JTf . To estimate the local minimum point,

the function F is expanded by Taylor’s series.

F (xo + h) = F (xo) + F ′(xo)h+
1

2
hTF ′′(xo)h+O(|h|3)

F ′(xo) = JT
of

F ′′(xo) = Ho

169
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The matrix Jo is a Jacobian matrix of f at x = xo and the inner product JT
oJo = Ho

is known as a Hessian matrix. h is an update step whose value is calculated by the

following techniques.

STEEPEST DESCENT METHOD The update step h is a descent direction for

F at x, which makes hTF ′(x) < 0. The update direction depends on the gradient of

function F , which can be calculated by the Jacobian matrix of F at particular location

x. Table A.1 shows a summary of the steepest descent algorithm.

for(t = 1 : tmax)

hsd = −JTf ;

xt+1 = xt + αhsd;

end

Table A.1: Steepest descent algorithm

GAUSS-NEWTON METHOD At a stationary point, the first derivative of a

scalar function y(x) is zero y′(x) = 0, so the optimum point can be solved by Newton’s

method as shown by Equation (A.2). This is known as the Gauss-Newton method.

xt+1 = xt −
y′(xt)

y′′(xt)

hgn = − y
′(xi)

y′′(xi)

hgny
′′(xi) = −y′(xi) (A.2)

Concerning the multi-dimension function F, the update step h can be computed by the

Gauss-Newton algorithm as in Table A.2.

for(t = 1 : tmax)

Solve : (JTJ)hgn = −JTf ;

xt+1 = xt + αhsd;

end

Table A.2: Gauss-Newton algorithm
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LM METHOD When x is far from a local minimum point, using steepest descent

is better than the Gauss-Newton method because the second-order of Taylor’s series

produces a large error, while steepest decent always guarantees that its update direction

is correct (but the magnitude of the update vector is still unknown). In contrast when

x is close to the optimum point, the surface of the cost function is very smooth and

fits to the second-order of the Taylor’s series, so Gauss-Newton produce superlinear

convergence [188]. At this condition Gauss-Newton converges to a local minimum point

faster than the steepest descent method. The LM method combines both benefits by

adding a damping term in the Gauss-Newton method. It enables the algorithm to use

both steepest descent and Gauss-Newton characteristics. Levenberg and Marquardt’s

numerical formula is shown in Equation (A.3).

(JTJ + µI)hnew = −JTf (A.3)

The damped term µI (identity matrix I) is a switch to alternate between the two

methods. When the damping parameter µ is small the first term (Hessian) dominates

the left hand side. So, Equation (A.3) is approximately equal to the Gauss-Newton

method. For large, µ the equation is approximately the same as the steepest descent

method.

µ = 0.01; hlm = ho;

for(t = 1 : tmax)

Solve : (JTJ + µI)hnew = −JTf ;

if F (xt + hnew) < F (xt + hlm)

hlm = hnew;

xt+1 = xt + hlm;

µ = µ
10 ;

else

µ = 10µ;

end

end

Table A.3: LM algorithm
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In order to adapt the damping parameter µ, the values of the cost function F at the

current step, F (xt), and the next step, F (xt+1), are compared. If F (xt+1) ≥ F (xi), the

damping value µ is increased. When F (xt+1) < F (xt) this means that x is moving closer

to a local minimum, so µ is decreased to enable the characteristic of the Gauss-Newton

method. The LM algorithm has been summarized in Table A.3, where J = J(x, hlm)

and f = f(hlm). The LM method is stable enough to refine camera parameters [189]. A

better version of LM method is summarised in [188].

The LM method should start with good guess or it is possibly to be stuck at a local

minimum. Therefore the LM method should be used when some parameters are known

(such as intrinsic parameters) and extrinsic parameter can be presumed by the user.

To implement this method we computed the Jacobian by using a symbolic toolbox in

MATLAB. The Jacobian expression in symbolic terms is too long to show in this section.

The Matlab code for generating the Jacobian of the camera projection matrix is shown

in Listing A.1. The code will generate an in-line function and is named as getJ().
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1 %genJ.m--to compute Jacobian matrix of camera projection
2 %The process starts with declaring parameters as symbolic variables
3 %Intrinsic parameters are centre coordinate(uo, vo), scaled focals
4 %(alpha beta) and skewness (s)
5 syms uo vo alpha beta s real
6 %translation t and a Rodrigues rotation vector w
7 syms tx ty tz wx wy wz real
8 %A pair of key points in realworld coordinate (M) and image coordinate (m)
9 syms Mx My mx my real

10 syms scale real
11 %define the function
12 K=[ alpha s uo;
13 0 beta vo;
14 0 0 1];
15 theta=sqrt(wxˆ2+wyˆ2+wzˆ2);
16 omega=[ 0 -wz wy;
17 wz 0 -wx;
18 -wy wx 0];
19 R=eye(3)+sin(theta)*omega/theta+(1-cos(theta))*omegaˆ2/thetaˆ2;
20 %define translation matrix
21 t=[tx;ty;tz];
22 %define projection matrix
23 m=K*[R(:,1) R(:,2) t]* [Mx;My;1];
24 %define coordinates on image plane
25 mx_est=m(1,1)/m(3,1);
26 my_est=m(2,1)/m(3,1);
27 %define error
28 f=[mx-mx_est;my-my_est];
29 %solve Jacobian
30 Js=jacobian(f,[alpha,beta,s,tx,ty,tz,uo,vo,wx,wy,wz]);
31 %generate an inline function
32 getJ=inline(Js);

Listing A.1: A code to generate Jacobian matrix
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Appendix DEC11 dataset

In this section, we will describe the procedure for creating the DEC11 dataset what

created in December 2011. We set cameras around the small park near the EM building

in Heriot-Watt University. It was cold and the illumination conditions changed very

rapidly as normal as is with Scotland weather. The winter lighting made a dataset even

more challenging for the tracking framework; where the sun is near the horizon this

caused a very long shadow from each subject.

We used 6 camcorders (Cannon Legria HF S20) to produce this dataset. The layout

of cameras relative to the ground floor is illustrated in Figure B.1. In order to create a

dataset for 3D tracking we need synchronised image sequences and camera calibration

parameters from all cameras. We manually synchronised the image sequences and cal-

ibrated the intrinsic parameters. The procedure below is the method that we used to

get the extrinsic parameters.

B.1 Generating Landmarks

The procedure starts by creating many landmarks on the ground plane. A camera must

see at least 3 landmarks in order to determine the extrinsic camera parameters. Initially,

we prepared a coloured sticky tape to create markers on the ground plane. However,

the ground was wet due to snow. As the ground was difficult for mounting markers,
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we decided to use the locations of existing static objects such as pavements or solid

structures. All lengths between two markers were measured to construct a network

graph of nodes and edges. In order to determine the exact coordinates of a landmark

node, we needed at least 2 edges. A graph of the collection of nodes and edges was

stored in xml file and used for refining the coordinates on the ground plane.

B.2 Refining coordinates

To determine the x-y coordinate of a node on the ground plane, we defined energy in the

network between two nodes as the square of difference between the measurement and

current state. This is similar to a network of springs, where the length at the equilibrium

of the spring is substituted by the measurement lengths between nodes. If we leave the

spring network to adjust itself during iteration, the system will minimise the total energy

and the final state will have minimum energy (square of error). Suppose DBA is a vector

pointing from a node A to a node B. The measurement of a scalar value of length is

denoted by LBA, which was measured from the scene. Then the force acting on the node

B by the edge BA is

FBA = DBA − LBA.
DBA

|DBA|
(B.1)

FBA = DBA

(
1− LBA
|DBA|

)
(B.2)

After embedding the network and forces of each node into a program (RefPoints/-

main.m) we then let the process minimise the energy for 10,000 iteration. The resulting

graph had a sum of square-error approximately 5.4× 10−4[mm]2 in the final state. The

iteration process and final landmark coordinates are ilustrated in Figure B.3 and Fig-

ure B.2.
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Figure B.1: (top) Landmarks and (bottom) Camera views.
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Figure B.2: Overlay of the landmark coordinates on a Google map.
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Figure B.3: Iteration process to refine the landmark coordinates.
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B.3 Extrinsic Calibration

Normally we can use the Matlab calibration toolbox [136] to estimate both the intrinsic

and extrinsic parameters by using a chessboard. A chessboard provides landmarks but

we could not use a chessboard in the outdoor scenarios because of the huge area. To work

with a chessboard of size of 10 × 10m2 would be impractical. For outdoor calibration,

the following method is more suitable.

The process starts with calibrating the intrinsic parameters by using the standard

toolbox [136]. Then we stored the intrinsic matrix for subsequent processes. The homog-

raphy matrix was computed as described in Section 2.6.1. We could find the extrinsic

parameters from the homography directly but we have a small number of landmarks,

which leads to uncertainty of estimation. The solution of extrinsic parameters com-

puted by homography only gave an inaccurate result as in Figure B.8. So, we used

Levenburg-Marquardt (LM) optimisation to reduce the residual error. The details of

LM optimisation are given in Appendix A.

The resulting back-projection and camera orientation are shown in Figures B.4 to

B.9. In the back-projection images (top and middle) the red-green-blue axes are the x,y

and z directions in the 3D world. The red circles in back-projection images are landmark

locations, whilst the blue markers show projected locations. The camera orientations are

illustrated in the bottom images, where the blue dot is the origin of the 3D coordinate

system and the red-green-blue axes are the directions of the camera coordinates.

We tried the procedure of extrinsic calibration in practice and noticed that the stan-

dard chessboard method was impractical in the outdoor scenarios. Our solution was to

exploit existing landmarks in the field. The process allowed us to determine the orien-

tation and position of cameras after the incident taking place. Investigations after an

incident can be made even if the cameras have never been calibrated before.
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Figure B.4: Projection of Camera1, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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Figure B.5: Projection of Camera2, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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Figure B.6: Projection of Camera3, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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Figure B.7: Projection of Camera4, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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Figure B.8: Projection of Camera5, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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Figure B.9: Projection of Camera6, (top) solution by using homography (middle) by
LM optimisation and (bottom) position of camera.
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B.4 Calibration parameters DEC11

A translation vector t is expressed in a unit metre.

Camera1

K =


754.8575 0 283.5323

0 769.8163 153.9865

0 0 1.0000

 (B.3)

R|t =


0.9877 0.1558 0.0119

0.0686 −0.3643 −0.9288

−0.1404 0.9182 −0.3705

∣∣∣∣∣∣∣∣∣∣∣∣

−9.3410

0.9903

11.3563

 (B.4)

Camera2

K =


750.7645 0 286.1683

0 765.3397 159.2458

0 0 1.0000

 (B.5)

R|t =


0.7626 0.6467 −0.0120

0.2391 −0.2991 −0.9238

−0.6010 0.7016 −0.3828

∣∣∣∣∣∣∣∣∣∣∣∣

−0.1302

−0.1149

14.6948

 (B.6)
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Camera3

K =


751.5750 0 289.5567

0 766.5949 153.1718

0 0 1.0000

 (B.7)

R|t =


0.9579 0.2317 −0.1697

−0.1054 −0.2661 −0.9582

−0.2672 0.9357 −0.2305

∣∣∣∣∣∣∣∣∣∣∣∣

5.0394

3.8177

18.5635

 (B.8)

Camera4

K =


752.5889 0 313.6071

0 768.3470 145.2730

0 0 1.0000

 (B.9)

R|t =


0.8450 −0.5348 −0.0020

−0.1397 −0.2171 −0.9661

0.5162 0.8166 −0.2581

∣∣∣∣∣∣∣∣∣∣∣∣

−8.4613

4.9666

16.9646

 (B.10)

Camera5

K =


752.5889 0 313.6071

0 768.3470 145.2730

0 0 1.0000

 (B.11)

R|t =


−0.8005 −0.5920 −0.0933

−0.1034 0.2897 −0.9515

0.5904 −0.7521 −0.2931

∣∣∣∣∣∣∣∣∣∣∣∣

−2.6315

1.3012

15.6003

 (B.12)



Appendix B. DEC11 dataset 188

Camera6

K =


760.8852 0 319.4545

0 775.4238 157.1560

0 0 1.0000

 (B.13)

R|t =


−0.8350 −0.5342 −0.1317

−0.1935 0.5092 −0.8386

0.5151 −0.6748 −0.5285

∣∣∣∣∣∣∣∣∣∣∣∣

−3.8247

−2.1201

15.1663

 (B.14)
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EM330 dataset

In this section we describe the procedure to created the EM330 dataset, which is a

synchronised image sequence captured by 3 cameras. The camera layout was set as a

joint camera network as shown in Figure C.1. All digital video signals were sent to a

host computer via the IEEE-1394b protocol.

 
1m 

Cam1 

Cam2 

Cam3 

Figure C.1: Camera layout in EM330
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C.1 Hardware and software requirements

The cameras were PointGrey FL2-14S3C mounted with Fujinon 6mm f1.2 lenses. The

cameras were connected to host by an IEEE1394b adapter card, which can handle up

to 160Mpbs. However, the synchronizing forced all cameras to push data to the host at

the same period. So we were able to connect at lowest frame rate (7.5fps) with RGB

640×480 resolution. The original setting had 3 cameras and later we extended to 4

cameras for a demonstration of real-time tracking.

In order to load the video data, we used the PointGrey API library. The library al-

lowed us to configure the internal camera parameters, such as withe-balance and gamma

value, and also provided a data loading interface. The loading interface stored an image

from each camera at a particular frame in the internal memory of the host computer

and the data address (a pointer) was used in order to pass the image to host functions

or function on the GPU.

In this dataset we used the Matlab calibration toolbox [136] and a big chessboard.

The chessboard had 12cm black and white squares. The squares had to be large because

the cameras were far from the chessboard and the squares appeared about 10 pixels in

the image plane.

C.2 Calibration parameters EM330

Camera1

K =


673.1468 0 332.0133

0 670.7951 222.0849

0 0 1.0000

 (C.1)

R|t =


0.9114 −0.4107 −0.0257

−0.1843 −0.3516 −0.9178

0.3679 0.8413 −0.3961

∣∣∣∣∣∣∣∣∣∣∣∣

1.0152

1.3909

3.9112

 (C.2)
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Camera2

K =


655.0845 0 328.4335

0 650.5366 237.2510

0 0 1.0000

 (C.3)

R|t =


0.9995 0.0122 −0.0277

−0.0203 −0.4094 −0.9121

−0.0224 0.9123 −0.4089

∣∣∣∣∣∣∣∣∣∣∣∣

−0.0779

−0.2226

7.1536

 (C.4)

Camera3

K =


657.9701 0 342.0420

0 658.9150 221.4482

0 0 1.0000

 (C.5)

R|t =


−0.3760 −0.9266 0.0014

−0.5259 0.2122 −0.8237

0.7629 −0.3104 −0.5671

∣∣∣∣∣∣∣∣∣∣∣∣

−0.7516

−0.3734

5.5340

 (C.6)
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Figure C.2: Top to bottom are sample images from camera1, camera2 and camera3



Appendix D

Distance and similarity

Table D.1: List of distance and similarity formulas

Name Distance Similarity

Euclidean
(∑

i(Xi − Yi)2
) 1

2 = |X − Y |

Square Euclidean
∑

i(Xi − Yi)2

Manhattan (Taxicap)[11]
∑

i |Xi − Yi|

Chebyshev (Chessboard)[12] maxi(|Xi − Yi|)

Cosine 1−
∑
iXiYi
|X|.|Y |

∑
iXiYi
|X|.|Y |

Correlation[13]
∑

i(Xi − X̄)(Yi − Ȳ )

Bhattacharyya[14] −log
(∑

i

√
xiyi

) ∑
i

√
xiyi

Hamming[15]
∑

i notequal(Ai, Bi)

Jaccard[16] 1− |A∩B||A∪B|
|A∩B|
|A∪B|

Hausdorff[17]
max (h(A,B), h(B,A)) ,

h(A,B) = maxi(minj(Ai, Bj))
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