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Abstract 

Most dynamic real-world processes exhibit a stochastic behaviour which, due to unavoidable 
observation imperfections, cannot be accurately measured. The fields of state estimation and 
probability theory address problems dealing with this class of systems. In our work we con-
centrate in particular on particle filtering and focus on nonlinear and non-Gaussian tracking 
applications. The particle filters are numerical methods based on the sequential Monte Carlo 
framework which provide powerful, though computational intensive, solutions. They rely on 
the Bayesian analysis and employ state samples, or particles, which when propagated appropri-
ately over time characterise the evolution of the posterior state probability distribution. Based 
on that distribution they estimate key statistical characteristics of the observed process. The 
central focus of our work is on designing particle filters which use more efficiently their par-
ticles by seeding them in state space areas with greater significance and/or by varying their 
number. 

We begin by introducing the auxiliary local linearization particle filter (ALLPF) whose impor-
tance sampling density brings together the auxiliary sequential importance resampling tech-
nique and the local linearization particle filter (LLPF). A simulation study assesses it suitabil-
ity for tracking manoeuvring targets. We next incorporate the prediction mechanism of the 
LLPF within a multi-target algorithm. The proposed particle filter (A-MLLPF) performs si-
multaneously the functions of measurement-to-track assignment and particle prediction while 
employing an adaptive number of prediction particles. Compared to the equivalent standard 
multi-target particle filter, we show that the A-MLLPF performs better both in terms of track-
ing accuracy and measurement association. 

The remaining of the thesis is devoted to vehicle tracking which exploits information from the 
road map. We first focus on the variable-structure multiple model particle filter (VSMMPF) 
from the literature and we enhance it with a varying particle scheme for using adaptively fewer 
particles when the vehicle travels on the road. Simulation results show that the proposed vari-
ation results in a similar performance but with significant decrease of the particle usage. We 
then incorporate a gating and a joint probabilistic data association logic into the VSMMPF and 
use the resulting algorithm (MGTPF) to track multiple vehicles. Simulations demonstrate the 
suitability of the MGTPF in the multiple vehicle environment and quantify the performance 
improvement compared to a standard particle filter with an analogous association logic. 

Returning to the single-vehicle tracking problem, we introduce lastly the variable mass particle 
filter (VMPF). The VMPF uses a varying number of particles which allocates efficiently to its 
propagation modes according to the modes' likelihood and difficulty. For compensating for 
the resulting statistical irregularities, it assigns to the particles appropriate masses which scale 
their weights. Other novel features of the proposed algorithm include an on-road propagation 
mechanism which uses just one particle and a technique for dealing with random road departure 
angles. Simulation results demonstrate the improved efficiency of the VMPF, since it requires 
in general fewer particles than the VSMMPF for achieving a better estimation accuracy. 
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Chapter 1 
Introduction 

1.1 Background 

Most dynamic systems in nature, albeit causal, due to their complexity cannot be determin-

istically modelled. Moreover, inherent imprecision and physical limitations of the measuring 

sensors do not allow for accurate system observations. The approach throughout the scientific 

literature, from the areas of physics to economics, is to model that kind of systems as random 

processes. This is also the practise used in the target tracking problem that we study. In our 

work we rely particularly on the fields of state estimation and probability theory - specifically 

on particle filtering - which provide powerful tools for inferring the states of a stochastic system 

from a set of noisy measurements. 

Back in the 60's the introduction of the Kalman filter (KF) provided the optimal state estimator 

for the case of linear and Gaussian systems. The KF is a recursive algorithm with a prediction-

correction structure, in which the states at every time step are first predicted using the system 

model and then corrected using the measurements. The filter found immediately numerous 

applications in areas such as navigation, radar tracking and satellite orbit determination. The 

extended KF (EKF) and the unscented KF (UKF) are popular variations of the original algo-

rithm which generalised the method for dealing with nonlinear systems. 

The particle filter (PF) was introduced in the beginning of the 90's and offered a more powerful 

solution to the nonlinear and non-Gaussian estimation problem. The PF follows the Bayesian 

analysis and relies on numerical integration techniques to calculate discrete approximations 

of the probabilistic distribution of the states. Its estimation power stems not only from the 

efficient way it deals with the nonlinearity and non-Gaussianity, but from the fact as well that 

available non-standard information can be easily incorporated within its structure to account 

for application-specific requirements and characteristics. 

The focus of this thesis is mainly on track estimation, a fundamental function of the broader 

target tracking problem. We assume that we have probabilistic models of the target and the 
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measurement sensor, which we use along with the measurements to derive the target's state 

estimates. Usually these states consist of the position, velocity and/or acceleration of the target, 

but other features like the angular orientation or identity can be found in different applications. 

Historically, KF-based algorithms have been used for track estimation extensively over the 

years. However over the last decade, and mainly due to the higher modem computational 

capabilities, we witnessed an increasing interest in exploiting particle filtering techniques for 

the problem. 

1.2 	Motivation of work 

Particle filtering currently seems to be the most promising technique for addressing the dif-

ficult nonlinear/non-Gaussian Bayesian estimation problem. The particle filters using Monte 

Carlo integration and importance sampling techniques, employ a set of weighted samples or 

particles of the state density which they propagate over time to provide a sequential discrete 

approximation of the posterior state distribution. The number of particles for achieving a cer-

tain performance varies significantly across the applications but the higher the dimensionality 

and the difficulty of the system, the more particles are required. It is clear that the increasingly 

high computational demands in realistic complex applications soon become a problem. 

It has been shown that the number of the particles along with the computational requirements 

can be reduced considerably with the choice of an appropriate particle prediction technique. 

In fact most of the algorithmic variations that have been proposed differ primarily on their 

prediction mechanism, the choice of which once more can be heavily application-specific. Fo-

cusing on an efficient propagation scheme is thus essential not only for enhancing the filter 

performance but also for lowering the computational requirements. 

In our work we concentrate mainly on the problem of tracking a vehicle while exploiting avail-

able information from the road maps. We focus on the specific problem not only due to the 

increasing interest it has received over the last years, but also because its increased complexity 

make it particularly suitable for contrasting different tracking approaches. We base our work 

mostly on the variable-structure multiple model particle filter (VSMMPF) aiming to improve its 

particle efficiency. We focus specifically on reducing its particle requirements and enhancing 

furthermore its tracking performance using improved particle propagation mechanisms. The 

idea of exploiting adaptive algorithmic structures which vary the number of their particles is 
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also central to our work and is applied to both the single- and the multiple-target problem. 

1.3 Thesis organisation 

The second chapter introduces the tracking problem and offers background material upon which 

the rest of the thesis is based. It presents basic concepts of state estimation, target tracking 

and data association. It concentrates particularly on Bayesian estimation, linear and nonlin-

ear Kalman filtering, target and radar modelling and measurement-to-track assignment using 

the nearest neighbour and the joint probabilistic data association (JPDA) algorithms. Short 

simulation studies contrast a number of algorithms that we present. 

The third chapter focuses on particle filtering. It describes its generic principles and presents 

popular filter variations. A method for tracking a dynamically changing target, which combines 

elements from the auxiliary and the local linearization particle filters is also presented, along 

with a brief simulation analysis which investigates its performance. Moreover, a novel algo-

rithm is introduced which incorporates the local linearization propagation mechanism into the 

multitarget problem and varies the number of its association particles to reduce the computa-

tional requirements. Simulation results demonstrate the improved estimation and measurement-

assignment capability of the proposed approach. 

The remaining chapters concentrate on vehicle tracking with particle filters which exploit road 

maps to constrain the vehicle motion. The fourth chapter describes briefly the problem and 

presents the single-target VSMMPF from the literature. A novel mechanism is introduced 

which varies the number of the on-road particles exploiting the fact that the state uncertainty 

when the vehicle travels on the road is smaller. A simulation study is presented which sug-

gests that the performance degradation can be considered negligible considering the lighter 

particle usage. An novel architecture is also described which incorporates a gating function 

and a JPDA logic to the VSMMPF, enhancing the standard algorithm with clutter rejection 

and measurement-to-track assignment features. A simulation study analyses experimentally 

the association function of the algorithm. 

The fifth chapter describes a different approach to deal with the inherent multi-modality of the 

vehicle tracking problem. It introduces a novel particle filtering structure in which the particles 

are assigned with variable masses. This approach allows for the particles to be efficiently allo-

cated across the propagation models using additional information without biasing the estimation 
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process. A computationally inexpensive Kalman filtering mechanism for the on-road part of the 

prediction is also described. Simulation results show that the proposed variable mass particle 

filter can achieve better performance, while using fewer particles and less computational power 

compared to the standard VSMMPF. 

Finally, the sixth chapter summarises the achievements of our work, presents a number of 

identified limitations and proposes possible areas for further research. 



Chapter 2 
Nonlinear tracking and data 

association 

The second chapter introduces target tracking and offers background material upon which the 

rest of the thesis is based. The first part is dedicated to basic concepts of state estimation and 

tracking. It concentrates on Bayesian estimation, Kalman filtering and tracking modelling and 

presents briefly a comparison of two nonlinear Kalman-based trackers. The remaining chapter 

focuses on the problem of data association. It describes the nearest neighbour and the proba-

bilistic data association algorithms and shows simulation results comparing their performances. 

2.1 Bayesian estimation 

Within the heart of target tracking [1] lies the estimation or filtering problem. The aim of that 

problem is to estimate sequentially the state of a dynamic system by processing a sequence 

of noisy measurements of the system [2]. Since the systems that we study exhibit stochastic 

behaviours, we use for modelling and analysis a probabilistic state-space representation [3,4]. 

The notation that we use throughout the thesis is bold uppercase roman letters for matrices (A), 

bold lowercase roman letters for vectors (a) and italic letters for scalars (A, a). The transpose 

of the matrix A is denoted as AT  and its inverse as A 1 . 

Consider a system with state vector xk E Rix, where ri  is the dimensionality of the state-

space, JR is the set of real numbers and k a time index which takes its values from /c E N+, N+ 

being the set of positive natural numbers. Assume that the state transition equation over time 

is: 

Xk = fk_1(xk_1,uk_1) 	 (2.1) 

where fk()  is the system function and Uk is the process noise vector, both at time k. The 

equation that relates the states with the measurements for every k is: 

Zk = hk(xk,vk) 	 (2.2) 

5 
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where zk e R1z is the measurement vector, n is the dimensionality of the measurement-space 

(usually smaller than that of the state-space), hk(.) is the measurement function and vk is the 

measurement noise vector. 

If we define Zk as the set of all measurements up to time k, the aim of the filtering prob-

lem is to construct the posterior state probability density function (pdf) based on the previous 

measurements: 

p(xkZk) =p(xkj{z,i = 1,... ,k}) 	 (2.3) 

where notation p(.AIB) stands for the conditional probability density of event A assuming event 

13. 

Before deriving p(xk Zk ), we need to define first some fundamental relations. Consider the 

random variables (RV) a1, a2, a3  and a4. By definition the conditional probability of a1, a2  

given Q3, a4 is: 	
p(ai, a2, 03, a) 	

(2.4) p(al,a21a3,a4) = 	p(a3,a4) 

Another important relation is the Chapman-Kolmogorov identity, which can relate the condi-

tional probability distributions of RVs from different sets of coordinates. For RVs ai, a2 and 

a3, it has the form: 

p(a1a3) = fpal1a2a3pa2a3da2 	 (2.5) 

Finally, the basic property of conditional probabilities is called Bayes' rule and for the RVs 

al, a2 and a3 becomes: 

p(a2 ai, a3)p(aia3) 
p(a1 a2,a3) = 

p(a2 a3) 
(2.6) 

Consider again the filtering problem described before. The Chapman-Kolmogorov equation 

from (2.5) using the states xk, xkl, and the measurement set Zk_1 gives us: 

p(xklZk_1) = 
roo 

p(xkxk_1, Zk_1)p(xk_1 Zk_1)dxk_1 	 (2.7) 

In our analysis we consider Markovian systems, that is systems whose states at k depend just 

on the states at k - 1, i.e.: 

p(xkxk_1,xk_2, . . . ,xo) = p(xkxk_1) 	 (2.8) 
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From (2.8) we get p(xkIxk1) Zk_1) = p(xklxkl), therefore (2.7) becomes: 

p(xkZ k1) = roo P(XklXk—l)P(Xk—llZk—I)dXk—I (2.9) 

where the transitional density p(xklxk_1)  is implied from the state transition equation: 

	

p(xkjxk_i) ' 	= 4_1(xk_1,vk_1) 	 (2.10) 

For deriving the posterior state density, we make use of the Bayes' rule and we get: 

p(XkZk) = p(xkzk,Zk_1) 

- p(zkxk,Zk_1)p(xkZk_1) 

- 	p(zkZk_1) 

= p(zkIxk)p(xkZk_1) 	
(2.11) 

p(zklZk_i) 

where the normalising factor at the denominator can be written using (2.5) as: 

p(zklZk_1) = f_Px _l)dxk 	 (2.12) :  

and the pdf of the measurement given the state can be directly deduced from the measurement 

equation: 

	

p(zkxk) 	zk = hk(xk,vk) 	 (2.13) 

The pdfp(ZkIxk)  is often called the likelihood and p(xkZk_i) the a-priori state density. By 

computingthe likelihood (2.13), the prior (2.9) and the normalising factor (2.12), we can calcu-

late the a-posteriori state density and thus construct the optimal estimate of xk in the minimum 

mean square error estimate (MMSE) sense. The MMSE problem is to determine an estimate 

xk using the data Zk, such that the resulting mean square error: 

e = E{[xk - Xk] 2 } 	 (2.14) 

is minimum. Notation E{.} stands for the expectation value. The error e is minimum if *k 

equals the conditional mean of xk assuming the data, therefore: 

Xk = E{xkZk} = 
fCG 

XkP(Xk (2.15) 

7 
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where p(xklZk)  is the posterior given by (2.11). For futher reading, textbooks [5,6] offer a 

comprehensive analysis on probability theory and the principles of Bayesian filtering. 

2.2 Kalman filter 

The Kalman filter (KF) [7,8] is the optimal MMSE state estimator, which can be applied to 

linear and Gaussian stochastic systems. It was introduced in the 60's, revolutionising the field 

of recursive linear filtering and finding numerous applications particularly in the area of au-

tonomous or assisted navigation. Figure 2.1 shows an example of noise filtering using a KF for 

a two-state dynamic system. In what follows we concentrate just on the discrete realisation of 

the filter. 

Suppose that a measurement zk has been made at time k, which is to be used in updating the 

estimate of the state xk at time k of a linear system with transition equation: 

Xk = Fk_lxk_1 + Uk-1 	 (2.16) 

where Pk  is the system matrix and Uk is the process noise vector. We assume that the measure-

ment zk is linearly related to the state with the following measurement equation: 

Zk = HkXk + Vk 	 (2.17) 

where Hk is the measurement matrix and vk the measurement noise vector. The noise vec-

tors Uk and vk are assumed to be zero-mean, mutually independent, Gaussian with respective 

covariances Qk  and Rk. 

Uk -'..t'f(0,Qk), Vk 	1V(0,Rk) 	 (2.18) 

where notation .1V(.,4, B) stands for the Normal or Gaussian distribution with mean A and 

covariance B. 

The KF consists of a prediction and an update step. The algorithm first predicts the a-priori 

state pdf and subsequently updates it with the measurement for deriving the posterior pdf. 

8 
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Figure 2.1: Noise filtering for a linear dynamic system with states xl and x2, using a KE 

Prediction step: 

x = Fk_lxk_1 	 (2.19) 

=+ Qk-1 	 (2.20) 

Update step: 

Kk = PH{HkPH7+Rk]' 	 (2.21) 

Xk = xj + Kk{Zk - Hkx] 	 (2.22) 

Pk = [I - KkHk]Pj 	 (2.23) 

where Pk is the state covariance matrix, I is the identity matrix, x and Pk  are the prior state 

and covariance and Kk is the Kalman matrix which corrects the predicted prior state pdf for 

deriving the posterior. Although equations (2.19-2.23) are the most commonly used, different 

forms exist when numerical and stability issues arise [8].  For example, for overcoming ill-

conditioning when computing the covariance in (2.23), the Joseph form can be used [9];  or for 

robustifying the filter against round-off errors the information form of the KF can be used [10]. 
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2.3 Extended Kalman filter 

The extended Kalman filter (EKF) [I I] is a variant of the KF designed specifically for non-

linear systems. It is particularly appropriate for systems that undergo smooth nonlinearities 

which locally can be approximated as linear for small perturbations of the states. The EKF 

is the most well-studied and widely used recursive nonlinear estimator, with many textbook 

chapters and papers dedicated to it [8, 12, 13]. 

Suppose that a discrete stochastic system can be represented by the following nonlinear process 

and measurement equations: 

Xk = fk_1(xk_1)+uk_1 	 (2.24) 

Zk 	= hk(xk) + vk 	 (2.25) 

where the functions fk(') and hk() are continuously differentiable nonlinear functions of the 

state Xk. The algorithm linearizes the system using a first-order Taylor series expansion [14] 

of the system function at the previous state estimate and of the measurement function at the 

current state estimate. The EKF first predicts the state using the system model and updates then 

the estimate with the measurement, using at every time instant the linearized quantities. 

A. Prediction step: 

Fk 1 
- Dfk_1(xk)L

k~xk-1 	

(2.26) 
- - öXk  

Xk = fk_1(xk_1) 	 (2.27) 

Pk 	= FklPklFl + Qkl 	 (2.28) 

B. Update step: 

Hk = 
ahk(Xk)I 

(2.29) 
OXk 	- 

IXkXk 

Kk 	PHHkPH' + Rk]' 	 (2.30) 

Xk = Xk + Kk[Zk - hk(xj)] 	 (2.31) 

Pk = [I - KkHk]P 	 (2.32) 

where Pk and Hk are the Jacobian matrices of the nonlinear functions fk and hk evaluated 

10 
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respectively at xk_1 and x. Convergence to a reasonable estimate may not be obtained if 

the linearization is inadequate to describe the system [15]. However, the EKF can improve 

its performance, at the expense of computational load, by keeping the second- or higher-order 

terms during the linearization [12, 16]. 

2.4 Unscented Kalman filter 

The unscented Kalman filter (UKF) is another nonlinear filter based on the KF and the un-

scented transformation (UT) [17].  It approximates the state pdf as Gaussian and it represents it 

through a set of deterministically selected sample points. These sample points capture the exact 

prior mean and covariance of the state distribution, and when propagated through the nonlin-

ear systems dynamics, represent the posterior mean and covariance accurately to at least the 

second-order of the Taylor series expansion. In contrast to the EKF there is no need to evaluate 

Jacobian matrices for linearization and thus the UKF can be also applied to non-differentiable 

nonlinear systems. 

2.4.1 Unscented transformation 

The UT calculates the statistics of a random variable which experiences a nonlinear transfor-

mation. Consider propagating an n-dimensional RV x through a nonlinear function f(.) for 

obtaining y: 

Y = f(x) 	 (2.33) 

Assume that x has mean R and covariance XX• To calculate the statistics of y, we form a 

weighted set {X, W} = {X, W} 0  consisting of 2n+1 sigma points X, each n-dimensional, 

and their associated weights W: 

Xo =x 	 Wo =i/(n+ic) 

Xi 	= 5c + ( \/(n + t)P) , Wj 	= 1/2(n + ) 	(2.34) 

X 	=—(/(n+k)P). , W 	=1/2(n+t) 

where ((n + ic)P) is the ith row of the matrix square root of (n + k)P. The matrix 

square root can be computed using numerically efficient and stable methods such as Cholesky 

decomposition [18]. The variable K E If is used to fine tune the higher order moments of the 

11 



Nonlinear tracking and data association 

original samples 
transformed samples 
original sigma points 
transformed sigma pc 

••••• 

/nonlinear transformation 

0 	2 	4 	6 	8 	10 	12 
xl 

Figure 2.2: Unscented transformation on a two-dimensional plane for variable x = [x 1 x2] T.  

nonlinear approximation and to reduce the approximation errors. When the distribution of x is 

Gaussian, a practical heuristic [17] is to set: 

fl+K =3 
	

(2.35) 

In the UT algorithm, first we propagate each sigma point through the nonlinear function f: 

Yj = f(X) 
	

(2.36) 

we obtain then the estimated mean y by the weighted average of the transformed sigma points: 

= WY 	 (2.37) 

and finally we compute the covariance by the weighted outer product of the transformed sigma 

points: 

PYY= 	W,  [y, - 	- y]T 	 (2.38) 
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Figure 2.2 demonstrates graphically the basic principle of the UT method. 

2.4.2 UKF algorithm 

For implementing the UKF [17, 191,  we consider a system with equations (2.24-2.25), in which 

the state vector is augmented with the process noise term uj: 

Xk 1 X. 

= [ 

	

	

( 2.39) 
Uk  j 

whose dimensions will be n,, = x + n, where ri and ri are respectively the dimensions of 

xk and Uk. We re-define the system model as a function of x: 

x = f_1 (x_1 ) 	 ( 2.40) 

The unscented transform uses 2% + 1 sigma points {X k} 	as defined in (2.34), whose 

covariance matrix is now augmented and has the form: 

P 
 = [

Pk pv1 
(2.41) 

PV 
 Qj 

where Pk  and  Qk are respectively the covariance matrices of the state and the process noise and 

Pxv  the correlation across them. The measurement function is altered accordingly to account 

for the augmented dimensionality of the sigma points: 

Z,k = h(Xk), i = 0,. . . , 2fla 	 (2.42) 

The UKF consists of a prediction and an update step. In the prediction step first we propagate 

the sigma points one step ahead using the augmented form of the system function (2.40). From 

the resulting {X k } 	points we obtain the a-priori estimates of the states 5i and covariance 

P. In the update step that follows, we use the measurement for deriving the Kalman matrix 

Kk and correcting the prior estimates, in the usual KF fashion. For computing Kk, first we 

propagate the sigma points through the measurement function (2.42) to get {Z j ,k}. From 

the transformed points we compute the measurement estimate ik,  the covariance P and the 

cross-correlation matrix 	between the states and the measurement. The algorithm equations 
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are presented next: 

Prediction step: 

Xq f_l(Xk_l), j = 0,. . . , 2fla 	 (2.43) 

=WX 	 (2.44) 

2na 

= 	Qi—i +Y,  Wj[Xk - 	
_R k I 

	

Xk] 	 (2.45) 

(2.46) 

Update step: 

Z,k 	= h(X k ), j = 0,... ,2fla  (2.47) 

Zk 	= 
2fla  

WiZi,k (2.48) 

pz = 
2% 

E Wi[Z,k - Zk][Zi,k - Z k ] T  (2.49) 

Pxkz 	= 

2% 

Wj[Xk —ç][Zk - 2k 
IT (2.50) 

Kk = pXZ [pZZ +RkJ_l  (2.51) 

Xk 	= Xk + Kk[zk - Z/ç ] (2.52) 

= - K[P + Rk}K (2.53) 

where SCk and Pk  are the posterior state and covariance estimates. 

Various modifications can be made to the standard algorithm, to account for specific details of a 

given application. For example, if the observation noise is introduced in a nonlinear fashion, or 

is correlated, then the augmented vector is expanded to include the observation terms [17]. The 

scaled UKF introduced in [20],  and the square-root UXF, introduced in [21], are more efficient 

and stable implementations of the UKF. The UKF has been studied in a variety of problems, 

from visual tracking to parameter estimation and neural networks [22-25], where it has been 

proved that consistently performs better than the EKF while having the additional benefit of an 

easy implementation. 
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2.5 Target and sensor modelling 

This section presents some basic concepts of target modelling and tracking. A comprehensive 

introduction to tracking can be found in the classic textbooks [1,26]. The objective of target 

tracking is to form tracks of targets of interest by processing a set of observations collected from 

a measuring device. Throughout the thesis we are concentrating on tracking algorithms that use 

kinematic measurements obtained from a radar. These measurements lie in the spherical space 

and usually consist of the target's range and azimuth and elevation angles. Other measuring de-

vices used commonly in the literature include electro-optical (EO) and infrared (IR) sensors and 

passive and active sonar systems. When multiple targets exist in the field of view (FOV) and/or 

erroneous clutter returns are collected from the radar and are classified as possible targets, data 

association techniques (see later sections) should be exploited before tracking. 

2.5.1 Constant velocity model 

For modelling the target dynamics we either use the white noise constant velocity (CV) or 

coordinated turn (CT) state-space models [1].  Consider a target which moves in one dimension 

with constant velocity. The difference equations describing its motion over time are: 

Xk = Xk-1 + XklT 	 (2.54) 

	

Xkl 	 (2.55) 

where Xk  is the target's position, tk  its velocity (notation ± stands for the first derivative of 

x) and T the elapsed time between time step k - 1 and k. By setting the state vector as 

Xk = [Xk xk ]T, the state-space equivalent of (2.54-2.55) becomes: 

Xk = Fk...lXk_1 (2.56) 

whose open form is: 	

r
T 	Xk-1 	

(257) 
[Xk 

 
- Xk 	0 1 	Xk_1 

where the matrix Fk is the system matrix. For accounting for model uncertainty and for possible 

random unknown disturbances on the motion, we augment (2.56) with a process noise term 
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Uk = [u,k u ,k ]T, forming thus a stochastic system representation: 

	

Xk = Fk_lxk_1 + Uk-1 	 (2.58) 

where Uk is drawn from a white zero-mean Gaussian pdf Uk .A'(0, Qk),  which has a diagonal 

covariance Qk  of the form: 

a{u,k}2 	0 	1 

	

Qk 

= [ 	

I 	 (2.59) 
0 	a{u}2 ] 

where notation a{.} stands for the standard deviation. The terms o{u,k} and 0{uth,k} are 

respectively the standard deviation of the process noise of the position and velocity. Although 

a CV target can be assumed to move independently along each of its moving directions, we see 

next that for the CT case that motion is highly correlated. 

2.5.2 Coordinated turn model 

In a similar fashion we derive the system equations for the CT model. We focus on a target that 

nominally executes a coordinated turn with a constant turn rate on the 2-D x-y plane. For the 

target it holds that: 

Xk = SkCOSbk 	 (2.60) 

Ilk 	= Sk sin /.)k 	 (2.61) 

where 1k  and Ilk  are the x-y velocity components of it, Sk = 	+TZ its speed and ,1'k  its 

heading angle. The turn rate is given by the first derivative of the heading angle, wk = bk, and 

is considered to be fixed: 

Wk = Wk-1 	 (2.62) 

The equations that describe the x- and y-position for a constant wk are: 

ftk_1 

tk 
Xk = Xk_1+ 	xTItkl dY 

 
T 

Xk-1 + Sk_1 I cos( k _ 1  + Wk_iY)dT 
Jo 
sln(wk_ 1T) 	. 	1 - COS(wk_1T) 

	

Xk-1 + Xk_1 	 - Yk-1 	 (2.63) 
Wk-1 	 Wk-1 

Fr1 
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ftk 
Yk = Yk-1 + / 	YTItk_ldT 

J t_ 
T 

= Yk_1+Sk_1 I sin(k_1+wk_17)dT 
Jo 

	

1 - CoS(Wk_1T) 	Sin(Wk_1T) 
= 	Yk-1 + Xk_1 	 + 'k—i 	 (2.64) 

	

Wk-1 	 Wk--1 

where (xk, Yk)  is the position of the target at the x-y plane and T is the elapsed time between 

k - 1 and k. Similarly for the velocities from (2.60-2.61) we get: 

Xk 	= Sk_1 COS(V)k-1 + Wk—IT) = Xk_1 cos(wk_1T) - Yk—i sin(wk_iT) (2.65) 

Yk 	= Sk—i sin(V)k-1 + Wk_1T) = Xk_i Sill(Wk_iT) + Yk—i COS(Wk_IT) (2.66) 

Equations (2.62-2.66) describe a target performing a circular turn on a 2-D plane. In contrast 

to the CV model, the system is now nonlinear and its states are correlated across the moving 

dimensions. By defining the state vector xk = [xk xk Yk Ilk Wk ]T and introducing the process 

noise vector Uk = [u,k u,k Uy,k u,k uW,k ]T, we form the state transition equation: 

Xk = fk_1(xk_i) + Uk_i 	 (2.67) 

where fk()  is the nonlinear function: 

[ sin(wkT) 	. 1—cos(wkT) 1 
X+X 	Wk 	—Yk 	Wk 	I 

Xk cos(WkT) - Yk SIn(WkT) 

Ilk + Xk 

	

1—cos(wkT) 	. 
Si

n(wT) 	 (2.68) 
= 	 Wk 	+ k Wk 

[ 
Xk Sill(WkT) + Yk COS(WkT) 	I 

Wk 

and Uk is a white zero-mean Gaussian term with covariance Qk: 

T4/4  T3/2  0 	0 	 0 

	

T3/2  T2  0 0 	 0 

Qk =12 	 0 	0 	T4/4  T 3/2 	0 	 (2.69) 

	

0 0 T3/2  T2 	0 

0 0 0 0 a{wk}2T2/a{ak}2  
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where o{ak} and cr{wk} are respectively the standard deviations of the random acceleration 

and the turning rate. From (2.68-2.59) we see that there is a strong correlation across the x and 

y components of the target motion. 

2.5.3 Sensor model 

In this section we relate the target states to the sensor measurements. The measuring device that 

we consider throughout the thesis is radar. From the vast literature on radars, we recommend 

textbooks [27, 28] for an in-depth analysis of their principles and applications, and [29] for an 

up-to-date thorough list of term and definitions. 

The radar is an active sensor which by emitting and collecting radio waves, measures kinematic 

quantities of scatterers of interest. The emitting frequency can be from as low as 3MHz (HF 

radio band) to higher than 300 GHz (millimetre radars). The choice of the frequency is affected 

primarily by the aperture size, range resolution, path loss, radar cross section and hardware 

constraints. In general, the higher the frequency the smaller the aperture and the better the 

range resolution, but atmospheric effects attenuate the signal and hardware problems (especially 

concerning the power consumption) arise. The dimensions of the scatterers within the tracking 

environment, relative to the wavelength size, affect also the radar cross section of the target and 

therefore the target detectability. 

In the tracking literature the radar is usually modelled in a high level way, as a black-box device 

which feeds the tracking algorithms with noisy spherical target measurements. In the general 

case, the radar operates in the three dimensions generating measurements Zk  as every time 

instant k: 

rk 

Zk = 

	

	 (2.70) 

Ek 

where rk is the range, Ok  the azimuth angle and Ek  the elevation angle of the target. As-

suming that the target's states consist of the x-y-z components of its position and velocity 

xk = [xk xk Yk Yk Zk zk ]T, the equation that relates the measurements with the states is: 

Zk = hk(xk) +Vk 	 (2.71) 
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Figure 2.3: Tracking targets with different kinematics models using an EKE 

where hk()  is the following nonlinear function: 

+ y + 

h(xk) = 	arctan(yk/xk) 	 (2.72) 

arctan(/x + y/zk) 

and vk = [Vr.k Vo,k vE,k ]T  is the measurement noise vector which models the range, azimuth 

and elevation angle inaccuracy of the radar. The measurement noise is white zero-mean Gaus-

sian vk .Af(O, Rk), and has a diagonal covariance matrix Rk: 

o 
Rk = 	0 
	

o-{vO,k}2 	0 
	

(2.73) 

0 
	o 	o{v,k}2  

where o{ Vr ,k}, o{vo,k} and o{v,k} are the standard deviation of the measurement noise on the 

range, azimuth and elevation. Equations (2.71-2.72) can be altered accordingly to account for 

a different state representation and measurement dimensionality [1]. 

2.6 Tracking comparison 

In this section we compare the performance of the EKF and the UKF for tracking a CV and a 

CT airborne target (see figure 2.3 for two track examples). We consider a static radar which 
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lies on the ground at the origin of the plane and we use relations (2.71-2.72) for modelling 

it. The radar feeds the algorithms at every T = is with noisy spherical target measurements 

zk = {rk  0k ek ]T. The standard deviations of the measurement noise are 60m for the range 

and 40  for the azimuth and elevation angles. For both target models, the target travels in the 

3-D x-y-z space with initial position (5,5, 1) km and velocity (500,500,0. 1) km/h. 

For the CV case, the target states are Xk = [xk xk Yk Yk zk zk ]T. The system function is 

linear (2.58) and has a system matrix of the form: 

1TOO 00 

010000 

00 iTO 0 

000100 

0000 1  

000001 

The standard deviation of the process noise is 1 Sm/s for the position and 15km/h for the velocity 

for all x-y-z directions. 

For the EKF we use equations (2.26-2.32). The Jacobian of the linearized measurement func-

tion in (2.29) is: 

f1k- 
L=.k aXk 

r 
I 	ask 	8 k 	°Yk ayk azk azk  I = IQOL 	aOk 	DOk Q0 aOk QO.&, I 

ask 	8Xk 	8Yk dyk aZk azk I 

L  
& 

8 k 	axk 	8Yk 8Yk ask azk 	XkXk 

___ 
I 

A 	0 5k 	ol 
x+Y+z 

- - 	Yk s2 y2 
-- 	

0 0 	0 (2.75) 

X 5k 
[ - 0 Z 

 

kyk 	0 ______________________ ___________ 0 _ (4+y+z) - J X/Xk 

For the UKF we use (2.43-2.53), setting ic = —ii from (2.35). 

For the CT case, the state-space is augmented with the turn rate wk, which has an initial value 

of -5°/s. The standard deviation of the process noise is lm/s2  for the random accelerations and 

0.1°/s for the turn rate. We assume that due to the executed turn the dynamics are correlated 

Fk = (2.74) 
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just across the x-y plane. Based on that, we design both trackers with decoupled structures, 

within which a separate uncorrelated filter is used for estimating the vertical component of the 

motion. In general, decoupled filters require less computational power ]  and exhibit enhanced 

estimation performance [30]. 

Using this approach, both EKF and UKF consist of two subjilters: one accounting for the 

manoeuvre across the x-y plane with states xk = [xk xk Yk Yk wk ]', and another for the 

motion along the z-axis with states xk = [zk zk IT. The two Jacobians of the EKF's x-y subfilter 

have the form: 

- 	öfk_l(xk) 
Pk —1 

OXk 

r 
I 	Xk 	OXk 	8Yk ayk IJWk I 
Ik 	QXk 	19Xk QXk PkI 
I 	aX,,, 	axk 	8Yk '911k aWk I 

- at ' k 24 	
a' ark 	dXk 	auk 

A 
8Yk 0 k 

I 
I 

a , 	ayk.& k &I 
ark 	dXk 	8Yk 

L 

(99k awk I 

ark 	aXk 	9Yk aYk 8Wk JXk=Xk.j 

[1 	sin(wkT) 	Q - 1 — cos(wkT) 
Wk Wk 

0 	cos(WT) 	0 - sin(wkT) 	 02 

= Q 	1—cos(WT) 	1  sin(WT) 
—XkTS111(WkT) 	YkTCOS(WkT) (2.76) 

'--'k Wk 

0 	sin(wkT) 	0 cOs(wkT) 	XkTCOS(WkT) 	YkTS1II(WkT) 

La 	ü 	a a 
Xk=Xki 

where: 

axk & = 
8Wk xk=xk_1 

- 	— Yk(kTS1n(WkT) + cos(wkT) - 1) + k(wkTcos(wkT) - sin(wT)) 
(2.77) 2  

XkXk_j 

02 	
öXk = 
OWk L=Xk-1 

- 	Xk(wkTsill(WkT) + cos(wkT) - 1) + lk(wkTcos(wkT) - sin(wT)) 
- 	 2 	 (2.78) 

	

Wk 	 XkXk_1 

As a rule of thumb, the computational complexity increases almost proportionally with n [1], where ri is the 

dimensionality of the states. Therefore for our example, a decoupled 5+2 state filter compared to a fully-coupled 7 

state filter, results in a complexity reduction by about a factor of (53  +2 3)  /7 	0.38. 
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Figure 2.4: Comparison of the RMS position error of the EKF and the UKF 

and: 

3hk(xk) OWk Hk= - OXk Xk 9Yk 

[ 1  

8Yk 

ak  

I 
8Xk - - .k I 

XkXk ôXk a4 0Yk 1Jk awk J Xk=Xk 

[ Yk 	U 01 
I  

Yk _0 00 ] 	- 
x  +y Xk=Xk 

The unconelated z-axis filter is designed as a 2-D version of the CV EKE The decoupled CT 

UKF is formed in a similar fashion to the decoupled EKF (again c = —11). Once more, 

equations (2.26-2.32) and (2.43-2.53) describe respectively the EKF and the UKF algorithms. 

The simulation results were obtained after 5000 Monte Carlo (MC) runs for each model. The 

tracking time for each simulation was 90s. Figure 2.4 present the room mean square (RMS) 

position error of the algorithms for both cases. Although the algorithms' performance is almost 

identical when tracking the CV target, for the CT case the superiority of the UKF is evident. 

The second-order linearization accuracy of the UKF helped the filter to cope more efficiently 

with the more difficult dynamics of the nonlinear CT model, and resulted on average in a 34% 

smaller position error than that of the EKF. 

(2.79) 
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Figure 2.5: Data association and tracking for two crossing targets. 

2.7 Data association 

The data association problem arises when multiple scatterers exist in the field of view of the 

measuring sensor. The resulting multiple measurements can either originate from targets of 

interest or from background clutter. For this class of problems a data association function 

is employed for assigning the measurements of interest to new or existing target tracks (see 

figure 2.5 for an association example). In a realistic tracking system, complex association 

structures are used which include subfunctions for gating, clutter rejection and track initiation, 

confirmation and deletion. 

There are two major approaches on the data association problem: the single scan data asso-

ciation (SSDA) and the multiple scan data association (MSDA). The SSDA methods use data 

just from the current scan and deduce "hard" decisions on the current association. The MSDA 

techniques exploit data from consecutive scans, normally using simultaneously more than one 

association hypothesis and derive "soft" or probabilistic assignment decisions at every time 

step. The three most well studied algorithms in the literature are the global nearest neighbour 

(GNN), the joint probabilistic data association (JPDA) and the multiple hypothesis tracking 

(MHT), the first two based on SSDA and the third on MSDA. 

The conventional GNN [31] seeks the single most likely association relying upon the statistical 

distance between the measurements and the tracks. The JPDA [32, 33] selects the association 

hypothesis that maximises the joint association probability. The MHT [34] processes multiple 

23 



Nonlinear tracking and data association 

C 	target 1 
+ 	 gate  

target  
-gate 2 

target  
-gate 3 

+ measurement4 

+ 

+ 

'50 900 950 1000 1050 1100 1150 1200 1250 1300 
X (m) 

Figure 2.6: Gates are formed about the predicted targets' position to eliminate unlikely 
measurement-to-target associations. A data association algorithm should be used 
between targets 1 and 2 and the measurements that fall within their gates, for re-
solving the assignment ambiguity. 

association hypotheses which either confirms, merges or deletes, propagating the surviving 

ones to the next scan. In what follows we focus on SSDA methods since they provide at every 

scan a definite association decision and they are significantly computationally lighter. 

For an efficient data association implementation, before the association algorithm a gating tech-

nique [1,35, 36] should be exploited. Gates are formed about the predicted target positions and 

just the measurements that fall within each gate are assignment candidates. The association 

algorithm therefore is used only when ambiguous conflict situations arise (see figure 2.6). The 

shape and the volume of the gates depends on the application, but usually they are ellipsoidal 

and have volume proportional to the combined uncertainty of the measurement and the posi-

tion of the target. The bigger the gate, the more likely the actual target measurement will be 

included in the gate, but since it's more probable that on average more measurements will be 

considered, the computational load increases. 
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2.8 Global nearest neighbour 

The GNN [3 1] is simple to implement and has light computational requirements, features that 

make it particularly appropriate for non-demanding low-complexity systems. Its basic prin-

ciple is to identify the most likely association hypothesis, by assigning costs to the possible 

measurement-to-track pairings and then by solving the resulting assignment problem. 

The classic implementation of the GNN algorithm uses the statistical distance of the measure 

ment to the predicted target position, as the cost of the association problem. Assume that at 

time k (after gating) we have t,k  unassociated targets and T1m,k measurements {z}k.  A 

conventional approach is to form an nt,k  '< nm,k assignment matrix Ak with elements 

given as the inverse of the costs c,k: 

—1 	T 	lj' 
= (c3,k) 	= (z' S 	z 

+ In 
SD' 	 (2.80) 

Vi = 1,... ,t,k, Vi = 1,... ,m,k 

where 	and S'j are respectively the measurement residual vector and covariance resulted 

from: 

=Z3  - hk(x) 	 (2.81) 

in which hk(.) is the measurement function as defined in (2.72) and x is the prior estimate 

of the position of the i-th target. The cost function in (2.80) includes the term In IS 	for 

penalising tracks with greater estimation uncertainty. 

A typical solution to the assignment problem is to find the pairings that minimise the overall 

cost, while using the maximum number of assignments. Although in simple cases this can be 

done by exhaustive enumeration, more efficient techniques [1] are available for when the size 

of Ak increases. For our GNN implementation we rely on the auction algorithm (AA) [37,38] 

which currently seems to be the most efficient approach to the assignment problem. 

For assigning the tracks to the measurements, in analogy with real-life auctions, the AA uses 

a competitive bidding approach until the total assignment "gain" is maximised. The AA intro-

duces a price Pi,k  for each track i, and a measurement-to-track profit margin: 

7rk = max 	- Pi,k} 	 (2.82) 
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where aij,k  is given in (2.80). By relaxing the complementary slackness condition (from linear 

programming theory [39])  it seeks the near-optimal solution under the condition: 

7r3,k - (a 3 j 	Pi,k) 	€ 	 (2.83) 

for every track i. The user-defined parameter € detennines the "optimality" of the algorithm, 

where a smaller value results in a solution closer to the optimal (at the expense of more iter-

ations). The AA first initialises all measurements as unassigned and sets the track prices to 

zero. Within the iterative phase that follows, the algorithm selects an unassigned measurement 

j, tentatively assigns it with track ij for which: 

- Pi,k = 7r,k 	 (2.84) 

and adjusts the track's price: 

Pi,k = Pi,k + Yjk + 6 	 (2.85) 

where Yj,k  is the difference between the two best assignment values a2 ,k for measurement j 

The AA re-iterates, until all the possible assignments are computed. 

2.9 	Joint probabilistic data association 

The JPDA [33] is another SSDA method which at every scan forms all the possible association 

hypotheses and selects the one that maximises the joint association probability. The JPDA 

generalised the probabilistic data association algorithm [32], which was essentially a clutter 

rejection method, so as to explicitly take under consideration the presence of multiple targets. 

Consider again that at time k after gating we have nt,k  unassociated targets and n,,k  measure-

ments {z}k.  Following the analysis of [33],  central to the JPDA is the computation of the 

conditional probabilities of the joint events Xk = flnm1k Xi3j,k where Xi3j,k  is the event that 

the j-th measurement originated from the i-th target. The feasible events are the joint events 

in which just one measurement originates from each target. For notational purposes we define 
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the following binary functions: 

tj,k(Xk) 	

= 	
1 	

1, if i 	>0 	
(2.86) 

0, if ij = 0 

1 	1, if i 	= i for some 	
(2.87) Sz,k(Xk) 	

= 0, if ij 54 i for all  

f 1, if 3  occurs 	
(2.88) Wjj,k(Xk) 	

= j 0, otherwise 

where tjk(Xk)  indicates whether the j-th measurement is associated with any target in event 

Xk 8i,k(Xk) whether any measurement is associated with the i-th target in event Xk  and 

Wij,k(Xk) whether an association between the j-th measurement and the i-th target is assumed 

in event Xk.  For i and j it holds that i = 

The probability Pij,k  that the j-th measurement belongs to the i-th target is obtained by sum-

ming over all feasible events Xk  for which the assignment occurs: 

Pij,k = 	P{xkZk}wjj(xk) 	 (2.89) 
Xk 

PiO,k = 1 - 	Pj,k 	 (2.90) 

i=1  

where P{XkZk}  is the probability of event Xk2  assuming the set of all measurements Zk,  given 

by: 

CO 
P{XkIZk}=— H 

Ck 3 :ti = 1 

exp (- 	
iJ) 

(27r)Thmk/2 /i H 	fl (1—Pj) 	(2.91) 

j:öik=l 	t:8k=O 

in which C and 0 are respectively the density and the number of false alarms (Poisson dis-

tributed), PD is the probability of detection and ck = p(ZkZ h_i) is the normalisation factor 

from Bayes equation (2.11). The measurement residual 	(with S being its associated co- 

variance matrix) is given by: 

= - HX[ 	 (2.92) 

'The first product in (2.91) refers to the association likelihood and the two others refer to the prior detection 
probabilities. 
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where hk is the measurement function and x[ the a-priori predicted position of the i-th 

target (the term Hkx[ becomes equivalently hk(x[) in the nonlinear case). 

The assignment probabilities Pij,k  are used to modify the state update equation of the KF3 , 

which now uses for every target i a weighted sum of the residuals from all measurements: 

4 = x + K 	 (2.93) 

where: 

= 	Pij,kZd 	 (2.94) 

j=1  

in which 2 ii is given in (2.92). The Kalman gain is computed using (2.21) in the normal KF 

fashion. The covariance update equation is also modified and becomes: 

	

P = Pik  + 74 	 (2.95) 

where P' is the covariance that would be computed if a single measurement were present, and 

7i 	is an increment accounting for the association uncertainty: 

Pil 
= Pio,kP + (1 - pjO,k) [[I - KHk]P] 	 (2.96) 

7r 'k (2.97) 

Track initiation and deletion functions [43] can be added to the JPDA method, to account for a 

varying number of targets. Overall, the JPDA method is expected to improve the performance 

over the simple GNN, since it makes use of all available hypotheses to reach an association 

decision. 

2.10 Data association comparison 

In this section we present a brief comparison of the performance of the GNN and the JPDA, 

when dealing with three couples of closely separated CV airborne targets. For our study we do 

not use any gating scheme for not inflicting gate-related biases to the association. For tracking 

3Here we follow the analysis from the original JPDA which was based on the Kalman filtering framework. 
Currently several implementations have been proposed in which different tracking filters are used [40-42]. 
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-true 

Figure 2.7: An example of multiple target tracks. 

we employ EKFs. The radar lies on the ground at point (0,0) and every Is provides the tracker 

with noisy spherical measurements of the position of the targets. The standard deviation of the 

measurement noise is I 00 for range and 4° for both azimuth and elevation angles. We set the 

probability of false alarms to zero and the probability of detection to one. 

The standard deviation of the process noise for all targets is Sm for their position and 5km/h 

for their velocity across the x-y plane, and respectively I  and 1km/h along their z-axis. Each 

simulation lasts lOOs. Figure 2.7 shows a set of randomly perturbed target tracks from our 

scenario. We particularly chose these track patterns so as to force the algorithms to solve 

difficult association problems. Figure 2.8 shows the raw and the associated measurements for 

Average Overall Percentage of 
disassociations track losses track losses 

(per run) (5000 runs) (per run) 
JPDA 4.09 32 0.64% 
GNN 6.06 177 3.54% 

Table 2.1: Comparison of the association performance of the GNN and the JPDA. 
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Figure 2.8: Raw and associated measurements of multiple targets (tracks at figure 2.7). 

the same tracking example. 

The simulation results presented in table 2.1 were obtained after 5000 MC runs. The metrics 

for judging GNN and JPDA association performance were the disassociations, i.e. when the 

associations were wrong, and the track losses, i.e. when due to a series of disassociations the 

tracker swapped the tracks between the targets. From table 2.1 we see that as expected the 

JPDA clearly exhibits a superior performance, having on average 32% less disassociations and 

82% fewer track losses. 

2.11 Chapter summary 

In this chapter we presented a short introduction to target tracking and data association. First, 

after briefly discussing the basic principles of Bayesian estimation, we focused on the Kalman 

filter and its extended and unscented nonlinear variations. We described basic models for target 

and sensor modelling and showed experimentally the superiority of the UKF for difficult non-

linear tracking problems. Next we introduced the problem of data association. We concentrated 

on the popular global nearest neighbour and joint probabilistic data association algorithms and 

we demonstrated through a short comparative study that we normally expect the (more compu-

tationally complex) JPDA to attain a better association performance. 
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Chapter 3 
Tracking with particle filters 

The third chapter focuses on particle filtering. It introduces its generic principles and presents 

popular filter variations. After a brief comparison of the basic particle filter and the extended 

Kalman filter in a difficult chaotic problem, a particle filter for tracking a manoeuvring tar-

get is introduced and studied experimentally. The remaining of the chapter is dedicated in 

a new efficient multitarget tracking particle filter that uses a measurement-coupled prediction 

and association phase in which the number of the particles varies according to the association 

difficulty. Simulation results demonstrate the performance gains of the proposed approach. 

3.1 Introduction to particle filtering 

The particle filters (PF) are powerful numerical methods which address the nonlinear/non-

Gaussian Bayesian estimation problem. Based on the concepts of Monte Carlo integration 

and importance sampling, they use a set of weighted samples or particles of the state density, 

which when propagated over time provide a sequential discrete approximation of the poste-

rior state distribution. Although there was a certain body of work on sequential Monte Carlo 

(SMC) methods during the 70's and 80's (see [44] and the references therein), it was only until 

the 90's where due to the increased computing capabilities the field started to receive systematic 

attention. Arguably reference [45] in 1993 laid the foundation of modem particle filtering by 

incorporating a resampling step to the algorithm. Textbook [46],  report  [44] and papers [47-

49], from which we draw in this chapter, offer a comprehensive analysis and literature review 

on SMC methods and particle filtering. 

We start our analysis by introducing Monte Carlo integration. Suppose we want to compute the 

expectation of function f(x) where x E lR is a continuous random variable with pdf 7r(x); 

we want thus to evaluate: 

I = f f(x) 7r(x)dx 	 (3.1) 

The MC estimate 'N,  of that interval is computed as the mean of N8  samples x which are 
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drawn from the density ir(x) and are propagated through function f(x): 

	

'N3 f(xz ) 	 (3.2) 

Under the strong law of large number the MC estimate almost surely converges to the real 

integral, when the number of the samples tends to infinity, i.e. P{IN3 - I}IN3— 	= 1. 

Moreover, the rate of convergence of the estimate is independent of the dimensionality n of 

the integrand. The MC solution of relation (3. 1), is of great importance in the Bayesian context, 

since for example by setting f(x) = x and 7r(x) as the posterior state density, theoretically we 

could directly compute the MMSE state estimate (2.15). In practise we cannot directly draw 

samples from the posterior density, usually being multivariate and nonstandard, and therefore 

we rely on importance sampling for obtaining samples' approximations. 

Importance sampling is a technique for sampling indirectly from a given pdf ir(x). Under 

this method we obtain samples from another similar pdf q(x) (the importance density) and we 

correct them by weighting them appropriately. The rather weak similarity condition for ir(x) 

and q(x) is both to be positive for all values of x. Using the importance density, we can now 

rewrite (3.1) as: 

' = 	f(x) 
7r  (X)  \ 
— 1 q(x)dx 	 (3.3) I( q(x)) 

The MC estimate of this integral is the weighted mean of N3  samples {x} 1  drawn from the 

importance density q(x): 

	

'N. = 1 f(x)zD 	 (3.4) 
i=1 

where the importance weights are given by: 

-iIV= 
7r(x) 

q(x) 
(3.5) 

In the Bayesian framework, the normalisation factor of 7r(x) (the state posterior) usually cannot 

be expressed in closed form. To circumvent, this problem it can be shown that the MC estimate 

becomes: 

'N3 = 	f(x)w 	 (3.6) 
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if the importance weights are normalised to sum to one, i.e. 	w = 1: 

t 

=Zvi 
W 	 (3.7) 

Based on (3.6-3.7) we derive next a sequential Bayesian solution. Following section 2.1 we 

define Xk and Zk as the sets of respectively all states and measurements up to time k and 

p(Xk I Zk) as the posterior state pdf (to be estimated) assuming the measurements. The principle 

is to draw at every k from a known importance density q(XjJZ k ) a set of N8  particles {x }i 1  

and to assign them appropriate importance weights 	to characterise the posterior state 

distribution. Following (3.5) the weights are proportional to the posterior over the importance 

density: 

	

cx 
p(XZ) - 	p(XtZk) 	 (3.8) k 	q(XZk ) 	q(xX_1, Zk)q(X_1Z k_1) 

for a q(XZk ) chosen to factorise as above. We apply Bayes' rule to the numerator and obtain: 

p(zkX, Zk_1)p(XZk_1) 
p(XIZk) = 
	p(zkZk_1) 

= p(zkX, Zk_1)p(4IX_i, Zk-1) 
p(XLl Zk_l) 

p(zkZk_1) 

= P(ZkI4)P(4I X 1) (xi Jz)  
p(zk Zk _ 1) 

cx p(zkI4)p(x4_l)p(X_lIZk_1) 	 (3.9) 

By using (3.9) and exploiting the Markovian property, we can rewrite (3.8) as: 

	

- 	p(zkx)p(xx_1) 
Wk DC q(xX Wk_1 	 (3.10) 

,Zk )q(X 1 Zkl ) 	 q(xJ4 1) zk ) 

Therefore the posterior density at every k can be approximated as the following discrete se-

quence: 
N 

	

p(xk!Zk) 	w6(xk —4) 	 (3.11) 

where 8(.) is the Dirac function. The state estimate finally becomes: 

N8  

Xk = 	4w 	 (3.12) 

33 



Tracking with particle filters 

The weights from (3.11-3.12) are obtained from (3.10) and are normalised as in (3.7). 

3.2 Filter degeneracy and resampling 

Based on the analysis above, the sequential importance sampling (SIS) particle filter is given 

as a pseudocode below. For the specific filter it has been proved [50] that the variance of its 

importance weights can only increase over time. This means that eventually all but one weights 

become negligible, i.e. the SIS effectively uses just one particle (see figure 3.1), and thus 

the filter diverges and collapses. This so-called degeneracy phenomenon can be controlled by 

employing a resampling scheme at the end of every estimation cycle as proposed in [45].  The 

key idea is to eliminate small weight particles by replacing them with others which have larger 

weights, before propagating them to the future. 

By far the most popular resampling algorithm in the particle filtering literature is the system-

atic resampling (SR) [51] due to its simplicity, small computational complexity of 0(N3) and 

effectiveness in minimising the MC variation [52, 53]. The SR algorithm generates a new set 

of particles {x*}1  by resampling with replacement from the discrete approximation of the 

posterior state pdf (3.11) so as 	= x} = w. A pseudocode of the technique is given 

in algorithm 2 and a graphical illustration is presented in figure 3.2. As figure 3.3 illustrates, 

since the resulting particles obtain equal weights w = 1/N3, Vi, after resampling the posterior 

density is approximated just by the density of the particles (number of particles at a given point 

at the state-space). 

When a PF uses resampling, the particles propagated to the next step k + 1 originate just from 

the states of the most heavily weighted particles at k. This limits the diversity of the particles 

Algorithm 1 Sequential Importance Sampling 

[{ 	 1x, w} 1 ] = SIS[{x_1, Wj 
k_1Jj

N3 
 1, Zk] 

for i=1:N3 do 
Draw particles: 4 '- q(xx_ )  zk) 

Compute weights:Wk 
= 
	

q(xx_1, Zk) 
end for 
Compute total weight: Sw,k = 
for i = 1: N3  do 

Normalise weights: wi = Wk 
end for 
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Figure 3.1: The degeneracy phenomenon when no resampling is used. After only 4 steps for 
the system described in (3.19-3.20), the SIS degenerates and uses just one particle. 
The effective number of particles is computed from (3.13). 

and it might consequently lead to sample impoverishment and performance degradation. The 

effects of the phenomenon are more intense particularly when the process noise is relatively 

small. For dealing with the problem, one can resample only when there is an indication that 

degeneracy is severe. The effective number of particles Ne ff can be used for this purpose, 

which can be approximated [54] as: 

Ne ff 	 (3.13) 

Therefore, a generic PF can be structured from an SIS filter which calls the SR algorithm for 

resampling when the effective number of particles falls below a certain user-defined threshold. 

In the next sections we describe some popular variations of this basic PF. 

0 
a 

C 

0.9 

0.8 

0.7 

0.6 

9' 95  
a 

0.4 

0.3 

0.2 

0.1 

35 



Tracking with particle filters 

U1  

Ns 
Particle index 

Figure 3.2: The systematic resampling algorithm: in the graph the cumulative sum of weights 
is plotted over the particle indices. A random sample u1  ' UO, N'] is drawn at 
every k which sets the particle replacement threshold. Subsequently, according to 
algorithm 2, all weights are compared with this threshold (which is increased by 
N' after every comparison). For the example shown, the first weight w 1  is larger 
that the threshold Ui and thus the particle is not replaced. 

Algorithm 2 Systematic Resampling 

= SR[{x,w}i&1] 

Initialise cumulative sum of weight (csw): ci =wi 
for i = 2 : N3  do 

Compute csw: ci  = Cj_1 + w 
end for 
Initialise index: i = 1 
Draw a random threshold: u1  '-. U[O, N'] 
forj=1:N3 do 

Compare weights with threshold: u3  = u1  + N'(j - 1) 
while u3  > ci  do 

Go to next weight: i = i + 1 
end while 
Assign sample: x = 4 
Assign weight: wi 	N 1  
Assign index: j3 = j 

end for 

36 



Tracking with particle filters 

0.06 

0.04 

0.02 

-9 '5 
I 	..IIIIIItI 	 Ijilillil 

-25 	-20 	-15 	-10 	-5 	0 	5 	10 	15 
State space 

10 

0 
0 6 

.0 
E4 = z 

C 
I 
-25 	-20 	-15 	-10 	-5 	0 	5 	10 	15 

State space (after resampling) 

Figure 3.3: Before resampling the approximation for the posterior state density is given by the 
particles' weight; after resampling by the density of the particles. 

3.3 Sequential importance resampling 

The sequential importance resampling (SIR) filter was introduced in 1993 in [45].  It is a PF 

based on SIS which uses the state prior as the importance density: 

q(xkxk_1,zk) =p(xkxk_1) 	 (3.14) 

and resamples at every time step. For the specific importance density, the weight update equa-

tion (3.10) is simplified as: 

p(zk x)p(x Ix_i ) 
Wk = 

Wk_1 q(xx_1,z) 

p(zk x)p(x 4_) = w_1  
p(xJ4_1 ) 

= w_1p(zkIx) 	 (3.15) 

Because the algorithm resamples its posterior at every k, it holds that w_1  = 1/N3, Vi, k. As 
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a result the term w_ 1  cancels out during normalisation: on: 

________ - 	wLip(zklxU 	- 	p(zkIx) 	 (3.16) 
Wk - ____- 	w p(zkIX'k) - 	lp(zkIx) 

which enables us to simply set: 

=p(zkI4) 	 (3.17) 

Since the importance density is the state-transition density, the particle generation is done by 

propagating each particle 4_ through the system function fk— i() and perturbing it at the 

same time with a random process noise sample u_1: 

4 	p(xx1)  4 = f—i(4_1) + u_1 	 (3.18) 

where u is drawn from the known process noise distribution. 

The fact that the importance density - being the state prior p(xkxk_1) - does not incorporate 

information from the measurements, although it makes it easy to draw samples, might result in 

performance degradation. The phenomenon is more evident especially when the measurement 

noise or the modelling inaccuracies are significant. Fewer particles are seeded in areas in the 

state-space with bigger measurement likelihood, i.e. areas within which the particles obtain a 

considerable weight, and thus the resolution and consequently accuracy of the state posterior 

approximation deteriorates. The particle filters presented in the next section try to address this 

problem. 

Finally, we present a brief comparison between the SIR and the conventional EKF for the 

Algorithm 3 Sequential Importance Resampling 

= SIR[{4_ 1} 1,zk] 

fori=1:N3 do 
Draw particles: 4 '-' p(x4) 
Compute weights: %D = p(zkx) 

end for 
Compute total weight: Sw,k 	Iji 
fori=1:N3 do 

Normalise weights: 4 = 
end for 
Resample using SR: [{x,., 	= SR[{4, w}i 1 ] 
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following nonlinear system: 

xk 	= 0.5Xk_1 + 25xk_1
+ 	

+ 8 cos(1.2(k - 1)) + Uk 	 (3.19) 

X2 k 
Zk = 	+Vk 	 (3.20) 

20 

where Uk and vk are respectively the process and the measurement noise terms, which are white 

and Gaussian with variances Qk = 10 and Rk = 1. For our analysis, we use eight SIR imple-

mentations each employing a different number of particles (N5  = 5, 11, 25, 50, 100, 250, 500 

and 1000). The simulation time is 100 steps and the results are averaged after 1000 MC runs. 

Figure 3.4 shows the average RMS error of the SIR (between 4.58 and 9.49) over the number 

of the particles The error of the EKF is 19.91. The significant difference in performance is due 

to the severe nonlinearities of the system and the multimodal nature of the likelihood, which 

cannot be handled efficiency from the EKF operating under smooth-nonlinearity and Gaussian-

ity assumptions. The cost for the improved performance of the SIR is a heavier computational 

complexity, which increases almost linearly with the number of the particles. 

2) 
(I) 

2) 
C) 
2) 

2) 
> 
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3.4 Filters approximating the optimal importance density 

In what follows we present the auxiliary SIR and the local linearization particle filter. These fil-

ters approximate sampling from the optimal importance density' by incorporating information 

from the measurements in the particle prediction phase. The first algorithm indirectly by us-

ing a pre-prediction resampling scheme and the second by explicitly employing measurement-

dependent nonlinear estimators in its prediction mechanism. 

3.4.1 Auxiliary SIR 

The auxiliary SIR (ASIR) was proposed in 1999 in [55].  The ASIR approximates sampling 

from the optimal q(xklxk_ 1, zk) by propagating through the state prior pre-selected particles 

which according to the measurement zk have "large predictive likelihoods" [56, Ch. 13]. For 

the pre-selection certain auxiliary measures4 associated with the particles 4_ I are initially 

predicted, weighted according to the measurement zk and resampled. The particles follow the 

resampling outcome (i.e. they get replaced if their auxiliary measure does so) in anticipation 

that the resulting particle set will more likely be predicted in areas with larger likelihood. 

The importance density of the ASIR is chosen as the joint density of the state xk and the index 

i of the auxiliary measure, conditioned on the measurement 

q(xk, iZk) cx p(zk4)p(xkx_ l )w_l 	 (3.21) 

where tti can be any appropriate measure associated with p(xk x_i) (the mean, the mode, a 

sample etc.). By setting q(xki, zk) = p(xk4_ i ) we get: 

4 := q(izk) cx p(zkI/4)w_l 	 (3.22) 

which when normalised: 

Ai 	k 
k = 	 (3.23) 

'It has been shown [50] that the optimal importance density is: 

q(xki 	 4 p(zkIxk,x_l)p(xk_l) xk_1,zk)optj ma j = 
p(zk -k_,) 

from which in general we cannot sample directly (except in certain cases as presented in [46]). 
2 The density q(xk, iIZk) in 3.21 (which we use for keeping the notation consistent with the literature) could 

have had the more mathematically descriptive form q(xk, iIzk, 4_i) for emphasising its dependency from x_1. 
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form the first-stage weights. The weighted set {4, A } 	is resampled using the SR algo- 

rithm, and the resulting resampled indices {j3}1  are used for predicting the particles: 

q(xi3,z) =p(xkJxkj3_1) 	 (3.24) 

and for computing the final weights: 

-j 	p(zkIx) 
Wk = 	 (3.25) 

P(ZkI/4) 

which once more are normalised to sum to one: 

	

=
t 	

(3.26) 

The ASIR performs particularly well when the process noise is relatively small. The auxiliary 

measures then represent more closely the density p(xk x_1) and the particles when predicted 

lie indeed in areas with higher likelihood. This results in larger particle diversity and thus better 

characterisation of the posterior state density. 

Algorithm 4 Auxiliary SIR 

[{4, w}] = ASIR[{4 , w }, z] 

for i = 1 : N8  do 
Compute j4 
Compute first-stage weights: ) = p(zk)w_i 

end for 
Compute total weight: s,\k = 

for i=1:N5 do 
Normalise first-stage weights: ) = 

end for 
Resample using SR: [{., i}] = SR[{4, A}] 
forj=1:N8 do 

Draw particles: x '-- p(xk x_ i ) 

Compute weights: 77vi = p(zkjx)/p(zkl/) 
end for 

Ns  Compute total weight: 8,k = j=1 ZVk 
forj=1:N5 do 

Normalise weights: w = 
end for 
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Reference [56] devises the metric: 

irL I (PX  2 

= 	P(zkII4)) dxk 
	 (3.27) 

and proves that if: 

(3.28) 

the efficiency (in terms of minimising the variance of the weights) of ASIR is better than the 

SIR. Since ir i k varies mildly over i, approximately it holds that: 

N3 	 N. 

	

= 1 <N(A)2 	 (3.29) 

implying that the ASIR is in general more efficient and consequently performs better that the 

standard SIR. 

3.4.2 Local linearization particle filter 

The local linearization particle filter was introduced in 2000 in [50]. For predicting each particle 

x it first runs a nonlinear filter (e.g. an EKF) to approximate its posterior state density and 

then draws a sample from the resulting distribution. The resulting approximation of the optimal 

importance density is: 

q(4I4_1 ,zk ) 	 (3.30) 

where 	and P are the estimated mean and covariance obtained from the nonlinear estimator. 

The weights are then computed: 

	

p(zkIx)p(xI4_i) 	 (3.31) q(xx 1 ,zk) 

and normalised: 

Wt =(3.32) 
>.ij1 Wk 

Like the SIR, the LLPF uses resampling at every time step therefore there is no need to store 

and propagate the weights to the future. A pseudocode describing the algorithm is given next. 

The LLPF does propagate naturally the particles towards areas with higher likelihood, and 
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therefore compared to the original SIR it approximates better the posterior density and thus its 

performance improves. Its approach, that is to use directly the measurement for predicting the 

particles, seems to be the most powerful currently available. In [52] the UKF is used rather the 

EKF for prediction and it is shown to improve the performance. In [57] it is even proposed to 

use a particle filter like the SIR for predicting the particles; albeit powerful, the solution results 

in a rather heavy O(N) computational complexity. 

3.5 	Tracking a dynamic changing target with a single-model parti- 

cle filter 

This section presents a brief study on a variation of the ASIR which we presented in [58] in 

2004. We are interested in tracking a CV target which dynamically changes its kinematics 

model by executing subsequent abrupt turns; a moving pattern common in the vehicle tracking 

problem which we examine in the following chapters. As a simpler alternative from using a 

multiple model filter, we choose to employ a bank of EKFs, in the LLPF fashion, to predict 

the auxiliary measures /4 of the ASIR. Using the appropriate weights we indirectly bias the 

particle propagation mechanism with the measurement making thus the filter more sensitive to 

the model changes. In what follows we describe the algorithm and we contrast it with the SIR 

and ASIR in two simulated scenarios. 

Algorithm 5 Local linearization particle filter 

[{x, P} 1] = LLPF[{x 	, Pi
k 1}, Zk] 

for i = 1: N5  do 
Run EKF: [f R' P}] = EKF[{x_1, P_1} 1 , zk] 

Draw particles: x 	AI(k, 	) 
p(zk x)p(4J4_ 1 ) 

Compute weights: 'Wk = 
q(xJx_1, Zk) 

end for 
Compute total weight: 9,,,k =ji 
for i=1:N5 do 

Normalise weights: w 
end for 
Resample using SR: [{x, •, 	= SR[{4, w} 1 ] 

forj=1:N3 do 
Assign covariance: P = P ij  

end for 
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3.5.1 Auxiliary local linearization particle filter 

The auxiliary local linearization particle filter (ALLPF) adopts the concept of pre-prediction re- 

sampling of the ASIR. It constructs a weighted set of auxiliary measures 	 associated 

with {x_1} 1, which uses to resample the particles at k - 1. The resampled particles when 

predicted form {x} 1. For making the technique more sensitive to measurements, EKFs are 

employed to calculate the auxiliary measures. The ALLPF, following the ASIR analysis, uses 

the importance density given below: 

q(x,iIzk) ccq(zk /4)p(xk I4_1)w_1 	 (3.33) 

in which the auxiliary measures /4 are obtained as samples from the distribution: 

/4 	 (3.34) 

where Rik  and P are respectively the estimated mean and covariance from an EKF when ap-

plied on the i-th particle at k - 1 using measurement zk. 

We factorise (3.33) as: 

q(xk, iZk) = q(izk)q(xki, Zk) 	 (3.35) 

and assume that the particles are propagated just according to the state prior (independently of 

the measurement): 

q(xki, Zk) = p(xk4 _, Zk) p(xk4_i) 	 (3.36) 

The approximation in (3.36) biases the algorithm towards the measurement, since although the 

measurements were exploited from the EKFs in (3.34), they are not explicitly considered later 

in the weight update mechanism. With this approach we achieve indirectly greater sensitivity 

to possible model changes. 

We continue by calculating the first-stage weights simply as the product of the likelihood and 

the previous weights: 

q(ilzk ) = p(zk4)w_i 	 (3.37) 

which are normalised to sum to one: 

4 = 	- j 	 (3.38) 
j=1  k 
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The set {,4, )4}i is resampled with the SR algorithm and the resulting resampled indices 

{j3 } 	are used for predicting the particles using (3.36): 

x 	q(xi,zj) =p(xjxk
iJ 
 _l,zk) =P-(:,:) 	 (3.39) 

where x and f are the mean and covariance computed before. For calculating the final 

weights w we use equations (3.25-3.26) from the ASIR. The pseudocode of the ALLPF is 

given below. 

The use of the EKFs for calculating the auxiliary measures in conjunction with the assumption 

in (3.36) naturally make the ALLPF more sensitive not only to model changes but to measure-

ment noise and outliers. As we will see in the next chapter, a better approach to deal with this 

class of problems is to use algorithms which employ multiple models of operation. Neverthe-

less, the ALLPF provides a simple and efficient technique suitable for applications in which 

performance is gauged more in terms of robustness and track maintenance capability than just 

estimation accuracy. 

Algorithm 6 Auxiliary LLPF 

[{x, P, wk z=}1] = ALLPF[{4_ 1 , k  11  w_1 } 1, zk] 

for i = 1: N8  do 
Run EKF: [{*, k z=}] = EKF[{4_ 1, P_1 } 1 , zk] 

Draw auxiliary measures: 	.A[(, 	) k.  
Compute first-stage weights: 4 = p(zk)w_ 1  

end for 
Compute total weight: 5A,k = 
for i=1:N8 do 

Normalise first-stage weights: 4 
end for 
Resample using SR: [{, i3}] = SR[{jz, 4}] 
forj=1:N8 do 	S  

Assign covariance: 	= Pij  
Draw particles: Xk3 	

.A/(xk
j3 	3 

k) 
Compute weights:th = p(zkjx)/p(zk) 

end for 
Compute total weight: Sw,k = 
forj=1:N8 do 

Normalise weights: w jk  = 
end for 
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Figure 3.5: The true track of the target and the track estimates from the particle filters for a 
representative example. 

3.5.2 Simulation study 

In this section we test the performance of the ALLPF in two different tracking scenarios. The 

first scenario involves tracking a two-dimensional target (e.g. a ground target) which although 

nominally moves with constant velocity, executes two abrupt turns along its path. The im-

portance density and particularly its efficiency in exploiting the measurement information is 

expected to play a critical role in the tracking accuracy. 

For our simulations we use the target track shown at figure 3.5. The initial position of the target 

is (x, y) = (504, 663)m and its velocity (i, ') = (33, 106)mls. The first turn is —75° and the 

second 115°. The particle filters consider a constant velocity target model: 

Xk = Fk_lxk_1 + Gk_luk_1 	 (3.40) 

where xk = [xk Yk xk yk ]T  is the state vector, uk = [u,k uy,k ]T  is the process noise vector, 

and: 
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1 0 T 0 	 T2/2  0 

	

o 1 0 T 	 0 T 
Fk = 	 , Gk= 	

/2 	
(3.41) 

	

0010 	 T 	0 

	

0001 	 0 	T 

are the system and process noise matrices. The process noise is assumed to be zero-mean 

Gaussian with standard deviation 5m/s2  for both moving directions. 

The radar lies at the origin of the plane at point (0, 0) and has an update rate T = is. The 

measurement equation is: 

Zk = hk(Xk) + vk 	 (3.42) 

where zk = [9k rk ]T is the measurement vector consisting of the azimuth 8k  and range r, 

hk(.) is the nonlinear function: 

F arctan(y/x) 1 

	

h(xk)= I 	______ 	 (3.43) I 

L V/x+Y 1  

and vk = [vo,k Vr,k]T  is the measurement noise vector. The radar noise is modelled as zero-

mean Gaussian with standard deviation 40  for the azimuth and 20m for the range. 

For tracking we use the SIR, ASIR and ALLPF. For a fair comparison, the filters depending 

on their computational complexity employ a different number of particles (respectively 1200, 

1000 and 200) so as to finally have similar CPU-time requirements. The results presented next 

were obtained after 1000 MC runs. The algorithms are initialised with the true target states. 

Figure 3.5 presents a representative example of the track estimates of the three different fil-

ters. For this run the ALLPF exhibits the faster response succeeding in maintaining the track, 

whereas both the SIR and ASIR cannot not cope with the changing dynamic behaviour of the 

target and diverge. Overall, the RMS position error over the simulation time can be seen in 

figure 3.6. The average values are given in table 4.1. As expected, the particle prediction 

mechanism of the ALLPF being more sensitive to the model changes, enables the algorithm 

for a faster and more accurate transient response after each turn. From table 4.1 we obtain that 

for the specific example the ALLPF results respectively in 63% and 59% smaller RMS position 

For completeness we plot also the RMSE of the un-biased version of the ALLPF (black dashed line), for which 

we set )4 =p(zk 4)w .ip(,4Ix_i)/.f(,P)  andü 
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Figure 3.6: Average RMS position error of the particle filters after 1000 MC runs. The dotted 
lines indicate the track turns. 

error than the SIR and the ASIR, while using significantly fewer particles. More importantly 

the ALLPF manages to maintain the track of the target. 

In the second scenario we simply track a constant velocity target which is perturbed with ran-

dom accelerations, using the same simulation parameters as before. After 1000 MC runs, we 

obtain that the average RMS position error is 95.88m for the SIR, 100.52m for the ASIR and 

122.99m for the ALLPF. Naturally, the measurement-sensitive ALLPF in this case exhibits the 

worst performance and results respectively in about 28% and 22% larger error than the SIR and 

ASIR. 

Particles Average RMS Average 
position error CPU time 

(m) (s) 
SIR 1200 814.45 3.61 

ASIR 1000 743.29 3.58 
ALLPF 200 300.39 3.63 

Table 3.1: Comparison of the tracking performance of the particle filters after 1000 MC runs. 
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3.5.3 Conclusions 

This section presented a particle filter which combined elements from both the ASIR and LLPF. 

The proposed ALLPF adopts the resampling mechanism of the ASIR for selecting the predic-

tion particles and uses the local linearization logic of the LLPF for predicting them. Using an 

appropriate weight update mechanism, it biases the particles towards the measurement and thus 

robustifies the estimates to irregular changes of the system model. 

The ALLPF was first contrasted with the SIR and the ASIR in a tracking scenario in which a 

target executed two unpredictable abrupt turns along its path. Simulation results demonstrated 

the improved capability of the ALLPF for adopting quickly to model changes. A second sce-

nario with a non-manoeuvring target, highlighted the moderate weakness of the ALLPF to filter 

efficiency the measurement noise when the kinematic model was consistent. Based on the ex-

perimental results we can argue that the ALLPF can be proved suitable for tracking devices 

whose priority is an enhanced track-maintenance capability. For more demanding applications 

and more complex tracking environments a multiple-model filter like the ones described in 

the next chapters, or other single-model algorithms which explicitly account for manoeuvring 

dynamics as in [59],  would be more appropriate. 

3.6 Multitarget tracking with particle filters 

The remaining part of the chapter focuses on multitarget tracking after a work we published 

in [60] in 2005. After a brief introduction and a formulation of the problem, we propose a 

multitarget particle filter which uses a local linearization prediction mechanism within which 

the number of the particles vary and we study the performance gains compared to an equivalent 

multitarget SIR-based particle filter. 

3.6.1 Introduction 

Although a big body of the work in particle filtering studies the single-target tracking problem, 

a certain number of algorithms have been proposed for the multitarget case. When multiple 

targets exist, modifications to the standard single-target algorithms should be made. There 

are two major approaches to address the problem: we can either incorporate all targets and 

measurements within the state and measurement vectors and track all targets jointly, or use first 
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a data association scheme to assign the measurements to the targets and then track the targets 

separately. 

In the first approach (e.g. [61,62]) the state-space is augmented and the joint multitarget proba-

bility density (JMPD) is used for deriving the state estimates of the targets. The main drawback 

of this technique is that the dimensionality of the joint state-space grows exponentially with the 

number of targets. This results in an increased computational complexity and the need of more 

particles for attain a certain performance since even a modest 3-target problem may produce a 

27-dimensional space4. It has been shown that gating and partition sampling [611 can reduce 

the computational requirements for this class of problems. The probability hypothesis density 

(PHD) particle filter [63-65] is a sub-optimal approach that tries to address the complexity 

problem by using just the first-order moments of the multitarget posterior pdf. In the PHD-PF 

the state-dimensionality remains as in the single target case but now information from the es-

sential higher-order statistics5  is lost. The major weakness of all these methods is that they can 

only provide estimates of the states of the targets but not target tracks [66,67]. 

The second class of particle filters (e.g. [68-70]) incorporate a data association logic which is 

used to assign the measurement to new or already existing targets. Particle filtering techniques 

are then used for deriving the state estimates. This can be done either by using separate trackers 

for each target or by forming an augmented multitarget state space and using the "hard" associ-

ations step to perform the prediction and estimation jointly for all targets. Generally, functions 

like gating, track initialisation/deletion and clutter rejection can be implemented and incorpo-

rated within the data association mechanism more easily and in a more computational efficient 

way than in the JMPD-based algorithms. If after the association separate trackers are used for 

the targets, the dimensions remain as in the single-target case. 

Regarding the estimation mechanisms themselves, most multitarget particle filters in the liter-

ature utilise an SIR-like structure in conjunction with a more sophisticated multitarget logic. 

For predicting the particles, they normally use the prior state pdf as their importance density, 

a practise which as we have seen albeit easy and computationally cheap can limit the tracking 

performance. In the following sections we study the benefits of using the local linearization im-

portance density within the multitarget problem, concentrating in parallel on a computationally 

41f we consider the states as the targets' position, velocity and acceleration within the x-y-z space 
5One could argue that this is one of the major flaws of the PHD technique, since these high-order moments are 

in general responsible for the powerful performance associated with particle filtering. 
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efficient filter implementation. 

The particle filters that we present next employ a data association logic and operate within an 

augmented multitarget state- and measurement-space. The algorithms first use a joint step of 

data association and prediction and then calculate the posterior state estimates. For demon-

strating clearly the differences in performance between the filters, we use a simple association 

method and a basic tracking environment which is presented next. 

3.6.2 Multitarget modelling 

In this section we generalise the single-target system described in 2.5.1 and 2.5.3 for the 

multiple-target case concentrating on two-dimensional constant velocity targets moving across 

the x-y plane. For simplicity in our analysis we consider that at every time scan k we have n 

targets and an equal number of measurements originating from them. For the observations we 

use a radar which measures the azimuth 0k  and range rk of each target. 

The state- and measurement spaces are augmented for accounting for the multiple targets and 

measurements. Therefore, the state transition equation: 

Xk = Fk_lxk_1 + Gk_luk_1 	 (3.44) 

has a state vector which now is given by: 

(1) 
Xk 

Xk = 	 (3.45) 

(n) 
Xk 

(T)(r) 	(T) .(r) .(r) T in which Xk 	
[xk Y(T) 

Xk 	Yk ] is the single-target state for the r-th target, where r = 

1,. . . , ri. The state and process noise matrices become respectively F  = diag{F,. . . , F} 

and Gk = diag{G', . . . , G}, where notation diag{A, . . . , B) stands for the diagonal matrix 

with diagonal elements the sub-matrices A,... , B. For our system both Fk and Gk have n 
diagonal elements. The F and G are the known single-target matrices: 
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1 0 T 0 	 T2/2  0 

o i 0 T 	 0 T/2 
F = 	 G = 	 (3.46) 

0010 	 T 	0 

0001 	 0 	T 

The process noise vector in (3.44) has the form: 

(1) 
Uk 

	

Uk = 	 (3.47) 

(n) 
Uk 

where u = 	u,T]T is the noise vector for the 'r-th target. The process noise is assumed 

to be zero-mean white Gaussian Uk 	A1(O, Qk), where  Qk = diag{Q, . . . Q} is the 

augmented 2n x 2n covariance matrix consisting of n diagonal elements: 

Q= [

a{u,k}2 

 

	a   

	

(3.48) 
 0 	o{u,k}2

] 

where o{u,k} and o-{u,k} are the standard deviation of the process noise along the x and y 

moving directions. 

The multitarget measurement equation is: 

	

Zk = hk(xk) +Vk 
	

(3.49) 

where zk is obtained after the association. The augmented vector with the raw measurements 

(before association) is: 
(1) 

Zk 

	

Z 
k = 	 (3.50) 

(n) 
Zk 

where 	= {9) r]T is the 1.i-th "sub-measurement" at scan k, where = 1,.. . , n. The 

nonlinear function hk(.) that maps the state- to the measurement-space is: 
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[h (x1)) 1 

	

hk(Xk) = 	 (3.51) 

[

/ 	(n) 
hk(xk ) J 

where: 
(7-)/X(7-) )   1 

h(x) 	
[ arctan(y 	k 	I 

	

= [(x r2  + (y)2] 	
(3.52) 

for the r-th target. The measurement noise vector is: 

(1) 
Vk 

	

Vk = 	 (3.53) 

(71) 
Vk 

where v(P)= [v O,kv]T  is the noise of the -th measurement. The measurement noise is 

considered also zero-mean white Gaussian Vk .Af(O, Rk),  where Rk = diag{R,. . . , R} 

is the 2n x 2n noise covariance matrix with ri diagonal sub-matrices: 

R 
 = [

a{vo,k}2 	ü 	1 

	

I 	 (3.54) 
0 	U{Vr,k} ] 

where cr{vo,k} and 5{Vr,k} are the standard deviation of the measurement noise of the azimuth 

Ok and range rk. 

For clarity, the formulation above assumes the same type of targets and one static measuring 

sensor, therefore the covariance matrices Qk  and Rk consist of identical sub-covariances Q 

/ and Rk.  The generalisation for different Qk
'(7-)  and Rk

'(it)  is straightforward. 

3.7 	Multitarget particle filters 

Sections 3.7.1 and 3.7.2 describe two multitarget particle filters based on the SIR and the LLPF 

algorithms. Section 3.7.3 presents an efficient variation of the multitarget LLPF algorithm in 

which the number of the particles during the association phase varies. 
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3.7.1 Multitarget SIR 

The multitarget SIR (MSIR) is based on the SIR algorithm enhanced with a basic data asso-

ciation function. The MSIR follows the multitarget formulation of the previous section and 

accounts for an environment in which an equal number ri of targets and measurement exist. It 

consists of four steps: a prediction step in which the particles are propagated one step ahead 

and form the a-priori state estimate, a data association step in which the new measurements 

are assigned to the targets, an update step in which the posterior state distribution is estimated 

using the measurements and a resampling step in which the posterior particles are resampled 

with replacement. 

The MSIR employs N3  4n-dimensional particles {4}s and uses the transitional prior as its 

importance density: 

q(xxk_,z) —p(xkxk_1) 	 (3.55) 

Therefore, the algorithm begins by predicting the particles using the state transition equation 

(3.44): 

4 = F_4_ 1  + 	 (3.56) 

where u_1  are random noise samples drawn from Uk .N(O, Qk)•  The a-priori state estimate 

Xk is computed as the mean value of the predicted particles: 

RM( 1) 

Xk = 

	 = 	

(3.57) 

Xk 

(r) 	(r) _(r) 	(r) T(T) T wherexk 	[xk 1k  Xk  Yk ] for -r = 1,... ,n. 

The data association step follows. We focus on a robust and simple-to-implement associa-

tion mechanism based on the distance between the a-priori state ik and the measurement zk. 

For implementing the algorithm we construct an n x n! hypothesis matrix H consisting of n! 

columns each denoted as H where a = 1,. . . , n!. Each column H0, corresponds to one of the 

different permutations of the set 11,. . . , n}. For example form = 3 we can use the following 
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3 x 6 hypothesis matrix: 

H1 H2 ... 	H6  

	

1 1 2 2 3 3 	 (3.58) 

H= 2 3 1 3 1 2 

323121 

The columns account for a different association hypothesis, e.g. for the matrix in (3.58) column 

H2  shows that: 

1 - H2(1)=1 

	

H2  = 3 	- 	H2 (2) = 3 	 (3.59) 

2 - H2 (3)=2 

which implies that target 1 should be assigned with measurement I (H(1) = 1), target 2 with 

measurement 3 (H2 (2) = 3) and target 3 with measurement 2 (H2 (3) = 2). 

We seek to find the association that minimises the following distance function: 

dk(a) = Xd,k - Zdk 2 	 (3.60) 

where c = 1,. . . , n!. Notation I a - b12 stands for the 12-norm or Euclidean distance between 

points (vectors) a and b. In the equality above, the constant term xd,k is the Cartesian position 

of the a-priori state estimate: 
(1) 

Xdk 

Xd,k = 	 (3.61) 

(n) 
Xdk 

where x[) 	[,,(-r)r)]T for r = 1,... , n. The second term z,k  represents the multitarget 

measurement transformed to the Cartesian plane for all ce = 1,. . . , n! association hypotheses: 

k'lf (H(1)) 
"k '-'(z (H. 

	

Zdk = 	 (3.62) 

hi—h (Ha(n)) 
k 

where h1(z7)) = {r 	. cos 	r 	sinoj]T  for i = 1,... ,n, H(i) is the i-th 

element of the a-th column of the hypothesis matrix H and zW  is the i-th sub-measurement 
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of the raw un-associated measurement vector: 

(1) 
Zk 

4 = 	 (3.63) 

(ri) 
Zk 

The associated measurement vector is constructed using the assignment hypothesis Hc, which 

results in the minimum distance dk(c): 

(H(1)) 
Zk 

(3.64) 

[ 

Zk  

(H. (n)) 	

{dk(cx)} 
Zk 	 ci=min 

We continue by calculating the normalised particle weights w according to the particles' like-

lihood, in the normal SIR fashion: 

ñ =p(zx) 	 (3.65) 

which are normalised to sum to one: 

= 	 (3.66) 

The posterior state estimate *k is given then by the weighted sum of the particles: 

N8  

Xk = 	 (3.67) 

Finally, we apply the SR algorithm from section 3.2 and resample with replacement the parti-

cles. 

Figure 3.7 illustrates graphically the data association principle of the MSIR. For clarity we use 

an example with two targets which move in the x dimension. The augmented state-space vector 

4.1 

X k 	I 
(1) 1 

Xk 

= [ (2) 

I 	 (3.68) 
Xk  j 
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Figure 3.7: An MSIR association example for two one-dimensional targets. 

The a-priori state estimate when transformed to the Cartesian position plane becomes: 

_(1) 

	

Xd.k= 	(2) 	 ( 

The un-associated measurement: 
r (1) 1 
IZk 	I 

	

- L
(2) I 	 (3.70) 

Zk j 

result in the following measurement candidates: 

I 

	

Z i 	9 

	

r (1)1 	

[ 

(2)1  

= L

(2) 	
z = 	(1) 	

(3.71) 

	

Zk j 	Zk  J 

which when transformed to the Cartesian position plane become: 

Ihk 

	

	
1 ,—i 

z k
(1)

) I 1 ( 	 h'— '(z (2)) 
 

I 
= h' (2) 	 = 

	

(zk  )j 
	

h'—'(z(l)
k) 	

(3.72) 
j 

where functions h'k  and h' are modified accordingly for our one-dimensional example. The 
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distances between Rk  and zd,k, zdk finally are given by: 

dk(1) = Xd,k - Zi,k 2 , dk(2) = Xd,k - Zk 2 	 (3.73) 

3.7.2 Multitarget LLPF 

The multitarget LLPF (MLLPF) uses the MSIR structure modified accordingly to account for 

a local linearization prediction mechanism. The association within the MLLPF is performed 

simultaneously with the particle prediction, since the latter is measurement-dependent. MLLPF 

is based again on the multitarget formulation from 3.6.2 and thus considers n targets and mea-

surements and employs N8  4n-dimensional particles {xik  } 1. 

The single-target LLPF filter as we have seen uses the following importance density function: 

	

q(xjx_ 1 ,zk) V(,) 	 (3.74) 

where i and Pi are computed using a nonlinear state estimator like the EKF. FrOm (3.74) it 

is apparent that for the prediction we need the associated measurement vector zk. Since at this 

point we do not know the correct association, we need to predict the particles using all different 

measurement assignment hypotheses. We construct thus n! particle sets 	 using: 

al 	c,i 
Xk 	qx 4_, z) = ji 	81) 	 (3.75) 

in which 	and 	are computed using an EKF: 

[{ic8i1N3  1 =EKF[{x1_  pi 	
k 

N3  
k 	1' k-1} i=1' Z] 	 (3.76) k Jjr=1J 

The term 	is the measurement vector of the a-th association hypothesis: 

(H (1))
Zk 

za = 	 (3.77) 

(H (n)) 
Zk 

where z is the i-th un-associated sub-measurement from (3.63) and Ha(i) is the i-th element 

of the a-th column of the hypothesis matrix H as described in the previous section. 
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We continue by calculating the a-priori estimates for the different particle sets: 

Xk 	 N 

=-x' 	 (3.78) 

_c, 
 
(n) 

Xk 

	

_c,(T) 	_a,(r) _c,(T) 	-c,(T) 	-c,(r) T where Xk 	= [xk 	11k 	Xk 	1k 	] for  = 1,.... n. 

The data association phase follows. The distance function to be minimised now becomes: 

	

dk(a) = I Xd,k - Zd,k 2 	 (3.79) 

where a = 1,. . . , n!. The first term 	is the Cartesian position of the a-priori state estimates: 

Xdk 

X
Cz 
d,k = 	 (3.80) 

Xdk 

	

c,(-) 	(r) c (T) where Xdk = L 	k 	I ' for r = 1,. . . n. The second term 	is calculated as in the 

MSIR using (3.62). We associate the measurements using relation (3.64) constructing thus zk 

and we set: 

4 = x' 	 (3.81) 
amIn{dk()} 

The update phase follows, in which we compute the normalised particle weights 4 as in the 

single-target case using: 

- p(zkIx)p(xJx_i) 	 3 82 Wk - 
	q(xx_1,zk) 	

(. ) 

and: 

4 = 	
ibt 

Ns 	 (3.83) 
>j1 Wk 

The multitarget state estimate for the current scan k is given using relation (3.67). As always, 

finally the SR algorithm is used for resampling, assigning to each resampled particle its associ-

ated covariance 

Figure 3.92 presents graphically the MLLPF association step using the one dimensional exam-

ple from the previous sub-section. The state vector remains the same but this time we have two 
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Figure 3.8: An MLLPF association example for two one-dimensional targets. 

candidate prior state estimates: 

_(1) 	 _(2) 

= [] 	
= 	

I 

(3.84) 
Xk 	 Xk 

Relations (3.70-3.72) also hold but the distances to be minimised now become: 

dk(1) = Xdk - Zd,k 2 , dk(2) =
J2 	2 
Xdk - Zd,k 2 	 (3.85) 

3.7.3 Adaptive multitarget LLPF 

The adaptive MLLPF (A-MLLPF) is an efficient variation of the MLLPF in which the number 

of the particles used in the association phase varies. The A-MMLPF rather than predicting at 

every scan k all its N2  particles for all n! measurement hypothesis, uses an association-difficulty 

metric and according to its value varies the particle number. The number Nk  of the predicted 

particles can be the same for all hypotheses or can be hypothesis-specific. For simplicity in 

our analysis we apply a single Nk  for all hypotheses and use the average separation sk of the 

measurement hypotheses as the association-difficulty metric. 
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Consider having ri targets and measurements at scan k and a set of n! different measurement 

association hypotheses {z} L1  from (3.77). Before computing the separation metric, we first 

need to construct a 2 x ?C2  distance-indices matrix A, where nI  C2  is the number of the two-

element unordered combinations from the n! hypotheses given by definition by: 

n!C2 	
2!(n!-2)! 	

(3.86) 

The matrix A is formed from n!C2 columns, each denoted 6,3  where 0 = 1, . . . n! C2, each 

of which consists of one of the n!C2 different two-element unordered combinations of the set 

{1, .  .. , n!}. For example for n = 3 we get 31C2 = 15 and we can use the following .: 

15 

'I, 	1 	 'I, 
(3.87) 

111112222333445 

234563456456566 

The average separation 8k  of the measurement hypotheses is given by: 

fl C2 
1 

3k = ;
j6,3 (3.88) 

3=1 

13 i 	
A'3 (1) 	(2) 

in which '5k  s the separation between zdk  and Zdk , given from (3.62) where fl(z) is the 

i-th element of the 0-th measurement combination. The 6 3  is computed with the following: 

jo - I 	,(1) 	(2)I 
-d,k 	- Zdk 	

2 	
(3.89) 

For varying the number of the predicted particles according to the separation Sk we introduce 

the function g(sk).  We want to increase the particle number in inverse relation with the separa-

tion, therefore we can choose: 

{ N8Pmax 	 if Sk < 3low 

(N'm2 - N x )(sk  - slow) + 
	 1 	Sk < shi 	(3.90) 

N

9(Sk) = 

	

	 8hui - slow 	
if s 

 
p,mrn hi 
8 	 if Sk > 

where N8p,m  N °° , slow and 5hj  are respectively the minimum and maximum number of 
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the particles and the low and high limits of the separation (figure 3.10 shows an example of 

g(sk)). Using g(sk) we finally set: 

Nk = g(sk) 	 (3.91) 

Except from using an adaptive number of particles for prediction and association, the structure 

of the A-MLLPF algorithm remains as in the MLLPF: after computing N'k  with (3.91) the 
N" 

particles {Xj_1}1jk  are predicted using (3.75), the data association assigns the measurements 

to the targets by minimising (3.79), the remaining N3  - N k  particles from the chosen hy-

potheses are predicted, the normalised weights {w} 1  (3.82-3.83) and the state estimate kk 

(3.67) are computed and finally the particles are resampled with the SR algorithm, assigning to 

each resampled particle its associated covariance. 

3.8 Performance comparison 

In this section we apply the MSIR, MLLPF and A-MLLPF in a multitarget problem and com-

pare their performance in terms of both measurement association and positioning accuracy. 

3.8.1 Simulation study 

For comparison we use the environment presented in 3.6.2 in which two constant-velocity tar-

gets move across the x-y plane while a radar measures their azimuth angle and range. The 

targets are perturbed with random accelerations with standard deviation l m/s 2  in both x and y 

moving directions. The radar lies at the origin of the plane at point (0,0) and has an update rate 

of isec. The standard deviation of the measurement noise is 41  for the angle and 1.2m for the 

range. 

For the analysis we create 800 different crossing tracks, initialising the targets with the follow-

ing states: 

Xe 	 Xo +I'o 	I 

	

(1) 	 r 	 (1) 

(1) 	 I 	(2) 
Y6 	 I 	 ye 	 I 

	

(1) 	 I 	 (1) 

	

0 cos arccos 	 —070  COS arccos 	 (3.92) Xe 

 =[ 	

( 	

(PoJ,xo = 

	 1 	P0 

(30 

IPo 	 . 	
GLO-) 

	

cr0 sin (arccos 	 cr0 sin arccos 	
) ] 
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Figure 3.9: Representative examples of crossing tracks for different initial separations from the 
studied scenario. 

where o 0  is their initial speed (velocity magnitude), P0  their initial separation and t, the total 

simulation time. The separation P0  varies uniformly between lOm and 250m throughout the 

800 track sets (figure 3.9). In the absence of process noise, the initialisation with (3.92) would 

result the tracks to intersect at t8 /2, halfway through each run. Since in our system we consider 

process disturbances the intersection points vary randomly around t3/2. We set 	= 30m, 

= 10m, oo = 3.16mls and t = 120s. We compare the number of disassociations6 , 

the track swaps and the RMS position error. Every particle filter employs 100 particles. For 

the g(sk) function of the A-MLLPF we also set s1 	20m, Shi= 40m, Nmm = 5 and 

N6 'm°  = 100 (figure 3.10). The results below are obtained after performing 50MC runs for 

each of the 800 sets of tracks. 

6The disassociations within runs in which the tracks are eventually swapped are not counted. 
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Figure 3.10: The function g(sk) defining the number of association particles over the measure-
ment separation from the studied scenario. 

Table 3.2 shows the performance of the algorithms. We witness that both MLLPF and A-

MLLPF result in about 34% fewer disassociations than the MSIR and 11%-16% fewer track 

swaps. Regarding their tracking accuracy, they exhibit about 40% smaller position error. Com-

paring the A-MLLPF to the MLLPF we see that the performance degradation due to its varying 

particle mechanism is small, especially considering that the A-MLLPF used on average about 

113 particles compared to the 200 of the standard MLLPF. Figure 3.11 shows how the number 

of the A-MLLPF particles and EKFs7  varied according to the average 5k  of every run. As ex-

pected in runs in which the average separation of the measurement was larger, A-MLLPF used 

less particles and EKFs. 

3.8.2 Conclusions 

This work presented a novel multitarget particle filter which uses a joint association and pre-

diction phase and employs measurement-coupled local linearization techniques for predicting 

71n general LLPF-based algorithms use EKFs just for the particles that have different states and covariance, 
which due to resampling are always less than N. 
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Figure 3.11: Number of predicted particles and EKFs over the average sk per run from the 

simulation study. 

its particles. Simulation results demonstrated its performance superiority in terms of associa-

tion and tracking accuracy, compared with the equivalent algorithm which uses for prediction 

just the state prior pdf. An adaptive suboptimal variation was also introduced which varied 

the number of its predicted particles, and consequently its computational load, according to 

the difficulty of the measurements' association. The observed performance degradation of the 

adaptive variation was shown to be unimportant considering the computational savings result-

ing from the lighter particle usage. 

Disassociations Track swaps Position Predicted 
(per run)  RMSE (m) particles 

MSIR 0.8060 5.9% 42.1578 100.0 

MLLPF 0.5232 4.9% 25.4899 200.0 
A-MLLPF 0.5456 5.2% 25.6264 113.4 

Table 3.2: Simulation results after 800 tracks x 50 MC runs. 
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3.9 Chapter summary 

Chapter 3 introduced particle filtering, presented several of its popular implementations and 

demonstrated experimentally its performance superiority compared to the extended Kalman 

filter in a difficult estimation problem. The auxiliary local linearization particle filter was fur-

thermore introduced as a simple method to deal with dynamic changes in the target kinematics 

behaviour. Simulation studies demonstrated its robustness for maintaining the tracks of a dy-

namically manoeuvring target but also illustrated its weakness to filter efficiently the measure-

ment noise when the target kinematics behaviour remained unvarying. Finally, the multitarget 

particle filtering problem was described and the novel adaptive multitarget local linearization 

particle filter was presented. Simulation results showed the improvement both in terms of data 

association and tracking when using the proposed approach in a scenario with two crossing 

targets. 



Chapter 4 
Vehicle tracking using road maps and 

particle filtering 

This chapter is concentrated on vehicle tracking focusing on algorithms which exploit a-priori 

information about the road structure for constraining accordingly the motion of the vehicles. 

After a short introduction on ground tracking, we describe the single-target variable structure 

multiple model particle filter and present a mechanism which allows the number of its parti-

cles to vary according to the position of the vehicle on the road map, using specifically fewer 

particles for the constrained road parts. A simulation study demonstrates that the slight per-

formance degradation can be considered negligible considering the significantly lighter particle 

usage. The remaining chapter incorporates into the algorithm gating and joint probabilistic data 

association features, to enable it to reject clutter and track simultaneously multiple vehicles. We 

analyse experimentally its tracking performance and we show that in difficult association envi-

ronments both the estimation accuracy and association capability are improved compared with 

the equivalent un-constrained sequential importance resampling filter which employs the same 

association logic. 

4.1 Introduction 

Vehicle tracking recently has drawn considerable attention from the scientific community, which 

studied it extensively in a wide range of applications including highway tracking, traffic con-

trol, navigation, accident avoidance and joint classification and tracking [71-75]. This increas-

ing interest was not only due to the growing importance of the problem itself but also due to 

its difficulty and complexity which make it ideal for comparing and benchmarking tracking 

techniques. Vehicle tracking is demanding since one often encounters physical constraints and 

obstructions, terrain-coupled vehicle motion, intense clutter returns and false alarm rates and 

closely separated slow targets that can execute abrupt turns and can even stop. 

Throughout the literature many different sensors have been used for the specific problem such 
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as electro-optical and video [75, 761, infrared [77],  OPS [78], high-range resolution radar [79], 

space-time adaptive processing radar [80] and ground moving target indicator (GMTI) radar 

[81, 82]. In our work we use two-dimensional measurements from static radars which measure 

the azimuth angle and the range of the ground targets. We are interested in applications in 

which the vehicles can move freely on and off the road. For tracking we use particle filters 

which employ multiple modes of operation, accounting for the different tracking subspaces 

and their associated dynamics. Road map information, in the form of motion constraints, is 

exploited for improving the estimation accuracy. 

Our work in this chapter is based on the single-target variable-structure multiple model particle 

filter (VSMMPF) [46,82] vehicle tracker. The VSMMPF incorporated into particle filtering 

the variable-structure approach of the variable-structure interacting multiple model (VSIMM) 

algorithm [83, 84]. The VSIMM aimed to address a weakness of the interacting multiple model 

(1MM) filter [85, 86] which in certain applications exhibited a degraded performance due to the 

excessive "competition" among its models [87].  The VSIMM therefore proposed to use a vary-

ing number of active models according to the vehicle positioning on the road map; approach 

which indeed enhanced the tracking accuracy and moreover reduced the computational load. 

The VSMMPF demonstrated an even greater performance compared to the VSIMM since the 

more "open" particle filtering architecture enabled it to cope better and more efficiently with 

the intense nonlinearity and non-Gaussianity inherent in the vehicle tracking problem. 

In what follows we propose a mechanism to vary the number of the VSMMPF particles used 

in the prediction phased, depending on their position on the road map for reducing the com-

putational demands. We then enhance the VSMMPF with a gating and joint probabilistic data 

association (JPDA) logic to generalise its use for clutter rejection and multiple-vehicle tracking. 

4.2 Road-constrained vehicle modelling 

For tracking we use the analysis from sections 2.5.1 and 2.5.3 modified accordingly for the 

two dimensional case. For convenience, we present briefly the state-space representation of 

the problem'. Considering the states as the position and velocity on the x-y plane, xk = 

[Xk Ilk xk yk ]T, the measurements as the azimuth angle and range, zk = [8k rk ]T, and by 

dropping subscript k from Fk, Gk and hk for notational simplicity, we obtain the following 

'Chapters 2 and 3 provide details for the notation used 
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state-transition and measurement equations: 

Xk = Fxk_1 + Guk_1 
	

(4.1) 

Zk = h(xk)+vk 
	

(4.2) 

where: 

1 0 T 0 	 T2 /2  

0 1 0 T 	 0 
F= 

0010 	 T 

0001 	 0 

T2 /2 	 [arctan(yk/xk) ] 1  

	

I 	h(x) = 

	

0 I 	 [ x+y 	
(4.3) 

T  

and Uk .V(O, Qk)  and vk Af(O, Rk)  are the process and measurement noise vectors, with 

Qk and Rk the noise covariance matrices. 

Generally in ground tracking we assume that some features on the ground scene of interest force 

locally the vehicle to move under specific patterns. Some of the features (like bridges and lakes 

[88]) impose hard constraints on the vehicle movement, whereas other (roads in our study) 

impose soft constraints. The objective in this class of problems is to incorporate efficiently 

a-priori information from these features into the tracking algorithm. 

In this work we assume that a vehicle travels on a terrain with a known road structure, having 

the ability to move on and off the road. The roads impose probabilistic constraints on the 

movement of the vehicle, which implies that when the vehicle is on-road the state uncertainty 

is larger along the road than orthogonal to it. We model this by setting the variance U{Ua,k}2  

of the process noise along the road larger than the variance cr{uo,k}2  orthogonal to it. The 

direction of the on-road noise depends on the direction of the road, therefore the associated 

process noise covariance Qk  is rotated using the following relation: 

0 

I 

1l 	 (4.4) 

	

0 	o{u} 

where QV, is the rotational transformation matrix and 0 is the angle of the road measured 

clockwise from the y-axis: 

—cos.) sin V) 
= 	 (4.5) 

	

sin 	cos L' 
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x - axis 

Figure 4.1: The road is exploited to constrain probabilistically the state uncertainty. 

For off-road motion since the vehicle travels unconstrained, we use the same process noise 

variances for both x-y axes, o{u,k}2  = o{ u,k}2  ; the covariance thus becomes: 

[a{uXk } 2 	o 	1 
Qoff,k = 	 I 	 (4.6) 

[ 	
0 	a{u,k}2 j 

Figure 4.1 demonstrates graphically the "directional process noise" principle for an on-road 

vehicle. We present a vertical section of the Gaussian distribution of the vehicle process noise 

when constrained (ellipse Qon,k)  and when not (ellipse Qoff,k).  From the figure it is evident that 

by using the road map to tighten Q0,k,  we can improve consequently the estimation accuracy. 

4.3 	Variable-structure multiple model particle filter 

For notational purposes we define R as the set of the roads r on the ground scene of interest 

(e.g. figure 4.2) and use the convention r = 0 for off-road motion. Consider the VSMMPF 
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roads 
A 	 vehicle path 
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Figure 4.2: The road map and the vehicle path from the study in 4.5.1. The vehicle travels on 
the road on segment A-B, it continues off the road during B-C and returns on the 
road for the final C-D part of its motion. 

using N3  particles {x} 1, each associated with a mode M according to the following: 

	

I r, 	if particle xi is on the road r, where r E 7Z 
Mk'= 	 (4.7) 

	

0, 	if particle x is off-road 

The algorithm  consists of a time prediction and a measurement update step. For the prediction 

step consider a particle 4_ with mode M_ 1  at time k - 1. Initially we perform a preliminary 

prediction of the state for time k using: 

x =Fx_1 	 (4.8) 

We continue according to the mode M_ 1  of the particle xi — The first case is when the mode 

2The original VSMMPF considers as well vehicle motion through bridges and tunnels, features that for the sake 
of simplicity and clarity we do not consider in our analysis. For including these, we simply impose hard constraints 
when the vehicle travels on a bridge or tunnel. Specifically for the latter since no measurements are available we 
randomly predict the particles just according to the vehicle dynamics [82]. 
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corresponds to off-road motion (i.e. M_ 1  = 0). We introduce the following binary function: 

J 1, if x_1  .' Xi_ crosses road r 	0 
c(x.1,r) 

= 	

(49) 
0, otherwise  

The transition probability, denoted as PM_1M'  for this case is given by: 

if c(4_1 ,r) = 1 

Po—,(%_i) 

= f 

0, 	 if c(4_1 ,r) = 0, d(x,r) > r 	(4.10) 
p* (T - d(x,r)) 

otherwise 
'1 

where * is the user-defined probability that the vehicle enters a road when crossing it, d(x, r) 

is the shortest distance from particle x to the road r, and r is a user defined threshold accord-

ing to the acceleration capabilities of the vehicle. The probability that the particle will remain 

off-road is: 
7s 

= 1 - 	pO_r(X_i) 	 (4.11) 

The mode M* is randomly drawn according to its associated transition probabilities: 

	

P{Mk* = r} = PMl_rE{OR} 	 (4.12) 

If M 	0 the mode implies that the particle stays off the road and therefore we propagate it 

simply by using the state transition equation: 

x 	Fx_ 1  + Gu_1 	 (4.13) 

If M 	0 the particle is positioned on-road and its velocity is rotated using the rotation matrix 

(4.5) randomly towards one road direction. As we saw in the previous section, the process noise 

vector for both cases is given by: 

{ V(0, Qonk, if M* E 
u_1 	

(0 ) Q ff,k ), 	if 	= 0 	
(4.14) 

The second case is when M_ 1  indicates on-road motion. We define J as the set of the 
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junctions j of the road map. We introduce the following binary function: 

J 1, 	if 4_ 	Xi_ crosses junction  

= 	

(4.15) 
0, otherwise  

The mode transition probability that the particle will continue on the same road r is: 

{, if(4_1,j)=0,VjEJ5 	
(4.16) prr(4i) = 

0, 	if (x_1,j) = 1, for some  e 

where 15 is the user defined probability that the vehicle will remain on-road. The probability to 

change from road r to r' after crossing a junction is: 

{ if(x 
Pr._.r'( 	

_1,j) = 1, for some  E J 
Xjc_i) = 	 (4.17) 

0, 	if (x_1,j) = O,Vj E 17 

where n.j is the number of road segments after junction j. Finally, the probability that the 

particle will go off-road is given by: 

pr—.o(4_i) 
	

(4.18) 

As in the off-road case we draw randomly the mode M*  according to the transition probabil-

ities calculated above. There are three possibilities now for the particle 4_i:  going off-road, 

remaining on the same road or crossing a junction. If it goes off-road we first rotate its velocity 

to be perpendicular to the road (with equal probabilities for left or right turn), and then apply 

equations (4.13-4.14). If the particle continues on the same road we just use (413-4.14) to 

propagate it. If the particle crosses a junction and moves to road r', we first apply (4.13-4.14) 

and denote the resulting particle as x. Then we use the following equation to rotate it and 

position it on the the new road segment: 

X'* = 	- x] + x3 	 (4.19) 

where 93  is the rotational matrix that rotates the state vector towards the road that the particle 

will follow, and x3 = 	3 0 0]' where xi and y3  are the Cartesian coordinates of junction j. 

After predicting all the particles, the measurement update phase starts by assigning a weight 
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to each particle x according to its likelihood: 

'i =p(zx) =Jv(zk; h(4*),Rk ) 	 (4.20) 

The weights then are normalised: 

Wk  = 	-j 	

S 	 (4.21) 
Wk 

and the state estimate is computed from the weighted sum of the particles: 

N8  

Xk =Wkxk (4.22) 

The final step is to resample N times with replacement from the weighted set {x *,  M*}2 

to eliminate particles with small weights using the SR algorithm from chapter 3. 

Figure 4.3 shows the particle cloud when the vehicle travels across different areas in the tracking 

space. We see how the soft constraints imposed from the road structure reduce the variance of 

the particles and decrease consequently the state uncertainty. However, the extremely dense 

particle cloud that is formed on the road suggests particle redundancy; a problem which we 

address with the varying-particle mechanism introduced next. 

4.4 Varying particle VSMMPF 

The varying particle VSMMPF (VP-VSMMPF) is a variation of the VSMMPF in which the 

number of the particles within its prediction phase varies. The key idea is to use fewer particles 

in "easy" state subspaces so as to reduce the computational cost. Vehicle road tracking is an 

ideal problem to demonstrate this approach, since the tracking space includes constrained areas 

(roads) with smaller uncertainty and thus easier (than the unconstrained off-road) dynamics. 

In other words, we vary the number of the particles in relation with the breadth of the pos-

terior pdf so as the resolution of the latter in specific state-subspaces not to exceed a certain 

limit, after which the estimation performance asymptotically converges and the additional par-

ticles become redundant. In what follows we present the varying-particle mechanism which we 

introduced in [89] in 2005. 

Consider that the VP-VSMMPF employs nominally N8  off-road and N on-road particles. 
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Figure 4.3: The particle cloud of the VSMMPF in different modes of operation (N3  = 1000). 

The algorithm is based on the particle propagation methodology of the VSMMPF, with the 

main difference that it varies the number of its particles so as to use always N particles on 

the road. A minor difference also is that its on-road particles lie always in the middle of the 

road with velocities parallel to the road direction. This results in an easier implementation 

and furthermore non-trivial computational savings, since now the tracking space is reduced just 

along the line in the middle of the road. With this approach we do not expect significant (if 

any) performance degradation, since the information from modelling the movement orthogonal 

to the road has negligible importance since the targets are usually distant. 

Algorithm 7 presents an outline of the structure of the VP-VSMMPF. At every time index k, 

the algorithm starts with N3  particles. In the first downsampling step it checks whether more 

than N particles lie on the road and if there are it randomly keeps No, of them. It predicts 

6400 

6300 

6200 

6100 

DO 
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Figure 4.4: The number of VP- VSMMPF particles Nk increases in off-road transitions (N5  = 
1000, N = 100). 

the remaining Nk  particles using the VSMMPF method and then, if appropriate, generates in 

the upsampling phase randomly N5 - N k  particles from the ones that were predicted on-road 

in the downsampling step. It then resamples the N5  particles with the systematic resampling 

algorithm  and finally computes the state estimate. 

The downsampling and upsampling pseudo-codes are given as algorithms 8 and 9. In the be-

ginning of the downsamping method, we propagate all particles using: 

=(4.23) 

Rather than using upsampling and systematic resampling one could "upscale" the on-road particles and use a 
resampling algorithm which could vary its sample size so as to result always with N. particles (like in chapter 5). 
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Figure 4.5: The number of VP-VSMMPF particles N k  decreases in on-road transitions 
(N4  = 1000, No,, = 100). 

and we find their preliminary modes according to (4.7). We then compute the number of the 

on-road particles N, and if they are more than N, we calculate the percentage pNOnk: s,k 

N+N407(1—) 
PN: = 	N° 

(4.24) 

of the ones that we randomly keep. After downsamping, we calculate the resulting number of 

particles Nk  and denote as {x }jk  the particles of this phase. We apply then the VSMMPF 
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Algorithm 7 VP-VSMMPF 

[{x 4_1 , M} 1 ] = VP-VSMMPF[{, Mk_l}
N
j1] 

1 [{x ?vIi1"k  N°' NV 1 = Downsamp1ing[{4_ 1 } =1] k ' 	k Ji=1 ' 5k' ski 
N" 	 N k  [{ x *,  w, JiJIz*}Sk] = Prediction [{x2  - ivI k 1' k—lJi=1 

NV 
[{ x *, w,  v[*}'i 1 ] = Upsampling[{x *, w,  Mi  M 	,k 

 N, N'k} k ' k Ji=1' 

[{x, w, ji}s1 ] = SR[{xi* 	* 
k ,Wk  }j =1I 

Assign M, to each resampled particle 4 using f 

Xk = 	w4 

Algorithm 8 Downsampling 

[{x, 	N, N k ] = Downsamp1ing{{4_ 1 } 1 ]  

for i=1:N5 do 
Propagate particle: 4 = F4_1  
Find preliminary particle mode M using (4.7) 

end for 
Calculate the number of the on-road particles N (when M 	0, Vi) 
if N > N, then 

Calculate: PN;r = (N + N(1 - 
k. 

Initialise index: j = 1 

fori=1:N3 do 
if 	0 then 

Draw: u—U[0,1] 
ifu<pN then 

Set: x = 

Set: Mk= Mk 
Increase index: j = j + 1 

end if 
else 

Set: x 	= 

Set: M 
Increase index: j = j + 1 

end if 
end for 
Set number of particles N k  = j - 1 

else 

iV'25: 	Set: {x,Mk Z=}1 = 

Set number of particles: N k  = N3  
end if 
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Algorithm 9 Upsampling 
N' [{4*, wik*, I[*}"L 1 ] = Upsamp1ing[{x*, w, jj/i* 

' M 	° = 
s,k N NV 

k 	k 	Ji1 ' 	sk' 	s, kJ 

ifN>N00 then 
j*Ofl Nv  

Construct {xk , 	
N i*on 	 from {x *, w *,  M*} jk with M, M*  0 

for j=1:NS —Ndo 
Draw: i 'U[1,N] 

Set: Xk
1/ 

= x° 
1/3* 	j*on Set: wk = Wk 

Set: 	= M/*0n 

end for 
end if 

{ {x*,w*,M N' 
	 N8 — N:,k l j*1N3 	 fi*} 3k r 1/j* Construct: {x*,  w, IVIk Jj=1 = 	 k i=1 tXk , Wj, /\4//z*}.i 

equations (4.9-4.21 )4  for prediction and weighting and obtain Xk , 	, M }"IS j/c, where x { /i* /i* 
	k. 

stands for the predicted particle, w its weight and Ml*  its mode. The upsampling follows, in 

which we replicate randomly N8 - N k  particles from the predicted particles which were lying 

at k - 1 and k on the road (i.e. whose M, M*  0). The resulting particle set is denoted as 

{X*, 	M*}i31 NSk The final augmented set becomes: 

NV /i* 	,k ' //i* I/j* {x,w,M*}3i = {{x*,w*,Mk i=i , tXk ,Wk 
,M2*}1N8k} 	(4.26) 

The systematic resampling algorithm follows, after which we assign the modes to the resampled 

particles using the {j2}31  indices. The state estimate is finally obtained as the weighted sum 

of the particles: 
N3  

Xk = 	W I X%(4.27) 

Figures 4.4 and 4.5 show two representative examples of the particle cloud during off-road 

and on-road transitions. We see how the algorithm just in few time steps varied adaptively the 

number of its particles between N = 100 and N8  = 1000 depending on the vehicle position. 

We present next a simulation study testing the performance of the proposed mechanism. 

4When for a k it holds that N307 > N0 , we use pon  as the probability that the vehicle remains on the road: 

-on  —1 - 
	

N3(1—) 	
425 - 	

N0  + N. (1 - ) 	
( 

so as to propagate off-road the same number of on-road particles as if Nk = N8 . 
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4.5 Performance comparison 

In this section we compare the tracking performance of the VP-VSMMPF with the standard 

VSMMPF. We use the road structure and the vehicle path shown in figure 4.2. For tracking 

we use a VP-VSMMPF switching between 100 and 1000 particles and two VSMMPF one 

employing 100 and the other 1000 particles 5. 

4.5.1 Simulation study 

From figure 4.2 we see that the vehicle travels on the road on segment A-B, it continues off 

he road during B-C and returns on the road for the final C-D part of its motion. Its velocity is 

constant 12mls. The width of the roads is 8m. For sensing we use a static radar lying at the 

origin of the plane at point (0,0), measuring the azimuth angle and the range of the vehicle. Its 

angular accuracy is 0.5°, its range resolution 20m and its measurement update rate T = 5s. 

For a fair comparison we use the same parameters as in the original VSMMPF paper [53] and 

therefore u{u,k} = a{u,k} = a{u,k} = 0.6m/s2, a{uo,k} = 0.000lm/s2, = 	= 0.98, 

T = 18.75m and N = 100. All algorithms were initialised with the true target states. The 

results were obtained after 100 Monte Carlo runs, each consisting of 109 time scans. 

Figure 4.6 presents the RMS position error of the three trackers, from which we observe that 

the tracking performance of the VP-VSMMPF and the VSMMPF- 1000 is similar. In fact from 

table 4.1 we obtain that the VP-VSMMPF results in just a 2% on-road and 0.7% off-road error 

increase, but while using on average respectively just 187.79 and 807.38 particles. Compared 

to the VSMMPF-100, the VP-VSMMPF error is smaller 13% on-road and 40% off-road. 

5For convenience we call these implementations VSMMPF-100 and VSMMPF-1000 

Average Average RMS position RMS position 
particles particles error on-road error off-road 
on-road off-road (m) (m) 

VP-VSMMPF 187.79 807.38 27.77 63.76 
VSMMPF-1000 1000.00 1000.00 27.13 63.30 
VSMMPF-100 100.00 100.00 31.82 105.16 

Table 4.1: The average RMS position error of the trackers during the on-road and off-road 
parts of the vehicle path. 
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Figure 4.6: The RMS position error of the three trackers over the scan number k. The area 
between the red dotted lines indicates off-road motion. 

We note here that the difference in the on-road performance between the VSMMPF- 100 and the 

VSMMPF- 1 000/VP-VSMMPF in terms of the RMS position error, is the result of the worse 

VSMMPF-100 initialisation phase (up to k = 14). If we exclude this phase from our cal-

culations for the on-road error we see that all algorithms perform similarly (VSMMPF- 100: 

25.94m, VP-VSMMPF: 25.72m, VSMMPF-1000: 24.75m). This justifies our main thesis for 

the particle redundancy of the on-road propagation mechanism of the original VSMMPF. 

Figure 4.7 illustrates how the VP-VSMMPF varies the number of its active particles in the 

studied scenario. The algorithm is initialised with N5  = 1000 particles and after the first scans 

when identifies on-road motion it reduces them to about 150. A peak formed around k = 27 is 

the result of the junction crossing. Soon after the vehicle goes off-road at k = 43, the particles 

rapidly increase to 1000. Their number decreases again to about 150 at k = 60 when the vehicle 

enters the road and remains roughly at that value, except at k = 77 where a peak is formed due 

to the abrupt 90° left turn. 
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Figure 4.7: The number of the particles of the VP-VSMMPF (Nk)  over the scan number k. 

The area between the red dotted lines indicate off-road motion. 

4.5.2 Conclusions 

This work studied the road constrained vehicle tracking problem and proposed a modification 

of the VSMMPF in which the number of its active particles was allowed to vary. The central 

idea was to exploit the fact that due to the road constraints the state uncertainty is smaller when 

the vehicle travels on the road than when off the road. A fact which implies that since the 

on-road state probability distribution is tighter, it becomes redundant to use more that a certain 

number of on-road particles. Simulation results demonstrated the on-road efficiency of the 

proposed algorithm since while using significantly fewer particles than the standard VSMMPF, 

it managed to attain a very similar tracking performance. 

Although the VP-VSMMPF does decrease the computational requirements by using fewer on-

road particles within its prediction mechanism, still it has to preliminary propagate and resam-

pie at every time step all nominal N8  particles. A better approach to the problem is described 

in the fifth chapter in which we introduce the variable mass particle filter, which adopts as well 

a varying particle philosophy but approaches the problem from a different way. 
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4.6 Tracking multiple vehicles with the VSMMPF 

In the second part of the chapter we incorporate gating and data association features into the 

VSMMPF to enable it to track multiple vehicles. For gating we use varying-volume ellipses 

around the measurements and for associating the ambiguous measurement-to-track pairs we 

utilise the JPDA algorithm. A simulation study that we present analyses experimentally the 

gating and association functions. We described first this work in [90] in 2005. 

For our analysis we assume that at every scan k we have a fixed number of vehicles n and 

a time-varying number of measurements 71m,k  We set the probability of detection to be one, 

PD = 1, which implies that at every scan we get at least nv  measurements originating from the 

vehicles. The remaining measurements are false alarms whose number at every k is Poisson 

distributed with mean value A. 

The algorithm employs a total of n x N8  particles, where N8  is the number of particles for 

each vehicle. The augmented particle set that we use becomes thus: 

	

Xk = {x'),. . . ,x} 	 (4.28) 

where 	= 	 is the particle set of the 13-th vehicle, for = 1,. . . , m. The states 
. are the x-y position and velocity of each vehicle: xi(0) = [

Xk
i(3) Yki(/3) Xki() 	

k 
i() 

]
T . 

. 
	In the 

same fashion, the set of the particles' modes is augmented as well: 

	

Mk = {M'),... ,M )} 	 (4.29) 

where 	= {M 	are the modes associated with the particles of the /3-th vehicle. 

Finally, the set with the n,,k  "raw" measurements that we obtain from the radar is: 

ZO
{ (1) 	(fl,nk ) l 

= Zk ,...,Zk 	 (4.30) 

in which 	= [O 	r]T  is the i-th measurement for t = 1,. . . , rn,k, where the radar 

provides measurements of the azimuth angle and range of the possible targets. 

The first step of the proposed multitarget ground tracking particle filter (MGTPF) is to predict 

its particles one step ahead. This is done by propagating through the prediction phase of the 
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VSMMPF the set {Xk_1,Mk_1}± "t . For this step we use the VSMMPF as in the single-

vehicle case shown in section 4.3, but now using n t x N3 particles, and use relations (4.8-4.19) 

to predict the particles and their modes. The augmented sets of the predicted particles and their 

associated modes for all vehicles become: 

x 	
. x} 	 (4.31) 

	

- 	 k ' 

M 	= 	{M ('),. . . 	 (4.32) 

where according to the previous Xk = {x}k 	Z=1 and 	= {M*}1, V/. 

We continue with the gating phase in which we construct groups of vehicles with candidate 

update measurements. We first transform the predicted particles {x*(~v% to the polar plane 

using: 
arctan(y*( /i*(/)) 	9i*(3) 

xpk = 	
+ 

(i*(B))2 	
:= 	 (4.33) 

for all targets 	= 1, . . . , rip. We then construct on the 9 - r plane ellipsoidal gates around 

every measurement z using the following equation: 

	

(9 - 9(12))2 	___ ____ 

k 	
(r_r)2 

+ 
(8 ,k a{V9,k}/2)2 	(6,k 	

= 1 	 (4.34) 

for tt = 1,. . . , Tm,k ,where cr{vo,k} and a{v,k} are respectively the standard deviations of the 

measurement noise of the azimuth and range. The parameter 8,k at every k is initially set to 

a user-defined value but under certain conditions it varies for increasing the gate volume (see 

later). 

The physical meaning of 8,,k  is that it defines at how many standard deviations from the mean 

(i.e. the measurement) the ellipses will be formed, setting thus the confidence limits of the 

gates. By setting for example 8ak = 3, we form gates which 99.73% of the times enclose the 

true vehicle positions when transformed to the polar plane. In practice we do not know the 

exact vehicle positioning, therefore the state uncertainty should be taken into consideration for 

computing the gates' volume. We do that indirectly by gating the particles (and not just the 

predicted vehicle position) whose spread implies the state uncertainty. With this approach we 

account moreover for the multimodel nature of the states. Normally, we set 8,,k = 4 or even 5 
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for tolerating modelling errors and tracking inaccuracies 6.  If in our analysis we were consid-

ering a non unitary probability of detection, PD < 1, then it would be more efficient to form 

gates about the predicted particle position accounting additionally for the state mulitmodality 

as in reference [35]. 

For every vehicle 3 we create then a candidate measurement set 	which consists from the 

measurements which have at least one of the vehicle's particles x 1  within their gates (the 

vehicle is said to satisfy these gates): 

{ (

g (I)(i)) 	( f3) 

Zk
*C@) 

- Zk 	. . . , z *( (v)) } 
	

(4.35) 

where g(j) stands for the j-th element of the ii-element set g' which consists from 

the indices of the above measurements in the initial ZO  set7 , and ii denotes the number of the 
(1) 	(2) 	(3) gates in which the particles of the /3-th vehicle lie. For example if Zk = {zk  , 	,  

the 13-th vehicle satisfies the gates of 	and z, then ii 	2 and 	= {1, 3}. 

If for a vehicle we get that 	= 0 (i.e. it does not satisfy any gate), we increase accordingly 

0 54 the volume of the gates by increasing the variable S,,k from (4.34) and we repeat until v 

0, V. We then check if for any vehicle it holds that 	= 1 (i.e. it satisfies the gate of 
(g*(13) ()l 

just one measurement). If this is true, we first hard-associate that measurement z 
k 	' with 

the vehicle and then remove it from the other candidate measurement sets by changing their 

respective index sets: 
*(j) - *(j) - gk \ {g13)()} 	

(4.36) 
VjE{1.....flv}8 

where notation \{} stands for the set difference. If (4.36) results in other vehicles satisfying just 

one gate, we repeat the final step until no other hard-associations can be performed. If during 

the process a vehicle becomes un-gated, we increase the gate volume as described before and 

we re-iterate. 

We construct then the groups with the ambiguous measurement-to-vehicle assignments. Each 

group can consist either of a single vehicle and multiple measurements or of multiple vehicles 

and multiple measurements. For the latter case, the group is formed with vehicles that share at 

6 As we will see next, at certain cases we increase the value S,k to account for more severe positioning 
inaccuracies. 

7 A mathematical structure as 	can also be called more formally an indexed family of elements. 
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(a) All particles lie outside the gates 	(b) The volume of the gates increases 

Figure 4.8: The gates' volume increases if none of a targets' particles lies within a gate. 

least one common measurement. These groups are then passed through the JPDA algorithm (as 

described in section 2.9) and using equations (2.862.92)8  we select the maximum joint proba-

bility assignments. Denoting as g, the n,-element index set that describes these assignments, 

the final associated measurement set becomes: 

Zk = {z('",.. . ,z fr  " "} 	 (4.38) 

where once more gkCl)  stands for the j-th element of the set g. 

The particles obtain then a normalised weight according to their likelihood: 

= p(zxTh) 	 (4.39) 

and: 

	

i(3) - 	Wk - 
E N 3 	-3 63) 

J=1 Wk 

where i = 1,. . . , N and /3 = 1,. . . , Nt,. The calculation of the state estimate of each vehicle 

/13 is given next. 

8For the specific equations, for obtaining the prior state of each vehicle 3 we average their particles: 

(4.37) 

,
C

c 
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Figure 4.9: The gated measurements and particles on the polar plane. For this example the 
associations are obtained after the gating function. 
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Figure 4.10: The gated measurements and particles on the polar plane. Now two associations 
after gating are still ambiguous and the JPDA should be used for them. 
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: i(i3) i*(/3) 
- W Xk 	 (4.41) 

i=1 

As always, we resample using the SR algorithm to finally obtain: 

Xk = {x'),.. . x )} 	 (4.42) 

Mk = {M1),...,Mv)} 	 (4.43) 

Figures 4.8.a and 4.8.b illustrate graphically the varying-size gates. In the example shown due 

to tracking ill-performance the particles of the target in the first figure lie outside the gates of 

the measurements. The gates thus increase their volume until enclosing at least one particle as 

shown in the second figure. For the specific example the parameter 8o,k  was 4 and the volume 

was set to increase by a factor of 2. Regarding the measurement assignment, figure 4.9 presents 

an example in which the gating function results in unambiguous measurement-vehicle pairs, 

whereas figure 4.10 shows a case in which the JPDA algorithm should be additionally used to 

resolve the association ambiguity. 

4.7 	Simulation analysis 

In the final part of the chapter we apply the MGTPF to a simulated multitarget environment and 

we analyse its performance focusing particularly on its data association function. 

4.7.1 Simulation study 

We first use the MGTPF in a scenario in which four separated vehicles move across a known 

road structure assuming that the probability of false alarm is 0 (i.e. no measurement clutter). 

For comparison we also use a variation of the algorithm which employs the same gating and 

data association logic but utilises a standard SIR particle filter for estimation, which we call 

multitarget SIR (MSIR9). By contrasting these two approaches we aim to show that in an easy 

(association-wise) tracking environment the road constraints that the MGTPF exploits benefit 

mostly its positioning accuracy and not its association capability. 

The road map and the paths of the vehicles are shown in figure 4.11. For consistency, we keep 

Not to be confused with the MSIR from section 3.7.1 which employs a nearest neighbour association method. 
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Figure 4.11: The road map for scenario 1. The vehicle paths are: J-ABCDEF 2-GHIJBK, 
3-JDLMN, 4-OEPQR. The dashed lines indicate off-road motion. 

the parameters of the simulation as in the single-vehicle case described in section 4.5. Therefore 

the radar lies at the origin (at point 0,0) with angular accuracy 0.50, range resolution 20m and 

update rate T = 5m. We set the road width to 8m, Tr = 18.75m, o{uk} = {uy,k} = 

= 0.6m/s2 , a{uo,k} = 0.0001m/s2  and = p' = 0.98. The parameter 6,k  is set 

initially to 4 and when required it is increased by a factor of 1.5. Both filters employ N3  = 1000 

particles for each vehicle. The results presented are obtained after 1000 Monte Carlo runs. At 

the initialisation step we assume that we know the states of the vehicles and thus we seed 

accordingly the particles randomly around their position. Every simulation last 109 time scans. 

Figure 4.12 shows the RMS position error of the MGTPF. As expected similar patterns as 

in figure 4.6 emerge, which verify once more that when the vehicles are travelling on-road 

the tracking error is reduced due to the road constrains. For the specific scenario, the on-road 

RMSE of the MGTPF is on average 55.87% smaller than the MSIR. The error peaks that appear 

in the figure are due to vehicle turns or junction crossings. Off the road the performance of both 

algorithms is the same, since there the SIR and the VSMMPF (and thus also the MGTPF) share 

a very similar estimation logic. Table 4.2 presents the average position error of each vehicle for 
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Figure 4.12: The RMS position error of the MGTPF over the scan number k. 

both algorithms. For this scenario the gating and assignment functions of both trackers perform 

equally well and all the measurements are associated correctly. 

We test then the measurement assignment capability of the MGTPF in a more difficult scenario. 

We increase therefore by three times the measurement noise and we use two vehicles whose 

paths are closely separated as depicted in figure 4.13. The first moves off the road and the 

second travels along the road. We expect the most disassociations and track swaps to occur 

when the on-road vehicle executes its turn, since then the vehicles' separation is minimum. For 

this scenario we perform 1000 MC runs and we count the number of the track swaps. Both 

filters use 1000 particles and are initialised with their true vehicles' states, so as not to bias the 

results with initialisation artifacts. 

Table 4.2 shows that the MGTPF exhibits an enhanced association performance, resulting on 

average in 34.30% fewer track swaps. This is because the MGTPF particles of the on-road 

vehicle are mostly concentrated along the road, a fact which limits significantly the particle 

overlapping of the two vehicles and decreases the association uncertainty/difficulty. Figure 

4.14 presents a representative example in which a track swap occurs when using the MSIR. 
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Figure 4.13: The road map for scenario 2. Both vehicles travel from points A to B. 

After the vehicle's turn at k = 9 a measurement outlier results in a disassociation, which 

finally leads to a track swap due to the more spread (unconstrained) particles of the on-road 

vehicle. In general, for the chosen scenario the MSIR can not cope efficiently with the abrupt 

900  turn of the second vehicle and the consequent severe particle overlapping finally degrades 

its association performance. 

In the last set of simulations we use the same four-vehicle environment from the first scenario 

but we introduce to the problem erroneous measurement clutter. We assume that the number 

Scenario I 
MGTPF SIR 

Average 
RMSE 
on-road 

(m) 

vehicle 1 
vehicle 2 
vehicle 3 
vehicle 4 

26.11 
27.12 
25.22 
24.12 

59.04 
62.54 
57.60 
53.40 

Scenario 2 
Track swaps 	1 	35.5 	1 54.00 

Table 4.2: Simulation results after 1000 MC runs. 
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Figure 4.14: An example of the MSIR particle cloud in scenario 2. A track swap occurs fol-
lowing a disassociation at k = 9. 
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Figure 4.15: A snapshot of the gated measurements and particles on the polar plane when 
lO and A = 30. 

of clutter returns at every scan is random and drawn from the Poisson distribution with mean-

value A. We use the MGTPF and we count the disassociations for two different gate volumes 

and four clutter densities: A = 10, 20, 30 and 40. We count moreover the times the algorithm 

calls the JPDA function and the ambiguous vehicles at every call. For this study the tracker 

employs just N8  = 200 particles for each target, so as to force the association functions to 

make more difficult decisions (since due to the relatively small number of particles the tracking 

performance is expected to degrade). 

Table 4.3 presents the average results 10  after 100 MC runs for every different case. We observe 

that for this scenario the number of disassociations increases approximately linearly with the 

clutter density, ranging from as low as 4.78 (a,k = 10, A = 10 ) to 28.17 (Sa,k = 20, A = 40) 

per run. Considering that at every run 436 association decisions are made, the association 

performance is indeed satisfactory, since even in the worst (unrealistically difficult) case the 

disassociations are still just about the 6% from the total associations. Figure 4.15 illustrates an 

"'The results include just the non-divergent runs, which for N = 200 were about 96-97% of the total. 
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Figure 4.16: The percentage of associations using the JPDA at every run over the clutter den-
sity Afor &r,k = 10 and 20. 

= 10   a,k = 20 
clutter ) 10 20 30 40 10 20 30 40 

disassociations 4.78 14.00 17.26 23.13 11.16 15.20 18.30 28.17 
1 x JPDA (1 vehicle) 28.15 41.47 44.77 44.93 42.14 41.88 33.75 25.19 
2 x JPDA (1 vehicle) 3.98 11.95 20.69 27.81 15.00 29.64 35.58 37.05 
3 x JPDA (1 vehicle) 0.19 1.61 4.23 7.75 2.42 11.00 20.58 26.14 
4 x JPDA (1 vehicle) 0.00 0.06 0.38 1.01 0.18 1.64 5.08 10.81 

I xJPDA (2 vehicles) 0.02 0.02 0.02 0.09 1.60 2.94 4.14 4.97 
1 x JPDA (3 vehicles) 0.53 1.00 1.39 1.27 11.19 12.07 13.29 14.25 
1 xJPDA (4 vehicles) 0.13 0.19 0.23 0.45 6.59 7.32 7.80 8.94 
2 x JPDA (2 vehicles) 0.01 0.00 0.01 0.04 0.33 0.90 1.42 1.50 
JPDA associations (%) 8.91 17.02 24.20 1 30.70 33.16 1 49.47 62.39 72.34 

gate associations (%) 91.08 1 82.98 75.80 1 69.30 66.84 1 50.53 37.61 1  27.65 

Table 4.3: The average disassociations, number of JPDA calls and the percentage of the as-
sociations obtained using the JPDA or gating functions per run. At every run 436 
associations decisions are taken. 
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example of the dense clutter environment in which the simulations take place. In table 4.3 we 

also present the percentage of the associations that are performed using just the gating function 

or require additionally the JPDA algorithm. Figure 4.16 depicts the linear relation between the 

associations with the JPDA and the clutter density. For the smaller gate volume (&j-,k = 10), 

only 8.91-30.7% of the associations called for the JPDA, fact which emphasises the importance 

of a gating function within a data association system regarding the computational efficiency. 

4.7.2 Summary 

This work introduced a multiple vehicle structure for the VSMMPF algorithm and studied 

experimentally its association performance. The proposed MGTPF propagates its particle 

set, which is augmented with the particles of all vehicles, using the prediction mechanism 

of the standard VSMMPF. It then uses ellipsoidal gates about each measurement to assign 

to the vehicles candidate measurement updates. If a vehicle is assigned with more than one 

candidate measurement, the JPDA algorithm is used to resolve the association ambiguity. After 

the association phase, the particles from each vehicle are treated separately and are weighted 

and resampled in the normal PF fashion. 

The simulation analysis demonstrated the suitability of the MGTPF within the multiple vehicle 

environment. It showed that the road constraints that it exploits, result in an improved as-

sociation capability compared to the equivalent multiple-vehicle unconstrained SIR. This was 

especially evident when the vehicles travelled closely, in which case the tighter and more pre-

cise MGTPF posterior state distribution resulted not only in the improvement of the estimation 

accuracy but also in the reduction of disassociations and track swaps. Regarding the efficiency 

of the gating scheme for associating the raw measurements, we saw that in our environment 

depending on the clutter density, up to 91.08% of the associations could be obtained just after 

the gating function. 

4.8 Chapter summary 

The fourth chapter studied the vehicle tracking problem. Based on the variable structure mul-

tiple model particle filter, it introduced a varying-particle variation which allowed the number 
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of the particles to vary. Aiming in improving the particle (i.e. computational) efficiency, fewer 

particles were used while the vehicle was travelling on-road, since the road constraints were 

making the estimation easier. Simulation results demonstrated that the degradation in the RMS 

position error while using the varying-particle algorithm was negligible when compared to the 

lighter particle usage and the resulting computational gains. We furthermore presented an en-

hancement of the standard vehicle tracker with a gating and data association capability, for re-

jecting measurement clutter and tracking simultaneously multiple vehicles. For measurement-

to-track assignment we exploited the joint probabilistic data association algorithm. A simula-

tion study analysed the proposed tracker in various scenarios, assessed its suitability in differ-

ent association environments and showed that under difficult association conditions both the 

estimation accuracy and association capability could be improved when compared with the 

equivalent multitarget sequential importance resampling filter. 
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Chapter 5 
Variable-mass particle filtering for 

vehicle tracking 

In the fifth chapter we continue with the vehicle tracking problem presenting a different ap-

proach to deal with its inherent multi-modality. We propose a mechanism which allows the 

number of the particles within each mode to vary adaptively over time, depending not only on 

the prior mode probabilities but according to the mode likelihood and difficulty. Moreover, we 

introduce an on-road architecture which incorporates Kalman filtering elements and uses just 

one on-road particle. Simulation results demonstrate that the proposed variable mass particle 

filter can achieve better performance, while using fewer particles and less computational power, 

when contrasted with the variable structure multiple model particle filter. 

5.1 Introduction 

As we saw in the previous chapters, when the target switches between two or more motion 

dynamics, multiple-mode estimators should be used. Depending on the tracking technique, the 

estimates are obtained using a mechanism that combines the outputs of the possible operating 

modes. Historically, the interacting multiple model filter (1MM) [91] from the 80's was the 

first powerful multiple-mode estimator. It was based on the Kalman filtering framework [8] 

and was used extensively throughout the years. In 2000, reference [84] introduced the variable-

structure 1MM (VSIMM), essentially an 1MM whose number of the active modes was allowed 

to vary, The VSIMM improved the performance of the 1MM when they were both tested in the 

terrain-aided vehicle tracking problem. In 2002, the variable-structure multiple model particle 

filter (VSMMPF) [82] made its appearance, incorporating the varying modes mechanism into 

the powerful particle filtering technique. The VSMMPF compared to the VSIMM on the same 

vehicle tracking problem, exhibited an even greater improvement on the estimation accuracy. 

The work in this chapter, presented first in [92],  is an attempt to improve the particle efficiency 

of the VSMMPF with its key contribution being the use of particles with variable masses. 
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Whereas in the VSMMPF the number of the particles allocated to its modes is proportional to 

fixed mode probabilities, in the proposed variable mass particle filter (VMPF) that number is 

allowed to vary according to arbitrary user-defined criteria. The VMPF compensates for the 

statistical irregular particle patterns that emerge by rescaling the particles of every mode using 

appropriate masses. 

The vehicle tracker that we introduce in this chapter, adopting the variable-mass approach, is 

allowed to exploit information from the measurement and the mode difficulty for allocating 

the particles to its modes. The benefits thus are twofold: firstly more particles are allocated 

to the most probable and/or difficult modes for improving the tracking accuracy and secondly 

modes which are less probable and/or have easier dynamics obtain fewer particles for reducing 

the computational requirements. Other - more application specific - features of the proposed 

vehicle tracker is an on-road propagation mechanism which employs one particle and a Kalman 

filter (KF) for reducing further the computational demands and a technique which enables the 

algorithm to deal with random road departure angles (instead of just ±900  as the VSMMPF 

does). 

5.2 Variable-mass technique 

In this section we first summarise the VSMMPF logic for allocating the particles to the multiple 

modes and then introduce the notion of the particle mass. Consider a n,,,-mode particle filter 

which at time instant k - 1 has Ncs,k_1 particles at mode a. Let the known a-priori probability 

switching' from mode a to mode 0 be p+/3 E R[0, 1] where a, /3 E N[1, flm].  Following the 

logic of the VSMMPF the number of the transferred particles to a mode is proportional to the 

fixed prior mode probability: 

N.—,3,k = I tvi <p 	: {v : v 	U[O,l]}1k_1}I 	 (5.1) 

where N,,—,3,k  is the number of the particles that are transferred from mode a to mode ,8 and 

notation I f  I stands for the set cardinality. For a large number of particles it holds that: 

lim 
N,k—oc 

N.kI N 	= Pcx—./3 N,_1 	 (5.2) 

A switch from mode a to 0, refers to a change of the particle propagation model from the one of mode a to 3. 
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which implies that on average we get: 

= Pc—/3 Na  k1 	 (5.3) 

Furthermore it holds that: 

Pa-8 	1, Va 	 (5.4) 

flm 

= Na,k_1, Va 	 (5.5) 
3=1 

Relation (5.4) emphasises that since {p} 1  is a set of probabilities, its elements should add 

to one. Relation (5.5) implies that all the particles from mode a at k - 1 should be propagated 

at k, i.e. the overall number of the particles of the estimator remains constant. 

The variable-mass mechanism introduces another degree of freedom in the estimation proce-

dure by employing particle triples consisting of {state,weight,mass}. Using the VMPF logic the 

particle allocation is not directly linked to the prior mode probabilities, but is done according to 

arbitrary and application-specific probabilistic metrics as a way to indirectly exploit additional 

information, The "probabilistic weight" of each mode (implied from the fixed a-priori mode 

probabilities) is sustained since after the particle allocation, appropriate masses are computed 

which scale the weights of the particles. Therefore, the particles in the heavier-populated modes 

obtain smaller masses whereas the ones in the lighter-populated modes are assigned with larger 

masses. 

In particle filtering the resolution of the estimated state distribution in a certain area depends on 

the number of the particles that lie within it. Therefore, the variable-mass technique essentially 

enables us to modify that resolution, since now we directly control the number of the particles 

that we can seed in different state areas. According to our requirements the resolution can be 

locally enhanced or impoverished, for either improving the estimation accuracy or reducing the 

particle redundancy and lowering thus the computational complexity. 

Consider again the n,-mode particle filter defined at the beginning of the section. In the VMPF 

the total mass of each mode is proportional to the prior mode probability: 

N13k . ma_+/3,k = Pa-13 'Na,k_l 	 (5.6) 
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where now Nk  is the number of the particles that are transferred from mode a to mode 

and M,—,3,k  is their mass. The equation above is the equivalent of equation (5.3) of the 

VSMMPF, but now it is evident that by introducing 	as an extra degree of freedom, we 

can change arbitrary N.f3k  and retain the quantity 	Nc,k_1 fixed. We can either vary 

Nk in proportion to a certain user defined probabilistic metric -Y,—,3,k E R[0, 1]: 

Nk = 	Nc ,_i 	 (5.7) 

or fix its value according to available prior knowledge or other specified requirements: 

= const. 	 (5.8) 

The parameter 	is called gamma metric and can vary over time or remain fixed. For 

y,,—/3,k it also holds that: 
n,n  

= 1, Va 	 (5.9) 
j3= 1 

Another property of the VMPF is that in the general case the total number of particles is allowed 

to vary: 
f in  

N,k_1, Va 	 (5.10) 
3=1 

This implies that we can keep the particle number of certain modes constant and at the same 

time vary the particle number of other modes, without biasing the underline estimation statistics. 

Finally, by rearranging (5.6) we define the mass of the particles that are transferred from mode 

a to 3 as: 
N,k —1 

=pc* 	 (5.11) 

These masses are used to rescale the weights of the particles, just before computing the final 

state estimate. 

Figures 5.1 and 5.2 illustrate graphically through a simple example the particle allocation ap-

proaches of the VSMMPF and the VMPF in a two dimensional x-y Cartesian space. We con-

sider that the 100 particles from mode a at k—i are propagated to the equiprobable modes and 
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Figure 5.1: The VSMMPF allocates the particles proportionally to the prior mode probabili-
ties. In this example both modes are equiprobable. 
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Figure 5.2: For the same example, the VMPF allows for an uneven particle allocation to ac-
count for the measurement, which corrects later using variable particle masses. 
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Figure 5.3: The VSMMPF uses 1000 particles which correctly allocates to its modes in pro-
portion with the fixed mode probabilities (98% for S and 1% for each /3 and  'y). 

'y at k. The first figure shows the VSMMPF seeding its particles according to the prior mode 

probabilities, allocating thus 50 particles to each mode. On the other hand, the VMPF using a 

gamma metric which exploits the measurement, propagates most particles, say 90, in the more 

likely mode 3. Using (5.11) we calculate for the specific example that the mass of the particles 

of mode /3 is 0.55 and of mode -y is 5.00. Thus we expect to increase the estimation accuracy, 

since the resolution of the state posterior will be higher in areas with higher likelihood which 

contribute more in the state characterisation, and furthermore reduce the particle redundancy, 

since the particles on mode -y  is more likely to be replaced during the resampling step. 

Figures 5.3, 5.4 and 5.5 show another example in which the variable-mass technique can en-

hance the performance of the VSMMPF. We consider a system having three possible modes 

at k, with prior probability 98% for mode S and 1% for each mode /3 and  -y.  In figures 5.3 

and 5.4 we use a VSMMPF which employs respectively 1000 and 30 particles. In the first 

case correctly 980 particles are allocated to the central mode and 10 particles to the modes on 

the sides. In the second case however, the small 1% mode probabilities in conjunction with 

the small number of particles result in all 30 particles populating just the central mode. On the 
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other hand, the equivalent 30-particle VMPF in figure 5.5 can allocate to each lower probability 

mode a number of particles, say 5 for this example, and thus exploit the true multimodel nature 

of the system 2 . Again using (5.11) we compute that the 20 particles of mode S obtain a mass of 

1.47 while the remaining in modes and 'y are assigned with masses of 0.06. We expect once 

more the performance to improve since now the system model is used more accurately and the 

possibly essential information from all modes is utilized. 

5.3 Variable mass particle filter 

We begin this section by outlining the novel features of the vehicle-tracking VMPF and then 

we describe in detail how the algorithm works. 

5.3.1 Novel features of the vehicle tracker 

The VMPF employs the varying mass technique for propagating its on-road particles on and off 

the road. Specifically for these particles, the tracker uses as the gamma metric an approxima-

tion of the posterior mode probabilities, obtained by fusing the fixed prior mode probabilities 

with the varying modes' likelihoods conditioned on the current measurement. As described 

before, the varying masses that the algorithm uses, compensate for the resulting over- or under-

population of its modes. The fact that in contrast to the VSMMPF, the VMPF is not "blind" to 

the measurements when allocating its on-road particles to their corresponding modes, results 

in a more efficient particle use, which translates consequently to a performance improvement. 

For the off-road particles both algorithms use a similar propagation mechanisms. 

Another feature of the new vehicle tracker is that it employs just one particle on the road. This 

is because the on-road dynamics are easier to estimate due to the soft constraints that the roads 

themselves impose [89].  Following the varying-mass logic, the mass of that on-road particle is 

proportional to the posterior probability of the on-road mode. Compared to the VSMMPF, the 

fact that the variable mass approach allows the tracker to use just one particle for this mode, 

results in significant computational gains when the vehicle travels on the road. 

2Reference [93] addresses the specific problem by exploiting a bank of particle filters, one for each mode, 
which are weighted appropriately before calculating jointly the estimate. The drawback is that compared to the 
variable-structure filters (VSIMM, VSMMPF, VMPF) their modes always employ a fixed number of particles (more 
computational demands) which cannot be directly transferred from one mode to another (less flexible structure). 
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Figure 5.4: For the same example when the VSMMPF uses just 30 particles, it cannot seed 
them to all modes and only the highest-probability mode 5 is populated. 
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Figure 5.5: Even with 30 particles, the VMPF is allowed to propagates them to all modes, by 
assigning them later appropriate masses to correct the estimate. 
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particles at k—i 
particles at k 
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Figure 5.6: In the road-constrained vehicle tracking problem, the VSMMPF employs a large 
number of on-road particles, which according to the fixed mode probabilities are 
propagated on or off the road. 

For the prediction of the on-road particle the VMPF employs a Kalman filter. For running 

the KF, it converts the 2-D polar radar measurements to 1 -D Cartesian pseudo-measurements 

(approximated as Gaussian) that lie in the middle of the road. The KF operates in a reduced-

dimension 2-D state-space along the middle of the road and feeds sequentially the tracker with 

an estimate of the mean and covariance of the on-road states. The estimate of the mean is 

transformed and placed into the original 4-D tracking state-space to finally form the on-road 

particle. The estimated on-road probability distribution is used in the prediction step to draw 

randomly from it particles and propagate them off the road. The number of these departing 

particles is determined from the posterior road-exit mode probabilities. 

Figures 5.6, 5.7 and 5.8 contrast the on-road propagation mechanisms of the VSMMPF and 

VMPF. In particular the last two figures illustrate graphically the 'interfacing" component of 

the hybrid structure of the proposed tracker. We see there that rather than employing a large 

number of on-road particles like the VSMMPF, the VMPF uses just one particle (propagated 

with the KF) from which the off-road particles are spawned. 
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particle at k-i 
particle at k 

x - axis 

Figure 5.7: The proposed varying-mass vehicle tracker uses one on-road particle propagated 
on-road with a KE Its state distribution at k—i is sampled accordingly to generate 
particles to be predicted off-road. 
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particles at k 

a 

x - axis 

Figure 5.8: The final particle cloud at k after predicting off-road the generated particles. 
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5.3.2 The algorithm 

For the sake of clarity we do not consider ajunction-crossing prediction model and focus just on 

an environment with a vehicle travelling on and off non-intersecting roads. The VMPF consists 

of a prediction, an update and a resampling step, which we describe next. 

A Prediction step 

In the prediction step the algorithm predicts the particles one step ahead according to their mode 

dynamics. First we describe the prediction phase for the road particles and then for the off-road 

particles. 

A.i Prediction of the on-road particles 

This phase consist of the prediction of the on-road particles which either continue on the road 

or depart from it. We employ one particle for modelling the on-road motion. For the on-road 

prediction we first generate an on-road pseudo-measurement 	with its associated variance 

and then apply a KF. We consider figure 5.9 assuming that line AB lies in the middle of the 

road. For clarity and simplicity in our analysis the roads are set parallel to the x-axis. 

At time instant k we receive a radar measurement zk = [9k rk }T  which we transform to the 

Cartesian space to obtain 4: 

[ 	1 
4 = h'(z) = I 

T COS  G 	
(5.12) 

[ 
T, sin O/ 

] 

The skewed ellipse around 4 at figure 5.9, is the n-th standard deviation (&z,k) confidence 

interval of the measurement noise, after being transformed to the Cartesian plane using function 

h'(.) from (5.12). C 1  = (xc1,yci ) and C2 = (xc2,yc2) are the cross section points of the 

interval and the middle of the road. The value of na  is chosen arbitrary (usually 3-4) since later 

on equation (5.13) cancels it out. 

The assumption of VMPF is that the cross section of line AB and the 2-D skewed-Gaussian 

measurement noise pdf can be approximated as a l-D Gaussian pdf along AB. Therefore, since 

we are also using a linear constant velocity vehicle model, we track on-road on a reduced 

state space (along AB) with a 2-D Kalman filter. The tracking space of the KF consists of the 
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Figure 5.9: The pseudo-measurement is set on the mode of the distribution resulting from the 
cross section of line AB (the middle of the road) with the measurement distribu-
tion. The skewed ellipse (red dashed line) around the measurement is a vertical 
section of the measurement distribution. We fit on the pseudo-measurement a one 
dimensional Gaussian pdf (black dashed line rotated 900  for illustration). 

vehicle's position x011  k and velocity r fl.kju5t along the middle of the road. This is because any 

attempt to track any possible on-road movement orthogonal to the road, will have negligible 

significance; especially since the roads seem to have zero width when the radar is far. 

For computing the pseudo-measurement £k on AB we find the point within the segment 

C1C2  which maximises the measurement likelihood (i.e. the statistical mode) and fit to it a 

Gaussian pdf. The standard deviation of the pdf can be approximated numerically as: 

Ixc1 XC21 
&zonk = 	 (5.13) 

Using 	we predict the on-road particle Xon,k_l  one step ahead with the following set of 

KF equations. 
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2D— 
Xofl k = FOn . Xk_l 	 (5.14) 

'on,k = F0 . Po,,k1 . F + Gon  Q . GT 	 (5.15) on 	on 

(5.16) 

	

Kk 	= 'on ,k 	 '3on,k HT 

	

2D 	2D 2D— 
Xon,k = xOfl k + Kk [Zon,k - Hon Xon k 1 	 (5.17) 

Pon,k = [I - Kk  . H] . on,k 	 (5.18) 

where: 

	

[1 Ti 	[T2/ 2

I 

Fun 

= [ 	
I , 	

= L 	
Q0 = 	12 , H = [0 1] 	(5.19) 

	

0 1] 	 T 

Ron,k = (&z ,on,k)2  is the variance of 2on,k  and Xon,k = [Xon,k Xon,kJ T  is the truncated 2-D 

version of the on-road particle. We augment then the Xon,k  and place it into the original 4-D 

state-space: 

Xon,k 1 

Yon,k 
= I 	 (5.20) 

I Xon,k 

Loi 
where Yon,k is the y-axis value of the middle of the road. 

Next we compute the likelihood of the vehicle continuing on the road or departing from it. For 

that, we employ np modes M,k,  for the following set of propagation angles: 

= {1 . . 	 (5.21) 

where 0 is measured anti-clockwise from the road. As a convention we always set 	= 

accounting for the on-road propagation. The nominal positions x 	of the road-prediction 

modes MI are given by the following relation: 

Zonk_i + (Xon,k - Xon,k-1) . cos 

	

i— 	Yon,k—i + (Xon,k - Xon,k— 1) . Sin 
XØk = 

1 

	

	
(5.22) 

on,k-1 .COSç5 

Zonk_i S in 
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wherej E {1...n}. The probability of each mode  is then computed: 

1-
i-71 	 ( J =p(M,k Izk) =iV(zk;h(x,l.),Rk ) 	 (5.23) 

where h(.) is defined in (4.3). The normalised probabilities are: 

PO = fl( 

	

	 (5.24) 
k 

We then use a weighted sum of the varying 	and the fixed prior probability j5: Ok 

{ w+(1_w, 	

j=1(on-road) 	
(5.25) 

wp . ( 1— )/(n -1)+(1— wp) . p k , j1(off-road) 

where 0 < w 	1 is a user defined parameter. A value of w closer to 1 weights more the 

prior whereas closer to 0 more the measurement-dependent 	The final normalised mode 

probability is given by: 

p = nO 	 (5.26) 

We use pi as the gamma metric from (5.7) to calculate the number of the particles Nk  that we 

will allocate to each mode MI  

N3 - { 

1, 	 j = 1 (on-road) 
- 	 (5.27) 

Ak . N—i, j 1 (off-road)  

where N,k_1 is the nominal number of the on-road particles at k - 1 (as we will see later the 

resampling step spawns temporarily N,k on-road particles, which are finally discarded). As 

described before, for the on-road submode (j = 1) we always use one particle. 

Next, according to p,  we predict a number of particles off the road. First, we generate the 

particles required by sampling the on-road state pdf (P,k.1),  derived from the KF at the 

previous time instant: 

{k 
 } N( k - 	 T 

i=1 	- {[ xff+,k Xoff+k} 	' .AI(X0 , j _1, Pcn kl) 	(5.28) 

where Noff+k = Ij=2 Nkoi,. The new-born particles {xOff+k}jl 	which initially lie on the 
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road, are propagated off the road according to the mode departure angles 0i 	using the 

relation below: 

(ff+,k tan 	- 	tan(/2))/(tan 	- tan /2)) 
1 tan .1 (x ff+  tan 0i — x,k_1 .tan(J /2)) 

xoff+k 	
(tan3—tan(/2)) 	- xoff+ k tan 	+ Yon,k-1 I 

(5.29) 
Xoff+k COS J  

xoff+,k . Sin 

The resulting particle set is: 

{4+k} 	
=ii 	 (5.30) 

A. ii Prediction of the off-road particles 

We continue with the second phase and we predict the particles which were off-road at k - 1. 

Consider that we have N0ff,/, such particles. These are propagated using the off-road predic-

tion scheme of the VSMMPF. Using equation (4.8) we preliminary propagate them obtaining 
Nffk 

{xoffk}j1' . We apply then equations (4.10-4.11) and from the resulting mode probabilities we 

infer if the particles will continue off-road or will enter the road. If a particle stays off-road we 

use (4.13-4.14); if not, we set its position at the shortest point on the road, rotating its velocity 

randomly left or right. The predicted particles from this phase are denoted as off' k i=1 

The resulting set of the particles from the prediction step finally becomes: 

	

*,R 	(*,L N k 	* Njj, {x}1k = {x fl k, {Xoffk }= 	{Xoffk }= , {x0} 	} 	(5.31) 

after partitioning the set of the off-road particles {x +k} 0k  that originated from the road, off 	i=1 

into two subsets with particles that lie (clockwise) right and (anti-clockwise) left from the road: 

- 	(*,R 	C*,L 
i=1 	- {{Xoffk }(=1 ' {xoff  Ic }= } 	 (5.32) 

where it holds Noff+,k = Nk + Nk. In relation (5.31), Nk stands for the total number of 

particles that the VMPF uses at the specific time instant k: 

N,k = 1 + Nff+,k + N0ff,k 	 (5.33) 
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B Update step 

At the beginning of the update step we compute the particle weights. For simplicity we compute 

approximately the weights using the likelihood in the normal VSMMPF fashion 3 : 

= p(z/ x) = )f(z' h(x*), Rk) 
	

(5.34) 

which we normalise: 

Wk 
	

(5.35) 

where in analogy with (5.32) we obtain: 

= 	{w}, {woffk (=l} , {wOff,k}} 
	

(5.36) 

At this point we calculate the masses. Just for illustration we present once more the relation 

(5.11) which we use to compute the masses: 

N. 
m,f3 = Pc—/3 

	

	
(5.11) 

lV_,/3k 

The particles obtain a mass according to the subset in which they belong. The mass of the 

on-road particle is: 
- 	N. ,k-1 

monk=p. 
1 

since at k - 1 we nominally had N,k_1 particles on road (see later), P was the probability for 

the particles to remain on-road and at k the current mode employs one particle. 

The masses of the particles that were predicted departing from the road are: 

R 
moff,k 	= 

1 - 	N,k_i 	
(5.38) 

N off, k 

m0ff k 	= 
L•_iij•. (5.39) 

2 	Nk 

using the same logic as before, at k - 1 we had N,k_1 particles on the road, (1 - )/2 was 

the probability for the particles to exit either right of left the road and at k we have respectively 

The specific use of the Kalman filter for predicting the on-road particles (on/off the road), makes a full analytical 
derivation for the weights intractable. The likelihood approximation is justified here, since the main aim of this part 
of the chapter is the illustration itself of the use of the variable-mass approach, through a vehicle tracking application. 

(5.37) 
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NR 	and Noff, k 	k particles. 

For the particles that were off-road at k - 1, using a varying-mass analogy, we argue that their 

prediction was within a single mode and consequently they are set with unitary masses: 

Nff,k 1 
moff,k=l ?T 	=1 

lVoff,k 
(5.40) 

We derive then the scaled weights of the particles by multiply them with their corresponding 

masses: 

7-1-on,k = m0 k W0 	 (5.41) 

{ /R }  NOR 

off 
ff.k 

=moff,k• 	 (5.42) 

{I
L 

}k 
= tmoftk i=1 offk {w k } 'L 	 (5.43) 

k } k  {Ok}k = moff,k 	 (5.44) 

which are subsequently normalised to sum to 1: 

w2 	
Vi 

= 	 (5.45) 

where: 

-'(,R  NR 	-'(,L N,k 	_f( 	N0 
{

.' N,,,,, 
wk}1=1 	{th fl,k, {woffk}=1 , 	 , {w0}_ } 	 (5.46) 

The state estimate at k is finally given by the weighted sum of the particles: 

N,, ,k 

ick = 	wx c* 	 (5.47) 

C Resampling step 

The next step is to resample the weighted particle set to discard particles with small weights. 

The order of the particles and their weights should remain unaltered as in (5.32) and (5.36). We 

use the systematic resampling algorithm, modified accordingly for the VMPF (see next for the 

pseudo-code). Its characteristic now is that it treats the on-road particle as the parent of multiple 

particles with the same states, with multiplicity proportional to the on-road mass m0,. For this 

reason, we use the unscaled versions of the weights as computed in (5.35). After resampling, 
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Algorithm 10 VMPF Resampling 

Set nominal number of on-road particles: N[ Sk  = Nf - N,k + 1 
Initialise the cumulative density function (cdf) of the weights: c1 	w 
for i = 2: NXk do 

Construct cdf: ci 	cj_ + ci 
end for 
for i=(N k +1):Nfdo 

(i—N k+1) Construct cdf: c 	+ Wk 
end for 
Start at the bottom of the cdf: i = 1 
Draw a starting point: u1 	U[O, cN1/Nf1 
forj=1:N f do 

Move along the cdf: uj u1 + (cN1/N f ) (j - 1) 
while uj > ci do 

i_—:i+1 
end while 
if i < Nres 

k + 1 then 

Assign sample: xj = 
else 

Assign sample: x3 =Xk 

end if 
end for 

the size of the resulting resampled particle set {x} 	is increased from Nv,k to Nf and all 

particles obtain equal weights and masses. 

The final step of VMPF is to re-estimate the states of the on-road particle, accounting for 

particles that might have entered the road. Let us assume that after resampling N0fl,k particles 

lie on the road {x k } k . The corrected states of the on-road particle will be: on, 

Xon,k 
No ,k 	

X 	 (5.48) 

Since we are using one on-road particle, we just forward the Xon,k to the next time step k + 1 

and discard the remaining No,? k on-road particles. 

5.4 	Simulation results 

In this section we study the performance of the tracking algorithms using the road structure of 

figure 5.10. For a fair comparison we use the same parameters as in [82, 84].  The vehicle is 
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Figure 5.10: The road map of the simulation scenario. Although the figure presents a con-
stant velocity ABCD path and a 900  departure angle, for the simulation runs the 
velocity is perturbed with random accelerations and the departure angle varies 
randomly between 2001600.  

moving along points A, B, C and D, on-road along segments AB and CD and off-road along 

BC. In the MC runs that we perform, we vary the angle of departure randomly uniformly 

between 200 < o < 1601. The total simulation steps are 60 (20 for each segment) and the 

radar update rate is T = 5s. The width of the road is 8m. 

The nominal velocity of the vehicle is 12mJs which on-road is perturbed along its direction 

by random accelerations with standard deviation o{u,k} = 0.6m1s2. The radar has angular 

accuracy 0.5° and range resolution 20m. The standard deviation of the process noise is set 

= 07{u0 ,k} = 0.6m/s2  (off-road) and a{uok} = 0.000lm/s2  (orthogonal to the 

	

road). We set the mode probabilities = p = 0.98 and the threshold 	= 18.75. For 

the VMPF we set w = 0.5 from relation (5.25) to, weighting thus equally the prior and the 

measurement-dependent mode probabilities. A smaller w value would improve the transition 

from on- to off-road and worsen the on-road performance; for a larger value the opposite would 

hold. 
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Figure 5.11: The estimated and true vehicle track for a representative example in which the 
angle of departure was 128° and N f  = 50. 
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Figure 5.12: Comparison of the position error of the algorithms for the example above. The 
dotted lines indicate the off-road interval. 
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Figure 5.13: Comparison of the RMS position error when the vehicle is on-road, over the nom-
inal number of particles N1. 

We use a VSMMPF, a VMPF with np = 3 (which we call VMPF30) and a VMPF with no  = 7: 

{J};3=1  = {00,900,2700}. {,,j}7 	= {00,450,900,1250,2250,2700,3150} 	(5.49) 

The performance gains of the VMPF3  are solely due to its varying-mass structure and of the 

VMPF come as well from the more departure angles it considers. For our analysis we vary the 

nominal number of the particles of the trackers: N1  = 10, 25, 50, 75, 100, 250, 500, 1000. For 

every N1  we perform 3000 MC runs and we measure the on- and off-road RMS position error, 

the maximum value of the position error during the error overshoot when the vehicle departs 

from the road, the number of the particles that VMPF uses and the on-road CPU time. All 

algorithms were initialised by randomly seeding particles about the true states. 

Figures 5.11 and 5.12 present respectively the vehicle tracks and the RMS position error of the 

three trackers, in a representative example in which N1  = 50 and = 128°. For the particular 

run, when the vehicle was on the road, both VMPF and VMPF30  employed about half of the 

particles that the VSMMPF used. From the figures we observe that although all algorithms 
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Figure 5.14: Comparison of the RMS position error when the vehicle is off-road, over the nom-
inal number of particles N1 

attained a similar performance on-road, when the vehicle departed from the road the transient 

response of the VSMMPF was considerably slower and less accurate. 

Figure 5.13 shows the overall MC results for the on-road RMS position error over the nominal 

number of the particles Nf. The VMPF demonstrates better performance than the VSMMPF for 

Nf < 138, while for larger values it converges to a slightly sub-optimal (1.1% for N1  = 1000) 

RMSE. Compared to the VMPF30, the VMPF has smaller RMSE for N1  < 90 because it uses 

more road-exit sub-modes and thus more particles. For N1  > 90 the on-road VMPF34  perfor-

mance is better, because the fact that it considers just +90° road-exit turns, as N1 increases, 

make it more robust to measurement noise. The VMPF36  improvement of the performance over 

the VSMMPF for N1 > 83, is due to the on-road Kalman filtering propagation mechanism. 

From figures 5.14 and 5.15 we witness that the off-road transient response of the VMPF dur-

ing road segment BC is overall superior. We remind here that when the vehicle is off-road, 

the estimation schemes for both VMPF and VSMMPF converge to the same unconstrained se-

quential importance resampling particle filter. The difference in performance that we observe 

is the result of the different mechanisms for propagating off the road the on-road vehicle. From 

200 

180 
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Figure 5.15: Comparison of the RMS position error overshoot when the vehicle departs from 
the road, over the nominal number of particles N1. 

figure 5.15 we see that even when N1 = 1000, the VMPF has 36% smaller overshoot than 

the VSMMPF. Once more, the VMPF3I  response demonstrates which amount of performance 

improvement comes just from the varying-mass particles technique. 

Figure 5.16 shows the percentage of the particles that the VMPF and VMPF3  use over the 

nominal number of particles N1. When the vehicle is on-road the algorithms use respectively 

about 33%-41% and 19%-29% of the N1. When the vehicle exits the road they rapidly increase 

their number of particles until reaching N f . For continuing our analysis, we define the particle 

efficiency f of VMPF over VSMMPF as the ratio of the number of the VSMMPF particles 

to the VMPF particles for a given performance. For example f(20) = 2 for on-road RMSE, 

indicates that the VSMMPF employs 2 times more particles than the VMPF, when both attain 

a 20m on-road RMSE. Using figures 5.13, 5.14, 5.15 and 5.16, we calculate f for the various 

performance metrics. The results are presented in table 5.1 and clearly demonstrate the effi-

ciency of the proposed algorithm. In the studied scenario, the VSMMPF uses up to 14.69 times 

more particles than the VMPF for achieving the same performance, in the RMSE ranges within 

which f could be calculated. 
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Figure 5.16: The percentage of the particles of the VMPF and VMPF30  to the particles of 
the VSMMPF when the vehicle is on- and off-road, over the nominal number of 
particles N f. 

Figure 5.17 compares the on-road CPU time of the algorithms (run on a Linux platform with 

an Intel Xeon 3GHz processor and a 1GB DDR2 memory). For N f  < 40 the VMPF trades 

off its on-road performance superiority compared to the VSMMPF with computing power. 

For larger values of N1 the VMPF is computationally cheaper and has a CPU time linearly 

related to the N1. On the road, depending on the N1, VMPF30  requires 6%-23% less CPU 

time than the VMPF, while using on average almost half of the particles (figure 5.16). Off 

the road all algorithms have the same computational demands. Finally, on the robustness of 

the algorithms, we observe poor performance of the VSMMPF for N1 = 10 and 25, where it 

resulted respectively in 40.5% and 9.1% diverged  runs (respectively 8.1 and 3.7 times more 

than the VMPF). Nevertheless, for bigger -and more realistic- values of N1, all algorithms did 

demonstrate a robust performance. All the simulation results presented in this section, were 

calculated just from the converged runs. 

'An algorithm was considered to be diverged if at any point its position error exceeded 600m. 
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Figure 5.17: Comparison of the CPU time when the vehicle is on-road, over the nominal num-
ber of particles Nf. 

RMSE on-road 
RMSE (m) 19.58 23.43 27.29 31.14 

VSMMPF number of particles - Nf 339.77 70.62 49.62 41.46 
VMPF average number of particles 337.51 8.62 5.26 4.10 

Particle efficiency f 1.01 8.19 9.43 10.11 
RMSE off-road  

RMSE (m) 35.55 51.66 67.77 83.88 
VSMMPF number of particles - N1  1000.00 188.19 91.18 63.62 
VMPF average number of particles 240.93 33.72 16.26 9.54 

Particle efficiency f 4.15 5.58 5.61 6.67 
RMSE transient overshoot 

RMSE (m) 54.20 67.61 81.01 94.42 
VSMMPF number of particles - Nf 1000.00 369.23 201.82 130.30 
VMPF average number of particles 72.64 25.13 14.86 9.54 

Particle efficiency f 13.77 14.69 13.58 13.66 

Table 5.1: Particle efficiency: the ratio of the number of the VSMMPF particles to the VMPF 
particles for a given performance. We focus on the RMS position error when the ve-
hicle is on-road and off-road, and on the RMS transient overshoot when the vehicle 
departs from the road. 
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5.5 Chapter summary 

This work introduced the variable mass particle filter and used the terrain-aided tracking prob-

lem for comparing it with the variable structure multimodel particle filter. Both algorithms 

exploit generic multi-model particle filtering structures which differ in their mode-switching 

and particle allocation mechanisms. For switching between its modes, the VSMMPF uses a 

fixed prior mode probability, while the VMPF employs an adaptive scheme involving varying 

posterior measurement-dependent mode probabilities and variable mass particles. For the spe-

cific vehicle tracking problem that we study, the VMPF uses furthermore a reduced-dimension 

Kalman filter for its on-road mode and considers more angles for road departure. 

Simulation results demonstrated the improved efficiency of the VMPF, since generally required 

fewer particles than the VSMMPF for achieving a better estimation accuracy. The variable-

mass architecture enabled the vehicle tracker to incorporate efficiently the measurement infor-

mation within the particle allocation mechanism, which in turn resulted in a better transitional 

response when the vehicle was departing from the road. Moreover, the Kalman-based single-

particle technique for on-road tracking reduced the on-road computational demands of the al-

gorithm. Based on our simulation results, we can argue that the variable-mass approach can be 

proved a useful feature of any multi-mode particle filter, allowing for a direct exploitation of 

available information within the particle allocation mechanism and resulting consequently in a 

better characterisation of the posterior state distribution. 
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Nf = 10  
RMSE RMSE Transient Particles Particles 

on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 
VSMMPF 83.63 193.22 225.40 10.00 10.00 

VMPF 31.14 83.88 94.42 4.10 9.54 
N1 =5  

RMSE RMSE Transient Particles Particles 
on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 

VSMMPF 41.98 140.70 181.21 25.00 25.00 
VMPF 22.96 56.08 66.67 9.02 23.86 

N1  = 50  
RMSE RMSE Transient Particles Particles 

on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 
VSMMPF 27.12 96.63 139.71 50.00 50.00 

VMPF 21.47 47.25 58.38 17.29 47.64 
N1 = 75  

RMSE RMSE Transient Particles Particles 
on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 

VSMMPF 22.79 75.06 116.65 75.00 75.00 
VMPF 21.16 43.98 54.32 25.61 71.50 

N1= 100 
RMSE RMSE Transient Particles Particles 

on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 
VSMMPF 21.36 64.32 102.53 100.00 100.00 

VMPF 21.06 42.47 52.10 33.62 95,36 
Nj = 250  

RMSE RMSE Transient Particles Particles 
on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 

VSMMPF 19.72 45.97 74.45 250.00 250.00 
VMPF 20.28 35.60 44.71 83.56 239.22 

N1= 500  
RMSE RMSE Transient Particles Particles 

on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 
VSMMPF 19.39 39.82 62.30 50000 500.00 

VMPF 19.63 30.64 40.06 169.29 481.11 
Nf  = 1000  

RMSE RMSE Transient Particles Particles 
on-road (m) off-road (m) overshoot (m) vehicle on-road vehicle off-road 

VSMMPF 19.21 35.55 54.19 1000.00 1000.00 
VMPF 19.57 29.67 38.17 337.51 962.03 

Table 5.2: Performance comparison between the VSMMPF and the VMPF for various N1. The 
results were averaged after 3000 Monte Carlo runs for every Nf. 
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Chapter 6 
Conclusions 

Chapter 6 summarises the work presented in the thesis and highlights the main research achieve-

ments. It discusses about the limitations of our work and proposes some possible areas for 

further research. 

6.1 	Summary and achievements of work 

Throughout the thesis we concentrated on particle filtering focusing on the track estimation 

problem. Our basic research orientation had been on designing tracking algorithms which 

could exhibit an improved particle efficiency. For achieving that we proposed techniques that 

either varied appropriately the number of the particles or predicted the particles in state space 

areas which had greater significance in characterising the posterior state distribution. Although 

we dealt primarily with the single target problem, we proposed also two algorithms for the 

multiple target case. 

In chapter 2 and in the first part of chapter 3 we presented background material and a literature 

review on Bayesian estimation, target tracking and particle filtering. We described conventional 

Kalman filtering estimation methods, basic target kinematics and radar models, measurement-

to-track assignment techniques and standard particle filtering algorithms. We included several 

short simulation studies for contrasting the presented methods. 

Next we briefly studied the problem of tracking a target which could dynamically change its 

kinematic behaviour by executing unpredictable abrupt turns, a problem common to the vehicle 

tracking literature. Rather than using a multimodel algorithm we examined the suitability of 

the ALLPF which adopted the auxiliary mechanism of the ASIR and used the local lineariza-

tion predicting logic of the LLPF. Simulation studies quantified the performance gains and 

drawbacks of the ALLPF when compared to the SIR and the ASIR. The experimental results 

suggested that the ALLPF could be used in non-demanding tracking systems which are more 

concerned on the track-maintenance capability than purely the estimation accuracy. 
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We then examined an new approach which utilised the measurement within the particle predic-

tion and association mechanisms of a multitarget tracker. The specific technique employed the 

local linearization method for propagating the particles for all different association hypothe-

ses before the actual association phase. The association function adopted a nearest neighbour 

logic to assign the measurements to the targets. The problem that we had to overcome was 

mainly computational, since for every target we had to predict multiple times its particles be-

fore the association. We addressed that by using a mechanism which allowed the algorithm to 

vary the number of the predicted particles according to the association difficulty. We compared 

the proposed A-MLLPF with the equivalent SIR-based algorithm, the MSIR, in a simulation 

scenario with two crossing targets. The A-MLLPF exhibited and improved performance both 

in terms of estimation accuracy and association capability. Additionally, we showed that its 

varying-particle approach decreased significantly the particle requirements with a minimum 

performance degradation. 

Chapters 4 and 5 were entirely dedicated to the vehicle tracking problem. We studied there 

multiple-model particle filters which exploited road information, basing our work on the VS-

MMPF. In the first part of chapter 4 we presented a novel variation of the VSMMPF which 

enabled the algorithm to vary its particles according to the tracking difficulty. The key idea was 

to use fewer particles in "easy" state subspaces so as to reduce the computational cost. Specif-

ically for our vehicle tracking application, the proposed VP-VSMMPF employed a smaller 

number of particles when the vehicle was travelling along the roads on the monitoring ground 

scene. Simulation results demonstrated the on-road efficiency of the proposed method, since 

even though the tracker was using significantly fewer particles than the standard VSMMPF, it 

managed to attain a very similar tracking performance. These results revealed a certain ineffi-

ciency of the VSMMPF to cope with the system multimodality and made us investigate further 

the problem and finally propose the variable mass approach described in chapter 5. 

In the remaining of chapter 4 we suggested a multi-target structure for the VSMMPF. We en-

hanced the originally single-target VSMMPF with a measurement-to-track logic, enabling it to 

track simultaneously multiple vehicles within a measurement cluttered environment. As cus-

tomary to multi-target tracking, for minimising the workload of the data association function we 

exploited a gating technique. For that, we formed varying-volume ellipsoidal gates around the 

measurements, which would discard highly unlikely assignment pairings. Our gating approach 

was based on the vehicle's particles to allow the function to account for the multimodality of 
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the vehicle's motion dynamics. For measurements-to-track assignment we utilised the JPDA 

method. A simulation analysis demonstrated the suitability of the proposed MGTPF approach 

to the multiple vehicle environment, the efficiency of the gating scheme and quantified the im-

proved performance both in terms of estimation and association accuracy over the equivalent 

unconstrained particle filter which exploited the same gating and association features. 

In chapter 5 we presented a different approach to deal with the inherent multi-modality of the 

vehicle tracking problem in an attempt to improve the particle efficiency. The key contribution 

of the work there was the use of particles with variable masses. Whereas in the VSMMPF 

the number of the particles allocated to its modes was proportional to fixed mode probabilities, 

in the proposed VMPF that number was allowed to vary according to arbitrary user-defined 

criteria. The VMPF compensated for the statistical irregular particle patterns by resealing ap-

propriately the mode particles using the masses. 

The variable-mass approach allowed the proposed vehicle tracker to exploit information from 

the measurement and the mode difficulty for allocating its particles to the modes. Thus more 

particles were allocated to the most probable and/or difficult modes for improving the tracking 

accuracy and furthermore modes which were less probable and/or had easier dynamics obtained 

fewer particles for reducing the computational requirements. Other features of the proposed 

vehicle tracker were an on-road propagation mechanism which used just one particle and a 

Kalman filter (KF) for reducing the computational demands and a technique which enabled the 

algorithm to deal with random road departure angles. 

Simulation results demonstrated the improved efficiency of the VMPF, since in general required 

fewer particles than the VSMMPF for achieving a better estimation accuracy. The variable-

mass architecture enabled the vehicle tracker to incorporate efficiently the measurement infor-

mation within the particle allocation mechanism which in turn resulted in a better transitional 

response when the vehicle was departing from the road. Moreover, the on-road propagation 

mechanism reduced the on-road computational requirements of the algorithm. Based on our 

study we can suggest that the variable-mass approach can be proved a useful component for 

any multi-mode particle filter, allowing for a direct exploitation of any available information 

within the particle allocation mechanism and thus for a better characterisation of the posterior 

state distribution. 
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6.2 	Limitations of work and scope for further research 

In this last section we examine the main limitations of our work and present several areas for 

future research. Our first comment is on the tracking studies presented throughout the thesis. 

Because of the complex nature of the problem it is almost intractable to simulate a realistic 

tracking device. A real-world system, in addition to the actual track estimation logic, is en-

hanced with features accounting for sensor de-biassing and calibration, sensor fusion, track 

initiation, track deletion, out-of-sequence measurement processing, gating, clutter rejection, 

data association, target classification and risk analysis and assessment. In our work we concen-

trated mainly on the track estimation function and just the A-MLLPF from chapter 3 and the 

MGTPF from chapter 4 had basic data association capabilities. It would be thus interesting to 

enhance the algorithms introduced in this work with extra tracking features and test for further 

benefits or drawbacks. 

We continue by addressing each proposed algorithm separately. We start with the ALLPF from 

chapter 2, for which it would be useful to develop variations with more sophisticated weighting 

schemes and contrast them in various model-mismatch simulation scenarios, for gaining more 

insight in their performance efficiency. A direct comparison with a multimodel tracker would 

be also interesting, for analysing the computational requirements and performance differences 

between the single- and multiple-model approach. 

Regarding the multitarget A-MLLPF from chapter 3, we first note that due to its increased 

association complexity if it is to be tested in a realistic scenario, it is essential to employ a 

gating scheme before the association function. But still, and even with a perfect clutter rejection 

capability, the tracker will probably require substantial computational power in an environment 

with a number of very closely-separated multiple targets. An attractive solution thus would 

be to include a logic which depending on the association complexity would switch the local-

linearization prediction technique on or off. When off, an SIR-like propagation mechanism 

could be used instead. Another point concerns the choice of the number of the association 

particles. In our analysis we varied their number according to the measurements distance using 

for simplicity a static profile parameterised according to our test scenario. Although this was 

justified for the purposes of our comparison, it would be attractive to research on a general 

method accounting for arbitrary target positions and system parameters. 

Continuing with the VP-VSMMPF, in our simulation study for varying its particles we chose 
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arbitrary to use 100 particles on-road and 1000 off-road. It would be interesting to conduct 

further analysis which could propose a more "optimal" ratio between the on- and off-road 

particles for lowering more the particle redundancy. This in a way would also quantify the 

particle demands of the different propagation models, which could offer valuable insight for 

future studies. 

Concerning the multi-vehicle architecture that we proposed for the VSMMPF in chapter 4, it 

would be interesting to apply it as well to the VP-VSMMPF and the VMPF. We could assess 

thus the effect of the different particle propagation mechanisms to the association capability of 

the tracker. Although we would not expect to witness any noteworthy differences using the VP-

VSMMPF, the VMPF with its advanced tracking accuracy would most possibly improve the 

association performance. Regarding the proposed gating function, it would worth investigating 

ways to integrate the road constraints within the gates. This additional information would im-

prove the effectiveness of the gating method and therefore would lower further the computation 

load from the data association phase. 

For the VMPF vehicle tracker we note first that in our analysis we just considered roads that 

lied parallel to the x-axis. For completeness it would be useful deriving a generalisation for 

roads at an arbitrary angle. This would be quite straightforward mathematically since it would 

essentially just involve geometrical rotations of the propagation models of the particles. For the 

purpose of clarity as well, since we aimed mainly to examine the variable mass technique itself, 

we did not consider junction or bridge crossing capabilities for our tracker. The incorporation of 

these, especially of the first, would be necessary for dealing with a more realistic road structure 

scenario. 

A more attractive problem would be to propose a more refined on-road propagation mechanism 

for the VMPF, particularly regarding the pseudo-measurement generation and the KF use. A 

further analysis studying the Gaussianity approximation for the measurement noise along the 

on-road cross section, could also assess the validity of our approach. Moreover, the compari-

son of the proposed tracker with a variation which instead of pseudomeasurements and the KF 

would use just an EKF would be interesting. We could thus examine when the linearity approx-

imation of the EKF could result in a better performance than our Gaussianity assumption. The 

incorporation of the variable mass technique to other multiple model estimation applications 

and a performance analysis in a range of different scenarios could also be proved useful for 

assessing the strengths and weaknesses of the method. 
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