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Preface

Do not be desirous of having things done quickly. Do not look

at small advantages. Desire to have things done quickly pre-

vents their being done thoroughly. Looking at small advantages

prevents great affairs from being accomplished.

— Confucius (551–479 B.C.)

T
his thesis describes the research I carried out as part of my Ph.D. study at the
Erasmus University Rotterdam. The actual research was done at the Erasmus
MC – University Medical Center Rotterdam, within the Biomedical Imaging

Group Rotterdam (BIGR). Without the support of the BIGR members and the people
from the Departments of Medical Informatics and Radiology, my staying and research
would not be as pleasant and enjoyable as they were.

I would like to acknowledge the people who have made the completion of this
dissertation possible. First of all I extend my heartfelt gratitude to my promotor
Prof. Wiro Niessen and co-promotor Erik Meijering, for offering me a Ph.D. position
in the relatively “young” at that time but full of potential BIGR. Your vital encour-
agement and support, understanding and assistance made my scientific research go
very smooth and without any frustrations. Even the criticism, which was always con-
structive, encouraged and challenged me through these years. Both of you guided me
through the dissertation process, never accepting less than my best efforts. The sci-
entific freedom that you gave me in the very beginning allowed me to study different
approaches and search for new possibilities that could be used to achieve our goals –
find solutions to tracking problems in bioimaging. Rather than stick with fine-tuning
of the existing, more or less working methods for our application, that freedom led me
to acquaintance with Particle Filters, which are the primary subject of this thesis. At
that time those techniques were recently introduced in some other fields, but had not
been applied for biological applications. The design and adaptation of such PF-based
techniques to subcellular motion analysis kept me busy for the last four years and all
the findings during that time are presented in this book.

In view of the biological datasets used in this thesis, several acknowledgments
are in order. I would like to thank people from the Department of Cell Biology and
the Department of Pathology, namely Niels Galjart, Katharina Draegestein, Anna
Akhmanova, Ilya Grigoriev, Adriaan Houtsmuller and Martin van Royen. It was a
great experience to work with you and transform that collaboration into a few journal
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papers, some of which are published, others are underway. During the development of
the methods described in this book, it was extremely interesting and useful to discuss
lots of practical aspects of fluorescence microscopy imaging and the background of all
the biological experiments with experts like you.

I would like to acknowledge Marco Loog and Hans Driessen, who are not directly
related to the Erasmus MC, but who had some influence on the work presented in
this book. The brainstorm sessions and discussions with you were always encouraging
and interesting. It is a pity that only a few of those ideas have materialized, mainly
due to limited time, hopefully there will be more time for that in the future.

I am indebted to all the people from BIGR: Albert, Azadeh, Coert, Danijela,
Empar, Esben, Fedde, Henri, Hortense, Jifke, Leijla, Marcel, Marcel, Marius, Marleen,
Mart, Michiel, Nóra, Oleh, Rashindra, Reinhard, Renske, Rik, Sennay, Stefan, Theo.
Staying in such scientifically fertile and socially enjoyable environment was of great
help during my Ph.D. trajectory. Thanks also go to all the staff of the Departments of
Medical Informatics and Radiology, especially to Désirée de Jong and Petra ’t Hart-
Assems, who made my work-related life easier by taking care of all the bureaucratic
issues.

Most especially, I wish to thank my parents, Olha and Vasyl and my brother
Roman, for their support through all these years, for their encouragement and patient
love that enabled me to achieve this goal. Finally, very special thanks go to my wife
Nataliya. I feel very lucky to have all of you in my life, therefore I wish to thank God,
who made all these things possible.

Ihor Smal
Rotterdam, February 2009
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Chapter One

Introduction

There are two possible outcomes: If the result confirms the hy-

pothesis, then you’ve made a measurement. If the result is con-

trary to the hypothesis, then you’ve made a discovery.

— Enrico Fermi (1901–1954)

1.1 Studying Intracellular Dynamics

T
he past decades have witnessed development of groundbreaking tools and tech-
niques for imaging and studying cellular and intracellular structures and pro-
cesses. The advent of confocal microscopy in the early sixties accompanied by

discovery of fluorescent proteins has triggered the development of new imaging tech-
niques and revolutionized the way biologists study cells and the way they function.
Currently, fluorescence microscopy imaging is still the most important and frequently
used tool for studying intracellular dynamics with a high spatial and temporal resolu-
tion. Proper understanding of cellular and molecular processes is of great interest to
academic researches as well as pharmaceutical industries. The possibility to influence
those processes in a controlled way is a prerequisite to combat diseases and improve
human health care, which will have profound social and economic impact.

In fluorescence microscopy, the studying of the dynamical processes within a cell is
usually done by labeling intracellular structures of interest with fluorescent proteins
and following them in time using time-lapse imaging (see Fig. 1.1). The observed
dynamical processes can be either studied qualitatively or using some quantitative
measures that characterize intracellular behavior. Tracking of subcellular structures
in time leads to creating of so called life histories, from which motion parameters such
as velocity, acceleration and/or intensity changes in time can be easily estimated.

In practice, fluorescence microscopy, which in many laboratories become a univer-
sal tool for studying cellular and intracellular life, has some inherent limitations. One
of them is autofluorescence. Autofluorescence describes the emission of fluorescence
from naturally fluorescent molecules other than the fluorophore of interest. In fluo-
rescence microscopy imaging, it is a significant source of background noise in images,
which can be reduced either by special sample preparation or by background subtrac-
tion using image processing methods [185]. Another limiting factor is photobleaching.
Photobleaching is the photochemical destruction of a fluorophore, which complicates
the observation of fluorescent molecules, since they will eventually be destroyed by the
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Figure 1.1. Examples of images acquired for different biological studies based on
GFP labeling and fluorescence microscopy. The images are single frames from 2D
time-lapse studies of activity of microtubule plus-ends (top left), microtubule plus-
ends in neurons (top right), Rab5 (bottom left) and peroxisomes (bottom right).

light exposure necessary to stimulate them into fluorescing. This is especially prob-
lematic in time-lapse microscopy, where the fluorescence signal is imaged in time,
but due to the photobleaching fades permanently lowering the image quality. On the
positive side, however, these limiting phenomena serve as a basis for many advanced
fluorescence measurement techniques. An example of this is fluorescence recovery af-
ter photobleaching (FRAP), which allows to determine diffusion coefficients, binding
and dissociation rates [156, 185]. With this technique, the region of interest within a
cell is photobleached, and the subsequent recovery in the bleached region as a result
of movement of nonbleached fluorescent molecules from the surrounding areas is ob-
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served and studied. By measuring the extent and speed to which this recovery occurs,
conclusions can be drawn about diffusion of proteins within a membrane or protein
turnover in complexes.

To study the localization of the photobleached molecules, sometimes a second
fluorophore that remains visible during the imaging is added to the target subcel-
lular structure. This process is called fluorescence localization after photobleaching
(FLAP). Another technique, complementary to FRAP, is termed fluorescence loss in
photobleaching (FLIP) [156,185]. This procedure involves repeated photobleaching of
a cell region, which leads to permanent loss of the fluorescence light signal throughout
the whole cell. If the loss is indeed observed, it indicates that free exchange between
the molecules occurred between the bleached region and the rest of the cell. Other-
wise, if there is no loss in the signal over the whole cell, the molecules in the bleached
region are isolated and specifically localized in distinct cellular compartments.

A relatively new technique, which is used to study protein interaction, is fluores-
cence energy transfer (FRET) [156,185]. FRET involves the radiationless transfer of
energy from a donor fluorophore to an appropriately positioned acceptor fluorophore
in a nanometer range. Such colocalization techniques are used to reveal functionally
related molecules, and map the potential protein-to-protein interactions with high
precision providing better understanding of how the intracellular dynamics is regu-
lated, and thereby establishing its relationship to important disease processes. Other
frequently used techniques are fluorescence lifetime imaging (FLIM), fluorescence in
situ hybridization (FISH) and fluorescence ratio imaging (RI) [185].

Current biological studies using time-lapse fluorescence microscopy imaging re-
quire analysis of huge amounts of image data. A large-scale analysis of the dynamics
of subcellular objects such as microtubules or vesicles cannot possibly be done without
automatic tracking tools. The possibilities to study new aspects of the intracellular
dynamics opened by modern imaging tools in combination with advanced image pro-
cessing techniques impose high standards on robustness and accuracy of the tracking
techniques for quantitative motion analysis. Moreover, there is demand for computa-
tionally fast methods that are capable of processing large amounts of data, which are
typical for high-throughput experiments.

Tracking of multiple objects in biological image data is a challenging problem
largely due to poor imaging conditions and complicated motion scenarios. Existing
tracking algorithms for this purpose often do not provide sufficient robustness and/or
are computationally expensive. By using such automatic tracking tools, biologists also
eliminate the bias and possibly the systematic errors they introduce during manual
tracking due to intuitive selection of relatively small subsets of objects of interest
that are either nicely imaged or exhibit typical or expected motion patterns. Thus,
automatic tracking methods capable of following large number of objects in time and
classifying their dynamics, are of major interest.

1.2 Fundamental Limitations in Microscopy

In light microscopy, several factors complicate quantitative data analysis. In practice,
careful design of experiments, the imaging system, and selection of appropriate tools
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for the analysis can greatly reduce the influence of some of them. Nonetheless, light
microscopy also has fundamental limitations that cannot be overcome and, most of
the time, in real experiments biologists are inevitably facing those barriers. One of
them is the limited spatial resolution of the microscope – there is a fundamental
maximum to the resolution of any optical system due to diffraction. The diffraction
limit depends on the emission wavelength, the numerical aperture of the objective
lens, and defines the microscope point-spread function (PSF), which describes the
response of an imaging system to a point light source. The Fraunhofer-diffraction
limited PSF (normalized to unit magnitude at the origin) of a wide-field fluorescence
microscope (WFFM) with circular aperture is given by [59]

PSF(r, z) =

∣

∣

∣

∣

∫ 1

0

2J0(αrρ) exp
(

−2iγzρ2
)

ρdρ

∣

∣

∣

∣

2

,

where

α =
2πNA

λ
and γ =

πNA2

2λn
,

and r =
√

x2 + y2 denotes the radial distance to the optical axis, z is the axial
distance to the focal plane, i the imaginary unit number, J0 the zero-order Bessel
function of the first kind, NA the numerical aperture of the objective lens, n the
refractive index of the sample medium and λ the wavelength of the light emitted
by the specimen. For a laser scanning confocal microscope (LSCM), the PSF is a
combination of the excitation and emission intensity distributions. In the case of
ideal confocality (infinitely small pinhole size) and assuming that the wavelengths of
the emission and excitation light are approximately the same, the LSCM PSF reduces
to the product of two WFFM PSFs [190]. In practice, a Gaussian approximation of the
PSF is used, which is favored for computational reasons but is nevertheless almost as
accurate as more complicated PSF models [55, 190]. The approximation (normalized
to unit magnitude at the origin) is given by

PSFg(r, z) = exp

(

− r2

2σ2
r

− z2

2σ2
z

)

,

where σ2
r and σ2

z (for a confocal microscope) are given by [190]

σr = 0.16
λ

NA
and σz = 0.55

λn

NA2 .

In this case, for noise-free images, the lateral and axial distances of resolution, dR
xy

and dR
z , for equally bright fluorescent tags is given by the Rayleigh distances [69]

dR
xy = 0.56

λ

NA
and dR

z = 1.5
λn

NA2 .

For typical microscope setups the lateral resolution is on the order of 200 nm,
and the axial resolution, which is always worse, is on the order of 600 nm. This
resolution barrier is always encountered in experiments where subcellular structures
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(microtubules, vesicles, etc.) are studied. Due to subresolution sizes of those objects
(< 10 − 20 nm), they appear in the images as blurred spots. Attempts to overcome
these limits range from engineering of new optical systems, such as multiphoton mi-
croscopy, stimulated emission and depletion (STED) microscopy, or 4Pi microscopy,
to applying sophisticated post-acquisition computational analysis methods that do
not require any modifications of the imaging system [60]. In the latter case, decon-
volution algorithms and super-resolution methods are used, which necessarily exploit
the prior knowledge about the optical system and/or the image formation process.
A number of advanced deconvolution methods are available for image restoration in
microscopy imaging [24,65,109,129]. While there are suggestions in the literature to
always deconvolve the image data if possible [24], the question whether deconvolution
is beneficial in fact depends on the application. Most reports on tracking of subcellular
structures do not mention the use of deconvolution, because the localization of such
diffraction limited objects can be done with much higher accuracy and precision then
the resolution of the imaging system using super-resolution methods [2, 35, 118, 162].
On the other hand, these two (deconvolution and super-resolution) approaches for
post-acquisition image enhancement are not completely independent. Some super-
resolution algorithms, for instance, are based on fitting (a model) of the PSF – to
some degree this is in fact deconvolution, carried out implicitly in the process.

The second factor that complicates the data analysis is noise, which is a stochastic
phenomenon that cannot be compensated for, contrary to systematic distortions such
as blurring. In light microscopy, the imaging is commonly done using a charge-coupled
device (CCD) camera, which is a semiconductor device that converts the incoming
light photons first to electrical charges and then to voltages which are read out from
the device, quantized and stored as a digital image. Unfortunately, every step of this
imaging process is influenced by different noise sources: photon noise, thermal noise
(dark current and hot pixels), readout noise (on-chip electronic noise) and quantiza-
tion noise [179]. Photon noise, which is due to the quantum nature of light, follows
the Poisson distribution and is signal/amplitude dependent. Since the Poisson distri-
bution approaches the Gaussian distribution for large numbers, the photon noise in a
signal will approach the normal distribution for large numbers of collected photons.
Thermal noise is also Poisson distributed but can be greatly reduced by cooling the
CCD chip. Readout noise, the influence of which becomes significant only for high
readout rates (>1MHz), is caused by the on-chip electronics. This source of noise is
Gaussian distributed and independent of the signal. Quantization noise is caused by
the conversion of the analog signal (voltage) to digital representation. This noise is
additive, uniformly distributed, and with modern analog-to-digital converters is very
low and usually ignored. In practice, the influence of all of these noise sources (except
for the photon noise) can be made negligible by proper electronic design and care-
ful operation conditions. Thus, photon noise is the main and fundamental limiting
factor that defines the signal-to-noise ratio (SNR) of the image data in microscopy
imaging. Low SNRs are especially typical in live-cell fluorescence microscopy, since in
most experiments the imaged light signal is quite weak – high excitation light rapidly
quenches fluorescence and may disturb intracellular processes being studied.

A final complicating factor worth mentioning here is the large variability of biolog-
ical image data. This especially complicates the development of universal automatic
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methods for quantitative image analysis. In molecular biology, which is a highly ex-
perimental field, the absence of standardization in the acquisition and data storage
protocols leads to image data of strongly varying quality, even within one type of
experiments. This heterogeneity negatively influences the validation of the automatic
techniques for studying the intracellular processes and lowers the reproducibility of
new results and findings. All these factors put high demand on the design of au-
tomated image analysis techniques. This is in contrast with medical investigations,
where routine clinical studies are based on standardized imaging protocols, leading
to more consistent image quality.

1.3 Tracking in Fluorescence Microscopy

The quantitative analysis of time-lapse image sequences that visualize intracellular
processes usually requires tracking of multiple objects over time. The majority of the
automated tracking techniques described in the literature and available in practice
process the data by following a few well established subsequent steps: preprocessing
the image data, detecting the objects of interest independently in every image frame,
and creating the trajectories by linking the sets of detected objects in subsequent
frames. Extracted trajectories are further used for estimation of important parameters
that characterize the intracellular dynamics.

1.3.1 Image Preprocessing

The main purpose of preprocessing is to enhance the image quality and, if necessary,
compensate for global cell motion. Recent comparative studies demonstrated that the
accuracy of commonly used tracking methods is mainly determined by the SNR of the
image data [32]. While different SNR measures exist, here we define the noise level
as the standard deviation of the intensities within the object, not the background.
Correspondingly, the SNR is defined as the difference in intensity between the object
and the background, divided by the standard deviation of the object noise [32]. Due to
non-Gaussian noise statistics in the images, apart from linear Gaussian filtering [159]
or wavelet-based denoising [108, 154], frequently nonlinear methods, such as median
filtering [18] or anisotropic diffusion filtering [168] are used.

For studying intracellular dynamics, it may sometimes be necessary to compensate
for the global motion of the cell, so as not to over- or underestimate local motion
parameters. For this purpose, rigid or nonrigid image registration can be used [123,
150], which came to biological imaging mainly from medical image analysis, where it
has been used on a regular basis for years. Another approach is to track the cells over
time using existing cell tracking methods [43, 44, 192] and derive the final estimates
and conclusions by combining both (cellular and intracellular) sources of information.

1.3.2 Object Localization

After the preprocessing step, object detection methods are applied to the image data
in order to locate objects of interest and accurately estimate their positions. The
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simplest detection algorithms are based on image intensity thresholding with the un-
derlying assumption that the real objects are brighter than background structures. In
the image regions that indicate object presence after thresholding, the object position
can be estimated using the centroid method [26, 32]. For a single axis in a 2D image
I, the estimate is given by

xc =
∑

x

∑

y

xI(x, y)/
∑

x

∑

y

I(x, y),

where I(x, y) is the image intensity value at position (x, y) and the summation is
done over a small image region (mask) that contains the object. Depending on the
mask size and image quality, in order to eliminate the bias in the estimated position
towards the center of the mask, sometimes only positive differences between the inten-
sity values and the threshold for each pixel within the mask are used in the centroid
method [32]. For reasonable performance, such simple methods normally require im-
ages with relatively uniform background and high SNR, which makes them unsuitable
for most live-cell imaging experiments.

More advanced detectors use additional features, such as object size, shape, vol-
ume, etc., for better discrimination from irrelevant background structures. By using
additional features, these methods better model the object appearance and try to fit
the models to the image data using some similarity measures. The model fitting is
usually done by minimizing a predefined error measure (e.g. least squares fitting), or
by measuring how good the model correlates with the data. The latter can be done,
for example, by computing the normalized covariance for the small intensity template
T that describes the object appearance and the original image I. This method is an
extension of simple correlation with the template T [32], which originally cannot deal
with nonuniform backgrounds. In 2D, the normalized covariance is given by1

C(x, y) =

n
∑

i=−n

m
∑

j=−m

(I(x+ i, y + j) − Ī(x, y))(T (i+ n, j +m) − T̄ )

MI(x, y)MT

,

where T (i, j) is a (2n + 1) × (2m + 1) intensity template, T̄ the mean value of the
template intensity, Ī(x, y) the mean value of the image intensity in the area overlap-
ping with the template, MT the variance of the template intensity, and MI(x, y) is
the variance of image intensity in the area overlapping with the template [32]. The
local maxima in the resulting map C(x, y) indicate the image regions which are highly
similar in appearance to the template. By applying a threshold to C(x, y), these re-
gions can be extracted and the object positions can be computed using the centroid
method. The normalized covariance can cope with nonuniform background intensity
and the only limiting assumption is the fixed and known shape of the searched object.

Another similarity measure that can be used to measure the correspondence be-
tween the object appearance template T and the spatial intensity distributions in the
image data is a sum of absolute differences (SAD). In this method, the SAD map is

1The extension of this and subsequent formulae to 3D is straightforward.
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computed for all possible shifts of the template T in the image as

SAD(x, y) =
n
∑

i=−n

m
∑

j=−m

|I(x+ i, y + j) − T (i+ n, j +m)|.

The minima in the map SAD(x, y) correspond to the best fits. For multiple object
detection the local minima are counted as found objects. Compared to covariance
based detection, this method is highly sensitive to intensity scaling of the image and
template, which can cause problems in practice since the fluorescent tags are bleaching
during acquisition.

For the described correlation based methods, the accuracy of the position esti-
mates is on the order of one pixel, since the shifts of the template are calculated on
a discrete pixel grid. The accuracy of the object localization can be substantially
increased by using detection methods that fit the object appearance model to the
image data. Since the objects under consideration are smaller than the resolution of
the imaging devices, the model of the PSF (for example the Gaussian approximation)
can be used in order to model object appearance. For multiple object detection in 2D
images, the fitting is performed in all the regions of the image where the probability
of object existence is high, by minimizing the sum of squared differences

MSEg(x, y,A,B) =
∑

i

∑

j

(

I(i, j) −A exp

(

− (i− x)2 + (j − y)2

2σ2

)

−B

)2

.

The parameters that locally minimize the MSEg, (x, y,A,B), are taken as the features
of the found object [32, 161]. This approach is computationally expensive, but it
demonstrates the highest accuracy in estimating the object position [32]. The latter
conclusion comes from the study [32], where the approaches described above were
quantitatively compared under different controlled conditions using artificial 2D time-
lapse image sequences and is true only in the case of high SNR image data. For
low SNR levels (< 5), which are not uncommon in live-cell fluorescence microscopy
imaging, the PSF model fitting breaks down [161].

1.3.3 Solving the Correspondence Problem

Once the objects have been detected in the image sequence, sets of estimated posi-
tions {{rk

t }Mt

k=1}T0
t=1 are available for the next processing step, where rk

t = (xk
t , y

k
t , z

k
t )T

defines the position of object k in frame t, Mt is a time varying number of objects
per frame, and T0 is the number of frames in the image sequence. In order to ob-
tain trajectories, the correspondence between the object positions in different frames
needs to be established. Solving the correspondence problem is not a trivial task. In
our application, the objects of interest are more or less identical and because of that
searching for the corresponding objects in different frames on a basis of appearance
information will not produce good results. In practice, the detection procedures are
imperfect, which leads to spurious and missing objects that influence the accuracy
of the linking procedure. Moreover, real objects can move densely together, be tem-
porarily occluded and/or appear and disappear from the field of view during imaging.
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Frequently, such ambiguous scenarios cannot be correctly dealt with using the exist-
ing tracking algorithms, and sometimes such situations confuse even expert biologists.
This is especially the case when complicated, essentially 3D intracellular processes are
studied using 2D confocal slicing.

In the case of almost indistinguishable objects, the linking procedure is mainly
based on assumptions about the underlying object motion. The most frequently used
motion models are the nearest-neighbor model (NNM) and the smooth motion model
(SMM) [33, 171]. The NNM does not incorporate velocity information and is solely
based on positional information. For object k in frame t and candidate object s in
frame t + 1, the score cNN

t (k, s) is defined as cNN
t (k, s) = ‖rk

t − rs
t+1‖. The object

pair with the lowest score has the highest chance to be linked. If an object stays in
one place, the score cNN

t (k, s) = 0. The SMM, on the other hand, assumes that both
velocity direction and magnitude change slowly from frame to frame. For this model,
the corresponding score is defined as

cSM
t (k, s) = w

(

1 − vk
t · vks

t

‖vk
t ‖‖vks

t ‖

)

+ (1 − w)

(

1 − 2
√

‖vk
t ‖‖vks

t ‖
‖vk

t ‖ + ‖vks
t ‖

)

,

where vk
t = rk

t − rk
t−1, vks

t = rs
t+1 − rk

t , and w is a weighting coefficient. The
first term in the expression for cSM

t (k, s) accounts for the angular deviation of the
displacement vectors by computing their dot product. The second term accounts for
the speed deviation. Using this score, a candidate object in frame t + 1 is searched
that best satisfies the uniform motion assumption. If the object moves uniformly,
rk

t −rk
t−1 = rs

t+1−rk
t , and cSM

t (k, s) = 0. If applicable, appearance similarity measures
can be used in addition to the described spatial proximity criteria. Furthermore, the
combination of these measures can be used to define some probability of assignment
as a score, e.g.

cPt (k, s) = exp
(

−(rs
t+1 − rk

t )T Σ(rs
t+1 − rk

t )
)

exp

(

− (Is
t+1 − Ik

t )2

σ2
I

)

,

where Is
t+1 and Ik

t are the intensities of objects s and k in the corresponding frames,
and Σ and σ2

I are the parameters that account for small deviation in displacement
and variation in intensity, respectively.

In order to link the objects and form the trajectories, the described assignment
scores can be used in several ways. First, there are greedy algorithms that make
decisions about the best assignment by taking into account the score values only in
the current frame. The disadvantage of the greedy search is its tendency to stop in
the first local minimum of the searched space. At the same time, if the density of the
objects in the image data is relatively low, and the motion is either slow or uniform,
so that the NNM or SMM are appropriate, then the greedy approach is a good choice
(also because it is computationally quite cheap). In general, the linking procedures
can operate either globally in space, where the assignment is performed jointly for all
objects in one frame, or globally in time, depending on how many frames are taken
into account at the same time for similarity measurement, or both (be global in space
and time). Most of the time, a greedy assignment is done first. Then, the iterative
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procedures start to make changes in these assignments and check how the global score
behaves (if it is lowered).

Many linking techniques solve the correspondence problem in a spatially global
manner, by defining a global score that is afterwards minimized [33, 52, 74, 132, 166,
171]. For example, some form of global optimization can be accomplished using graph
theory [132]. This approach is implemented in a publicly available tracking software
ParticleTracker, the performance of which is evaluated in Chapter 3. Here, linking
is based on finding the spatially global solution to the correspondence problem in a
given number of successive frames. The solution is obtained using graph theory and
global energy minimization [132]. The linking also utilizes the zero- and second-order
intensity moments of the object intensities, which helps to resolve object intersection
problems and improves the linking results.

Another solution to the correspondence problem can be obtained by using dy-
namic programming [128]. With dynamic programming, the total cost, which is in
this case the weighted sum of cNN

t and object intensity It, is optimally minimized in
a temporally global way. With this approach, tracking of a single object through the
entire image sequence is possible [128]. Multiple object tracking can be achieved by
tracking the objects one by one, which is not an attractive and workable solution for
image data with large numbers of interacting objects.

Recently presented advanced linking techniques use fuzzy-logic and linear as-
signment problem (LAP) frameworks. In the former approach [74], four cost func-
tions that measure the object similarity in consecutive frames are introduced: two of
them are similar to the two summands in cSM

t , and two additional costs are based
on the objects appearance, cIt (k, s) = 1 − |Ik

t − Is
t+1|/|Ik

t + Is
t+1| and cSt (k, s) =

1 − |Ak
t −As

t+1|/|Ak
t +As

t+1|, where Ik
t is the total intensity and Ak

t is the total area
of the spot k in frame t. Further, the fuzzy-logic system is employed to estimate
the similarity between the object in frame t (parent object) and a set of candidate
objects in frame t+ 1. Fuzzy logic is a form of multi-valued logic derived from fuzzy
set theory to deal with reasoning that is approximate rather than precise. A set of
if-then rules is introduced, where each rule uses the values of the four similarity mea-
sures and outputs a real value between 0 and 1. This gives the possibility to extend
the binary concept that a parent object is similar (“1”) or not similar (“0”) to a can-
didate object to a broader range: “least-similar”, “median-similar”, “most-similar”,
etc. The outputs of all the rules are aggregated and a common score is derived for
each candidate object. The parent object is connected with the candidate object that
has the highest score. With this approach, fuzzy rule selection plays an important
role and it strongly affects the performance of the tracking algorithm. Additionally,
in the described algorithm [74], the linking is performed separately for each object,
so the whole procedure is global neither in time, nor in space.

One of the most recent approaches in the literature [72] constructs the set of tra-
jectories from the set of detected objects in two steps. First, the greedy assignment
between the consecutive frames is performed using the cost function based on the dis-
tance between two objects. This step produces many short and broken tracks. The
second step attempts to link the track segments (close the gaps) and deal with track
splitting and merging using additionally the object intensity information. For this
stage, corresponding closing, splitting, and merging cost functions are defined, which
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have to be tailored to the specific application. Although the first step is greedy, solv-
ing the subsequent track segment optimization problem is done globally, overcoming
the shortcomings of the previously described techniques. The method was shown to
perform robust tracking of multiple objects under high-density conditions [72]. The
shortcoming of this and the previously described method is again the separation of
the detection and tracking procedures.

A somewhat different solution to the correspondence problem is presented in [17].
Rather than adopting the usual frame-by-frame approach, the authors consider the
time-lapse 2D+t image sequence as one 3D spatiotemporal volume, where the tracks
appear as 3D curves. The correspondence problem is then solved by finding the
geodesics in a Riemannian metric computed from the 3D image. Similarly to the
method described in [72], the cost optimization procedure, which is global only in
time, is split into two steps. After the object detection, the nearby objects are grouped
into short trajectories that are not complete due to possibly poor detection results.
Then, partial tracks are linked with minimal paths to constitute complete tracks.
The construction of minimal paths takes into account information from both image
features and tracking constraints (maximum object displacement, etc.). Moreover,
each time a minimal path is added to a trajectory, image information is removed
along the path in order to avoid trajectories to merge.

The quality of the solution to the correspondence problem highly depends on the
nature of the dynamical processes that were studied in the experiments, for example
the number of objects, density of objects, type of motion, etc. Many of the described
methods perform poorly when applied to biological data because of too simplistic
assumptions of object behavior, which cannot cope with the real heterogeneity of
subcellular dynamics. Additionally, due to separation of the tracking procedure into
detection and linking, for low quality image data, the linking methods have to deal
with lots of spurious objects detected in the first stage. Commonly, detectors do
not specify any confidence measure for each detected object, that could be used to
distinguish real objects from possible false detections. If that would be possible, the
results of linking could be improved. Such confidence measure, for instance, can be
specified in terms of variance in the object position measurements and is frequently
used in probabilistic tracking approaches, which are the focus of this thesis.

1.3.4 Probabilistic Methods for Tracking

Solving the correspondence problem and creating tracks can also be described as a
state estimation problem and solved using probabilistic methods [9,126]. Probabilistic
tracking is a state estimation problem, where the object hidden state xt is estimated
in time based on previous states, noisy measurements zt, and prior knowledge about
object properties. Mathematically, it can be formulated as

xt = ft(xt−1,vt), zt = ht(xt,ut), (1.1)

where ft and gt are possibly nonlinear state transition and observation models respec-
tively, and vt and ut are white noise sources. If the measurement-to-object association
is known, (1.1) can be solved either exactly (when ft and gt are linear and vt and ut
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are Gaussian) using the Kalman filter, or (in the general case) using SMC approxima-
tion methods [9]. The solution is the posterior probability distribution function (pdf)
p(xt|z1:t), where z1:t = {z1, . . . , zt}, from which minimum mean square error (MMSE)
or maximum a posteriori (MAP) state estimations can be easily computed [9].

In order to obtain the trajectory estimate for one object using the Kalman filter,
the state vector xt, which may include object position, velocity, acceleration, etc., and
which cannot be directly measured is estimated on the basis of noisy measurements
z1:t, for example extracted positions r1:t using detection methods described above.
It is assumed that the state transition and the observation process are specified as
follows,

xt = Ftxt−1 + vt, zt = Htxt + ut, (1.2)

where Ft andHt are system matrices defining the linear functions, and the covariances
of vt and ut, which are statistically independent random variables with zero mean,
are respectively Qt and Rt. The solution of (1.2), p(xt|z1:t), in this case is given by
the following recursive relationship:

p(xt−1|z1:t−1) = N (xt−1|mt−1|t−1, Pt−1|t−1),

p(xt|z1:t−1) = N (xt|mt|t−1, Pt|t−1), (1.3)

p(xt|z1:t) = N (xt|mt|t, Pt|t),

where

mt|t−1 = Ftmt−1|t−1,

Pt|t−1 = Qt−1 + FtPt−1|t−1F
T
t ,

mt|t = mt|t−1 +Kt(rt −Htmt|t−1),

Pt|t = Pt|t−1 −KtHtPt|t−1, (1.4)

and where N (.|m, P ) is a Gaussian distribution with mean m and covariance P , and

St = HtPt|t−1H
T
t +Rt,

Kt = Pt|t−1H
T
t S

−1
t .

For multiple object tracking the same framework can be used, but the tracking
in this case is complicated by the ambiguous measurement-to-object associations –
for every measurement given by the detector at time t it is necessary to know which
object it has to be used for to update the predicted state in (1.4). In practice that
information is not available. The most efficient tracking approaches that are able to
deal with such missing information and still perform tracking, are the multiple hy-
pothesis tracker (MHT) and the joint probabilistic data association (JPDA) filter [15].
The former builds a tree of hypotheses about all possible measurement-to-track as-
sociations, and because of that is not suitable for tracking large numbers of objects.
The standard JPDA filter is designed for linear Gaussian models in (1.1) and uses all
measurements to update each track estimate [15]. For practical reasons, measurement
gating is often used, which selects for each object the subset of measurements that
most likely originated from the object. Contrary to applications where sensors pro-
vide information about the number of objects and their positions, JPDA cannot be
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applied directly to our applications, because actual position or velocity measurements
are not available, but need to be derived from the image data first.

For analysis of subcellular dynamics a few approaches have been proposed that
implement the described probabilistic framework [52, 146]. The first one extends the
JPDA filter by using the h-dome detector (see also Chapter 2) and is shown to perform
accurate and robust tracking of microtubules, which are growing with almost constant
velocity. The second approach [52] implements the idea of interacting multiple model
(IMM) filtering [11], which was initially designed only for linear Gaussian models.
This type of filtering is useful when it is necessary to track objects that exhibit
different types of motion patterns in the same image sequence. Here, several motion
models Ft are employed, which predict the object position from frame to frame using
the Kalman filter. The method was shown to perform extremely well in comparison
with standard Kalman filtering for tracking of endocytosed quantum dots. In Chapter
4, a PF-based method is developed that generalizes the idea of IMM.

With the probabilistic tracking approaches, especially in the case of multiple
object tracking, it is also beneficial to specify any prior knowledge about object in-
teractions, additionally to the modeling of the object dynamics. Tracking approaches
that assume a one-to-one measurement-to-track assignment (as in most of the deter-
ministic tracking approaches and some of the probabilistic ones), fail to resolve the
most ambiguous track interaction scenarios, where two or more objects come in close
proximity to each other and produce only one measurement for a few time frames.
By incorporating prior knowledge about the objects to be tracked (for example, mi-
crotubules are rigid structures that cannot easily bend, and because of that their
direction of movement before and after the interaction should be approximately the
same), the rate of incorrectly switched tracks can be greatly reduced [141,146].

1.4 Analyzing Tracking Results

In time-lapse microscopy, the final step of the analysis consists of interpretation of
the detection and tracking results in order to confirm or reject hypotheses that were
tested during the experiment, or qualitatively or quantitatively look for new findings
that would lead to new hypotheses and correspondingly to new experiments. Before
applying any quantitative techniques, some qualitative verification of the obtained
tracking results might be useful. This is especially true for low SNR image data,
where lots of automated techniques either break down or produce nonsensical tracks.
For this purpose, modern computer graphics rendering and visualization techniques
can be used (see an example in Fig. 1.2) so as to assist in the verification of the
tracking and give some initial impression about the possible trends in the data and
which quantitative methods for the analysis to choose [54].

Once the results of tracking are verified, a multitude of measures about the geome-
try of the trajectories and additionally the object appearance can be readily obtained.
An example is the total distance traveled by the object or the mean square displace-
ment, which are typically used to study the diffusion characteristics of the motion
of individual objects [8, 122, 128, 131, 158]. Other commonly studied parameters are
average and instantaneous velocities. Instantaneous object velocity is estimated as
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Figure 1.2. Different visualizations of time-lapse image data: combined visualiza-
tions of image frames and tracks giving a qualitative impression of the accuracy and
consistency of the tracking results (top), and spatiotemporal view of tracks from an
artificial 3D time-lapse image sequence (data not shown), with the time coordinate
indicated along the trajectories by small spheres (bottom).

the distance traveled by the object between two consecutive frames divided by the
corresponding time interval. Average velocity is computed as the sum of the frame-
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to-frame distances traveled, divided by the total time elapsed. In many experiments
it is enough to estimate the average velocity either per track or a number of tracks
(and the variance of those estimates) in order to derive some conclusions about the
hypotheses being tested. On the other hand, with current advanced imaging tech-
niques, biologists are eager to inspect and analyze the intracellular motion in more
detail. This can be achieved by studying the instantaneous velocities and their dis-
tributions [92, 167–169]. Contrary to the average velocity estimate, histograms of
instantaneous velocities provide insight into the possible heterogeneity of the intra-
cellular motion and reveal the most dominant modes of motion. Additionally, object
acceleration can be easily estimated, but is rarely studied.

Ideally, automated tracking techniques in molecular biology should facilitate the
study of behavioral heterogeneity, to find and classify distinctive motion patterns
(or confirm absence of such) depending on the experimental conditions. Knowing
the typical behavior patterns of “healthy” molecular processes, it will be much eas-
ier to understand abnormal behavior that leads to disease and to define strategies
that return the deviated system to its normal state. Therefore, comprehensive and
automated analysis of large scale experimental data is especially important.

1.5 Thesis Outline

The subject of this thesis is tracking of multiple subcellular objects using time-lapse
microscopy imaging. The main focus is on the development of robust and accurate
automatic tracking algorithms, built within a probabilistic framework. The Bayesian
tracking framework, which recently has become popular in other research fields and
was shown to outperform deterministic methods, is capable of solving complex estima-
tion problems by combining available noisy measurements (images, extracted object
positions, etc.) with prior knowledge about the underlying object dynamics and the
measurement formation process. Nevertheless, it is still only a framework, which gives
the solution in a very general form, independent of applications. In order to apply
the Bayesian approach in practice, the “ingredients” of the framework must be made
application specific. In our case, these are the image formation process, defining the
object appearance in the images, the noise sources that influence the image quality,
and prior knowledge about the object behavior. The more accurate these aspects are
specified and modeled, the closer the estimation to optimal. Nevertheless, even with
all these ingredients in place, the optimal Bayesian solution is analytically tractable
only in a restrictive set of cases – for example, the Kalman filter provides an optimal
solution in the case of linear dynamic systems with Gaussian noise. For most prac-
tical cases, approximation techniques must be used. One of the most powerful and
especially suitable for this purpose are sequential Monte Carlo methods, also known
as particle filtering2 (PF). With that in mind, this thesis describes a set of PF-based
methods, that have been developed and evaluated for tracking of multiple objects in
a variety of time-lapse biological studies.

2In this thesis (except Chapter 2), the word “particle” does not refer to any real subcellular
structures and, because of possible confusion, everywhere in the thesis the word “object” is used for
those structures. The word “particle” is reserved for the PF methods.
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The thesis organized as follows. First, in Chapter 2, a quantitative compari-
son of frequently used object detection methods applied to fluorescence microscopy
images is described. Even in the case of probabilistic tracking methods, object de-
tection methods are useful, for example for detection of appearing and disappearing
objects during tracking. In the chapter, six supervised and two unsupervised (ma-
chine learning) techniques are quantitatively evaluated and compared, using both
synthetic image data and images from real biological studies. A comparison of this
sort has not been carried out before in the literature. Next, in Chapter 3, a new
PF-based tracking technique is proposed for tracking of subcellular structures mov-
ing with nearly constant velocity, such as microtubules. Experiments on synthetic as
well as real fluorescence microscopy image sequences demonstrate the superior per-
formance of the new method compared to popular frame-by-frame tracking methods.
Chapter 4 presents an extension of the method developed in Chapter 3, which is able
to track multiple types of intracellular objects (microtubules, vesicles, and androgen
receptors) and can deal with different types of motion patterns. For that, several im-
provements over the previous PF are developed. Finally, Chapter 5 describes another
biological application, where microtubule dynamics is studied in vitro. It presents a
novel PF-based approach for analysis of the image data and estimation of important
microtubule dynamics parameters. For this application, a special type of particle fil-
ters is designed, for the tracking of spatiotemporal structures. The results presented
in the various chapters lead to the general conclusion that PF-based methods are very
suitable for subcellular object tracking in biological microscopy and are superior to
existing deterministic approaches.



Chapter Two

Quantitative Comparison

of Spot Detection Methods

in Fluorescence Microscopy

Not everything that can be counted counts, and not everything

that counts can be counted.

— Albert Einstein (1879-1955)

Abstract — Quantitative analysis of biological image data generally involves the
detection of many subresolution spots. Especially in live cell imaging, for which flu-
orescence microscopy is often used, the signal-to-noise ratio (SNR) can be extremely
low, making automated spot detection a very challenging task. In the past, many
methods have been proposed to perform this task, but a thorough quantitative eval-
uation and comparison of these methods is lacking in the literature. In this chapter,
we evaluate the performance of the most frequently used detection methods for this
purpose. These include six unsupervised and two supervised methods. We perform
experiments on synthetic images of three different types, for which the ground truth
was available, as well as on real image data sets acquired for two different biological
studies, for which we obtained expert manual annotations to compare with. The
results from both types of experiments suggest that for very low SNRs (≈2), the
supervised (machine learning) methods perform best overall. Of the unsupervised
methods, the detector based on the so-called h-dome transform from mathematical
morphology performs comparably, and has the advantage that it does not require a
cumbersome learning stage. At high SNRs (>5), the difference in performance of
all considered detectors becomes negligible.

Based upon: I. Smal, M. Loog, W. J. Niessen, E. Meijering, “Quantitative Comparison of Spot
Detection Methods in Fluorescence Microscopy”, submitted.
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2.1 Introduction

T
he very first stage in the analysis of biological image data generally deals with
the detection of objects of interest. In fluorescence microscopy, which is one
of the most basic tools used in biology for the visualization of subcellular

components and their dynamics [88, 100, 113, 156, 164, 180], the objects are labeled
with fluorescent proteins and appear in the images as bright spots, each occupying
only a few pixels (see Fig. 2.1 for sample images). Digital image analysis provides
numerical data to quantify and substantiate biological processes observed by fluores-
cence microscopy [3, 45, 97, 185, 191]. Such automated analysis is especially valuable
for high-throughput imaging in proteomics, functional genomics and drug screen-
ing [42, 103]. Nevertheless, obtaining accurate and complete measurements from the
image data is still a great challenge [38]. In many cases, the quality of the image data
is rather low, due to limitations in the image acquisition process. This is especially
true in live cell imaging, where illumination intensities are reduced to a minimum
to prevent photobleaching and photodamage, resulting in a very low signal-to-noise
ratio (SNR) [53, 95, 96]. In addition, despite recent advances in improving optical
microscopy [51,63], the resolution of even the best microscopes available today is still
rather coarse (on the order of 100 nm) compared to the size of subcellular struc-
tures (typically only several nanometers in diameter), resulting in diffraction-limited
appearance. As a consequence, it is often difficult, even for expert biologists, to
distinguish objects from irrelevant background structures or noise.

In practice, automated object detection methods applied to fluorescence mi-
croscopy images either report too many false positives, thus corrupting the analysis
with the presence of nonexistent objects, or they detect less objects than are in fact
present, causing subsequent analyses to be biased towards more clearly distinguishable
objects. This is also a serious issue in time-lapse imaging, where the objects of interest
are to be tracked over time to study their dynamics. In common tracking algorithms,
which consist of separate detection (spatial) and linking (temporal) stages [95, 96],
the performance of the detector is crucial: poor detection likely causes the linking
procedure to yield nonsensical tracks, where correctly detected objects in one frame
are connected with false detections in the next (and vice versa), or where tracks
are terminated prematurely because no corresponding objects were detected in the
next frame(s). Modern tracking approaches, based on Bayesian estimation [141,142],
avoid the hard decision thresholds in the detection stage of conventional approaches,
and describe object existence in terms of probability distribution functions (pdf).
Such real-valued pdfs reflect the degree of believe in the presence of an object at
any position in the image in a more “continuous” fashion, in contrast with the bi-
nary representation (either “present” or “not present”) obtained after applying hard
thresholds. Nevertheless, even in probabilistic tracking frameworks, some form of “de-
terministic” object detection is still necessary in the track initiation and termination
procedures [141,142,146], again illustrating the relevance of having a good spot detec-
tor. Several detectors have been proposed in the literature, and the classic, relatively
simpler methods have been compared previously for tracking [26,32], but a thorough
quantitative comparison including recent, more complex methods is missing.

In this study, we compare several detectors that are frequently used for object
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detection in fluorescence microscopy imaging, and quantify their performance using
both synthetic images and real image data from different biological studies. The
sensitivity of the methods is studied as a function of their parameters and image
quality (expressed in terms of SNR). The methods under consideration range from
relatively simple local background subtraction [185], to linear or morphological image
filtering [20,21,128,142,146,161], to wavelet-based multiscale products [52,108], and
machine learning methods [73]. They can be divided into two groups: unsupervised
and supervised. The first consists of algorithms that (implicitly or explicitly) assume
some object appearance model and contain parameters that need to be adjusted ei-
ther manually or semi-automatically in order to get the best performance for a specific
application. Supervised methods, on the other hand, “learn” the object appearance
from annotated training data—usually a large number of small image patches con-
taining only the object intensity profiles (positive samples) or irrelevant background
structures (negative samples).

This chapter is organized as follows. First, in Section 2.2, we provide background
information on the image formation process in fluorescence microscopy and describe
the object detection framework in general. This helps to put the different detection
methods in proper perspective and provides motivations for some of the choices made
later on in the chapter. The detection methods that were considered in this study
and that implement the general framework are described in Section 2.3. Next, in
Section 2.4, we present the experimental results of applying the detection methods to
synthetic images, for which ground truth was available, as well as to real fluorescence
microscopy image data from several biological studies. A concluding discussion of the
main findings and their implications is given in Section 2.5.

2.2 Detection Framework for Fluorescence

Microscopy

2.2.1 Image formation

In fluorescence microscopy, specimens are labeled with fluorophores. The distribution
of fluorescence caused by exciting illumination is then observed and captured by
a photosensitive detector (usually a CCD camera or a photomultiplier tube) that
measures the intensity of the emitted light and creates a digital image of the sample.
The objects of interest in our application appear in images as blurred spots, which
are relatively small and compact, have no clear borders (which is why we prefer
to speak of “detection” rather than “segmentation”), and their intensity is higher
than the background. The blurring is caused by the diffraction phenomenon and
imperfections of the optical system, which for commonly used confocal microscopes
limits the resolution to about 200 nm laterally and 600 nm axially [95,161,185,190].
This is characterized by the point spread function (PSF) of the system, which is the
image of a point source of light. In our applications, the theoretical PSF, which
can be expressed by the scalar Debye diffraction integral [190], can in practice be
approximated by a 2D or 3D Gaussian PSF [161], depending on the dimensionality
of the image data.
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(a) (b)

(c) (d)

Figure 2.1. Sample images of microtubules (a,b,d) and peroxisomes (c) labeled
with green fluorescent protein (GFP) and imaged using confocal microscopy. The
images are single frames from 2D time-lapse studies, acquired under different exper-
imental conditions. The quality of the images ranges from SNR≈ 4–6 (a,c) to ≈ 2–4
(b,d).

Apart from the diffraction-limited spatial resolution, another major source of
aberrations introduced in the imaging process is intrinsic photon noise, which results
from the random nature of photon emission. Photon noise, which is independent
of the detector electronics, can be reduced (and, consequently, the SNR increased)
only by increasing the light intensity or the exposure time. However, increasing the
light intensity in order to improve the image quality causes the fluorescent signal to
fade permanently due to photon-induced chemical damage and covalent modification,
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NOISE REDUCTION SIGNAL ENHANCEMENT SIGNAL THRESHOLDING

Output: 
        denoised image

Examples: 
        Gaussian smoothing,
        wavelet denoising

Output:  grayscale
              classification map
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     background subtraction 
     (top-hats, h-domes, etc.)
       

Output: 
                       binary classification map

Examples: 
          signal magnitude thresholding with possibly 
          additional size and/or shape thresholding 

       

Examples: 
 fluorescence microscopy 
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I J C CB

Figure 2.2. Object detection framework. The original noisy image (a) is prepro-
cessed with some noise reduction method, and the resulting image (b) is transformed
(enhanced) into a new image (c), in which the possible object locations have higher
signal magnitude than all other structures (d), or all the suspicious locations are
marked (e). The threshold (represented by the dark-gray planes in (d) and (e)) is
applied and the connected components in the binarized image (white clusters on the
black background) are counted as the detected objects.

a process called photobleaching [185]. While this effect can be exploited to study
specific dynamical properties of particle distributions [87, 156], it hampers detection
and tracking of individual fluorescent particles. With a laser as excitation source,
photobleaching is observed on the time scale of microseconds to seconds, and should
be taken care of especially in time-lapse microscopy.

In this study, we deal with subresolution objects (blurred spots) on a possibly
nonuniform background, the appearance of which can be modeled using a Gaussian
approximation of the PSF. While for experimental and illustration purposes we limit
ourselves to 2D image data, all detection methods considered in this chapter can be
applied straightforwardly to 3D data without any substantial changes. Each image
I consist of Nx × Ny pixels, where each pixel corresponds to a rectangular area of
dimension ∆x × ∆ynm2 and the measured intensity at position (i, j) is denoted as
I(i, j). In other words I = {I(i, j) : i = 1, . . . , Nx, j = 1, . . . , Ny}. In order to
model different types of subcellular particles (round or elongated appearance), we
use an asymmetric 2D Gaussian function. In this case, the measured intensity at
(i, j) caused by the fluorescent light source located at (x, y), which is the real-valued
position within the image, is given by

I(i, j) = B(i, j) + exp

(

−1

2
mT RT Σ−1Rm

)

, (2.1)

where Σ = diag[σ2
max, σ

2
min], R = R(φ) is a rotation matrix

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

, m =

(

i∆x − x
j∆y − y

)

,
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and −π < φ ≤ π defines the rotation, B(i, j) is the background intensity distribution,
and the parameters σmax and σmin represent the blurring induced by the PSF and,
at the same time, model the elongation of the object. For symmetrical subresolution
structures such as vesicles, σmin = σmax ≈ 80–100 nm, and for the elongated objects,
such as microtubules, σmin ≈ 80–100 nm and σmax ≈ 250–300 nm [141,161]. Concern-
ing the density of objects in our applications, typical 512×512-pixel images contain
around 50–200 objects.

2.2.2 Detection Framework

Before we describe the different detection approaches evaluated in this chapter, we
first consider the detection framework in general (Fig. 2.2). This framework can be
split into three subsequent steps. Each detector considered in this chapter includes
these steps, but may implement them in a different way. In practice, some of the
steps are optional or can be combined. Taking as input the noisy images containing
the objects of interest, possibly embedded in a nonuniform background (Fig. 2.2(a)),
the detector proceeds as follows:

Step 1 (Noise Reduction): The input image I is preprocessed using noise reduction
techniques. In most cases, Gaussian smoothing [159] or matched filtering [165] is used,
which may increase the SNR and improve image quality and object visibility. The
output of this step is a filtered image J (Fig. 2.2(b)).

Step 2 (Signal Enhancement): In this step, signal processing techniques are used
that enhance the denoised fluorescent light signal only in those regions of the image J
where the actual objects are and, at the same time, suppress the light signal from all
the background structures. That is, the image J is transformed to a new grayscale
image C (Fig. 2.2(c)), also called here the grayscale classification map, which does
not necessarily represent the object intensity distribution anymore. At this stage, the
image C is rather a 2D (or 3D) signal, the value of which at any pixel measures the
certainty in the object presence at that position. In other words, the image C can
also be considered a probability map that describes possible object locations. Two
examples of this classification map are shown in Fig. 2.2(d) and Fig. 2.2(e), where
the image C in Fig. 2.2(d) is the result of applying a correlation based technique (in
this case a matched filter), which convolves the image J with a PSF-like kernel and
produces a high response in regions where objects are present (where the image inten-
sity distribution matches the kernel), and a low response in all other image regions,
suppressing the background structures. The image C in Fig. 2.2(e) corresponds to
the situation where local background subtraction is used based on the h-dome trans-
formation [177], which “cuts off” the local maxima in the image J in the dome-like
shape of equal heights.

The described feature enhancement step does not actually detect features or ob-
jects. At this stage no quantitative information (about the object presence, its posi-
tion, size, etc.) can yet be extracted and it is still up to the observer to visually link
pixels that belong to one object.

Step 3 (Signal Thresholding): To obtain the number of objects and extract posi-
tion information from the grayscale classification map, hard (binary) decision thresh-
olds need to be applied. First, the image C is thresholded, where the threshold ld is
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applied to the signal magnitude and the binary map CB is obtained (Fig. 2.2(d,e)).
Disjoint clusters of connected nonzero pixels in CB correspond to detected objects and
can be used to label the pixels in the original image I for subsequent analysis of the
object intensity distribution. Depending on the image C, the result of thresholding
may be sensitive to the value of ld. In that case, a second threshold vd = (vmin, vmax)
may be applied to the size and/or shape of the clusters: only those clusters in CB

with size larger than vmin and smaller than vmax are labeled as detected objects.
In practice, the signal thresholding with ld does not always produce fully con-

nected regions (clusters of pixels) in CB , in places where the true objects are located.
In most cases, because the noise is not completely removed during Step 1, clusters
of nonzero pixels in CB that belong to the same spot are not connected or contain
erroneous zero-pixels inside the cluster. In order to solve this problem, the closing
operation from mathematical morphology [138,149,185] is frequently used as a post-
processing step.

2.3 Detection Methods

In this section we describe the detection methods that were included in our study. All
of them implement the three main steps of the general detection framework presented
in the previous section. Some of the methods require noise reduction as an explicit
preprocessing step to improve the detection performance, and in our analysis we
include two techniques for this purpose (Gaussian filtering and wavelet denoising)
that are computationally fast, easy to implement, and which are frequently used in
practice (Section 2.3.1). The most characteristic feature of any detection method is its
implementation of the second step of the framework (signal enhancement). As pointed
out in the introduction, we make a distinction between unsupervised (Section 2.3.2)
and supervised (Section 2.3.3) detection techniques. Some of them inherently reduce
noise and thus do not require an explicit noise reduction step. The third step (signal
thresholding) determines the final outcome of the detector, which is used to assess its
performance. In the last subsection (Section 2.3.4) we describe how performance was
measured in our study.

2.3.1 Noise Reduction

2.3.1.1 Gaussian Smoothing

Noise reduction in this case consists of smoothing the original image I with the
Gaussian kernel Gσ at scale σ. The filtered image J is obtained as

J(i, j) = (Gσ ∗ I)(i, j) =

Nx
∑

i′=1

Ny
∑

j′=1

Gσ(i− i′, j − j′)I(i′, j′), (2.2)

where * denotes the convolution operation. (Here, and in the rest of the chapter, for
all methods that require the convolution of an image with a filter kernel or mask, the
image is mirrored at the borders.) In the case of additive uncorrelated noise, this
smoothing can be related to matched filtering [165], which maximizes the SNR in
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the filtered images. This is because the PSF, which models the appearance (intensity
profile) of the subcellular objects, can be approximated to a high degree of accuracy
by a Gaussian [190]. The smoothed image J can also be used as the grayscale
classification map C, due to the fact that the image J is a correlation map that shows
where objects similar in shape to the PSF are located. The object locations can be
extracted by thresholding the image J in Step 3 (see Fig. 2.2), but this approach
does not work in practice for typical images, which usually contain inhomogeneous
backgrounds and varying object intensities.

2.3.1.2 Isotropic Undecimated Wavelet Denoising

This wavelet-based filtering technique is frequently used for image denoising in dif-
ferent applications [152], but also for building a separate detection procedure (Sec-
tion 2.3.2.1) [52,108]. The isotropic undecimated wavelet transform (IUWT) [152,154]
is well adapted to the analysis of images which contain isotropic sources, such as in
astronomy [154] or in biology [52, 108], where the object appearance or shape is dif-
fuse (no clear edges) and more or less symmetric. The denoising is accomplished by
modifying the relevant wavelet coefficients and inverse transforming the result. The
IUWT is usually favored over orthogonal discrete wavelet transforms (DWT) for this
purpose [91]. Contrary to the DWT, the IUWT is redundant, but translation invari-
ant, and the wavelet coefficient thresholding using an undecimated transform rather
than a decimated one normally improves the result in denoising applications [151].

We used the B3-spline version of the separable 2D IUWT [108, 152], which de-
composes the original image into K wavelet planes (detail images) and a smoothed
image, all of the same size as the original image. The image I is first convolved row
by row and then column by column with the 1D kernel [1/16, 1/4, 3/8, 1/4, 1/16],
which is modified depending on the scale k by inserting 2k−1 zeros between every
two taps. The image Ik−1(i, j) is convolved with the kernel giving a smoothed image
Ik(i, j), and the wavelet plane is computed from these two images as

Wk(i, j) = Ik−1(i, j) − Ik(i, j), 1 < k ≤ K, (2.3)

where I0(i, j) = I(i, j). Having the wavelet representation as a set of K + 1 images,
W1, . . . ,WK , IK , also called the à trous wavelet representation, the reconstruction can
be easily performed as

I(i, j) = IK(i, j) +

K
∑

k=1

Wk(i, j). (2.4)

For denoising and object detection, the property of the wavelets to be localized in
both space and frequency plays a major role, as it allows separation of the components
of an image according to their size. The large values of Wk(i, j) correspond to some
structures and the smaller ones usually to noise. The denoising is based on the
modification of the images Wk(i, j), by hard-thresholding the coefficients, and using
the modified images W̃k(i, j) = Td(Wk) in the inverse transformation (2.4). Here, the
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thresholding operator Td : I → Ith is defined as

Ith(i, j) =

{

I(i, j), if |I(i, j)| ≥ d,

0, otherwise.
(2.5)

The hard threshold d depends on the standard deviation of the wavelet coefficients
σk per resolution level, and is usually taken to be 3σk. Alternatively, the wavelet
coefficients may be soft-thresholded according to more advanced schemes [47, 153].
However, for astronomical and also for biological images, soft thresholding should be
avoided, as it leads to photometry loss in regard to all objects [153].

In order to reduce the dependence of the threshold d on the absolute values of the
object and background intensities, the thresholding is often based on Bayesian analysis
of the coefficient distributions using Jeffrey’s noninformative prior [47] (also called the
amplitude-scale-invariant), which is a nonlinear shrinkage rule that outperforms other
famous shrinkage rules, including VisuShrink and SureShrink [47], and is given by

W̃k(i, j) = W−1
k (i, j)(W 2

k (i, j) − 3σ2
k)+, (2.6)

where (x)+ = max{x, 0}. The threshold is proportional to the standard deviation
of wavelet coefficients at each resolution level and it adaptively selects significant
coefficients only. The modified filtered images W̃k(i, j) are used in (2.4) for the inverse
transformation to obtain the denoised image J .

2.3.2 Unsupervised Signal Enhancement

2.3.2.1 Wavelet Multiscale Product

As was mentioned in Section 2.3.1.2, in the à trous wavelet representation, contrary
to the frequently used orthogonal wavelet transform [91], the wavelet coefficients are
correlated across the resolution levels (scales). This property is exploited by the
detection approach based on the multiscale product [108], which uses the same image
decomposition as in Section 2.3.1.2 and creates the multiscale product image as

PK(i, j) =

K
∏

k=1

Wk(i, j). (2.7)

This transformation constitutes Step 2 in the general detection framework (Sec-
tion 2.2.2). For better performance, the original algorithm [108] also includes the
noise reduction step (Step 1) using the technique described in Section 2.3.1.2: the
wavelet coefficients are hard-thresholded per scale, W̃k(i, j) = Tdk

(Wk(i, j)), with the
threshold dk = kdσk, kd = 3, and the modified coefficients W̃k(i, j) are used in (2.7).

This method uses the fact that the real objects are represented by a small number
of wavelet coefficients that are correlated across the scales. Contrarily, the coefficients
that are due to noise are randomly distributed and are not propagated across scales.
As a result, the image PK(i, j), which is the grayscale classification map C, is thresh-
olded with ld and binarized. The connected components in the binary map CB are
considered as detected objects (Step 3). In the original algorithm [108], ld = 1.0 and
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no thresholds on the cluster size vd in the thresholded and binarized PK(i, j) were im-
posed [108]. In summary, this method has three parameters, (ld, kd,K), that are not
directly related to the object appearance. Recently, a modification of the described
method, which uses the Gaussian kernel at several scales instead of B3-splines, was
proposed for segmentation and analysis of nuclear components in stem cells [176].

2.3.2.2 Top-Hat Filter

Another class of methods that are used for detection of bright spots in the presence
of widely varying background intensities is known as top-hat filters [20, 21]. Such
filters are dynamic thresholding operators, rather than the similarly named image
transformation from mathematical morphology. The latter transformation selects
extended objects with sufficiently narrow parts, rather than compact objects, as does
the top-hat filter considered here.

The filter discriminates the spots by their round shape and predetermined infor-
mation about their intensity and size. At each pixel location, (i, j), the average image
intensitiy Ītop and Ībrim are calculated for pixels within two circular regions Dtop and
Dbrim, respectively, defined as

Di,j
top = {(i′, j′) : (i− i′)2 + (j − j′)2 < R2

top}, (2.8)

Di,j
brim = {(i′, j′) : R2

top < (i− i′)2 + (j − j′)2 < R2
brim}, (2.9)

where the radius Rtop corresponds to the “top” of the “hat” and is set to the maximum
expected spot radius. The brim radius, Rbrim (Rbrim > Rtop), is often taken to be
the shortest expected distance to the neighboring spot. If the difference Ītop− Ībrim is
larger than some threshold Hth, the original image intensity I(i, j) for that position
(i, j) is copied to the classification map C, C(i, j) = I(i, j), otherwise C(i, j) = 0. The
procedure is repeated for each pixel, and the binary map CB (Step 3) is obtained as
CB(i, j) = 1 if C(i, j) 6= 0, and CB(i, j) = 0 otherwise. The connected components
are counted without any size or shape threshold.

The height Hth of the top above the brim is set to the minimum intensity that a
spot must rise above its immediate background. It can also be related to the minimum
local SNR that we are willing to deal with. If the detection of all the objects with
local SNR > a is required, because for lower SNRs the detector would produce a lot
more false positives and contaminate the analysis, the threshold Hth can be fixed
to aσbrim, where σbrim is the standard deviation of the intensity distribution in the
region Dbrim.

In summary, the described algorithm has only three parameters, (Hth, Rtop, Rbrim),
which can be related to the object appearance. The noise reduction (Step 1) in this
case is implicitly done while calculating the average image intensitiy Ītop and Ībrim.
The averaging decreases the variance in the estimation of the noisy object and back-
ground intensity levels and improves the robustness and performance of the method.
A slightly modified version of the filter, called the top-hat box filter [20], uses a square
mask for the regions Dtop and Dbrim and is computationally faster, but in the present
context this is not an important advantage.
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2.3.2.3 Spot-Enhancing Filter

The optimal filter for enhancing subresolution particles and reducing correlated noise
in microscopy images is the whitened matched filter, which is well approximated by the
Laplacian of a Gaussian (LoG) [128]. In this case, the convolution kernel (2σ2

L − i2 −
j2)σ−4

L GσL
is used in (2.2) to obtain the image J , where the filter parameter σL must

be tuned to the size of the particles. The filter combines Steps 1 and 2 and operates
as a local background subtraction technique that preserves object-like structures and
removes the background and noise. The filter can be made computationally fast by
separable implementation [128]. The result of LoG filtering, the image J , is used
as the classification map C, which is thresholded with ld to locate the objects. This
detection procedure has two parameters, (σL, ld), and is similar to the top-hat filter
(Section 2.3.2.2), with the difference that here the convolution kernel, also called the
“Mexican hat”, represents a continuous version of the top-hat filter mask.

2.3.2.4 Grayscale Opening Top-Hat Filter

Similar to the method above (Section 2.3.2.2), this top-hat filter uses the opening
operation from mathematical morphology [138, 147, 149]. In order to improve the
detector performance, the original image I is first smoothed with the Gaussian kernel
with scale σ (Step 1) and the grayscale opening of J with a structuring element
A is done, producing the image JA, where in our case a flat disk of radius rA is
used. The radius rA is related to the size of the largest objects that we would like to
detect. The top-hats are obtained after the subtraction C = J −JA (which concludes
Step 2), and the whole transformation acts as a background subtraction method that
leaves only compact structures smaller than the disk A, or extended objects with
sufficiently narrow parts, rather than compact objects only, as does the top-hat filter.
The resulting image C is thresholded at level ld (Step 3), and then all the connected
components are counted. Additional filtering with vd can be done if the size of the
connected components should be taken into account. Thus, this method has four
parameters, (σ, rA, ld, vd), all of which can be related to the object appearance.

2.3.2.5 H-Dome Based Detection

Another approach borrowed from grayscale mathematical morphology is based on
the h-dome transformation [177], which was used in our previous works on subreso-
lution particle tracking to design a detection scheme for track initiation and termina-
tion [142,146]. The transformation has the interesting property that all the detected
objects end up having the same maximum intensity in the transformed image, which
we exploited to build a fast probabilistic tracker that outperforms current determin-
istic methods [146] and at the same time has the same tracking accuracy as the
computationally more expensive particle filtering approaches for tracking [141,146].

For this method we assume that the intensity distribution in the image I is formed
by No objects (bright spots), modeled using (2.1), background structures (also called
clutter) with intensity distribution B(i, j), and possibly spatially correlated additive
or multiplicative noise η(i, j). The main problem is to accurately estimate the number
of real objects No and the object positions (xl, yl)

T , l = {1, . . . , No}, in the presence
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of inhomogeneous background structures and noise. The algorithm also consists of
three steps: filtering, h-dome transformation, and “sampling” (signal thresholding).
First, the image I is LoG filtered with scale σL, which enhances the signal in the
places where objects are present and performs local background subtraction (Step 1).
The scale σL can be related to the size of the objects to be detected, and in our
experiments is equal to 2.5 pixels (125 nm). Then, grayscale reconstruction [177] is
performed on the LoG-filtered image J with mask image J − h, where h > 0 is a
constant (Step 2). As a result, the original image is decomposed into the reconstructed
image Bσ and the so-called h-dome image Hσ:

Iσ(i, j) = Hσ(i, j) + Bσ(i, j). (2.10)

Geometrically speaking, similar to local background subtraction, the h-dome transfor-
mation extracts bright structures by “cutting off” the intensities of height h from the
top, around local intensity maxima, producing “dome”-like structures. Contrary to
top-hat filtering [177], this does not involve any shape or size criteria. The image Bσ

represents the nonuniform background structures, and image Hσ contains the objects
and all the smaller noise structures.

After the transformation, the maximum intensity of those Gaussian-like objects is
approximately h, and for the noise structures the amplitude is less than h [146]. This
transformed image Hσ is used as a probability map for the final step of the algorithm
(Step 3): the sampling. During this step, all the pixel values in Hσ are raised to the
power s in order to compensate for the broadening of the original object intensity
distributions by the convolution with the LoG filter, and to create a highly peaked
function that resembles the probability density function (pdf) of the object location
distribution. The parameter s can be related to the maximum and minimum object
size and the scale σL [146]. The function Hs

σ(i, j) = (J(i, j) − Bσ(i, j))s is used in
our framework as a so-called importance sampling function [9], denoted by q(i, j|I),
that describes which areas of the image most likely contain the objects. We sample N
position-samples from q(i, j|I) using systematic resampling [9], xl ∼ q(i, j|I), where
l = {1, . . . , N} and x = (i, j), in order to estimate the object positions using Monte
Carlo methods. Then, the mean-shift algorithm [34] is used to cluster the samples
xl, resulting in M clusters. For each cluster, the mean position xc = (ic, jc) and the
variance Rc are computed using only the Nc samples xl belonging to that cluster:

xc = E[xl
c] = N−1

c

∑Nc

l=1 xi
c,

Rc = E[(xl
c − xc)(x

l
c − xc)

T ].
(2.11)

The following two criteria are used to distinguish between real objects and other
structures: 1) the number of samples Nc in the cluster should be larger than the
number of samples in case of sampling from the uniform intensity distribution in the
image region occupied by the cluster, and 2) the determinant of the covariance matrix
of the cluster, detRc, must be less than σ4

M/s
2, where σM characterizes the maximum

object size that we are interested in. These two thresholds are motivated by the fact
that the elements of the estimated covariance matrix Rc using the samples generated
from the intensity distribution of the real objects, are bounded from above by (σ2

max+
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σ2
L)s−1. The samples that came from noise have approximately the same variance

(Rc ≈ σ2
LIs−1), where I is the identity matrix, but since the intensity amplitude ≪ h,

the number of samples Nc in the corresponding cluster will be below the mentioned
threshold. The clutter on the other hand, having possibly high intensity values (≈ h),
produces a large number of samples, but the variance in those clusters is higher than
in the case of the largest real object characterized by σM.

The parameters σL and σM of this detection method can be related to the object
appearance. The height h is related to the SNR in the same way as in the case of the
top-hat filter (Section 2.3.2.2). The method is fairly insensitive to the free parameters
s and N [142,146] (above some minimum, sensible values, which can be found exper-
imentally and then fixed, these parameters primarily affect the computational cost of
the method, not its accuracy). Thus, in summary, this method depends mainly on
three parameters, (σL, σM , h), that need to be tuned to the application.

2.3.2.6 Image Features Based Detection

The last unsupervised method that we consider in this study is based on using some
additional image information during Step 2 that would help to distinguish the spots
from the clutter. As was shown previously [141,161], the incorporation of local curva-
ture information can be used to build a reasonably good detector for image data with
SNR > 4. The true spots in the image are characterized by a combination of convex
intensity distributions and a relatively high intensity. Noise-induced local maxima
typically exhibit a random distribution of intensity changes in all directions, leading
to a low local curvature [161]. These two discriminative features (intensity and cur-
vature) are used in combination during Step 2 to create the grayscale classification
map C using the denoised image (Step 1) J(i, j) = (Gσ ∗ I)(i, j) as follows:

C(i, j) = J(i, j)κ(i, j), (2.12)

where the curvature κ(i, j) at each pixel of J is given by the determinant of the
Hessian matrix H(i, j) [159], which itself is known to be a good blob detector [86].
The classification map C again is binarized (Step 3) using the threshold ld and possibly
the size threshold vd which are not directly related to the object appearance.

2.3.3 Supervised Signal Enhancement

In order to make our comparison study of spot detection methods more complete, we
also included two machine learning (ML) techniques. The first one is the AdaBoost
algorithm [178], which is frequently used for object detection in computer vision [50,
85,178], and was recently shown to perform well also for spot detection in molecular
bioimaging [73]. The second method is Fisher discriminant analysis (FDA), which
is a classical and well-known linear classifier, but which has not been employed for
spot detection in fluorescence microscopy up to now. It uses the same information
as AdaBoost but is computationally less expensive and much easier to understand
conceptually.
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Figure 2.3. Examples of the Haar-like features that were used in the experiments
to detect spots, and the numbers of all possible scaled and translated versions in
10×10-pixel subwindows of the image.

2.3.3.1 AdaBoost

This ML detection algorithm operates on small patches of the image around the
hypothesized spot positions (Fig. 2.3(a)) and classifies the patches (Fig. 2.3(b)) as
positive (object is present) or negative (object is absent) based on the combined
response of several simple feature-based classifiers. Usually the feature-based systems
are favored over pixel-based ones because they are much faster and can encode some
domain knowledge. A set of NF simple Haar-like features is used [111], which is
overcomplete in comparison with the real Haar basis [91], and in our case consists
of four kinds (four different rows in Fig. 2.3). For each feature ηl, l = {1, . . . , NF },
the feature value ξ(ηl) is a weighted difference between the sum of the pixels within
two (black and white) rectangular regions. The weights are chosen in such a way
that the value of the feature computed for constant-intensity images is zero. The
number of possible features, which are scaled and translated versions of the features
of each kind (Fig. 2.3), depends on the image patch size, and for 10×10-pixel image
subwindows [73] is 962 (the number of features per kind is indicated below each
feature row in Fig. 2.3). Using the integral images [178], the computation of the sums
of pixels in the rectangular regions can be performed very fast.

Having the pool of NF features ηl, and a training set consisting of NT image
patches labeled as positive and NT patches labeled as negative, we selected a variant
of the AdaBoost learning algorithm that can be used both to select a small subset
of features and to train the classifier [178]. Such a choice was made on the basis
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of recently published results of applying the AdaBoost algorithm in bioimaging [73].
The AdaBoost algorithm is used to boost the performance of a simple (weak) learning
algorithm. The weak classifier is designed to select the single feature that best sepa-
rates the positive and negative samples. In our case, this separation is accomplished
by finding the appropriate threshold dl for each feature ηl at every round during the
training stage. With each run of the algorithm, one feature is selected and added
to the set of best discriminating features. The number of runs, denoted by NAB , is
user-defined. It is known that the training error of the strong classifier approaches
zero exponentially in the number of rounds [50].

The final strong classifier is a weighted linear combination of all selected weak
classifiers. The classification map CB (Step 3) is constructed as follows. First, for
each pixel (i, j) of I the value of the feature ηl′ is computed using the corresponding
10×10-pixel image subwindow centered at (i, j) and assigned to Cl′(i, j), where l′

specifies one of the NAB features that were selected during the training. This way,
the image Cl′ is obtained. Then, the values in Cl′ are thresholded using the feature
threshold dl′ , producing a binary version Cl′

B of Cl′ . The procedure is repeated for

all NAB features, and the images Cl′

B , l′ = 1, . . . , NAB , are combined (with weights
also learned during the training) into C, which is then thresholded with the threshold
ld = 0.5 [178], producing the map CB . In the final classification map, some additional
thresholding using the size information vd (not related to the notion of spot size)
might be needed in order to remove small regions with misclassified pixels.

By applying the trained classifier to the image I (Step 2), prefiltering (Step 1)
is performed implicitly: the values of the features are the difference in average pixel
values in the black and white rectangular regions. This averaging reduces the variance
of the feature value estimation in a similar way as in the case of the top-hat filter
(Section 2.3.2.2).

2.3.3.2 Fisher Discriminant Analysis

Discriminant analysis is a statistical technique which classifies objects into one of
two or more groups based on a set of features that describe the objects [93]. We
use FDA to classify the image patches in the same way as in the AdaBoost method
(Section 2.3.3.1). For an image patch of size n × n pixels, the n horizontal rows
of pixels are concatenated into a 1-D (column) feature vector y of size n2. Having
a labeled training dataset with positive and negative samples (image patches), the
corresponding sets of features {yl

1}NT

l=1 and {yl
0}NT

l=1 are used to compute the mean µc

and the covariance matrix Σc for each class c = {0, 1}. The task of FDA is to find
the linear transformation w that maximizes the ratio

Q(w) =
(wT (µ1 − µ0))

2

wT (Σ1 + Σ0)w
. (2.13)

In some sense, Q(w) is a measure of the SNR for the class labeling, where the nu-
merator represents the between-class variation and the denominator represents the
within-class variation. It can be shown that the optimal separation occurs when
w = (Σ1 + Σ0)

−1(µ1 − µ0) [93]. This concludes the training stage. During the clas-
sification stage, when FDA is applied to patches extracted from the image I using
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a sliding subwindow of size n × n pixels, the patch is classified as positive (object is
present, CB(i, j) = 1) if the condition |wT y − µ1| < |wT y − µ0| is satisfied, and as
negative (object is absent, CB(i, j) = 0) otherwise.

The FDA classification procedure has an appealing interpretation as linear fil-
tering (similar to (2.2)) with a kernel that is learned from the training data. The
n2-dimensional vector w can be reshaped into an n × n patch, similar to the im-
age patch from which the feature vector y is formed (see examples in Section 2.4.2,
Fig. 2.17). In this case, the projection wT y, which is performed using the sliding
subwindow for each image pixel, is a convolution as in (2.2). The classification map
C is obtained by thresholding the convolution result at ld = 1

2w
t(µ1 − µ0), which is

obtained automatically because the training was performed beforehand.

2.3.4 Signal Thresholding and Performance Measures

As mentioned before, in order to locate and count the detected objects, the classi-
fication map C is binarized using the threshold ld (whose meaning depends on the
method), and the connected components are searched for. Having the binary image
CB , where CB(i, j) = 1 if C(i, j) > ld, and CB(i, j) = 0 otherwise, we run the se-
quential scan labeling algorithm [66] in order to label the connected components and
obtain the set of labels L(i, j) for all pixels, where L(i, j) ∈ {0, . . . ,M}, with L = 0
corresponding to the background and L 6= 0 denoting one of the M detected objects.
The center of mass, xm, is calculated for each of M objects, taking into account the
pixels (i, j) and the image intensity I(i, j) for all (i, j) for which L(i, j) = m. The
position is compared to the “ground truth” x0

m (known exactly in the case of syn-
thetic images, and obtained manually by approximation in the case of real biological
images). If ‖x0

m −xm‖ < ∆0, the object is counted as a true positive (TP), otherwise
the detected object is a false positive (FP). The number of false negatives (FN) is
defined as N0 − NTP, where N0 is the number of objects in the ground truth and
NTP is the number of TPs. True negative (TN) is defined as accurate detection of
the spot not to be an object. The number of TNs can be defined only for the ML
approaches during the training stage. During the actual detection with any of the
described methods, the number of TNs in the image data is undefined.

In order to measure the performance of the algorithms, we consider two common
measures: the true-positive ratio (TPR), TPR = NTP/(NTP + NFN) = NTP/N

0,
also called sensitivity, and the false-positive ratio (FPR), FPR =NFP/(NFP +NTN).
Because TN is not known for some methods, the modified version of FPR is used, given
by FPR∗=NFP/N

0. In this case, the standard receiver operating characteristic (ROC)
curve cannot be built, and the modified version, called the free-response receiver
operating characteristic (FROC) curve, is used [29,30]. To demonstrate the sensitivity
of TPR and FPR∗ to parameters, for example the threshold ld, we measure the values
ST = − (∂TPR/∂ld) and SF = − (∂FPR∗/∂ld) at ld = l∗d. The threshold l∗d is
hereafter called “optimal” and corresponds to the value for which the FPR∗ = 0.01
(only 1% false positives). The value of TPR for ld = l∗d is denoted as TPR∗. Having
ST and SF , we can compute the value ∆TPR = 0.01ST l

∗, which corresponds to the
changes in TPR (around TPR*) when the parameter value ld (or vd) is changed by
1% around l∗ (or v∗). Similarly, ∆FPR = 0.01SF l

∗ can be introduced for the FPR.
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SNR=2
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SNR=2
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SNR=2

Figure 2.4. Examples of synthetic images used in the experiments. The symmetri-
cal Gaussian intensity profiles are embedded into uniform (Type A), gradient (Type
B), and non-uniform (Type C) backgrounds.

2.4 Experimental results

The performance of the eight detection methods (six unsupervised and two supervised
methods) described in the previous section was quantitatively evaluated using both
synthetic images (Section 2.4.1) and real image data (Section 2.4.2) acquired for
different biological studies. In the experiments, we studied the dependence of the
performance (TPR and FPR∗) on parameter settings, type of object (perfectly round
or slightly elongated), and image quality (SNR). Here we describe the experimental
setups and the results.

2.4.1 Evaluation on Synthetic Image Data

2.4.1.1 Simulation Setup

The described detection methods were evaluated using synthetic but realistic 2D
images (of size 512× 512 pixels, with ∆x = ∆y = 50 nm) containing intensity profiles
of round and elongated objects modeled using (2.1) with σmax = σmin = 100 nm for
round objects, and σmax = 250 nm, σmin = 100 nm for elongated objects, for different
levels of Poisson noise in the range of SNR = 2–4. Such SNRs are typical for the real
image data acquired in our biological applications and are lower than the critical level
of SNR = 4–5, at which several classical detection methods break down [26,32]. Here,
SNR is defined as the difference in intensity between the object and the background,
divided by the standard deviation of the object noise [32].

In order to estimate the performance of the algorithms, three types of images
were created (see Fig. 2.4), for each type of object shape and for each SNR. In every
image, 256 Gaussian intensity profiles were placed at positions x0

i′,j′ = (16 + 30i′ +
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U[−10,10], 16+30j′+U[−10,10])
T , where i′ = 0, . . . , 15, j′ = 0, . . . , 15, and U[−a,a] denotes

the uniform random generator within the interval (−a, a). This way, the objects were
randomly placed, with no overlaps in the intensity distributions. Type A images were
constructed by adding a background level of 10, similar to previous studies [32]. To
form the final noisy image, a Poisson noise generator was applied independently to
every pixel of the noise-free image. In the case of Type B images, the background
level increased linearly in the horizontal direction (see Fig. 2.4), from a value of 10 at
the left image border to 50 at the right border. Taking into account that the variance
of Poisson noise is intensity dependent, we corrected the object intensities accordingly
prior to application of the noise generator in order to keep the SNR constant over the
whole image. Finally, type C images mimic the intensity distribution in the presence of
large (compared to object size) background structures (clutter), which are sometimes
present in the real image data and can be either larger subcellular structures or
acquisition artifacts. In this case, the pixel values were sampled from the normal
distribution I0(i, j) ∼ N (0, 150). Then, the image was convolved with the Gaussian
kernel G10 and thresholded at zero-level. The final image I was obtained by adding
to T0(G10 ∗ I0) a constant background level of 10 plus the (SNR-adapted) object
intensity profiles, followed by application of Poisson noise. Examples of synthetic
images of all three types are shown in Fig. 2.4. In every experiment, the performance
of the detection techniques for each object type was evaluated by accumulating the
numbers of TP and FN for 16 images (each containing 256 ground truth objects) and
averaging the results over the 4096 objects. The distance between the ground truth
location and the object position estimated by the detector, ∆0, which defines if the
detected object is a TP or FP, was fixed to ∆0 = 200 nm (4 pixels).

2.4.1.2 Wavelet Multiscale Product

For the performance evaluation of the wavelet multiscale product detector (further
abbreviated as WMP), the parameters of the method (see Section 2.3.2.1) were fixed
to the values described in the original paper [108]: ld = 1, K = 3, kd = 3. The
performance measures TPR and FPR∗ for the image data with SNR = 2 are shown
in Table 2.1. In order to evaluate the sensitivity of the method to parameter changes,
we varied the number of scales K and the wavelet coefficient threshold kd in our
experiments and studied their influence on the behavior of TPR and FPR∗. In the
experiments, the grayscale classification map C produced by the method was thresh-
olded at ld, and after binarization all the connected components were labeled as
detected objects. Because the method produced quite fractured clusters of pixels, we
used the morphological opening operator with a square 3 × 3 mask (a 5 × 5 mask
yielded very similar results) in order to fill in the holes.

The main results of the sensitivity analysis for this method are shown in Fig. 2.5.
They show that a value of K = 3 is a good compromise to maximize performance for
all three different data types together (Fig. 2.5(a)-(c)). The results also show that the
performance of this method drops quite rapidly when the SNR decreases from 4 to
2 (Fig. 2.5(d)), and also when the background complexity increases (Fig. 2.5(e)-(f)).
Table 2.2 shows the “optimal” values of kd for different types of data for ld = 1,
K = 3, and SNR = 2.
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Table 2.1. Performance of the WMP detector using the original algorithm param-
eters at SNR = 2.

Image Round Objects Elongated Objects
Type TPR FPR∗ TPR FPR∗

A 0.33 0.001 0.34 0.013
B 0.18 0.001 0.20 0.010
C 0.21 0.015 0.25 0.017

Table 2.2. Optimal parameters and performance of the WMP detector at SNR = 2
and number of scales K = 3.

Image Round Objects Elongated Objects
Type k∗d TPR∗ ST SF k∗d TPR∗ ST SF

A 2.22 0.81 .57 .04 3.06 .31 .61 .05
B 2.56 0.37 .56 .05 3.07 .17 .36 .05
C 2.89 0.30 .62 .09 3.17 .18 .39 .06

For comparison, we also applied the soft thresholding of the wavelet coefficients
according to (2.6) instead of the original hard thresholding with kd = 3. For round
objects in Type C images at SNR = 2, using the hard threshold kd = 3, we had
FPR∗ = 0.015 and TPR = 0.21. The value of ld was increased to 34 when the soft
threshold (2.6) was used in order to obtain the same FPR∗, and the TPR in this case
was equal to 0.25. For elongated objects the corresponding values were FPR∗ = 0.017
and TPR = 0.25 for the hard thresholding, and TPR = 0.27 for the soft thresholding.

Another experiment was conducted in order to investigate if the low performance
of the WMP for SNRs around 2–3 was dependent on the type of noise (Poisson
versus Gaussian). The variance-stabilizing Anscombe transform [7] was applied, which
transforms the image intensities according to I(i, j) → 2

√

I(i, j) + 3/8, and creates
approximately Gaussian data of unit variance, provided that the mean value of the
Poissonian data is more than 10 [7]. The experiments with the variance-stabilized
(Gaussian) images showed no significant difference in TPR and FPR for all types of
image data compared to the original (Poissonian) synthetic images.

2.4.1.3 Top-Hat Filter

The performance of the top-hat filter (further abbreviated as TH) was evaluated
using the same images as for the WPM detector. The brim radius, Rbrim, which
controls the local background estimation around the spot position, was fixed to 10
(see Section 2.3.2.2 for the parameters description). Varying this parameter in the
range 8-12 did not influence the final results significantly, indicating that the local
background estimation is quite robust. The TPR and FPR∗ of the method for different
Rtop values, depending on Hth, are shown in Fig. 2.6. Again, holes within clusters
(objects) in the binarized classification map CB were filled using the closing operation
with a 5× 5 mask. All found clusters were considered as objects, regardless of cluster
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Figure 2.5. FROC curves for the WMP detector in the case of the round objects,
depending on the wavelet coefficient threshold kd, for Type A (a), Type B (b), and
Type C (c) image data and different numbers of scales K, and the FROC curves for
Type C data for different SNRs (d). The same type of FROC curves in the case of
the round (e) and elongated (f) objects for different types of data, with SNR = 2
and K = 3.

size. The optimal values of Hth for all image types with SNR = 2 are shown in
Table 2.3. The value of Rtop = 3 was chosen, which maximizes the TPR when
FPR∗ = 0.01 for Type C data with both round and elongated objects.

2.4.1.4 Spot-Enhancing Filter

The performance of the spot-enhancing filter (further abbreviated as SEF) using the
synthetic images was studied depending on the values of the signal threshold ld (see
Section 2.3.2.3). The filter acts as a smoothing and local background subtraction
technique at the same time (Steps 2 and 3). The only parameter is the scale of
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Figure 2.6. FROC curves for the TH detector in the case of the round objects,
depending on the values of Hth, for several values of Rtop, for Type A (a), Type B
(b), and Type C (c) image data, and the FROC curves for Type C data for several
SNRs (d). The same type of FROC curves in the case of the round (e) and elongated
(f) objects depending on the values of Hth for different types of data, with SNR = 2,
Rbrim = 10, and Rtop = 3.

Table 2.3. Optimal parameters and performance of the TH detector at SNR = 2
with radii Rbrim = 10 and Rtop = 3.

Image Round Objects Elongated Objects
Type H∗

th TPR∗ ST SF H∗
th TPR∗ ST SF

A 2.74 .99 .00 .05 2.95 .99 .00 .20
B 5.85 .88 .11 .03 5.75 .96 .04 .02
C 5.28 .48 .35 .01 5.62 .56 .38 .01

the convolution kernel, σL, which was tuned in order to get the highest TPR at
FPR∗ = 0.01 in the case of Type C data. In the case of round objects, for σL values
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Figure 2.7. FROC curves for the SEF detector in the case of round (a) and
elongated (b) objects, depending on the values of the threshold Hth and the type
of image data, at SNR = 2 and optimal scales σL = 2.5 (for round objects) and
σL = 3.1 (for elongated objects).

Table 2.4. Optimal parameters and performance for the SEF detector at SNR = 2
and optimal scales σL = 2.5 (for round objects) and σL = 3.1 (for elongated objects).

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 0.85 .99 .01 .15 0.55 .99 .00 .16
B 1.84 .91 .35 .08 1.21 .99 .07 .06
C 1.22 .95 .29 .09 0.99 .95 .34 .07

{1.5, 2, 2.5, 3, 3.5}, the corresponding TPR values were {0.52, 0.9, 0.95, 0.9, 0.65}, and
thus σL = 2.5 was used in the experiments. In the case of elongated objects, for σL in
{2.5, 3, 3.5, 4}, the corresponding TPR values were {0.75, 0.86, 0.92, 0.74}, and σL =
3.1 was used. All clusters in the binary classification map after signal thresholding
were counted as objects, and the values l∗d and corresponding TPR∗, ST , and SF ,
for which FPR∗ = 0.01, are shown in Fig. 2.7 and Table 2.4. Again, the value l∗d
represents the optimal threshold, for which FPR∗ = 0.01, with corresponding TPR
denoted as TPR∗.

2.4.1.5 Grayscale Opening Top-Hat Filter

This detection method from grayscale morphology (further abbreviated as MTH) is
a robust local background subtraction technique. Its performance was not influenced
significantly by changes of the mask size, rA, in the range (3, 5) (see the parameter
description in Section 2.3.2.4). The input images were first smoothed with the Gaus-
sian kernel at σ = 2. The radius of the mask was fixed to rA = 5, which means that
all image structures of size smaller than the size of the disk A would be translated to
the detection map C. Two thresholds, one on the intensity amplitude and one on the
object size, could be applied for the object extraction from C. The latter threshold
is crucial if the clutter consists of possibly elongated narrow structures, which would
be considered as objects by this detector (see Section 2.3.2.4). We studied the depen-
dence of TPR and FPR∗ only on the intensity threshold ld, as in the synthetic images
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Figure 2.8. FROC curves for the MTH detector in the case of round (a) and
elongated (b) objects, depending on the values of intensity threshold ld for different
types of image data, at SNR = 2, and with mask radius rA = 5 and Gaussian
prefiltering at σ = 100 nm.

Table 2.5. Optimal parameters and performance for the MTH detector at SNR = 2
and with mask radius rA = 5 and Gaussian prefiltering at σ = 100 nm.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 2.1 .99 .00 .04 2.1 .99 .00 .04
B 3.5 .87 .18 .06 4.1 .98 .05 .02
C 2.2 .88 .31 .03 3.2 .91 .15 .02

there are no clutter structures smaller than the object size. In this case, either inten-
sity thresholding can be used without size thresholding, or a low intensity threshold
can be used with further thresholding on the size. The values l∗d, and corresponding
TPR∗, ST , and SF , for which FPR∗ = 0.01, are shown in Fig. 2.8 and Table 2.5.

2.4.1.6 H-Dome Based Detection

The method based on the h-dome transformation (further referred as HD) was eval-
uated depending on the dome height h. The parameters of the method (see Section
2.3.2.5) were fixed to σL = 2.5, σM = 6, s = 6, and N = 5000, which maximize the
TPR for the Type C image data at FPR∗ = 0.01. The results of the experiments
are shown in Fig. 2.9. As described, the method estimates the object position and
the variance of that estimation using a sampling procedure, bypassing the explicit
creation of the map C [146]. The values h∗ and corresponding TPR∗, ST , and SF , for
which FPR∗ = 0.01, are shown in Fig. 2.9 and Table 2.6.

2.4.1.7 Image Features Based Detection

This scheme (further abbreviated as IFD) creates the classification map C during
Step 2 by combining the image intensities with local curvature information (see Sec-
tion 2.3.2.6). Two types of the map C were considered in the experiments (with the
resulting methods abbreviated as IFD1 and IFD2 respectively). In the first case, C
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Figure 2.9. FROC curves for the HD detector in the case of round (a) and elongated
(b) objects, depending on the values of the dome height h for different types of image
data, at SNR = 2, and with parameters σL = 2.5, σM = 6, s = 6, and N = 5000.

Table 2.6. Optimal parameters and performance for the HD detector at SNR = 2
for parameters σL = 2.5, σM = 6, s = 6, and N = 5000.

Image Round Objects Elongated Objects
Type h∗ TPR∗ ST SF h∗ TPR∗ ST SF

A 1.6 .99 .11 .05 1.4 .99 .01 .09
B 1.6 .97 .22 .05 1.4 .99 .01 .09
C 1.6 .90 .21 .05 1.2 .97 .16 .05

is given by the determinant of the Hessian matrix, detH, calculated at each pixel,
with smoothing scale σ [159]. The second type of classification map C is obtained
by pixel-wise multiplication of the values detH(i, j) with the intensity values J(i, j)
(2.2). In the experiments, we used σ = 2, and the results are shown in Fig. 2.10 and
Table 2.7.

2.4.1.8 AdaBoost

In order to test the performance of the ML approaches, starting with AdaBoost (ab-
breviated as AB) for the detection of round objects, we constructed a pool of 962
Haar-like features (see Section 2.3.3.1) using a 10×10 pixel subwindow, which was
previously reported as optimal for similar applications [73]. Experiments with other
subwindow sizes in the range of 8-12 pixels showed no significant difference in per-
formance. For the detection of elongated objects, the subwindow size was fixed to
13×13 pixels, which consequently gives 2366 features. Even though the characteristic
size of the elongated objects is doubled (compared to the round objects), the use
of larger subwindow sizes, for example 21×21 pixels, degraded the AdaBoost perfor-
mance. With the high spot density, the larger subwindows included the neighboring
objects (equally frequently in the positive and negative training sets) and caused the
problem with defining a clear decision boundary for these ML approach.

For the training stage, separate sets of synthetic images were created, and 4096
positive and 4096 negative samples (10×10 pixels) were extracted from each image
type (A, B and C) containing round objects. The same training procedure was re-
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Figure 2.10. FROC curves for the IFD1 detector in the case of the round (a) and
elongated (b) objects, depending on the values of the threshold ld and the type of
image data, at SNR = 2, and for smoothing scale σ = 2. The same curves for IFD2

in the case of round (c) and elongated (d) objects.

Table 2.7. Optimal parameters and performance for the IFD detectors at SNR = 2
and for smoothing scale σ = 2.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

IFD1

A .12 .98 0.67 .68 .21 .53 5.17 .42
B .58 .67 1.23 .12 .71 .31 1.02 .06
C .18 .89 2.51 .16 .28 .31 3.21 .26

IFD2

A 1.33 .99 .03 .03 3.06 .59 .32 .03
B 33.34 .46 .01 .00 43.36 .23 .01 .00
C 1.95 .71 .36 .03 6.33 .19 .08 .01

peated for elongated objects. Four types of training were performed: using the sam-
ples from each image type separately, and using the combined training dataset, where
4095 samples were selected (in total) from type A, B and C images in equal propor-
tions. The training was based on SNR = 2 (the worst case considered in this chapter).
Training using higher-SNR images resulted in worse performance on lower-SNR im-
ages, as the number of features selected by AdaBoost became too small. Each trained
classifier was applied separately to the synthetically created test images of all three
types, with SNR in the range 2–4, and the classification results (sensitivity (TPR)
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Table 2.8. Sensitivity and specificity of AdaBoost classification.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

Trained using type A data (SNR = 2)
2 0.994 0.995 0.999 0.930 0.965 0.987
3 1.0 0.996 1.0 0.922 1.0 0.989
4 1.0 0.995 1.0 0.919 1.0 0.992

Trained using type B data (SNR = 2)
2 0.914 1.0 0.991 0.977 0.690 1.0
3 1.0 0.999 1.0 0.977 0.998 0.999
4 1.0 0.999 1.0 0.977 1.0 0.999

Trained using type C data (SNR = 2)
2 0.996 0.992 0.999 0.902 0.999 0.979
3 1.0 0.990 1.0 0.910 1.0 0.982
4 1.0 0.991 1.0 0.901 1.0 0.982

Trained using type A, B, C data combined (SNR = 2)
2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

Figure 2.11. Example of the top-five features that were selected by AdaBoost in
the case of the Type A training data.

and specificity) for 4096 positive and 4096 negative patches, extracted from these test
images, are given in Table 2.8. In the experiments, the number of AdaBoost runs,
NAB , which corresponds to the number of features selected and used by the classi-
fier, was fixed to 5. The top-five features selected during the training are shown in
Fig. 2.11.

The behavior of the sensitivity and specificity was also investigated depending on
the number of Haar-like features, NAB , that are used for the classification. For this
analysis, combined training (using the data of type A, B, and C) was performed, and
the classifier was separately applied to the test data of each type. The results for
different values of NAB are shown in Table 2.9, where the last three rows also show
the performance of the classifier trained using a reduced training set of 1002 combined
samples (334 of each type).

In all these performance evaluation experiments, the classifier was applied to
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Table 2.9. Sensitivity and specificity of AdaBoost classification depending on the
number of runs.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

NAB = 5
2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

NAB = 10
2 0.991 0.998 0.999 0.946 0.965 0.994
3 1.0 0.998 1.0 0.944 1.0 0.996
4 1.0 0.998 1.0 0.944 1.0 0.993

NAB = 20
2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996

NAB = 5 and 1002 training samples
2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996

image patches extracted from the positive and negative test images. In order to
evaluate the performance of actual detection using this machine learning approach,
we applied the classifier to each pixel in the images (based on a window of size 10×10-
pixels around the pixel). The resulting classification map is a new image of the same
size as the original, with each pixel being either “1” (if the corresponding image
pixel was classified as belonging to an object) or “0” (if the pixel was classified as
background). Before labeling the connected components and extracting the number of
detected objects and their positions, the map was median-filtered with a round mask
of radius 2 pixels in order to suppress too small clusters, and then a closing operation
was applied with the 3×3 structuring element to fill small holes. The FROC curves
for this detection procedure depending on the size threshold vd of the clusters in the
binary classification map CB in the case of round and elongated objects are shown
in Fig. 2.12. The behavior of TPR and FPR∗ depending on the number of features,
NAB , used in the detection is shown in Table 2.10. The parameters of the detection
were optimized in order to get FPR∗ = 0.01 when NAB = 50. After that, the number
of features NAB was reduced (see Table 2.10) and the behavior of the performance
measures studied. The optimal parameter values for the size threshold vd are shown
in Table 2.11.
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Figure 2.12. FROC curves for the AdaBoost detector in the case of the round
(a) and elongated (b) objects, depending on the value of the size threshold vd, at
SNR = 2, and with NAB = 50.

Table 2.10. Detection performance of AdaBoost depending on the number of
selected features, NAB , with training based on the combined image data (type A,
B, and C) at SNR = 2.

Image Type A Image Type B Image Type C
NAB TPR FPR∗ TPR FPR∗ TPR FPR∗

5 0.995 0.013 0.912 0.037 0.806 0.019
10 0.996 0.014 0.929 0.041 0.818 0.022
20 0.994 0.013 0.921 0.022 0.789 0.019
50 0.994 0.011 0.926 0.016 0.810 0.018

Table 2.11. Optimal size thresholding parameters and corresponding performance
for AdaBoost at SNR = 2.

Image Round Objects Elongated Objects
Type v∗d TPR∗ ST SF v∗d TPR∗ ST SF

A 3 .99 10−3 10−3 2 .99 10−5 .10
B 31 .94 .01 10−3 18 .99 10−5 10−3

C 30 .94 .01 10−3 12 .99 10−5 10−3

2.4.1.9 Fisher Discriminant Analysis

The classifier in this case (abbreviated as FDA) was trained using the same training
data as in the case of AdaBoost. Using the labeled 10 × 10 image patches (for the
round objects) and 13 × 13 patches (for the elongated objects), the kernels w for
both types of objects were obtained (see Fig. 2.17(d,e)). Then, the sliding subwindow
was used in order to classify every pixel in the image I. The method produces the
binary classification map CB directly, so the performance of the detector was studied
depending on the threshold vd (which defines the size of the clusters of connected
pixels in CB), and not the signal threshold ld. The results are shown in Fig. 2.13
and the optimal parameter values are presented in Table 2.12. The size threshold,
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Figure 2.13. FROC curves for the FDA detector in the case of the round (a) and
elongated (b) objects, depending on the values of the size threshold vd and the type
of image data, at SNR = 2.

Table 2.12. Optimal size thresholding parameters and corresponding performance
for the FDA detector at SNR = 2.

Image Round Objects Elongated Objects
Type v∗d TPR∗ ST SF v∗d TPR∗ ST SF

A 4.6 .99 10−5 .01 3.0 .99 10−5 10−2

B 8.8 .99 10−3 .01 5.6 .99 10−5 10−2

C 9.8 .96 10−2 .01 12.4 .99 10−5 10−3

which in principle is an integer number (the minimum number of pixels a cluster in
CB should have to be considered an object), is real-valued in Table 2.12, due to the
interpolation in order to obtain the value v∗d for which FPR∗ = 0.01.

2.4.1.10 Comparison of All Detectors

The performance of all the described detectors was compared at the level of FPR∗ =
0.01 for the different image data at SNR = 2. The results are shown in Fig. 2.14.
From the sensitivity analyses (see Tables 2.2-2.7, 2.11, 2.12), which was based on the
comparison of ∆TPR and ∆FPR around the optimal signal thresholds for different
detectors and data types revealed that the FDA and AB are superior to all other
detectors and show the highest TPR* and the lowest sensitivity for all image data
(Type A, B and C, SNR = 2). The WMP demonstrated the worst performance
and additionally showed high sensitivity to parameter changes, together with the TH
detector, which demonstrated high performance only for Type A and B data. The
IFDs are quite sensitive to parameter changes and do not have sufficiently high TPR
in the case of the elongated objects. The HD, SEF and MTH demonstrate high TPR*
and low parameter sensitivity, but none of these three detectors is better than the
other two for all types of data. Finally we observed that the difference in performance
between the methods decreases when the SNR of the image data increases, and we
found that for SNR > 5 all methods perform equally well (TPR = 1).
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Figure 2.14. Maximum detection probabilities (TPR∗) at the level FPR∗ = 0.01
for all the detectors applied to all three types of synthetic image data at SNR = 2
in the case of the round (top) and elongated (bottom) objects.

2.4.2 Evaluation on Real Image Data

2.4.2.1 Image Data

The described detection methods were also tested on real time-lapse fluorescence
microscopy image data from several biological studies. The main goal of these stud-
ies was to estimate important kinematic parameters of subcellular particles in eu-
karyotic cells. To understand the molecular mechanisms underlying particle motility
and distribution, it is essential to characterize in detail different dynamic proper-
ties, such as velocities, run lengths, and frequencies of pausing and switching of cy-
toskeletal tracks. This requires accurate tracking of individual particles, for which
a wide variety of automatic tracking algorithms can be found in the recent litera-
ture [10, 17, 38, 52, 72, 74, 75, 128, 132, 141, 142]. In turn, these algorithms generally
depend heavily on the performance of the spot detection stage, which forms an inte-
gral part of any tracking algorithm (see Section 2.1).

Two types of representative image data sets were selected for these experiments.
The first showed moving microtubule (MT) plus-ends, which have a round or elon-
gated appearance. MTs are hollow tubes (diameter of 25 nm) assembled from α/β-
tubulin heterodimers, which frequently switch between growth and shrinkage [80,155].
The MT network is highly regulated and is essential to many cellular processes. In
the experiments, growing ends of MTs were tagged with so-called plus-end-tracking
proteins (+TIP), resulting in typical fluorescent “comet-like” dashes in the image se-
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quences. In our study, COS-1 cells were cultured and transfected with GFP-tagged
proteins [155]. A Zeiss LSM-510 confocal laser scanning microscope was used to ac-
quire images of GFP+TIP movements at a rate of 1 frame per 1 or 2 seconds. The
image sequences consisted of 30–50 frames of 512×512 pixels of size 75×75 nm2 (see
Fig. 2.15(a,b)).

The second type of image data showed a variety of GFP-labeled vesicles (Rab6
and peroxisomes), which have a round shape in the images. In this case, HeLa cells
and PEX3-GFP fusion were used [58]. The HeLa cell line is the oldest cell line and
is widely used for many different studies. Many variants of the HeLa cell line exist,
including HeLa-R, with a so-called “round” phenotype, and HeLa-L, with a “long”
phenotype. HeLa-L cells were used to study the dynamic properties of vesicles, and
HeLa-R cells to study microtubule dynamics, microtubule and cell cortex crosstalk,
and exocytosis [58]. Images were acquired on a Zeiss Axiovert 200M inverted mi-
croscope at a rate of 0.83 frames per second. The image sequences consisted of 100
frames of 1344 × 1024 pixels of size 64 × 64 nm2 (see Fig. 2.15(c)).

2.4.2.2 Experiments and Results

For the experiments on real image data, the parameters of each detection method
(except the thresholds ld and vd) were fixed to the same values as in the case of the
experiments on synthetic data. Since the ground truth was not available for the real
data, the results of the detection were analyzed by expert visual inspection and in
comparison with manual analysis using MTrackJ [94].

The FROC plots for all the detection methods applied to two illustrative image
data sets showing MTs (each image containing ≈ 80–100 spots at SNR ≈ 2–4) and
one data set showing vesicles (containing ≈ 250 spots at SNR ≈ 3–8) are shown in
Fig. 2.15. For the latter data set, all detection methods performed reasonably well,
including the WMP detector, which performed notably worse on the MT data. In all
cases, the two ML detectors (FDA and AB) and the HD detector showed the best
overall performance. For visual comparison, the kernels obtained by FDA for the
three mentioned real image data sets, as well as for the two types of synthetic data
sets are shown in Fig. 2.17, where, for example, Fig 2.17(c) depicts the fact that the
vesicle appearance in our images (see Fig. 2.15(c)) is more diverse compared to the
microtubule data (Fig. 2.15(a, b)).

As an example, the results of all methods applied to an MT data set with SNR ≈
2 are shown in Fig. 2.16. Manual annotation was extremely laborious and tedious in
this case: visual comparison of several neighboring time-frames in the image sequence
was necessary in order to establish object presence. Based on visual inspection of
the results, it was found that the HD detector yielded the largest number of TPs
and the smallest number of FPs. Here, in order to test the robustness of the ML
approaches, the training was done using positive and negative samples obtained from
another dataset (see Fig. 2.1(b)) with SNR ≈ 2–3. The results of this experiment
imply that FDA is more sensitive to the training data: if the training is done using
image data with different imaging conditions (SNR), the performance of the classifier
can degrade. The AdaBoost algorithm, on the other hand, is less sensitive.
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(a) (b) (c) (d) (e)

Figure 2.17. The FDA kernels for the MT data (a and b), vesicles (c), and the
round and elongated objects from the synthetic data (d and e).

2.5 Discussion and Conclusions

In this chapter we have evaluated the performance of six unsupervised and two su-
pervised detection methods that are frequently used in practice for the detection of
small spots in fluorescence microscopy images. It was shown that all of the described
methods follow a “three-step” signal processing procedure, but implement each of
these steps in a specific way. In order to build an accurate and robust detector for a
particular application, a careful selection of the algorithms for each of the steps is nec-
essary. The results from experiments on synthetic images as well as real image data
from two biological studies indicated that no detector outperforms all others in all
considered situations. Overall, the supervised (machine learning) methods performed
better on the synthetic images as well as on the real image data, but the differences
in the performance were not large compared to some of the unsupervised methods.

In order to study the influence of small changes in the parameter settings of the
detection methods, a sensitivity analysis was carried out by computing the resulting
rate of change in TPR (the true-positive ratio) and FPR (the false-positive ratio)
around the empirically determined optimal signal threshold, for two types of objects
(round and elongated). From the experiments on the synthetic images at very low
SNR (≈ 2), we found that the AB (AdaBoost) and the FDA (Fisher discriminant
analysis) detectors are superior to all other detectors, in that they show the highest
TPR (at very low FPR) and the lowest sensitivity to parameter changes, for all
types of image data considered: uniform background (Type A), background gradient
(Type B), and cluttered background structures (Type C). Of all the unsupervised
detectors, the WMP (wavelet multiscale product) detector showed the worst overall
performance and, additionally, high sensitivity to parameter changes. Similarly, the
TH (top-hat based) detector showed high performance only for Type A and Type B
data. The HD (h-dome), MTH (morphological top-hat), and SEF (spot-enhancing
filter) based detectors showed high TPR and low parameter sensitivity, but none of
them was better than the other two for all data types. Both variants of IFD (the
image-feature based detector) were quite sensitive to parameter changes and did not
show high TPR in the detection of elongated objects. Finally, we also observed from
these experiments that for SNR > 3, the difference in performance of all the detectors
rapidly decreases.

From the experiments on real fluorescence microscopy image data, it was con-
firmed that the actual performance of the detection methods depends on the appli-
cation. For the microtubule data, which contained round or elongated objects of
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almost identical sizes, we arrived at the same conclusions as in the case of the syn-
thetic image data. For the vesicle data, however, the ranking of the detectors was
found to be slightly different. These images have a higher SNR (≈ 3–8) but contain
spots of varying sizes. In this case, the detection methods that have parameters that
explicitly relate to spot size, such as the TH and MTH detectors, showed quite poor
performance. Once their parameters are set, these detectors expect spots to be of
similar size. Similarly, the image-feature based IFD detector works well only when
all the spots have very similar appearance in terms of the features considered. On
the other hand, detectors such as SEF and HD do not model the spots exactly, and
because of that allow some more variation in the appearance of spots. Moreover, the
WMP detector, which also does not assume any specific object shape, demonstrated
much better performance for such datasets.

Based on our extensive experiments, we conclude that when a detector with overall
good performance is needed, the supervised AB or FDA detectors or the unsupervised
HD detector are to be preferred. The main disadvantage of the supervised methods is
that they require a training stage, which involves the extraction of positive and neg-
ative samples beforehand. As was shown, the training should not be done using only
clearly visible spots in image regions with high local SNRs. On the contrary, in order
to achieve good classification performance, it must also include a lot of hardly visible
objects. Such manual annotation is extremely tedious, time consuming, and observer
dependent. Spots may be more or less identical within one data set, but may differ
in appearance from one data set to another, due to the different experimental and
imaging conditions. Because of that, one would have to repeat the training (or correct
it) when new data sets arrive. The preparation of training samples requires manual
annotation of thousands of objects in order to achieve sufficient discriminating power,
which itself is a manual detection that biologists would be happy to use, without
considering further automated analysis. Taking this into account, the unsupervised
HD detector is much easier to use in practice. Finally, when the SNR is sufficiently
high (> 5 as a rule of thumb), the other unsupervised detectors perform just as well,
and require only minimal adjustment of their parameters to the specific application.
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Particle Filtering for Multiple
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Application to Microtubule

Growth Analysis

It is remarkable that a science which began with the considera-

tion of games of chance should have become the most important

object of human knowledge.

— Pierre-Simon, marquis de Laplace

Théorie Analytique des Probabilités (1812)

Abstract — Quantitative analysis of dynamic processes in living cells by means
of fluorescence microscopy imaging requires tracking of hundreds of bright spots
in noisy image sequences. Deterministic approaches, which use object detection
prior to tracking, perform poorly in the case of noisy image data. We propose
an improved, completely automatic tracker, built within a Bayesian probabilistic
framework. It better exploits spatiotemporal information and prior knowledge than
common approaches, yielding more robust tracking also in cases of photobleaching
and object interaction. The tracking method was evaluated using simulated but
realistic image sequences, for which ground truth was available. The results of
these experiments show that the method is more accurate and robust than popular
tracking methods. In addition, validation experiments were conducted with real
fluorescence microscopy image data acquired for microtubule growth analysis. These
demonstrate that the method yields results that are in good agreement with manual
tracking performed by expert cell biologists. Our findings suggest that the method
may replace laborious manual procedures.

Based upon: I. Smal, K. Draegestein, N. Galjart, W. Niessen, E. Meijering, “Particle Filtering for
Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule
Growth Analysis”, IEEE Transactions on Medical Imaging, vol. 27, no. 6, pp. 789–804, 2008.
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3.1 Introduction

I
n the past decade, advances in molecular cell biology have triggered the develop-
ment of highly sophisticated live cell fluorescence microscopy systems capable of in
vivo multidimensional imaging of subcellular dynamic processes. Analysis of time-

lapse image data has redefined the understanding of many biological processes, which
in the past had been studied using fixed material. Motion analysis of nanoscale objects
such as proteins or vesicles, or subcellular structures such as microtubules (Fig. 3.1),
commonly tagged with green fluorescent protein (GFP), requires tracking of large and
time-varying numbers of spots in noisy image sequences [54,95,132,135,160,161,166].
Nowadays, high-throughput experiments generate vast amounts of dynamic image
data, which cannot be analyzed manually with sufficient speed, accuracy and repro-
ducibility. Consequently, many biologically relevant questions are either left unad-
dressed, or answered with great uncertainty. Hence, the development of automated
tracking methods which replace tedious manual procedures and eliminate the bias
and variability in human judgments, is of great importance.

Conventional approaches to tracking in molecular cell biology typically consist
of two subsequent steps. In the first step, objects of interest are detected sepa-
rately in each image frame and their positions are estimated based on, for instance,
intensity thresholding [19], multiscale analysis using the wavelet transform [52], or
model fitting [161]. The second step solves the correspondence problem between sets
of estimated positions. This is usually done in a frame-by-frame fashion, based on
nearest-neighbor or smooth-motion criteria [33, 171]. Such approaches are applicable
to image data showing limited numbers of clearly distinguishable spots against rela-
tively uniform backgrounds, but fail to yield reliable results in the case of poor imaging
conditions [26,32]. Tracking methods based on optic flow [13,167] are not suitable be-
cause the underlying assumption of brightness preservation over time is not satisfied
in fluorescence microscopy, due to photobleaching. Methods based on spatiotemporal
segmentation by minimal cost path searching have also been proposed [17,128]. Until
present, however, these have been demonstrated to work well only for the tracking
of a single object [128], or a very limited number of well-separated objects [17]. As
has been observed [17], such methods fail when either the number of objects is larger
than a few dozen, or when the object trajectories cross each other, which make them
unsuitable for our applications.

As a consequence of the limited performance of existing approaches, tracking is
still performed manually in many laboratories worldwide. It has been argued [95] that
in order to reach similar superior performance as expert human observers in temporal
data association, while at the same time achieving a higher level of sensitivity and
accuracy, it is necessary to make better use of temporal information and (application
specific) prior knowledge about the morphodynamics of the objects being studied.
The human visual system integrates to a high degree spatial, temporal and prior in-
formation [23] to resolve ambiguous situations in estimating motion flows in image
sequences. Here we explore the power of a Bayesian generalization of the standard
Kalman filtering approach in emulating this process. It addresses the problem of
estimating the hidden state of a dynamic system by constructing the posterior proba-
bility density function (pdf) of the state based on all available information, including
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prior knowledge and the (noisy) measurements. Since this pdf embodies all avail-
able statistical information, it can be termed a complete solution to the estimation
problem.

Bayesian filtering is a conceptual approach, which yields analytical solutions, in
closed form, only in the case of linear systems and Gaussian statistics. In the case
of non-linearity and non-Gaussian statistics, numerical solutions can be obtained by
applying sequential Monte Carlo (SMC) methods [39], in particular particle filter-
ing (PF) [9]. In the filtering process, tracking is performed by using a predefined
model of the expected dynamics to predict the object states, and by using the (noisy)
measurements (possibly from different types of sensors) to obtain the posterior prob-
ability of these states. In the case of multiple target tracking, the main task is to
perform efficient measurement-to-target association, on the basis of thresholded mea-
surements [15]. The classical data association methods in multiple target tracking can
be divided into two main classes: unique-neighbor data association methods, as in the
multiple hypothesis tracker (MHT), which associate each measurement with one of
the previously established tracks, and all-neighbors data association methods, such as
joint probabilistic data association (JPDA), which use all measurements for updating
all track estimates [15]. The tracking performance of these methods is known to be
limited by the linearity of the data models. By contrast, SMC methods that propa-
gate the posterior pdf, or methods that propagate the first-order statistical moment
(the probability hypothesis density) of the multitarget pdf [90], have been shown to
be successful in solving the multiple target tracking and data association problems
when the data models are nonlinear and non-Gaussian [68,104].

Previous applications of PF-based motion estimation include radar- and sonar-
based tracking [104,175], mobile robot localization [39,184], teleconferencing or video
surveillance [115], and other human motion applications [31, 110, 186]. In most com-
puter vision applications, tracking is limited to a few objects only [70,89]. Most bio-
logical applications, on the other hand, require the tracking of large and time-varying
numbers of objects. Recently, the use of PF in combination with level-sets [83] and
active contours [139] has been reported for biological cell tracking. These methods
outperform deterministic methods, but they are straightforward applications of the
original algorithm [70] for single target tracking, and cannot be directly applied to
the simultaneous tracking of many intracellular objects. A PF-like method for the
tracking of proteins has also been suggested [183], but it still uses template matching
for the linking stage, it requires manual initialization, and tracks only a single object.
In this chapter, we extend our earlier conference reports [143,144], and develop a fully
automated PF-based method for robust and accurate tracking of multiple nanoscale
objects in two-dimensional (2D) and three-dimensional (3D) dynamic fluorescence
microscopy images. Its performance is demonstrated for a particular biological appli-
cation of interest: microtubule growth analysis.

The chapter is organized as follows. In Section 3.2 we give more in-depth informa-
tion on the biological application considered in this chapter, providing further biologi-
cal motivation for our work. In Section 3.3 we present the general tracking framework
and its extension to allow tracking of multiple objects. Next, in Section 3.4, we de-
scribe the necessary improvements and adaptations to tailor the framework to the
application. These include a new dynamic model which allows dealing with object
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Figure 3.1. Examples of microtubules tagged with GFP-labeled plus end tracking
proteins (bright spots), imaged using fluorescence confocal microscopy. The images
are single frames from six 2D time-lapse studies, conducted with different experi-
mental and imaging conditions. The quality of such images typically ranges from
SNR ≈ 5–6 (a-c) to the extremely low SNR ≈ 2–3 (d-f).
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interaction and photobleaching effects. In addition, we improve the robustness and
reproducibility of the algorithm by introducing a new importance function for data-
dependent sampling (the choice of the importance density is one of the most critical
issues in the design of a PF method). We also propose a new, completely automatic
track initiation procedure. In Section 3.5, we present experimental results of applying
our PF method to synthetic image sequences, for which ground truth was available,
as well as to real fluorescence microscopy image data of microtubule growth. A con-
cluding discussion of the main findings and their potential implications is given in
Section 3.6.

3.2 Microtubule Growth Analysis

Microtubules (MTs) are polarized tubular filaments (diameter ≈ 25 nm) composed
of α/β-tubulin heterodimers. In most cell types, one end of a MT (the minus-end) is
embedded in the so-called MT organizing center (MTOC), while the other end (the
plus-end) is exposed to the cytoplasm. MT polymerization involves the addition of
α/β-tubulin subunits to the plus end. During MT disassembly, these subunits are
lost. MTs frequently switch between growth and shrinkage, a feature called dynamic
instability [37]. The conversion of growth to shrinkage is called catastrophe, while
the switch from shrinkage to growth is called rescue. The dynamic behavior of MTs
is described by MT growth and shrinkage rates, and catastrophe and rescue frequen-
cies. MTs are fairly rigid structures having nearly constant velocity while growing or
shrinking [48]. MT dynamics is highly regulated, as a properly organized MT network
is essential for many cellular processes, including mitosis, cell polarity, transport of
vesicles, and the migration and differentiation of cells. For example, when cells enter
mitosis, the cdc2 kinase controls MT dynamics such that the steady-state length of
MTs decreases considerably. This is important for spindle formation and position-
ing [173]. It has been shown that an increase in catastrophe frequency is largely
responsible for this change in MT length [172].

Plus-end-tracking proteins, or +TIPs [137], specifically bind to MT plus-ends and
have been linked to MT-target interactions and MT dynamics [4, 67, 80]. Plus-end-
tracking was first described for overexpressed GFP-CLIP170 in cultured mammalian
cells [114]. In time-lapse movies, typical fluorescent “comet-like” dashes were ob-
served, which represented GFP-CLIP170 bound to the ends of growing MTs. As plus-
end tracking is intimately associated with MT growth, fluorescently labeled +TIPs
are now widely used to measure MT growth rates in living cells, and they are also the
objects of interest considered in the present work. With fluorescent +TIPs, all grow-
ing MTs can be discerned. Alternatively, the advantage of using fluorescent tubulin
is that all parameters of MT dynamics can be measured. However, in regions where
the MT network is dense, the fluorescent MT network obscures MT ends, making it
very difficult to examine MT dynamics. Hence, in many studies based on fluores-
cent tubulin [62, 127, 187], analysis is restricted to areas within the cells where the
MT network is sparse. Ideally, one should use both methods to acquire all possible
knowledge regarding MT dynamics, and this will be addressed in future work.

+TIPs are well positioned to perform their regulatory tasks. A network of inter-
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acting proteins, including +TIPs, may govern the changes in MT dynamics that occur
during the cell cycle [106] . Since +TIPs are so important and display such a fasci-
nating behavior, the mechanisms by which +TIPs recognize MT ends have attracted
much attention. In one view, +TIPs binds to newly synthesized MT ends with high
affinity and detach seconds later from the MT lattice, either in a regulated manner or
stochastically [114]. However, other mechanisms have also been proposed [4, 27, 67].
Measuring the distribution and displacement of a fluorescent +TIP in time may shed
light on the mechanism of MT end binding. However, this is a labor intensive proce-
dure if fluorescent tracks have to be delineated by hand, and very likely leads to user
bias and loss of important information. By developing a reliable tracking algorithm
we obtain information on the behavior of all growing MTs within a cell, which reveals
the spatiotemporal distribution and regulation of growing MTs. Importantly, this
information can be linked to the spatiotemporal fluorescent distribution of +TIPs.
This is extremely important, since the localization of +TIPs reports on the dynamic
state of MTs and the cell.

3.3 Tracking Framework

Before describing the details of our tracking approach, we first recap the basic prin-
ciples of nonlinear Bayesian tracking in general (Section 3.3.1), and PF in particular
(Section 3.3.2), as well as the extension that has been proposed in the literature to
allow tracking of multiple objects within this framework (Section 3.3.3).

3.3.1 Nonlinear Bayesian Tracking

The Bayesian tracking approach deals with the problem of inferring knowledge about
the unobserved state of a dynamic system, which changes over time, using a sequence
of noisy measurements. In a state-space approach to dynamic state estimation, the
state vector xt of a system contains all relevant information required to describe the
system under investigation. Bayesian estimation in this case is used to recursively
estimate a time evolving posterior distribution (or filtering distribution) p(xt|z1:t),
which describes the object state xt given all observations z1:t up to time t.

The exact solution to this problem can be constructed by specifying the Markovian
probabilistic model of the state evolution, D(xt|xt−1), and the likelihood L(zt|xt),
which relates the noisy measurements to any state. The required probability density
function p(xt|z1:t) may be obtained, recursively, in two stages: prediction and update.
It is assumed that the initial pdf, p(x0|z0) ≡ p(x0), also known as the prior, is available
(z1:0 = z0 being the set of no measurements).

The prediction stage involves using the system model and pdf p(xt−1|z1:t−1) to
obtain the prior pdf of the state at time t via the Chapman-Kolmogorov equation:

p(xt|z1:t−1) =

∫

D(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (3.1)

In the update stage, when a measurement zt becomes available, Bayes’ rule is used
to modify the prior density and obtain the required posterior density of the current
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state:
p(xt|z1:t) ∝ L(zt|xt)p(xt|z1:t−1). (3.2)

This recursive estimation of the filtering distribution can be processed sequentially
rather than as a batch, so that it is not necessary to store the complete data set nor
to reprocess existing data if a new measurement becomes available [9]. The filtering
distribution embodies all available statistical information and an optimal estimate of
the state can theoretically be found with respect to any sensible criterion.

3.3.2 Particle Filtering Methods

The optimal Bayesian solution, defined by the recurrence relations (3.1) and (3.2), is
analytically tractable in a restrictive set of cases, including the Kalman filter, which
provides an optimal solution in case of linear dynamic systems with Gaussian noise,
and grid based filters [9]. For most practical models of interest, SMC methods (also
known as bootstrap filtering, particle filtering, and the condensation algorithm [70])
are used as an efficient numerical approximation. The basic idea here is to represent
the required posterior density function p(xt|z1:t) with a set of Ns random samples, or

particles, and associated weights {x(i)
t , w

(i)
t }Ns

i=1. Thus, the filtering distribution can
be approximated as

p(xt|z1:t) ≈
Ns
∑

i=1

w
(i)
t δ(xt − x

(i)
t ),

where δ(·) is the Dirac delta function and the weights are normalized such that
∑Ns

i=1 w
(i)
t = 1. These samples and weights are then propagated through time to

give an approximation of the filtering distribution at subsequent time steps.
The weights in this representation are chosen using a sequential version of im-

portance sampling (SIS) [125]. It applies when auxiliary knowledge is available in
the form of an importance function q(xt|xt−1, zt) describing which areas of the state-
space contain most information about the posterior. The idea is then to sample the
particles in those areas of the state-space where the importance function is large and
to avoid as much as possible generating samples with low weights, since they provide
a negligible contribution to the posterior. Thus, we would like to generate a set of
new particles from an appropriately selected proposal function, i.e.,

x
(i)
t ∼ q(xt|x(i)

t−1, zt), i = {1, . . . , Ns}. (3.3)

A detailed formulation of q(·|·) is given in Section 3.4.6.

With the set of state particles obtained from (3.3), the importance weights w
(i)
t

may be recursively updated as follows:

w
(i)
t ∝

L(zt|x(i)
t )D(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

t−1, zt)
w

(i)
t−1. (3.4)

Generally, any importance function can be chosen, subject to some weak constraints
[40, 126]. The only requirements are the possibility to easily draw samples from it
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and evaluate the likelihood and dynamic models. For very large numbers of samples,
this MC characterization becomes equivalent to the usual functional description of
the posterior pdf.

By using this representation, statistical inferences, such as expectation, maximum
a posteriori (MAP), and minimum mean square error (MMSE) estimators (the latter
is used for the object position estimation in the approach proposed in this chapter),
can easily be approximated. For example,

x̂MMSE
t = Ep[xt] =

∫

xtp(xt|z1:t)dxt ≈
Ns
∑

i=1

x
(i)
t w

(i)
t . (3.5)

A common problem with the SIS particle filter is the degeneracy phenomenon,
where after a few iterations, all but a few particles will have negligible weight. The
variance of the importance weights can only increase (stochastically) over time [40].
The effect of the degeneracy can be reduced by a good choice of importance density
and the use of resampling [9,40,125] to eliminate particles that have small weights and
concentrate on particles with large weights (see [40] for more details on degeneracy
and resampling procedures).

3.3.3 Multi-Modality and Mixture Tracking

It is straightforward to generalize the Bayesian formulation to the problem of multi-
object tracking. However, due to the increase in dimensionality, this formulation gives
an exponential explosion of computational demands. The primary goal in a multi-
object tracking application is to determine the posterior distribution, which is multi-
modal in this case, over the current joint configuration of the objects at the current
time step, given all observations up to that time step. Multiple modes are caused
either by ambiguity about the object state due to insufficient measurements, which is
supposed to be resolved during tracking, or by measurements coming from multiple
objects being tracked. Generally, MC methods are poor at consistently maintaining
the multi-modality in the filtering distribution. In practice it frequently occurs that
all the particles quickly migrate to one of the modes, subsequently discarding other
modes.

To capture and maintain the multi-modal nature, which is inherent to many
applications in which tracking of multiple objects is required, the filtering distribution
is explicitly represented by an M -component mixture model [174]:

p(xt|z1:t) =

M
∑

m=1

πm,tpm(xt|z1:t), (3.6)

with
∑M

m=1 πm,t = 1 and a non-parametric model is assumed for the individual mix-
ture components. In this case, the particle representation of the filtering distribution,

{x(i)
t , w

(i)
t }N

i=1 with N = MNs particles, is augmented with a set of component in-

dicators, {c(i)t }N
i=1, with c

(i)
t = m if particle i belongs to mixture component m.

For the mixture component m we also use the equivalent notation {x(l)
m,t, w

(l)
m,t}Ns

l=1 =
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{x(i)
t , w

(i)
t : c

(i)
t = m}N

i=1. The representation (3.6) can be updated in the same fashion
as the two-step approach for standard Bayesian sequential estimation [174].

3.4 Tailoring the Framework

Having presented the general framework for PF-based multiple object tracking, we
now tailor it to our application: the study of MT dynamics. This requires mak-
ing choices regarding the models involved as well as a number of computational and
practical issues. Specifically, we propose a new dynamic model, which does not only
cover spatiotemporal behavior but also allows dealing with photobleaching effects
(Section 3.4.1) and object interaction (Section 3.4.2). In addition, we propose a new
observation model and corresponding likelihood function (Section 3.4.3), tailored to
objects that are elongated in their direction of motion. The robustness and computa-
tional efficiency of the algorithm are improved by using two-step hierarchical searching
(Section 3.4.4), measurement gating (Section 3.4.5) and a new importance function
for data-dependent sampling (Section 3.4.6). Finally, we propose practical procedures
for particle reclustering (Section 3.4.7) and automatic track initiation (Section 3.4.8).

3.4.1 State-Space and Dynamic Model

In order to model the dynamic behavior of the visible ends of MTs in our algorithm, we
represent the object state with the state vector xt = (xt, ẋt, yt, ẏt, zt, żt, σmax,t, σmin,t,

σz,t, It)
T , where (σmax,t, σmin,t, σz,t)

T , st is the object shape feature vector (see Sec-

tion 3.4.3), (xt, yt, zt)
T , rt is the radius vector, ṙt , vt is velocity, and It object

intensity. The state evolution model D(xt|xt−1) can be factorized as

D(xt|xt−1) = Dy(yt|yt−1)Ds(st|st−1)DI(It|It−1), (3.7)

where yt = (xt, ẋt, yt, ẏt, zt, żt). Here, Dy(yt|yt−1) is modeled using a linear Gaussian
model [40], which can easily be evaluated pointwise in (3.4), and is given by

Dy(yt|yt−1) ∝ exp

(

−1

2
(yt − Fyt−1)

T Q−1(yt − Fyt−1)

)

, (3.8)

with the process transition matrix F = diag[F1,F1,F1] and covariance matrix Q =
diag[Q1,Q1,Q1] given by

F1 =

(

1 T
0 1

)

and Q1 =

(

q11 q12
q12 q22

)

,

where T is the sampling interval. Depending on the parameters q11, q12, q22 the model
(3.8) describes a variety of motion patterns, ranging from random walk (‖vt‖ = 0,
q11 6= 0, q12 = 0, q22 = 0) to nearly constant velocity (‖vt‖ 6= 0, q11 6= 0, q12 6= 0,
q22 6= 0) [11], [84]. In our application, the parameters are fixed to q11 = q1

3 T
3,

q12 = q1

2 T
2, q22 = q1T , where q1 controls the noise level. In this case, model (3.8)

corresponds to the continuous-time model ṙ(t) = w(t) ≈ 0, where w(t) is white
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noise that corresponds to noisy accelerations [11]. We also make the realistic assump-
tion that object velocities are bounded. This prior information is object dependent
and will be used for state initialization (see Section 3.4.8). Small changes in frame-
to-frame MT appearance (shape) are modeled using the Gaussian transition prior
Ds(st|st−1) = N (st|st−1, T q2I), where N (·|µ, Σ) indicates the normal distribution
with mean µ and covariance matrix Σ, I is the identity matrix, and q2 represents the
noise level in object appearance.

In practice, the analysis of time-lapse fluorescence microscopy images is compli-
cated by photobleaching, a dynamic process by which the fluorescent proteins undergo
photoinduced chemical destruction upon exposure to excitation light and thus lose
their ability to fluoresce. Although the mechanisms of photobleaching are not yet well
understood, two commonly used (and practically similar) approximations of fluores-
cence intensity over time are given by

I(t) = Ae−at +B (3.9)

and

I(t) = I0

(

1 +

(

t

L

)k
)−1

, (3.10)

where A, B, a, I0, L, and k are experimentally determined constants (see [124, 148]
for more details on the validity and sensitivity of these models). The rate of pho-
tobleaching is a function of the excitation intensity. With a laser as an excitation
source, photobleaching is observed on the time scale of microseconds to seconds.
The high numerical aperture objectives currently in use, which maximize spatial res-
olution and improve the limits of detection, further accelerate the photobleaching
process. Commonly, photobleaching is ignored by standard tracking methods, but in
many practical cases it is necessary to model this process so as to be less sensitive to
changing experimental conditions.

Following the common approximation (3.9), we model object intensity in our
image data by the sum of a time-dependent, a time-independent, and a random
component:

It + Ic + ut =
I0Â

Â+ B̂
e−α̂t +

I0B̂

Â+ B̂
+ ut, (3.11)

where ut is zero-mean Gaussian process noise and I0 is the initial object intensity,
obtained by the initialization procedure (see Section 3.4.8). The parameters Â, B̂,
and α̂ are estimated using the Levenberg-Marquardt algorithm for nonlinear fitting
of (3.9) to the average background intensity over time, bt (see Section 3.4.3). In
order to conveniently incorporate the photobleaching effect contained in (3.11) into
our framework, we approximate it as a first-order Gauss-Markov process, It = (1 −
α̂)It−1+ut, which models the exponential intensity decay in the discrete-time domain.
In this case, the corresponding state prior DI(It|It−1) = N (It|(1−α̂)It−1, q3T ), where
q3 = T−1σ2

u and σ2
u is the variance of ut.

The photobleaching effect could alternatively be accommodated in our framework
by assuming a constant intensity model (α̂ = 0) for DI(It|It−1), but with a very high
variance for the process noise, σ2

u. However, in practice, because of the limited number
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of MC samples, the variance of the estimation would rapidly grow, and many samples
would be used inefficiently, causing problems especially in the case of a highly peaked
likelihood L(zt|xt) (see Section 3.4.3). By using (3.11), we follow at least the trend of
the intensity changes, and bring the estimation closer to the optimal solution. This
way, we reduce the estimation variance and, consequently, the number of MC samples
needed for the same accuracy as in the case of the constant intensity model.

In summary, the proposed model (3.7) correctly approximates small accelerations
in object motion and fluctuations in object intensity, and therefore is very suitable for
tracking growing MTs, as their dynamics can be well modeled by constant velocity
plus small random diffusion [48]. The model (3.8) can also be successfully used for
tracking other subcellular structures, for example vesicles, which are characterized by
motion with higher nonlinearity. In that case, the process noise level, defined by Q,
should be increased.

3.4.2 Object Interactions and Markov Random Field

In order to obtain a more realistic motion model and avoid track coalescence in the
case of multiple object tracking, we explicitly model the interaction between objects
using a Markov random field (MRF) [76]. Here we use a pairwise MRF, expressed by
means of a Gibbs distribution

ψt(x
(i)
t ,x

(j)
t ) ∝ exp (−di,j

t ),

i, j ∈ {1, . . . , N}, c
(i)
t 6= c

(j)
t , (3.12)

where di,j
t is a penalty function which penalizes the states of two objects c

(i)
t and c

(j)
t

that are closely spaced at time t. That is, di,j
t is maximal when two objects coincide

and gradually falls off as they move apart. This simple pairwise representation is
easy to implement yet can be made quite sophisticated. Using this form, we can
still retain the predictive motion model of each individual target. To this end, we

sample Ns times the pairs (x
(l)
m,t−1,x

(l)
m,t) (M such pairs at a time, m = {1, . . . ,M}),

from pm(xt−1|z1:t−1) and q(xt|x(l)
m,t−1, zt), respectively, l = {1, . . . , Ns}. Taking into

account (3.12), the weights (3.4) in this case are given by

w
(l)
m,t ∝

L(zt|x(l)
m,t)D(x

(l)
m,t|x(l)

m,t−1)

q(x
(l)
m,t|x(l)

m,t−1, zt)

M
∏

k=1,k 6=m

ψt(x
(l)
m,t,x

(l)
k,t). (3.13)

The mixture representation {{x(l)
m,t, w

(l)
m,t}M

m=1}Ns

l=1 is then straightforwardly trans-

formed to {x(i)
t , w

(i)
t , c

(i)
t }N

i=1. In our application we have found that an interaction
potential based only on object positions is sufficient to avoid most tracking failures.
The use of a MRF approach is especially relevant and efficient in the case of 3D+t
data analysis, because object merging is not possible in our application.

3.4.3 Observation Model and Likelihood

The measurements in our application are represented by a sequence of 2D or 3D
images showing the motion of fluorescent proteins. The individual images (also called
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frames) are recorded at discrete instants t, with a sampling interval T , with each
image consisting of Nx × Ny × Nz pixels (Nz = 1 in 2D). At each pixel (i, j, k),
which corresponds to a rectangular volume of dimensions ∆x × ∆y × ∆z nm3, the
measured intensity is denoted as zt(i, j, k). The complete measurement recorded at
time t is an Nx ×Ny ×Nz matrix denoted as zt = {zt(i, j, k) : i = 0, . . . , Nx − 1, j =
0, . . . , Ny − 1, k = 0, . . . , Nz − 1}. For simplicity we assume that the origins and axis
orientations of the (x, y, z) reference system and the (i, j, k) system coincide. Let z̃t(r)
denote a first-order interpolation of zt(∆xi,∆yj,∆zk).

The image formation process in a microscope can be modeled as a convolution of
the true light distribution coming from the specimen, with a point-spread function
(PSF), which is the output of the optical system for an input point light source. The
theoretical diffraction-limited PSF in the case of paraxial and non-paraxial imaging
can be expressed by the scalar Debye diffraction integral [190]. In practice, however,
a 3D Gaussian approximation of the PSF [161] is commonly favored over the more
complicated PSF models (such as the Gibson-Lanni model [55]). This choice is mainly
motivated by computational considerations, but a Gaussian approximation of the
physical PSF is fairly accurate for reasonably large pinhole sizes (relative squared
error (RSE) < 9%) and nearly perfect for typical pinhole sizes (RSE < 1%) [190].
In most microscopes currently used, the PSF limits the spatial resolution to ≈ 200
nm in-plane and ≈ 600 nm in the direction of the optical axis, as a consequence of
which subcellular structures (typically of size < 20 nm) are imaged as blurred spots.
We adopt the common assumption that all blurring processes are due to a linear and
spatially invariant PSF.

The PF framework accommodates any PSF that can be calculated pointwise. To
model the imaged intensity profile of the object with some shape, one would have

to use the convolution with the PSF for every state x
(i)
t . In order to overcome this

computational overload, we propose to model the PSF and object shape at the same
time using the 3D Gaussian approximation. To model the manifest elongation in the
intensity profile of MTs, we utilize the velocity components from the state vector xt

as parameters in the PSF. In this case, for an object of intensity It at position rt, the
intensity contribution to pixel (i, j, k) is approximated as

ht(i, j, k;xt) = bt + (It + Ic)×

exp

(

−1

2
mT RT Σ−1Rm

)

×

exp

(

− (k∆z − zt‖m‖ tan θ)2

2σ2
z

)

, (3.14)

where bt is the background intensity, σz (≈ 235 nm) models the axial blurring, R =
R(φ) is a rotation matrix

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

, Σ =

(

σ2
m(θ) 0
0 σ2

min

)

,

m =

(

i∆x − xt

j∆y − yt

)

, σm(θ) = σmin − (σmin − σmax) cos θ,
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tan θ =
żt

√

ẋt
2 + ẏt

2
, tanφ =

ẏt

ẋt

, −π < φ, θ ≤ π.

The parameters σmax and σmin represent the amount of blurring and, at the same time,
model the elongation of the object along the direction of motion. For subresolution
structures such as vesicles, σmin = σmax ≈ 80 nm, and for the elongated MTs σmin ≈
100 nm and σmax ≈ 300 nm.

For background level estimation we use the fact that the contribution of object
intensity values to the total image intensity (mainly formed by background structures
with lower intensity) is negligible, especially in the case of low SNRs. We have found
that in a typical 2D image of size 103 × 103 pixels containing a thousand objects, the
number of object pixels is only about 1%. Even if the object intensities would be
10 times as large as the background level (very high SNR), their contribution to the
total image intensity would be less than 10%. In that case, the normalized histogram
of the image zt can be approximated by a Gaussian distribution with mean b̂ and
variance σ2

b . The estimated background bt = b̂ is then calculated according to

bt =
1

NxNyNz

Nx−1
∑

i=0

Ny−1
∑

j=0

Nz−1
∑

k=0

zt(i, j, k). (3.15)

In the case of a skewed histogram of image intensity, the median of the distribution
can be taken as an estimate of the background level. The latter is preferable because
it treats object pixels as outliers for the background distribution.

Since an object will affect only the pixels in the vicinity of its location, rt, we
define the likelihood function as

LG(zt|xt) ,
∏

(i,j,k)∈C(xt)

ph(zt(i, j, k)|xt)

pb(zt(i, j, k)|bt)
, (3.16)

where C(xt) = {(i, j, k) ∈ Z
3 : ht(i, j, k;xt) − bt > 0.1It},

ph(zt(i, j, k)|xt) ∝
1

σh(i, j, k)
exp

(

− (zt(i, j, k) − ht(i, j, k;xt))
2

2σ2
h(i, j, k)

)

, (3.17)

and

pb(zt(i, j, k)|bt) ∝ exp

(

− (zt(i, j, k) − bt)
2

2σ2
b

)

, (3.18)

with σ2
h(i, j, k) and σ2

b the variances of the measurement noise for the object + back-
ground and background, respectively, which are assumed to be independent from pixel
to pixel and from frame to frame. Poisson noise, which can be used to model the effect
of the quantum nature of light on the measured data, is one of the main sources of noise
in fluorescence microscopy imaging. The recursive Bayesian solution is applicable as
long as the statistics of the measurement noise is known for each pixel. In this chap-
ter we use a valid approximation of Poisson noise, with σ2

h(i, j, k) = ht(i, j, k;xt) and
σ2

b = bt, by scaling the image intensities in order to satisfy the condition σ2
b = bt [26].
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3.4.4 Hierarchical Searching

Generally, the likelihood LG(zt|xt) is very peaked (even when the region C(xt) is
small) and may lead to severe sample impoverishment and divergence of the filter.
Theoretically it is impossible to avoid the degeneracy phenomenon, where, after a
few iterations of the algorithm, all but one of the normalized importance weights are
very close to zero [40]. Consequently, the accuracy of the estimator also degrades
enormously [125]. A commonly used measure of degeneracy is the estimated effective
sample size [40], given by

Neff(t) =

(

Ns
∑

i=1

(w
(i)
t )2

)−1

, (3.19)

which intuitively corresponds to the number of “useful” particles. Degeneracy is usu-
ally strong for image data with low SNR, but the filter also performs poorly when the
noise level is too small [39]. This suggests that MC estimation with accurate sensors
may perform worse than with inaccurate sensors. The problem can be partially fixed
by using an observation model which overestimates the measurement noise. While
the performance is better, this is not a principled way of fixing the problem; the ob-
servation model is artificially inaccurate and the resulting estimation is no longer a
posterior, even if infinitely many samples were used. Other methods that try to im-
prove the performance of PF include partitioned sampling [89], the auxiliary particle
filter (APF) [9], [126] and the regularized particle filters (RPF) [39, 126]. Because of
the highly nonlinear observation model and dynamic model with a high noise level, the
mentioned methods are inefficient for our application. Partitioned sampling requires
the possibility to partition the state space and to decouple the observation model
for each of the partitions, which cannot be done for our application. Application
of the APF is beneficial only when the dynamic model is correctly specified with a
small amount of process noise. The tracking of highly dynamic structures with linear
models requires increasing the process noise in order to capture the typical motion
patterns.

To overcome these problems, we use a different approach, based on RPF, and
mainly on progressive correction [39]. First, we propose a second observation model:

LS(zt|xt) ,
σB

σS(xt)
exp

(

(

Sz
t (xt) − Sb

t (xt)
)2

2σ2
B

−
(

Sz
t (xt) − Sh

t (xt)
)2

2σ2
S(xt)

)

, (3.20)

where
Sz

t (xt) =
∑

(i,j,k)∈C(xt)

zt(i, j, k),

and
Sh

t (xt) =
∑

(i,j,k)∈C(xt)

ht(i, j, k;xt),

Sb
t = bt|C(xt)|, where | · | denotes the set size operator, and the variances σ2

S and
σ2

B are taken to approximate the Poisson distribution: σ2
S = So

t and σ2
B = Sb

t . The
likelihood LS(zt|xt) is less peaked but gives an error of the same order as LG(zt|xt).
Another advantage is that LS(zt|xt) can be used for objects without a predefined
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shape; only the region C(xt), which presumably contains the object, and the total
object intensity in C(xt) need to be specified.

Subsequently, we propose a modified hierarchical search strategy, which uses both
models, LS and LG. To this end, we calculate an intermediate state at time t′, between
time points t−1 and t, by propagating and updating the samples using the likelihood
LS according to

p̄(xt′ |z1:t′) ∝ LS(zt′ |xt′)D(xt′ |xt−1)p(xt−1|z1:t−1) (3.21)

where zt′ = zt. After this step, Neff is still rather high, because the likelihood LS

is less peaked than LG. In a next step, particles with high weights at time t′ are
diversified and put into regions where the likelihood LG is high, giving a much better
approximation of the posterior:

p(xt|z1:t) ∝ LG(zt|xt)N (xt|µt′ ,Σt′)p̄(xt′ |z1:t′), (3.22)

where the expectation and the variance are given by

µt′ = Ep̄[xt′ ], Σt′ = Ep̄[(xt′ − µt′)(xt′ − µt′)
T ]. (3.23)

The described hierarchical search strategy is further denoted as LSG. It keeps the
number Neff quite large and, in practice, provides filters that are more stable in time,
with lower variance in the position estimation.

3.4.5 Measurement Gating

Multiple object tracking requires gating, or measurement selection. The purpose of
gating is to reduce computational expense by eliminating measurements which are
far from the predicted measurement location. Gating is performed for each track at
each time step t by defining a subvolume of the image space, called the gate. All
measurements positioned within the gate are selected and used for the track update
step, (3.2), while measurements outside the gate are ignored in these computations.
In standard approaches to tracking, using the Kalman filter or extended Kalman filter,
measurement gating is accomplished by using the predicted measurement covariance
for each object and then updating the predicted state using joint probabilistic data
association [79]. In the PF approach, which is able to cope with nonlinear and non-
Gaussian models, the analog of the predicted measurement covariance is not available
and can be constructed only by taking, for example, a Gaussian approximation of the
current particle cloud and using it to perform gating. Generally, this approximation
is unsatisfactory, since the advantages gained from having a representation of a non-
Gaussian pdf are lost. In the proposed framework, however, this approximation is
justified by using the highly peaked likelihood functions and the reclustering procedure
(described in Section 3.4.7), which keep the mixture components unimodal.

Having the measurements z̃t(rt), we define the gate for each of the tracks as
follows:

Cm,t = {rt ∈ R
3 : (rt − r̄m,t)

T Σ−1
m,t(rt − r̄m,t) ≤ C0}, (3.24)

where the parameter C0 specifies the size of the gate, which is proportional to the
probability that the object falls within the gate. Generally, since the volume of the
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gate is dependent on the tracking accuracy, it varies from scan to scan and from
track to track. In our experiments, C0 = 9 (a 3-standard-deviation level gate). The
gate Cm,t is centered at the position predicted from the particle representation of
pm(xt|z1:t−1):

r̄m,t = Epm
[rt] =

∫

rtpm(xt|z1:t−1)dxt ≈
N
∑

i=1,

c
(i)
t−1=m

r̄
(i)
t w

(i)
t−1, (3.25)

where the r̄
(i)
t are the position elements of the state vector

x̄
(i)
t ∼ D(xt|x(i)

t−1), i = {1, . . . , N}.

Similarly, the covariance matrix is calculated as

Σm,t = Epm
[(rt − r̄m,t)(rt − r̄m,t)

T ]. (3.26)

3.4.6 Data-Dependent Sampling

Basic particle filters [9, 70, 143], which use the proposal distribution q(xt|xt−1, zt) =
D(xt|xt−1) usually perform poorly because too few samples are generated in regions
where the desired posterior p(xt|z1:t) is large. In order to construct a proposal distri-
bution which alleviates this problem and takes into account the most recent measure-
ments zt, we propose to transform the image sequence into probability distributions.
True spots are characterized by a combination of convex intensity distributions and a
relatively high intensity. Noise-induced local maxima typically exhibit a random dis-
tribution of intensity changes in all directions, leading to a low local curvature [161].
These two discriminative features (intensity and curvature) are used to construct an
approximation of the likelihood L(zt|xt), using the image data available at time t.
For each object we use the transformation

p̃m(rt|zt) =
(Gσ ∗ z̃t(rt) − bt)

rκs
t (rt)

∫

Cm,t
(Gσ ∗ z̃t(rt) − bt)rκs

t (rt)dxdydz
, (3.27)

∀rt ∈ Cm,t, where Gσ is the Gaussian kernel with standard deviation (scale) σ, the
curvature κt(rt) is given by the determinant of the Hessian matrix H of the intensity
z̃t(rt):

κt(rt) = det(H(rt)), H(rt) = ∇ · ∇T z̃t(rt), (3.28)

and the exponents r > 0 and s > 0 weigh each of the features and determine the
peakedness of the likelihood.

Using this transformation, we define the new data dependent proposal distribution
for object m as

q̃m(xt|xt−1, zt) =p̃m(rt|zt)N (It|z̃t(rt) − bt, q3T )×
N (st|sMMSE

m,t−1 , T q2I)N (vt|rt − r̂MMSE
m,t−1 , T q1I), (3.29)
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Contrary to the original proposal distribution, which fails if the likelihood is too
peaked, the distribution (3.29) generates samples that are highly consistent with the
most recent measurements in the predicted (using the information from the previous
time step) gates. A combination of both proposal distributions gives excellent results:

qm(xt|xt−1, zt) = γD(xt|xt−1) + (1 − γ)q̃m(xt|xt−1, zt),

where 0 < γ < 1. Comparison shows that the proposal distribution qm(xt|xt−1, zt)
is uniformly superior to the regular one (γ = 1) and scales much better to smaller
sample sizes.

3.4.7 Clustering and Track Management

The representation of the filtering distribution p(xt|z1:t) as the mixture model (3.6) al-

lows for a deterministic spatial reclustering procedure ({c′(i)t },M ′) = F ({x(i)
t }, {c(i)t },

M) [174]. The function F can be implemented in any convenient way. It calculates a
new mixture representation (with possibly a different number of mixture components)
taking as input the current mixture representation. This allows modeling and cap-
turing merging and splitting events, which also have a direct analogy with biological
phenomena. In our implementation, at each iteration the mixture representation is
recalculated by applying K-means clustering algorithm. The reclustering is based on
spatial information (object positions) only and is initialized with the estimates (3.25).

Taking into account our application, two objects are not allowed to merge when
their states become similar. Whenever objects pass close to one another, the object
with the best likelihood score typically “hijacks” the particles of the nearby mixture
components. As mentioned above, this problem is partly solved by using the MRF
model for object interactions. The MRF model significantly improves the tracking
performance in 3D+t. For 2D+t data sets, however, the observed motion is a projec-
tion of the real 3D motion onto the 2D plane. In this case, when one object passes
above or beneath another (in 3D), we perceive the motion as penetration or merg-
ing. These situations are in principle ambiguous and frequently cannot be resolved
uniquely, neither by an automatic tracking method nor by a human observer.

We detect possible object intersections during tracking by checking whether the
gates Cm,t intersect each other. For example, for two trajectories, the intersection is
captured if Ci,t ∩ Cj,t 6= {0}, i, j ∈ {1, . . . ,M}. In general, the measurement space
Ct = ∪M

m=1Cm,t is partitioned into a set of disjoint regions Ct = {C∗
1,t, . . . , C

∗
K,t},

where C∗
k,t is either the union of connected gates or the gate itself. For each C∗

k,t, we
define a set of indices Jk,t, which indicate which of the gates Ci,t belong to it:

Jk,t = {i ∈ {1, . . . ,M} : Ci,t ∈ C∗
k,t} (3.30)

For the gates C∗
k,t with |Jk,t| = 1, the update of the MC weights w

(i)
m,t is done according

to (3.4). For all other gates C∗
k,t, which correspond to object interaction, we follow

the procedure similar to the one described in Section 3.4.2. For each C∗
k,t for which

|Jk,t| 6= 1, the set of states {x(l)
j,t}, j ∈ Jk,t, is sampled from the proposal distribution

(for every l = {1, . . . , Ns}), and a set of hypotheses Θ
(l)
k,t = {θ(l)1 , . . . , θ

(l)
S }, S = 2|Jk,t|,
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is formed. Each θ
(l)
i is a set of binary associations, {a(l)

i,j}, j ∈ Jk,t, where a
(l)
i,j = 1 if

object j exists during the interaction, and a
(l)
i,j = 0 if the object “dies” or leaves just

before or during the interaction and gives no measurements at time t. The hypothesis
that maximizes the likelihood is selected as

θ̂
(l)
k = argmax

θ
(l)
i

∈Θ
(l)
k,t

L(zt|xt), (3.31)

where the likelihood L(zt|xt) can be either LG(zt|xt) or LS(zt|xt), but the region

C(xt) is defined as C(xt) = ∪j∈Jk,t
C(x

(l)
j,t), and ht(.;xt) is substituted in (3.16) and

(3.20) for each θ
(l)
i with

∑

j∈Jk,t
a
(l)
i,jht(.;x

(l)
j,t). For the update of the MC weights w

(l)
j,t

the region C(xt) = C(x
(l)
j,t) and ht(.;xt) =

∑

j∈Jk,t
â
(l)
j ht(.;x

(l)
j,t) are used in (3.16)

and (3.20), with the â
(l)
j denoting the a

(l)
i,j corresponding to θ̂

(l)
k . Additionally, in such

cases, we do not perform reclustering, but keep the labels for the current iteration as
they were before. If the component representation in the next few frames after the
interaction event becomes too diffuse, and there is more than one significant mode,
splitting is performed and a new track is initiated (see Section 3.4.8 for more details).

Finally, for the termination of an existing track, the methods commonly used for
small target tracking [68, 104] cannot be applied straightforwardly. These methods
assume that, due to imperfect sensors, the probability of detecting an object is less
than one, and they try to follow the object after disappearance for 4-5 frames, pre-
dicting its position in time and hoping to catch it again. In our case, when the density
of objects in the images is high, such monitoring would definitely result in “confirm-
ing” measurements after 3-5 frames of prediction, but these measurements would very
likely originate from another object. In our algorithm in order to terminate the track
we define the thresholds σ̄max, σ̄min, σ̄z that describe the “biggest” objects that we
are going to track. Then we sample the particles in the predicted gates Cm,t using
the data-dependent sampling (3.27) with s = 0. If the determinant of the covariance
matrix computed for those MC samples is grater than σ̄2

maxσ̄
2
minσ̄

2
zr

−3 the track is
terminated. If the gate Cm,t does not contain a real object the determinant value
will be much higher than the proposed threshold, which is nicely separate the objects
from the background structures.

3.4.8 Initialization and Track Initiation

The prior distribution p(x0) is specified based on information available in the first
frame. One way to initialize the state vector x0 would be to point on the desired bright
spots in the image or to select regions of interest. In the latter case, the state vector
is initialized by a uniform distribution over the state space, in predefined intervals
for velocity and intensity, and the expected number of objects should be specified.
During filtering and reclustering, after a burn-off period of 2-3 frames, only the true
objects will remain.

For completely automatic initiation of object tracks in the first frame, and also
for the detection of potential objects for tracking in subsequent frames, we use the
following procedure. First, the image space is divided into NI = NX × NY × NZ
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rectangular 3D cells of dimensions ∆c × ∆c × ∆a, with ∆c = 6σmax and ∆a = 6σz.
Next, for each time step t, the image is converted to a probability map according

to (3.27), and N = MNs particles x̃
(i)
t are sampled with equal weights. The number

of particles in each cell represents the degree of belief in object birth. To discriminate
potential objects from background structures or noise, we estimate for each cell the
center of mass r̂k (k = {1, . . . , NI}) by MC integration over that cell and calculate
the number of MC samples nk,t in the ellipsoidal regions Sk,t(rt) centered at r̂k (with
semi-axes of lengths ∆c/2, ∆c/2, ∆a/2). In order to initiate a new object, two
conditions have to be satisfied. The first condition is that nk,t should be greater than

N
|Sk,t|
|zt|

= Nπ(6NI)
−1. The threshold represents the expected number of particles

if the sampling was done from the image region with uniform background intensity.
The second condition is similar to the one for track termination (see Section 3.4.7):
the determinant of the covariance matrix should be smaller than σ̄2

maxσ̄
2
minσ̄

2
zr

−3.

Each object d (out of Md newly detected at time t) is initialized with mixture
weight πd,t = (M +Md)

−1 and object position rd,t (the center of mass calculated by
MC integration over the region Sd,t(rt)). The velocity is uniformly distributed in a
predefined range and the intensity is obtained from the image data for that frame and
position. In cases where the samples from an undetected object are split between four
cells (in the unlikely event when the object is positioned exactly on the intersection
of the cell borders), the object will most probably be detected in the next time frame.

3.5 Experimental Results

The performance of the described PF-based tracking method was evaluated using
both computer generated image data (Section 3.5.1) and real fluorescence microscopy
image data from MT dynamics studies (Section 3.5.2). The former allowed us to
test the accuracy and robustness to noise and object interaction of our algorithm
compared to two other commonly used tracking tools. The experiments on real data
enabled us to compare our algorithm to expert human observers.

3.5.1 Evaluation on Synthetic Data

3.5.1.1 Simulation Setup

The algorithm was evaluated using synthetic but realistic 2D image sequences (20 time
frames of 512×512 pixels, ∆x = ∆y = 50 nm, T = 1 sec) of moving MT-like objects (a
fixed number of 10, 20, or 40 objects per sequence, yielding data sets of different object
densities), generated according to (3.8) and (3.14), for different levels of Poisson noise
(see Fig. 3.2) in the range SNR=2–7, since SNR=4 has been identified by previous
studies [26, 32] as a critical level at which several popular tracking methods break
down. In addition, the algorithm was tested using 3D synthetic image sequences (20
time frames of 512 × 512 pixels ×20 optical slices, ∆x = ∆y = 50 nm, ∆z = 200 nm,
T = 1 sec, with 10–40 objects per sequence), also for different noise levels in the range
of SNR=2–7. Here, SNR is defined as the difference in intensity between the object
and the background, divided by the standard deviation of the object noise [32]. The
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Figure 3.2. Examples of synthetic images used in the experiments. The left image
is a single frame from one of the sequences, at SNR=2, giving an impression of
object appearance. The insets show zooms of objects at different SNRs. The right
image is a frame from another sequence, at SNR=7, with the trajectories of the 20
moving objects superimposed (white dots), illustrating the motion patterns allowed
by the linear state evolution model (3.8).

velocities of the objects ranged from 200 to 700 nm/sec, representative of published
data [155].

Having the ground truth for the synthetic data, we evaluated the accuracy of
tracking by using a traditional quantitative performance measure: the root mean
square error (RMSE), in K independent runs (we used K = 3) [104]:

RMSE =

√

√

√

√

1

K

K
∑

i=1

RMSE2
k, (3.32)

with

RMSE2
k =

1

M

M
∑

m=1

{

1

|Tm|
∑

t∈Tm

‖rm,t − r̂k
m,t‖2

}

, (3.33)

where rm,t defines the true position of object m at time t, r̂k
m,t is a posterior mean

estimate of rm,t for the kth run, and Tm is the set of time points at which object m
exists.

3.5.1.2 Experiments with Hierarchical Searching

In order to show the advantage of using the proposed hierarchical search strategy
(see Section 3.4.4), we calculated the localization error at different SNRs for objects
moving along horizontal straight lines at a constant speed of 400 nm/sec (similar
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Figure 3.3. The RMSE in object position estimation as a function of SNR for round
(left) and elongated (right) objects using the three different observation models, LG,
LS , and LSG.

to [132]). The tracking was done for two types of objects: round (σmax = σmin =
100 nm) and elongated (σmax = 300 nm, σmin = 100 nm) using the likelihoods LS ,
LG, and the combined two-step approach LSG. The filtering was performed with 500
MC samples. The RMSE for all three models is shown in Fig. 3.3. The localization
error of the hierarchical search is lower and the effective sample size Neff is higher
than in the case of using only LG. For comparison, for the likelihoods LS , LG, and
LSG, the ratios between the effective sample size Neff and Ns are less than 0.5, 0.005,
and 0.05, respectively.

3.5.1.3 Comparison with Conventional Two-Stage Tracking Methods

The proposed PF-based tracking method was compared to conventional two-stage
(completely separated detection and linking) tracking approaches commonly found in
the literature. To maximize the credibility of these experiments, we chose to use two
existing, state-of-the-art multitarget tracking software tools based on this principle,
rather than making our own (possibly biased) implementation of described methods.
The first is Volocity (Improvision, Coventry, UK), which is a commercial software
package, and the second is ParticleTracker [132], which is freely available as a plugin
to the public-domain image analysis tool ImageJ [121] (National Institutes of Health,
Bethesda, MD, USA).

With Volocity, the user has to specify thresholds for the object intensity and
the approximate object size in order to discriminate objects from the background,
in the detection stage. These thresholds are set globally, for the entire image se-
quence. Following the extraction of all objects in each frame, linking is performed
on the basis of finding nearest neighbors in subsequent image frames. This associ-
ation of nearest neighbors also takes into account whether the motion is smooth or
erratic. With ParticleTracker, the detection part also requires setting intensity and
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Figure 3.4. Example (SNR=3) showing the ability of our PF method to deal
with one-frame occlusion scenarios (top sequence), using the proposed reclustering
procedure, while ParticleTracker (and similarly Volocity) fails (bottom sequence).
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Figure 3.5. Typical example (SNR=3) showing the ability of our PF method to
resolve object crossing correctly (top sequence), by using the information about the
object shape during the measurement-to-track association process, while Particle-

Tracker (and similarly Volocity) fails (bottom sequence).

object size thresholds. The linking, however, is based on finding the global optimal
solution for the correspondence problem in a given number of successive frames. The
solution is obtained using graph theory and global energy minimization [132]. The
linking also utilizes the zeroth- and second-order intensity moments of the object in-
tensities. This better resolves intersection problems and improves the linking result.
For both tools, the parameters were optimized manually during each stage, until all
objects in the scene were detected. Our PF-based method was initialized using the
automatic initialization procedure described in Section 3.4.8. The user-definable algo-
rithm parameters were fixed to the following values: σmax = 250 nm, σmin = 120 nm,
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Figure 3.6. Example (SNR=3) where our PF method as well as ParticleTracker

and Volocity failed (only the true tracks are shown in the sequence), because three
objects interact at one location and the occlusion lasts for more than one frame.

Table 3.1. Comparison of the ability of the three methods to track objects correctly
in cases of object appearance, disappearance, and interactions.

Volocity ParticleTracker Particle Filter
SNR r0 r1 r0 r1 r0 r1

Ntr = 10
2 1.1 0.9 1.8 0.1 1 1
3 1 1 1 0.5 1 1
4 1 1 1 0.7 1 1
5 1 1 1 1 1 1
7 1 1 1 1 1 1

Ntr = 20
2 1.15 0.5 2 0.1 1.05 0.8
3 1.05 0.6 1.95 0.15 1 0.9
4 1.05 0.6 1.35 0.45 1 0.95
5 1 0.7 1.1 0.65 1 1
7 1 0.85 1.05 0.9 1 1

Ntr = 40
2 1.9 0.05 1.7 0.1 1.05 0.5
3 1.1 0.6 1.5 0.15 1.02 0.7
4 1.05 0.7 1.42 0.2 1 0.8
5 1.04 0.8 1.22 0.35 1 0.9
7 1.02 0.8 1.17 0.33 1 0.9

q1 = 7500 nm2/sec3, q2 = 25 nm/sec, q3 = 0.1, and 103 MC samples were used
per object. To enable comparisons with manual tracking, five independent, expert
observers also tracked the 2D synthetic image sequences, using the freely available
software tool MTrackJ [94].

3.5.1.4 Tracking Results

First, using the 2D synthetic image sequences, we compared the ability of our al-
gorithm, Volocity, and ParticleTracker to track objects correctly, despite possible
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object appearances, disappearances, and interactions or crossings. The results of this
comparison are presented in Table 3.1. Two performance measures are listed: r0,
which is the ratio between the number of tracks produced by the algorithm and the
true number of tracks present in the data (Ntr), and r1, which is the ratio between
the number of correctly detected tracks and the true number of tracks. Ideally, the
values for both ratios should be equal to 1. A value of r0 > 1 indicates that the
method produced broken tracks. The main cause of this is the inability to resolve
track intersections in some cases (see Fig. 3.4 for an example). In such situations the
method either initiates new tracks after the object interaction event (because dur-
ing the detection stage only one object was detected at that location, see Fig. 3.4),
increasing the ratio r0, or it incorrectly interchanges the tracks before and after the
interaction (see Fig. 3.5 for an example), lowering the ratio r1. From the results in
Table 3.1 and the examples in Figs. 3.4 and 3.5, it clearly follows that our PF method
is much more robust in dealing with object interactions. The scenario in the latter
example causes no problems for the PF, as, contrary to two other methods, it exploits
information about object appearance. During the measurement-to-track association,
the PF favors measurements that are close to the predicted location and that have
an elongation in the predicted direction of motion. In some cases (see Fig. 3.6 for an
example), all three methods fail, which generally occurs when the interaction is too
complicated to resolve even for expert biologists.

Using the same data sets and tracking results, we calculated the RMSE in object
position estimation, as a function of SNR. To make a fair comparison, only the results
of correctly detected tracks were included in these calculations. The results are shown
in Fig. 3.7. The localization error of our algorithm is in the range of 10–50 nm,
depending on the SNR, which is approximately 2–3 times smaller than for manual
tracking. The error bars represent the interobserver variability for manual tracking,
which, together with the average errors, indicate that the performance of manual
tracking degrades significantly for low SNRs, as expected. The errors of the three
automated methods show the same trend, with our method being consistently more
accurate than the other two. This may be explained by the fact that, in addition
to object localization by center-of-mass estimation, our hierarchical search performs
further localization refinement during the second step (3.22). The RMSE in Fig. 3.7
is larger than in Fig. 3.3, because, even though only correct tracks were included,
the accuracy of object localization during multiple object tracking is unfavorably
influenced at places where object interaction occurs.

Our algorithm was also tested on the 3D synthetic image sequences as described,
using 20 MC simulations. The RMSEs for the observation model LSG ranged from
≈ 30 nm (SNR = 7) to ≈ 70 nm (SNR = 2). These errors were comparable to
the errors produced by Volocity (in this test, ParticleTracker was excluded, as it
is limited to tracking in 2D+t). Despite the fact that the axial resolution of the
imaging system is approximately three times lower, the localization error was not
affected dramatically relative to the 2D+t case. The reason for this is that in 3D+t
data, we have a larger number of informative image elements (voxels). As a result,
the difference in the RMSEs produced by the estimators employed in our algorithm
and in Volocity is less compared to Fig. 3.7.
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Figure 3.7. The RMSE in object position estimation as a function of SNR for
our algorithm (Particle Filter) versus the two other automatic methods (Volocity

and ParticleTracker) and manual tracking (five observers) based on synthetic image
data.

3.5.2 Evaluation on Real Data

3.5.2.1 Image Acquisition

In addition to the computer generated image data, real 2D fluorescence microscopy
image sequences of MT dynamics were acquired. COS-1 cells were cultured and trans-
fected with GFP-tagged proteins as described [5,155]. Cells were analyzed at 37oC on
a Zeiss 510 confocal laser scanning microscope (LSM-510). In most experiments the
optical slice separation (in the z-dimension) was set to 1 µm. Images of GFP+TIP
movements in transfected cells were acquired every 1–3.5 seconds. For different imag-
ing setups, the pixel size ranged from 70×70 nm2 to 110×110 nm2. Image sequences
of 30–50 frames were recorded and movies assembled using LSM-510 software. Six
representative data sets (30 frames of size 512 × 512 pixels), examples of which are
shown in Fig. 3.1, were preselected from larger volumes by manually choosing the re-
gions of interest. GFP+TIP dashes were tracked in different cell areas. Instantaneous
velocities of dashes were calculated simply by dividing measured or tracked distances
between frames by the temporal sampling interval.

3.5.2.2 Comparison with Manual Tracking

Lacking ground truth for the real data, we evaluated the performance of our algorithm
by visual comparison with manual tracking results. In this case, the latter were
obtained from two expert cell biologists, each of which tracked 10 moving MTs of
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Figure 3.8. Examples of velocity distributions obtained with our automatic track-
ing algorithm versus manual tracking applied to real fluorescence microscopy image
sequences of growing MTs. Results are shown for the data sets in Fig. 3.1(a) (top)
and Fig. 3.1(f) (bottom).

interest by using the aforementioned software tool MTrackJ. The selection of target
MTs to be tracked was made independently by the two observers. Also, the decision
of which feature to track (the tip, the center, or the brightest point) was left to the
observers. When done consistently, this does not influence velocity estimations, which
is what we focused on in these experiments. The parameters of our algorithm (run
with the model LSG) were fixed to the same values as in the case of the evaluation
on synthetic data.

3.5.2.3 Tracking Results

Distributions of instant velocities estimated using our algorithm versus manual track-
ing are presented in Fig. 3.8. The graphs show the results for the data sets of
Fig. 3.1(a) and (f), for which SNR ≈ 5 and SNR ≈ 2, respectively. A visual com-
parison of the estimated velocities per track, for each of the 10 tracks (the average
track length was 13 time steps), is presented in Fig. 3.9, with more details for two
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Figure 3.9. Results of velocity estimation for 10 representative MT objects in real
fluorescence microscopy image sequences using our automatic tracking algorithm
versus manual tracking for the data sets in Fig. 3.1(a) (top) and Fig. 3.1(f) (bottom).
Shown are the mean values (black or white squares) and ±1 standard deviation
(bars) of the estimates.

representative tracks shown in Fig. 3.10. Application of a paired Student t-test per
track revealed no statistically significant difference between the results of our algo-
rithm and that of manual tracking, for both expert human observers (p ≫ 0.05 in
all cases). Often, biologists are interested in average velocities over sets of tracks. In
the described experiments, the difference in average velocity (per 10 tracks) between
automatic and manual tracking was less than 1%, for both observers. Our velocity
estimates are also comparable to those reported previously based on manual tracking
in the same type of image data [155].

Finally, we present two different example visualizations of real data together with
the results of tracking using our algorithm. Fig. 3.11 shows the results of tracking
in the presence of photobleaching, which clearly illustrates the capability of our algo-
rithm to initiate new tracks for appearing objects, to terminate tracks for disappearing
objects, and to deal with closely passing objects. The rendering in Fig. 3.12 gives a
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Figure 3.10. Velocity estimates per time step for our automatic tracking algo-
rithm versus manual tracking. Results are shown for track numbers 4 (top) and 10
(bottom) in Fig. 3.9 (also from the top and bottom graphs, respectively).

visual impression of the full tracking results for a few time frames of one of the real
data sets used in the experiments.

3.6 Discussion and Conclusions

In this chapter have demonstrated the applicability of particle filtering for quantitative
analysis of subcellular dynamics. Compared to existing approaches in this field, our
approach is a substantial improvement for detection and tracking of large numbers
of spots in image data with low SNR. Conventional methods, which perform object
detection prior to the linking stage, use non-Bayesian maximum likelihood or least
squares estimators. The variance of those estimators is larger than the variance of
the MMSE estimator [11], for which some prior information about the estimated
parameters is assumed to be known. In our case, this information is the prediction
of the object position according to the motion model. This step, which optimally
exploits available temporal information, makes our probabilistic tracking approach
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Figure 3.11. Results (six tracks) of automatically tracking MTs (bright spots)
in the presence of photobleaching, illustrating the capability of our algorithm to
capture newly appearing objects (tracks 5 and 6) and to detect object disappearance
(for example track 4). It also shows the robustness of the algorithm in the case of
closely passing objects (tracks 1 and 5).

perform superior in the presence of severe noise in comparison with existing frame-
by-frame approaches, which break down at SNR < 4–5 [26, 32]. As the experiments
show, contrary to two other popular tracking tools, our algorithm still yields reliable
tracking results even in data with SNR as low as 2 (which is not uncommon in
practice). We note that the comparison with these two-stage tracking approaches
mainly evaluated the linking parts of the algorithms, as the detection part is based
on thresholding, and the parameters for that stage were optimized manually until
all the desired objects were localized. In practice, since these algorithms were not
designed specifically to deal with photobleaching effects, they can be expected to
perform worse than reported here.

The results of the experiments on synthetic image data suggest that our algo-
rithm is potentially more accurate than manual tracking by expert human observers.
The experiments on real fluorescence microscopy image sequences from MT dynamics
studies showed comparable performance. This is explained by the fact that in the lat-
ter experiments, we were limited to comparing distributions and averages (Figs. 3.8
and 3.9), which may conceal small local discrepancies, especially when the objects’
velocities vary over time. Instant velocities were also analyzed per track (Fig. 3.10)
but could not be quantitatively validated due to the lack of ground truth. Never-
theless, the results indicate that our algorithm may replace laborious manual proce-
dures. Currently we are evaluating the method also for other biological applications
to further demonstrate its advantages over current means of manual and automated
tracking and quantification of subcellular dynamics. Our findings encourage use of
the method to analyze complex biological image sequences not only for obtaining sta-
tistical estimates of average velocity and life span, but also for detailed analyses of
complete life histories.

The algorithm was implemented in the Java programming language (Sun Mi-
crosystems Inc., Santa Clara, CA) as a plugin for ImageJ (National Institutes of
Health, Bethesda, MD [121]), a public domain and platform independent image pro-
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Figure 3.12. Visualization of tracking results (80 tracks) produced by our algo-
rithm in the case of the real fluorescence microscopy image sequence of Fig. 3.1(a).
Left: Trajectories projected on top of one of the frames, giving an impression of
the MT dynamics in this image sequence. Right: Five frames from the sequence
(time is increasing from bottom to top) with the trajectories rendered as small tubes
connecting the frames. The rendering was accomplished using a script developed
in-house based on the Visualization Toolkit [136].
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cessing program used abundantly in biomedical image analysis [1]. Running on a
regular PC (a Pentium IV with 3.2 GHz CPU and 3 GB of RAM) using the Java
Virtual Machine version 1.5, the processing time per object per frame using 103 MC
particles is about 0.3 sec. This cost is independent of image size, because all computa-
tions are done only for measurements falling inside the gates (defined for each track).
We expect that faster execution times are still possible, after further optimization
of the code. In the near future the algorithm will be integrated into a user-friendly
software tool which will be made publically available.

The recursive nature of the proposed method (only the measurements up to time
t are required in order to estimate the object positions at time t) can be effectively
utilized to dramatically increase the throughput of live cell imaging experiments.
Usually time-lapse imaging requires constant adjustment of the imaging field and fo-
cus position to keep the cell of interest centered in the imaged volume. There are
basically two methods to track moving objects with a microscope. Most commonly,
images are acquired at a fixed stage and focus position and the movements are an-
alyzed afterwards, using batch image processing algorithms. The second possibility,
rarely implemented, is to program the microscope to follow the movements of the
cell automatically and keep it in the field of view. Such tracking systems have been
developed previously [82, 119, 120], but they are either hardware-based or not easily
portable to other microscopes. Using the proposed software-based tracking method,
however, it can be implemented on any fluorescence microscope with motorized stage
and focus. The prediction step of the algorithm can be used to adapt the field of view
and steer the laser in the direction of moving objects. This also suggests a mechanism
for limiting laser excitation and thereby reducing photobleaching.





Chapter Four

Multiple Object Tracking in

Molecular Bioimaging by

Rao-Blackwellized Marginal

Particle Filtering

Essentially, all models are wrong, but some are useful.

— George E. P. Box (1919 – )

Abstract — Time-lapse fluorescence microscopy imaging has rapidly evolved in
the past decade and has opened new avenues for studying intracellular processes
in vivo. Such studies generate vast amounts of noisy image data that cannot be
analyzed efficiently and reliably by means of manual processing. Many popular
tracking techniques exist but often fail to yield satisfactory results in the case of
high object densities, high noise levels, and complex motion patterns. Probabilistic
tracking algorithms, based on Bayesian estimation, have recently been shown to
offer several improvements over classical approaches, by better integration of spatial
and temporal information, and the possibility to more effectively incorporate prior
knowledge about object dynamics and image formation. In this chapter, we extend
our previous work in this area and propose an improved, fully automated particle
filtering algorithm for the tracking of many subresolution objects in fluorescence
microscopy image sequences. It involves a new track management procedure and
allows the use of multiple dynamics models. The accuracy and reliability of the
algorithm are further improved by applying marginalization concepts. Experiments
on synthetic as well as real image data from three different biological applications
clearly demonstrate the superiority of the algorithm compared to previous particle
filtering solutions.

Based upon: I. Smal, E. Meijering, K. Draegestein, N. Galjart, I. Grigoriev, A. Akhmanova,
M. E. van Royen, A. B. Houtsmuller, W. Niessen, “Multiple Object Tracking in Molecular Bioimaging
by Rao-Blackwellized Marginal Particle Filtering”, Medical Image Analysis, vol. 12, no. 6, pp. 764–
777, 2008.
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Figure 4.1. Sample images of microtubules (a), peroxisomes (b), and androgen
receptors (c) (bright spots) labeled with green fluorescent protein (GFP) and imaged
using confocal microscopy. The images are single frames from three 2D time-lapse
studies, acquired under different experimental conditions. The quality of the images
ranges from SNR ≈ 5–6 (b) to ≈ 2–3 (a,c).

4.1 Introduction

A
dvances in imaging technology for studying molecular processes in living cells
continue to encourage biologists to conduct more and more challenging ex-
periments and to collect large amounts of image data. Fluorescent labeling

combined with time-lapse microscopy imaging enables visualizing the dynamic be-
havior of virtually any intracellular structure at high spatial and temporal resolu-
tion [53, 164, 180] (see Fig. 4.1 for example images). Quantitative analyses of this
behavior requires the detection and tracking of large and time-varying numbers of
nanoscale objects in the image sequences. Existing software tools (commercial and
freeware) for this purpose are often not robust enough to yield satisfactory results
when facing poor imaging conditions (very low-signal and high-noise levels are com-
mon in live cell imaging to minimize photodamage) and large numbers of objects with
complex motion patterns (objects may interact or exhibit different modes of motion
at different times). As a result, such analyses are still largely performed manually,
by expert human observers. This is extremely labor intensive and very likely leads to
user bias. Also, as only a part of the data can be analyzed this way, it may lead to
the loss of important information. Therefore, the development of reliable automated
algorithms, which allow the tracking of all individual objects moving along variable
and unpredictable trajectories, constitutes an important first step in improving our
understanding of the mechanisms controlling intracellular processes [52,54,95,161].

The majority of approaches that have been proposed so far for tracking small
objects in bioimaging applications consist of two stages. In the first stage, objects
are detected separately in each frame of the image sequence, and in the subsequent
second stage, an attempt is made to solve the interframe correspondence problem
in linking detected objects between frames. Since the two stages are usually com-
pletely separated, without the possibility of feedback from linking to detection and
vice versa, the tracking performance of such approaches is often suboptimal and ex-
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tremely sensitive to failures in either stage. Moreover, as most of these approaches are
designed to be generally applicable, they are often based on rudimentary detection
algorithms (thresholding or template matching) and linking strategies (nearest neigh-
bor or smooth motion). Recently, several popular approaches were quantitatively
evaluated, and were found to break down below signal-to-noise ratios (SNRs) around
4–5 [26, 32], which are not uncommon in practice. More integrated, spatiotemporal
segmentation approaches have also been proposed [17,128], but current implementa-
tions of this idea have been demonstrated to work well only for single or very limited
numbers of well-separated objects. More robust tracking approaches that can deal
with larger numbers of objects have been developed for tracking of migrating cells us-
ing phase-contrast video microscopy [36,83]. The robustness is achieved by exploiting
the cell shape/appearance information, which cannot be utilized to the same extent
for tracking of subresolution objects in fluorescence microscopy.

Most recently, probabilistic tracking approaches have been developed [52,140,145],
which overcome the shortcomings of previous approaches by improved interaction be-
tween object detection and linking, and the possibility to more effectively incorporate
prior knowledge about object dynamics and image formation. For example, for the
tracking of growing microtubule plus-ends, whose dynamic behavior can be described
accurately by a nearly constant velocity model, we have shown previously [141, 145]
that a Bayesian estimation approach, in our case implemented by a sequential Monte
Carlo (SMC) technique known as particle filtering (PF), makes better use of all avail-
able spatiotemporal information, yielding more accurate and more consistent tracking
results (for more information about the success of the PF approach in other applica-
tions, and especially for tracking of multiple interacting objects, we refer to [39], [174],
and [76]). However, that approach required a great deal of tailoring to the specific
motion type to be analyzed, and was not able to directly deal with multiple motion
types concurrently, nor with switching between them. It has also been shown [52]
that an interacting multiple models (IMM) filter, which is capable of self-adapting to
different motion types as well as to switching between them, can achieve more reliable
tracking results than a Kalman filter (KF) using only one of the dynamics models.
However, that approach did not optimally exploit all available spatiotemporal data,
as the detection was implemented as a separate stage, completely decoupled from the
linking stage.

In this chapter, we extend our previous work on the topic, and present an im-
proved, fully automated algorithm for the tracking of many subresolution objects in
time-lapse fluorescence microscopy images. Specifically, we take the successful particle
filtering framework [140] as a starting point and propose five fundamental changes that
make the algorithm more flexible, more robust, and more accurate. First, instead of
using a single, dedicated dynamics model, multiple models are incorporated to be able
to use the algorithm for different biological applications without the need for careful
fine-tuning to each application. Second, a new detection scheme is integrated into the
tracking framework, which is based on mean-shift clustering and performs better than
the previously described classification approach. Third, a new likelihood evaluation
strategy is proposed, which does not require the previously described “hierarchical
searching” and reduces the computational cost. Fourth, we propose marginalization
of the previously described filter, which increases the accuracy by reducing the vari-
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ance of the track estimations. Finally, Rao-Blackwellization is applied to one of the
state variables, which further improves the accuracy and reduces the computational
cost, as it allows an analytical solution in the form of a Kalman filter. In addition
to these methodological improvements, we extend our previous work by exploring
two new biological applications, which could not be analyzed by our original algo-
rithm [141] without careful tuning to each of these specific applications. By contrast,
the algorithm proposed here can handle all of these applications without changing the
parameter settings, as it naturally handles multiple and changing motion patterns.

The chapter is organized as follows. First, in Section 4.2, we recap the main in-
gredients of the particle filtering framework for multiple object tracking, and propose
multiple dynamics models and a novel track management strategy. The subsequent
two sections focus on the main novelties of the tracking approach compared to our
previous work. In Section 4.3, we explain how multiple dynamics models can be
conveniently incorporated into the particle filtering framework. Next, in Section 4.4,
we show how to apply marginalization concepts to improve the performance of the
framework. An overview of the algorithm and its parameters is given in Section 4.5.
The results of experiments on synthetic as well as on real image data from three
different biological applications are presented and discussed in Section 4.6. The eval-
uation includes a comparison with our previous algorithm [141] and with manual
tracking, confirming the theoretically claimed improvements. Finally, in Section 4.7,
we summarize the main findings of the present work.

4.2 Probabilistic Tracking Framework

The tracking approach proposed in this chapter is based on the principle of Bayesian
estimation. In this section we first recap the Bayesian estimation framework and its
implementation by means of particle filtering. Then we discuss two different ways
of extending the framework to allow tracking of multiple objects. This is followed
by a presentation of the dynamics and observation models that we propose for the
biological imaging applications considered in this chapter. Finally we explain how we
deal with track initialization, termination, and interaction within the framework.

4.2.1 Particle Filtering Approach

Bayesian estimation for tracking aims at inferring knowledge about the unobserved
state xt of an object, which changes over time, using noisy measurements z1:t ,

{z1, . . . , zt} up to time t. The evolution of the hidden state is assumed to be known
and modeled as a Markov process of initial distribution p(x0) and the transition
prior p(xt|xt−1). The measurements z1:t, which are related to the state xt by the
likelihood p(zt|xt), are used to sequentially estimate the time evolving joint filtering
distribution p(x0:t|z1:t) or the marginal filtering distribution p(xt|z1:t) and associated
features, such as expectation. A recursive formula for the former is given by [39]

p(x0:t|z1:t) ∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1). (4.1)
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The distribution p(xt|z1:t) follows from (4.1) as

p(xt|z1:t) ∝p(zt|xt)

∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (4.2)

For most practical applications the optimal Bayesian solution defined by the re-
currence relations (4.1) and (4.2) is analytically intractable. The exact solution can
be obtained only for a restrictive set of cases [9], such as linear Gaussian modeling, in
which case Kalman filtering can be applied. In order to solve the estimation problem
in general, sequential Monte Carlo (SMC) methods, in particular particle filtering
(PF) methods [9,70], can be used as an efficient numerical approximation. The basic
idea of such approximation is to represent the required posterior p(x0:t|z1:t) as a set

of Ns random samples (particles) and associated weights {x(i)
0:t, w

(i)
t }Ns

i=1:

p(x0:t|z1:t) ≈
Ns
∑

i=1

w
(i)
t δ(x0:t − x

(i)
0:t), (4.3)

where the weights are normalized,
∑Ns

i=1 w
(i)
t = 1, and δ(·) is the Dirac delta function.

The particle representation is updated in time according to (4.1) or (4.2) to obtain an

approximation of the filtering distribution at successive time steps. The weights w
(i)
t

are obtained using sequential importance sampling (SIS) [40], which applies when
auxiliary knowledge is available in the form of an importance density, q(x0:t|z1:t),
describing which areas of the state space contain most information about the posterior.
In order to calculate the weights recursively, the importance density is factorized as

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1). (4.4)

The particle representation of the posterior at time t is obtained by augmenting the

set of existing particles x
(i)
0:t−1, with the new state x

(i)
t ∼ q(xt|x(i)

0:t−1, z1:t), allowing

the weights w
(i)
t in (4.3) to be updated as [40]

w̃
(i)
t =

p(x
(i)
0:t|z1:t)

q(x
(i)
0:t|z1:t)

=
p(zt|x(i)

t )p(x
(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, z1:t)
w

(i)
t−1, (4.5)

and normalized to

w
(i)
t =

w̃
(i)
t

∑Ns

i=1 w̃
(i)
t

. (4.6)

By using particle representations, statistical inferences such as expectation, maximum
a posteriori (MAP), and minimum mean square error (MMSE) estimators, can be
easily approximated [9].

4.2.2 Multiple Object Tracking

Tracking of multiple objects within the described PF framework can be done by ex-

tending each state vector x
(i)
t to include jointly the states of all objects at time t. This
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approach is robust, but it drastically increases the dimensionality of the state space,
leading to an exponential explosion of computational demands [39]. The alternative
is to use an independent PF for each object. This approach is computationally cheap,
but is prone to errors, especially during object interactions, where the track update
for a given object may be contaminated with measurements from neighboring objects.
Such cases require joint measurement-to-track association.

In our algorithm, we combine the best of both worlds: for objects that are far
from other objects and do not interact at time t, the PFs are run independently, while
for objects that come close to each other and do interact, we use joint sampling and
updating of the weights, in combination with a reclustering procedure [145]. In order
to accomplish this, the multimodal posterior distribution is represented as a mixture
of individual non-parametric distributions, in the form

p(xt|z1:t) =
M
∑

m=1

πm,tpm(xt|z1:t), (4.7)

where M is the number of objects, and πm,t are normalized object weights, that is
∑M

m=1 πm,t = 1. In this case, the particle representation of the filtering distribu-

tion consists of N = MNs particles, and is given by {{x(i)
m,t, w

(i)
m,t}Ns

i=1}M
m=1. This

representation can be updated in the same fashion as the standard Bayesian sequen-
tial estimation, where the additional recursion for the mixture weights πm,t is given
by [174]

πm,t =
πm,t−1

∑Ns

i=1 w̃
(i)
m,t

∑M
n=1

∑Ns

i=1 πn,t−1w̃
(i)
n,t

. (4.8)

4.2.3 Dynamics Models

As can be seen from (4.1) and (4.2), Bayesian tracking requires the specification
of the transition prior, p(xt|xt−1), which models the dynamics of the objects to be
tracked. This prior is application dependent and should be defined based on prior
knowledge about the object motion patterns. In this chapter we are interested in the
tracking of objects within the cytoplasm or the nucleus of biological cells. Eukaryotic
cells contain numerous organelles and macromolecular structures. In most cases, the
motion patterns of these objects are highly complex and difficult to describe by a
single motion model.

In order to deal with different motion patterns, we consider two transition models,
which together cover many of the patterns occurring in our applications. To this end,
we define the state vector as

xt = (xt, ẋt, yt, ẏt, σmax,t, σmin,t, It)
T , (4.9)

where (σmax,t, σmin,t)
T , st is the object shape feature vector (discussed in more detail

in Section 4.2.4), (xt, yt)
T , rt is the position vector, (ẋt, ẏt)

T , vt denotes velocity,
and It intensity. Defining yt = (xt, ẋt, yt, ẏt)

T , and assuming that the changes in the
position, intensity, and shape parameters are independent, we can factorize the state
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evolution model as

p(xt|xt−1) = py(yt|yt−1)ps(st|st−1)pI(It|It−1). (4.10)

For the combined position/velocity factor py(yt|yt−1), we define two models, de-
noted by py(yt|yt−1, k), with k ∈ {1, 2}. For the first model (k = 1), which is suitable
for tracking objects that exhibit motion patterns similar to random walk, the evolu-
tion of the state sequence is given by

rt = rt−1 + Tξt, (4.11)

where T is the temporal sampling interval (that is, the time between any two succes-
sive time frames) and ξt is the process noise. The transition prior in this case is given
by

py(yt|yt−1, k = 1) = N (rt|rt−1, T
2q1,1I), (4.12)

where I is the identity matrix and N (·|µ, Σ) denotes the normal distribution with
mean µ and covariance matrix Σ. For this type of motion, the velocity component
vt does not influence the object position in (4.11), and for reasons discussed in Sec-

tion 4.3, the v
(i)
t are uniformly sampled in the predefined interval [Vmin, Vmax] at every

time step.
For the second model (k = 2), which describes nearly constant velocity motion

with small accelerations, we have [11]

yt = Fyt−1 + ηt, (4.13)

where the process transition matrix F and covariance matrix Σ of the process noise
ηt are given by

F =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









and Σ =











T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T











. (4.14)

The transition prior in this case is given by

py(yt|yt−1, k = 2) = N (yt|yt−1, q1,2Σ). (4.15)

In these two models, q1,1 and q1,2 are parameters, which need to be tuned experimen-
tally to the applications.

The transition prior for the changes in object shape is defined using a Gaus-
sian model, ps(st|st−1) = N (st|st−1, T q2I), where q2 represents the shape noise
level. As for object intensity, in order to model the process of photobleaching,
which in practice complicates the analysis of time-lapse fluorescence microscopy im-
ages [124, 148], a first-order Gauss-Markov process is used, with the transition prior
pI(It|It−1) = N (It|(1−α)It−1, q3T ), where parameter q3 accommodates fluctuations
in object intensity, and 0 < α < 1 is estimated from the image data by fitting an
exponential model [148] to the background intensity distribution as a function of time,
as described previously in more detail [141].
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4.2.4 Observation Model

The measurements in our applications are images of the intracellular objects obtained
with optical microscopy imaging systems. Because the physical size of the objects
(on the order of nanometers) is considerably smaller than the typical resolution of
such systems (on the order of hundreds of nanometers), the intensity profiles of the
objects in the images can be modeled using the point spread function (PSF) of the
microscope. The described PF approach can accommodate any PSF that can be
calculated pointwise. Commonly, a Gaussian approximation of the PSF is used [161]
instead of theoretically more accurate models [190], because of its computational
advantages and its accuracy, which is almost perfect for typical pinhole sizes (relative
squared error less than 1%).

In order to model the image formation of the object profiles, one would have to

use the convolution with the PSF for every state x
(i)
t . To avoid this computational

overload, we model the PSF together with object shape, using a Gaussian approx-
imation. Spherical nanoscale objects are modeled using a rotationally symmetric
Gaussian function. The intensity profiles of elongated objects are modeled by uti-
lizing the velocity components from xt as parameters in the Gaussian. In this case,
for an object of intensity It at position rt, the intensity contribution to pixel (i, j) is
approximated as

ht(i, j;xt) = at(i, j; rt,vt, st)It + bt(i, j), (4.16)

where bt(i, j) is the background intensity and

at(i, j; rt,vt, st) = exp

(

−1

2
mT

t RT Σ−1
t Rmt

)

, (4.17)

where R = R(φt) is a rotation matrix, Σt = diag[σ2
max,t, σ

2
min,t], mt = (i∆x −

xt, j∆y − yt)
T , and tanφt = ẏt/ẋt. Here, each pixel (i, j) is assumed to correspond

to a rectangular area of dimensions ∆x ×∆y nm2. The parameters σmax,t and σmin,t

represent the amount of blurring and, at the same time, model object elongation
along the direction of motion. For subresolution objects such as vesicles, σmin =
σmax ≈ 100nm, while for elongated structures such as microtubules, σmin ≈ 100nm
and σmax ≈ 250nm. The nonlinear dependence of the observations, modeled by
(4.16), on the position, velocity, and shape parameters makes the described Bayesian
inference analytically intractable. Contrary to the extended or unscented KFs [9], our
PF-based approach is capable of preserving the multimodality in the posterior pdfs
(see Section 4.2.2), which is exploited to resolve ambiguous object interaction events
during tracking [141,174].

The background level bt in (4.16) is estimated by fitting the mixture of two Gaus-
sian pdfs (for the background and the object intensity distribution, respectively) to
the normalized intensity histogram in the current frame t [17]. Since the background
is usually fairly uniform in our applications, we define the background level bt as the
mean of the background pdf. In the presence of background structures, which cause
nonuniform background intensity, any local background estimation or subtraction
algorithm can be used [117,157].
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4.2.5 Track Management

Automatic tracking of multiple objects also requires dealing with track initialization,
initiation, termination, and object interaction scenarios. In other words, the number
of objects, M in (4.7), is in fact time dependent, denoted as Mt. In order to initialize
the tracker in the first frame, and also for the detection of newly appearing objects
in subsequent frames, we use the h-dome transformation from (gray-scale) mathe-
matical morphology [177]. The advantage of this transformation over other detection
approaches is that all detected objects end up having the same maximum intensity in
the resulting image. This is an important property for the detection scheme that we
propose, as it ensures that the MC particles are properly distributed over the objects.
The h-dome image Dh(It) of the h-domes of an image It is given by

Dh(It) = It − ρI(It − h), (4.18)

where the gray-scale reconstruction ρI(Jt) of image It from an image Jt (It ≥ Jt) is
obtained by iterating gray-scale geodesic dilations of Jt “under” It until stability is
reached [177]. Geometrically speaking, an h-dome D of image It is a connected com-
ponent of pixels such that every pixel p, neighboringD, satisfies It(p) < min{It(q)|q ∈
D} and max{It(q)|q ∈ D} − min{It(q)|q ∈ D} < h. The h-dome transformation ex-
tracts bright structures without requiring any size or shape criteria. In practice, a
suitable value for h can be estimated from the image data, by relating it to the SNR.
Specifically, in our implementation, we specify the minimum local SNR that an object
is required to have in order for it to be included in the tracking, and h is set equal
to the signal level corresponding to that SNR (see Section 4.6.2 for the definition of
SNR).

Based on the h-dome transformation (4.18), we define the probability for the
(real-valued) spatial position rt of objects at time t by the following transformation:

p̃(rt|zt) = (HiHnHrDh(Gσ ∗ zt))(rt), (4.19)

where Gσ is the Gaussian kernel with scale σ (in practice we use σ = 30–50 nm), zt is
the image intensity value at time t, and Hi, Hn, Hr are operators acting sequentially
on the h-dome image Dh. In other words, the image zt is first convolved with the
Gaussian kernel Gσ, and then h-dome transformed. The operator Hr creates a new
image by raising the pixel values of the image Dh to the power r > 0. The operator
Hn is used to normalize the intensity values of the newly created image, so they sum
to 1 over the whole image domain. Finally, Hi creates a bilinear interpolation of the
normalized image, which is then used to represent a proper pdf that can be evaluated
at the real-valued position rt.

The function (4.19) is used as the sampling function, which generates MC samples
in those regions where the probability of object existence is high. Having these samples
in every frame, we apply the mean-shift algorithm [34], which clusters the particles
intoMn classes. Next, we compare the number of particles in each class to a threshold,
and if the number of particles in any class is greater than Nb, a new object is initiated
for that class, whereNb is the expected number of particles in the vicinity of the object
if the MC sampling were done uniformly over the image. Here, “vicinity” is defined
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as a disk with radius 3σmax,t=0, centered at the expected object position. In our
experiments we sample MtNs particles during this detection step. Thus, the threshold
Nb is computed from the fact that for uniform sampling, the ratio between the disk
area and the image area is equal to Nb/(MNs). During tracking, the detection is done
in parallel, and detected objects are compared with the Mt existing ones. The Mb

newly detected (born) objects are initiated with mixture weights πm,t = (Mt+Mb)
−1,

for m = {Mt + 1, . . . ,Mt + Mb}, after which all Mt + Mb mixture weights πm,t are
renormalized.

Track termination is based on the analysis of the unnormalized weights w̃
(i)
t in

(4.5), using the likelihood ratio test [16]. Specifically, we check whether the average of

the unnormalized likelihood values p(zt|x(i)
t ) of all particles corresponding to a given

object dropped below the level πd of the likelihood (defined by a χ2–distribution, see
Section 4.4.3), which corresponds to having no measurements from the object but
only from the background. In the case of object interactions, when several of them
approach each other, the particle representations of the posterior probabilities may
become too diffuse, as measurements from other objects may contaminate the track
updates. In order to deal with such cases, we employ a reclustering procedure [174].
This can be described by a function F , which maps the current representation into

a new one, ({x(i)
t }, πm,t,Mt) 7→ ({x′(i)

t }, π′
m,t,M

′
t). In our algorithm, the mapping

function is implemented as K-means clustering.

4.3 Incorporating Multiple Dynamics

The objects of interest in our applications exhibit quite different and complicated
motion patterns that cannot be accommodated by the transition prior p(xt|xt−1) in a
simple form. For accurate estimation and robust tracking, it is better to model each of
the (sub)patterns by a separate transition prior, as described in Section 4.2.3. There
are, however, no straightforward solutions to incorporating multiple dynamics models
into the PF framework. In order to deal with different motion patterns, we propose to
use jump Markov systems (JMS), where the state-space description allows for system
parameter changes over time according to a Markov chain [41]. The frequently used
interacting multiple model (IMM) filter is an example of a JMS in the case of linear
Gaussian models [11]. In our case, however, we use the more general formulation
suitable for our needs, assuming that the state prior p(xt|xt−1, kt) switches between
K types of motion patterns, depending on the value of the parameter kt.

The filtering distribution p(xt, kt|z1:t) can be factorized as

p(xt, kt|z1:t) = P (kt|z1:t)p(xt|kt, z1:t), (4.20)

where P (·|·) denotes the conditional probability mass function (pmf). The two factors
in (4.20) are updated recursively in a so-called mixing stage and a mode-conditioned
filtering stage. The mixing stage gives the predicted density p(xt−1, kt|z1:t−1) for the
modal state kt as

p(xt−1, kt|z1:t−1) = p(xt−1|kt, z1:t−1)P (kt|z1:t−1), (4.21)



4.4 Applying Marginalization Concepts 95

where

P (kt|z1:t−1) =
K
∑

kt−1=1

P (kt|kt−1)P (kt−1|z1:t−1), (4.22)

and

p(xt−1|kt, z1:t−1) =

K
∑

kt−1=1

P (kt|kt−1)P (kt−1|z1:t−1)

P (kt|z1:t−1)
p(xt−1|kt−1, z1:t−1). (4.23)

In these equations, the probability of switching between models, P (kt|kt−1), is defined
by a finite-state Markov chain, with transition matrix Π = (pij), where pij = P (kt =
j|kt−1 = i). In the mode-conditioned filtering stage, we compute the second factor in
(4.20) as

p(xt|kt, z1:t) ∝ p(zt|xt)p(xt|kt, z1:t−1), (4.24)

where the predicted density is given by

p(xt|kt, z1:t−1) ∝

∫

p(xt|xt−1, kt)p(xt−1|kt, z1:t−1)dxt−1. (4.25)

The posterior mode probabilities are calculated as

P (kt|z1:t) ∝ P (kt|z1:t−1)

∫

p(zt|xt)p(xt|kt, z1:t−1)dxt. (4.26)

An efficient implementation of the described JMS approach was presented by [41]
for radar tracking, involving dynamics models (constant velocity and circular turn)
specific for that application.

For the initialization, the prior probabilities in the first time step are set to P (k0 =
1) = P (k0 = 2) = 0.5, which reflects the fact that we have no preference for any of

the two models before the tracking commences. The velocity v
(i)
t=0 for both models

is sampled uniformly in the interval [Vmin, Vmax]. For model k = 1, this sampling
is repeated for all frames during tracking (as explained in Section 4.2.3). This is
necessary because if the dominant model is k = 1, the majority of the samples for
k = 2 will be taken from model k = 1 after the mixing stage, but in order to “catch”
the fast motion in such situations, the samples for the second model need higher
velocity than the small displacements per time interval T during the random walk,
so that they are propagated farther in space and match possible jumps.

4.4 Applying Marginalization Concepts

In the previous sections we have presented the general PF framework and the specific
choices that we have made to tailor this framework to the problem of detecting and
tracking multiple nanoscale objects exhibiting complex dynamics in biological imag-
ing applications. Here we propose to further improve the framework by marginal-
ization of the filtering distribution, data-dependent importance sampling, and Rao-
Blackwellization. In the sequel, when we speak of the standard PF approach, we
mean the described algorithm not including these improvements, and using only a
single dynamics model.
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4.4.1 Filtering Distribution Marginalization

In the standard PF approach, each particle x
(i)
t at time t, which augments the state

path x
(i)
0:t−1, is a draw from the joint space p(x0:t|z1:t), sampled sequentially. At each

time step, the dimension of the sampled paths is increased by the dimension of the
state space, nx, quickly resulting in a very high-dimensional space. Because of the
sequential nature of the algorithm, the variance of the importance weights can only
increase (stochastically) over time [40], leading to most paths having vanishingly small
probability [9, 39,70].

One way to reduce this degeneracy effect is to apply marginal particle filter-
ing (MPF), where the filtering is performed directly on the marginal distribution
p(xt|z1:t), defined by (4.2), instead of on the joint state [77]. Having a representation
of p(xt|z1:t) in the form of (4.3), we can approximate the integral in (4.2) as the

weighted kernel estimate
∑Ns

j=1 w
(j)
t−1p(xt|x(j)

t−1). The importance weights are now on
the marginal space:

w
(i)
t ∝

p(x
(i)
t |z1:t)

q(x
(i)
t |z1:t)

=
p(zt|x(i)

t )
∑Ns

j=1 w
(j)
t−1p(x

(i)
t |x(j)

t−1)
∑Ns

j=1 w
(j)
t−1q(x

(i)
t |x(j)

t , zt)
. (4.27)

This MPF approach is potentially more robust against deviations in object dynamics
compared to the specified models, and the variance of the importance weights for
MPF is also lower than for standard PF [77]. However, these advantages exist only
when the importance sampling function is dependent on the image data. By using
only the transition prior p(xt|xt−1) in the importance sampling, as commonly done
in practice [9,40,70], the MPF simplifies to the standard PF, and all the benefits are
lost.

4.4.2 Data-Dependent Sampling

In order to efficiently create MC samples at any time t, and to exploit the benefits of
applying MPF, we propose to use a data-dependent importance sampling function.
Specifically, we use a mixture of the state prior and a data-dependent proposal distri-

bution. For every object, we sample Np = γNs particles {x(i)
p,t}

Np

i=1 from the transition

prior, where 0 < γ < 1, and the other Ns − Np particles {x(i)
q,t}

Ns−Np

i=1 are drawn
according to

r
(i)
q,t ∼ p(rt|zt), (4.28)

v
(i)
q,t ∼ U(Vmin, Vmax), for k = 1, (4.29)

v
(i)
q,t ∼ N (vt|(r(i)

q,t − r̂t−1)T
−1, T q1,2I), for k = 2, (4.30)

s
(i)
q,t ∼ N (st|ŝt−1, q2T ), (4.31)

I
(i)
q,t ∼ N (It|(1 − α)Ît−1, q3T ), (4.32)

where r̂t−1, ŝt−1, and Ît−1 are MMSE estimates from the object state in the previous
frame, and U denotes the uniform distribution. In this case the region over which the
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normalization by Hn in (4.19) is computed is limited to a disk of radius R centered
at the centroid position computed using the predicted density (4.25). The radius R is
set to the 3-standard-deviation level, where the corresponding variance is estimated
from the particle representation of p(xt|kt, z1:t−1) at time t.

The importance function q(xt|xt−1, zt) in this case is given by

q(xt|xt−1, zt, kt) =γp(xt|xt−1, k)+

(1 − γ)q̃(yt|ŷt−1, zt, k)ps(st|ŝt−1)pI(It|Ît−1), (4.33)

where
q̃(yt|ŷt−1, zt, k = 1) = p̃(rt|zt)U(Vmin, Vmax), (4.34)

q̃(yt|ŷt−1, zt, k = 2) = p̃(rt|zt)N (vt|(rt − r̂t−1)T
−1, T q1,2I), (4.35)

Utilizing the image data, this proposal distribution generates samples from those
areas where the likelihood is high, and that are highly consistent with the most recent
measurements.

4.4.3 Rao-Blackwellization Approach

As mentioned, in the case of high-dimensional state spaces (in our case nx=7), the SIS
becomes inefficient and leads to variance increase of the estimator. However, when the
transition and observation models have an analytically tractable structure, the size
of the state space can be reduced by analytical marginalization of some of the state
variables. This is also called Rao-Blackwellization (RB) [39]. In our applications,
for each realization (each MC particle) of the state variable xt = (yt, st, It), we have
a linear Gaussian transition and observation model for the intensity, It. For such
models the optimal solution can be obtained analytically by using the Kalman filter.
We therefore combine a (M)PF to compute the distribution of the discrete states
(yt, st) with a bank of N Kalman filters to compute exactly the distribution of the
continuous state It. By applying the factorization

p(yt, st, It|z1:t) = p(It|yt, st, z1:t)p(yt, st|z1:t), (4.36)

the probability density p(It|yt, st, z1:t), which is Gaussian, can be computed analyti-
cally by applying the Kalman filter:

p(It|yt, st, z1:t) = N (It|It|t, Pt|t), (4.37)

It|t−1 = (1 − α)It−1|t−1, (4.38)

It|t = It|t−1 +Kt(Zt −HtIt|t−1), (4.39)

Pt|t−1 = (1 − α)2Pt−1|t−1 + q3T, (4.40)

Pt|t = Pt|t−1 −KtHtPt|t−1, (4.41)

St = HtPt|t−1H
T
t +Rt, (4.42)

Kt = Pt|t−1H
T
t S

−1
t . (4.43)
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and the vectors Ht and Zt are formed as

Ht = (. . . , at(i, j; rt,vt, st), . . . )
T , (4.44)

Zt = (. . . , z(i, j) − bt(i, j), . . . )
T , (4.45)

for all pixels (i, j) ∈ C(xt). Here, z(i, j) denotes the image intensity value at pixel
position (i, j), and C(xt) is the region affected by the object with state xt, defined
as C(xt) = {(i, j) ∈ Z

2 : at(i, j; rt,vt, st) > 0.1}. The covariance matrix of the
measurement noise, Rt, models the Poisson noise, the main source of noise in optical
microscopy imaging, and is given by Rt = diag[. . . , ht(i, j;xt), . . . ]. The recursive
Bayesian solution is applicable if the statistics of the measurement noise are known.

In summary, we need to estimate only p(yt, st|z1:t) using a (M)PF, in a space of
reduced dimension, which satisfies the alternative recursion

p(yt, st|z1:t) ∝ p(yt−1, st−1|z1:t−1)p(zt|yt, st, z1:t−1)p(yt, st|yt−1, st−1). (4.46)

The likelihood p(zt|yt, st, z1:t−1) does not simplify to p(zt|yt, st) because there is
a dependency on past values through I0:t. For conditionally linear models, we have
Zt ∼ N (HtIt|t−1, St) [39]. Thus, the variable ut = (Zt−HtIt|t−1)

TS−1
t (Zt−HtIt|t−1)

is χ2
L distributed with L degrees of freedom, where L is the dimension of Zt. The

likelihood p(zt|yt, st, z1:t−1) in this case is chosen to be χ2
L(ut). In order to com-

pute the threshold πd, we simulate the background distribution for each MC particle
with the vector Zb,t = (. . . , ζ(i, j), . . . )T of length L, where ζ(i, j) ∼ N (ζ|0, b(i, j))
and introduce a variable ub,t = (Zb,t − HtIt|t−1)

TU−1
t (Zb,t − HtIt|t−1), where Ut =

diag[. . . , bt(i, j), . . . ]. Having Ns values of ub,t for each object m, we compute the sam-

ple mean π̂(ub,t) = N−1
s

∑Ns

i=1 χ
2
L(u

(i)
b,t) and similarly the variance σ̂2

π,t. The threshold
πd is defined as π̂+ 3σπ,t and if π̂(ut) < πd the tracking for the corresponding object
is terminated.

The variance of the importance weights for RB(M)PF is lower than for (M)PF.
Also, for the same performance, in terms of both accuracy and robustness, fewer MC
particles are needed. This is because the dimension of p(yt, st|z1:t) is smaller than
that of p(xt|z1:t). Another reason is that optimal algorithms are used in order to
estimate the linear state variables.

4.5 Algorithm Overview

Having described all aspects of the proposed tracking approach in the previous sec-
tions, we now give a step-by-step overview of our algorithm, which also summarizes
the parameters involved. Apart from parameter setting (steps 1 and 2), which needs
to be done by the user depending on the applications, the algorithm is fully automatic.

1. Given image sequences from time-lapse microscopy imaging experiments, specify
prior knowledge about object features (Section 4.2.3): σmax and σmin (shape),
Vmin and Vmax (velocity range), q1,1 and q1,2 (motion noise), q2 (shape noise),
q3 (intensity noise), and matrix Π (motion transition probabilities, Section 4.3).
Since the algorithm does not depend critically on these values, rough estimates
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suffice, which can be obtained from the image data in advance by limited manual
analysis.

2. Specify the free algorithm parameters: Ns (number of MC samples used per
object, Sections 4.2.1, 4.2.2), r (signal amplification exponential, Section 4.2.5),
h (minimum signal level, Section 4.2.5), and γ (importance sampling mixture
ratio, Section 4.4.2). The remaining parameters are precomputed automatically
from the image data: α (photobleaching rate, Section 4.2.3), πd (track termi-
nation weight threshold, Section 4.2.5), and Nb (number of samples indicating
object birth, Section 4.2.5).

Then, for each successive frame in an image sequence, from the first until the last
frame, the algorithm performs the following steps:

3. Perform object detection (Section 4.2.5) in the current frame and initiate a
track for each newly detected object, using Ns particles per object and dynam-
ics model, with normally distributed position, velocity, shape, and intensity
values, according to the noise levels defined in step 1, and with uniformly dis-
tributed weights. Combine the newly detected objects with the existing ones
and recompute the mixture weights.

4. Perform the “mixing” of the particles according to (4.21)-(4.23).

5. Propagate all particles according to both dynamics models (Section 4.2.3).

6. Compute the MMSE estimates of the predicted object states using the predicted
density (4.25) and draw additional MC samples using the data-dependent im-
portance sampling (Section 4.4.2).

7. Combine the particles resulting from step 5 with the ones from step 6 in pro-
portions defined by parameter γ.

8. Update the particle weights using the marginalization (Section 4.4.1) and Rao-
Blackwellization (Section 4.4.3) approaches.

9. Terminate tracks of which the average of the unnormalized particle weights has
dropped below the predefined threshold πd (Section 4.2.5).

10. Update the probability P (kt) according (4.26) and compute the MMSE estimate
for the object positions from the posterior (4.24).

For experimental purposes, the proposed algorithm was implemented in the Java
programming language (Sun Microsystems Inc., Santa Clara, CA) as a plugin for
ImageJ (National Institutes of Health, Bethesda, MD), a public domain and platform
independent image processing program use abundantly in biological image analysis [1].
Running on a regular PC (Intel Core 2 Duo, 2.6 GHz CPU, 4 GB RAM) using the
Java Virtual Machine version 1.6, the processing time per object per frame using
103 MC particles is about 0.7 sec. In other words, with the current implementation,
it takes about 2 hours to track 100 objects over 100 frames. Since tracking can be
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done off-line, these numbers are acceptable in practice. For the same accuracy the
standard PF [141] requires 2-3 times more MC particles and, because of that, runs
10-20% slower than the proposed RBMPF. We expect that computation times can be
reduced by further optimization of the code.

While the algorithm has been described here for tracking in 2D image sequences, it
can be easily extended for tracking in 3D and 4D (multichannel 3D) image sequences,
by adding the extra dimensions to the state vector and introducing observation mod-
els for these additional state elements. For illustrational purposes, we focus in this
chapter on applications where, for practical reasons, imaging is done in 2D over time.

4.6 Experimental Results

The proposed algorithm was thoroughly tested using synthetic image data, for which
ground truth was available, as well as real biological image data from several time-
lapse microscopy studies. In both cases, the dynamics of three different types of
intracellular objects were considered, which are representative of the dynamics en-
countered in practice.

4.6.1 Considered Objects

The first type of objects considered in our experiments are microtubules (MTs). These
are filaments composed of α/β-tubulin heterodimers and play the role of conveyer
belts in moving chromosomes and vesicles via special attachment proteins. MTs are
relatively rigid structures capable of growing and shrinking [37,48]. In this chapter we
focus on MT growth events, visualized using fluorescent plus-end-tracking proteins, or
+TIPs [137]. Growing MTs mostly exhibit nearly constant linear motion with small
accelerations, as described by the second motion model of Section 4.2.3.

As a second type of object we considered vesicles. These are relatively small ob-
jects that carry cell products from the Golgi apparatus to the plasma membrane [58].
They are also heavily involved in protein production, as well as helping certain prod-
ucts reach their proper location of operation (such as receptors being incorporated
into the plasma membrane). To understand the molecular mechanisms underlying
organelle motility and distribution, it is essential to characterize in detail different
movement parameters, such as velocities, run lengths, and frequencies of pausing
(random-walk type of motion) and switching (from random walk to directed motion).
In order to accurately keep track of motion pattern switches, the use of both motion
models of Section 4.2.3 is essential.

Finally we considered androgen receptors (ARs). The AR is a ligand-dependent
transcription factor that regulates the expression of genes involved in the development
and maintenance of the male phenotype and plays a role in the growth of prostate can-
cer. Quantitative assays such as fluorescence recovery after photobleaching (FRAP)
and fluorescence resonance energy transfer (FRET) have been instrumental in the
investigation of the behavior of ARs in living cells [46, 170]. Similar to many other
nuclear factors interacting with DNA, ARs are mobile in the living cell nucleus and
dynamically interact with specific binding sites in the promoter/enhancer regions of
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the genes they regulate. In addition, ARs are distributed in the nucleus in a typical
speckled distribution pattern. It has been hypothesized that these speckles represent
ARs bound to promoters [46]. This is supported by confocal microscopy showing a
partial overlap between active transcription sites and NR speckles [170]. However, to
further investigate the nature of AR speckles, individual object tracking is required.
In our experimental data, speckles mostly exhibit restricted Brownian motion, with
occasional intervals of more directed motion.

4.6.2 Synthetic Data Experiments

The validation of the proposed tracking framework was first done using synthetic data
sets. Three types of motion were modeled according to the dynamics models described
in Section 4.2.3. The motion of MTs was modeled using (4.13). The dynamic behavior
of vesicles was described by a combination of the models (4.11) and (4.13). Finally, the
motion of ARs was modeled using (4.11) only. In the case of vesicles, the switching
between the motion patterns was governed by a Markov chain with the following
transition matrix, which was learned from the real image data (Section 4.6.3):

Π =

(

0.9 0.1
0.2 0.8

)

. (4.47)

Realistic 2D image sequences (Fig. 4.2), consisting of 30–100 frames (T = 1
sec.) of 512 × 512 pixels (∆x = ∆y = 50 nm) of 20–60 moving objects per frame,
were generated for different SNRs in a range around SNR = 4, which previously has
been identified as a critical level at which several popular tracking techniques break
down [32]. Here, SNR is defined as the difference in intensity between the object (Io)
and background (Ib), divided by the object noise (σo =

√
Io) [32].

The parameters of the algorithm were fixed to the following values: Ns = 103

samples per object, r = 8, h = 20 (corresponding to SNR > 2), and γ = 0.5.
Elongated MT-like objects were created with the shape parameters set to σmin =
100 nm and σmax = 250 nm. For the round vesicles and ARs these parameters were
set to σmin = σmax = 100 nm. Velocities for MTs, and also for vesicles in the directed
motion stage, ranged from Vmin = 200 to Vmax = 700 nm/sec. The motion, shape,
and intensity noise levels were fixed to q1,1 = q1,2 = 5000 nm2/sec2, q2 = 0.04, and
q3 = 100 nm2.

The described motion patterns can be easily distinguished by analyzing the his-
tograms of the displacements and relative angles (Fig. 4.3), where the displace-
ment is defined as the difference in the object position in two successive frames,
‖∆rt‖ = ‖rt+1 − rt‖, and the relative angle is the angle between the vectors ∆rt and
∆rt+1. Instant velocity is calculated as ‖∆rt‖/T . The histogram of displacements
in the case of ARs follows the χ2-distribution and the relative angles are uniformly
distributed in the range [−π, π]. The relative angles for the directed, nearly constant
velocity motion of MTs are centered around zero, and the displacements are spread
over the range of modeled velocities. Finally, the corresponding histograms for the
vesicles exhibit a superposition of the two patterns mentioned above.

For all three applications, the estimated parameters of interest (average velocity,
run length, drift coefficient, et cetera) are different, but all of them can be derived
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Figure 4.2. Examples of synthetic images used in the experiments giving an impres-
sion of object appearance at SNR=4 (top left). The insets show zooms at different
SNRs. Also shown are the motion patterns described by the proposed dynamics
models for AR-like objects (top right), MTs (bottom left), and vesicles (bottom
right). The insets show some of the modeled tracks in more detail.

from the object position in every frame. Hence, accurate position estimation, which
is the result of tracking, is the most important criterion for obtaining correct re-
sults. Exploiting the available ground truth, we assessed the accuracy of automated
tracking using both the standard PF approach and the proposed RBMPF algorithm,
by computing the root mean square error (RMSE) in the positions of all correctly
tracked objects, as commonly done in trajectory analysis [105, 161]. The rate of cor-
rectly tracked objects using PF techniques is close to 100% and is the highest among
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Figure 4.3. Distribution of the displacements and relative angles for the modeled
synthetic data according to the described dynamics model for ARs (top row), MTs
(middle row), and vesicles (bottom row).

available tracking tools (see [141] for a comparison and sensitivity analysis). The
localization errors for both filters are presented in Table 4.1, which also shows the
results of manual tracking by five human experts, using the freely available software
tool MTrackJ [94]. To keep the workload manageable, manual tracking was limited to
the synthetic data sets showing MT-like motion. As can be seen from the table, the
errors for automated tracking are approximately 3–4 times lower compared to manual
tracking, with our RBMPF algorithm being consistently more accurate (up to 36%)
than the standard PF approach.

In the case of vesicles, the results for the standard PF are not shown, as this
algorithm uses only a single dynamics model and was unable to follow the switching
between the different motion patterns (for most objects the filter lost track). When
tracking only a single object, the performance of the standard PF could be theoreti-
cally improved, by using an impractically large number of MC samples and substan-
tially increasing the process noise in the dynamics model. However, for multiple object
tracking this solution does not work, as the measurement-to-track association would
be completely ambiguous. By contrast, the proposed RBMPF algorithm tracked all
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Table 4.1. Comparison of the localization errors for manual tracking, the standard
PF approach, and the proposed RBMPF algorithm.

Manual ARs MTs Vesicles
Tracking PF RBMPF PF RBMPF RBMPF

SNR RMSE [nm] StDev [nm] RMSE [nm]
2 130 30 45 43 50 47 40
4 110 20 20 17 39 25 19
6 90 5 19 13 30 20 15
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Figure 4.4. Results (three tracks) of automatically tracking vesicles that exhibit
switching between fast and slow motion (left). The plot shows traveled distance
versus time. Steep slopes represent short stages of fast motion, with almost constant
velocity, which are preceded or followed by longer periods of random walk drifts.
The tracks are selected from 20 synthetically created tracks (right).

objects without losing track during motion switching (Fig. 4.4).

4.6.3 Real Data Experiments

Real time-lapse fluorescence microscopy image data sets were also obtained for each of
the three biological applications considered in this chapter. In all cases, a confocal or
widefield microscope was used (Carl Zeiss, Göttingen, Germany) with a Plan Neofluar
40× or 100× 1.3 NA oil objective. The proposed algorithm was applied to each of the
data sets. For these experiments, the object and algorithm parameters were fixed to
the same values as in the case of the synthetic data experiments. Since ground truth
was not available for the real data, the tracking results were analyzed by expert visual
inspection and comparison with manual tracking using MTrackJ [94]. In the following
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Figure 4.5. Single frame (left) from a time-lapse image data set acquired for
studying MT dynamics, with the objects detected by our algorithm marked with
white squares, and the results (right) of tracking using the algorithm. All relevant
objects were detected and correctly tracked as confirmed by visual inspection.

subsections, we briefly describe the imaging setups and the results obtained for each
of the three applications. More details on the cell cultures and imaging conditions
can be found in the cited papers.

4.6.3.1 Microtubules

COS-1 cells were cultured and transfected with GFP-tagged proteins as described
elsewhere [5,155]. An LSM-510 confocal laser scanning microscope was used to acquire
images of GFP+ TIP movements at a rate of 1 frame per 1 or 2 seconds. The image
sequences consisted of 30–50 frames of 512 × 512 pixels of size 75 × 75 nm2. Sample
tracking results for this application are presented in Fig. 4.5.

The estimation of the accuracy of the proposed algorithm in tracking microtubules
was carried out on two typical image sequences by comparison with manual track-
ing based on 10–20 relevant objects selected by biologists. Distributions of instant
velocities and the average velocity per track estimated using our algorithm versus
manual tracking are presented in Fig. 4.6. The velocity estimates obtained using the
RBMPF algorithm were comparable with those reported previously [155] and did not
differ more than 1% from the manual tracking results for the same image data. The
main difference between the standard PF approach [141] and the proposed RBMPF
algorithm for this application is that the latter is faster. In terms of accuracy, the
two algorithms perform comparably.

4.6.3.2 Vesicles

For peroxisome and Rab6 imaging [58], we used HeLa cells and PEX3-GFP fusion,
which was a gift from B. Distel [181]. The HeLa cell line is the oldest cell line
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Figure 4.6. Examples of velocity distributions (left) obtained with our RBMPF-
based automatic tracking algorithm versus manual tracking applied to real fluores-
cence microscopy image sequences of growing MTs (data set in Fig. 4.1(a)), and
velocity estimation for 10 representative MT objects (right). Shown are the mean
values (black or white squares) and ±1 standard deviation (bars) of the estimates.

and is widely used for many different studies. Many variants of the HeLa cell line
exist, among which HeLa-R, with a so-called “round” phenotype, and HeLa-L, with
a “long” phenotype. They differ from each other by several features, such as LL5
cortical protein distribution [81], and have a strikingly different cell shape (round and
elongated, respectively). We used HeLa-L cells to study the kinetic properties of the
Rab6-vesicles movements (work in progress) and HeLa-R cells to study microtubule
dynamics [98], microtubules and cell cortex crosstalk [81], and exocytosis [58]. Time-
lapse images were acquired on an Axiovert 200M inverted microscope at a rate of
0.83 frames per second. The image sequences consisted of 100 frames of 1344 × 1024
pixels of size 64 × 64 nm2. Sample tracking results for this application are presented
in Fig. 4.7.

Validation of the RBMPF algorithm for vesicle tracking in HeLa-R and HeLa-L
cells was done by comparison with manual tracking for 30 vesicles that were visible
long enough (at least 40 frames) to clearly exhibit typical switching patterns. Distri-
butions of the displacements and relative angles of moving vesicles in both types of
HeLa cells are shown in Fig. 4.8. In order to estimate vesicle velocity during the fast
motion stage, a threshold of 0.3µm/sec was introduced to separate motion stages, as
in previous studies [58]. The velocity estimates, as well as the average ratio of the time
that a vesicle is in the fast motion stage to the total track time, are given in Table 4.2,
for both automatic and manual tracking. The table also shows the probabilities of
switching between the two motion stages, which is another important parameter used
in modeling and studying intracellular dynamics, and in our model corresponds to
the values of p12 and p21 of the transition matrix Π. In contrast with our previous
algorithm [141], the RBMPF algorithm was capable of catching the transitions be-
tween the two types of motion (see Fig. 4.9), and the computed parameters were in
good agreement with manually obtained values.
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Figure 4.7. Single frame (left) from a time-lapse image data set acquired for
studying vesicle dynamics, with the objects detected by our algorithm marked with
white squares, and the results (right) of tracking using the algorithm. All relevant
objects were detected and correctly tracked as confirmed by visual inspection.

Table 4.2. Comparison of estimates of velocity [µm/sec], the average ratio of fast
motion time to total track time, and the probability of switching between the two
motion stages of vesicles in HeLa-R and HeLa-L cells, based on manual tracking
versus automatic tracking using the proposed RBMPF algorithm.

Estimate Manual Tracking Automatic Tracking
HeLa-R HeLa-L HeLa-R HeLa-L

Velocity 0.72 ± 0.23 0.83 ± 0.35 0.75 ± 0.28 0.80 ± 0.31
Fast motion ratio 0.23 0.27 0.21 0.28
Slow to fast probability 0.09 0.10 0.08 0.12
Fast to slow probability 0.27 0.22 0.28 0.22

4.6.3.3 Androgen Receptors

For AR imaging [170], YFP emission was detected in Hep3B cells expressing YFP and
CFP (yellow and cyan variants of GFP respectively) double-tagged AR. An LSM-
510 microscope was used to acquire images at a rate of 1 frame per 12.6 seconds.
The resulting image sequences consisted of 80–180 frames of 512×512 pixels of size
75 × 75 nm2. Sample tracking results for this application are presented in Fig. 4.10.

Because of the previous lack of robust tracking tools and the considerable labor
involved in manual analysis of this type of image data, actual analysis of the data had
not been performed prior to the present study. Quantitative performance analysis
of the proposed algorithm was done in comparison with expert manual tracking of
a limited number of 16 relevant objects. The displacement and relative angle his-
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Figure 4.8. Distribution of the displacements and relative angles for 30 auto-
matically obtained vesicle tracks for HeLa-R (top row) and HeLa-L (middle row)
cells, and the filtered (thresholded) displacement histograms (bottom row), used for
velocity analysis during fast motion stages for HeLa-R (left) and HeLa-L (right)
cells.

tograms obtained by automatic and manual means are presented in Fig. 4.11 and
show no statistically significant difference. Estimation of the average displacement
per frame was done by computing the sample mean and variance. The estimates
are 123 ± 67nm and 128 ± 81nm for automatic and manual tracking, respectively.
The proposed automatic tracker correctly reproduced the relative angle distribution,
and, considering the shape of that distribution (Fig. 4.11), revealed the fact that the
objects under consideration do not freely move but rather seem to be attached to
immobile structures. This attachment constrains the behavior and reduces the num-
ber of degrees of freedom: every time the object moves, its displacement in the next
frame will be rather in the opposite direction. The displacement and relative angle
time series for 3 tracks are shown in Fig 4.12. Other parameters, such as the size,
shape, and intensity of single speckles, as well as their behavior over time can also be
analyzed automatically by our algorithm and will be the subject of future studies.
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Figure 4.9. Results (three tracks) of automatically tracking vesicles that exhibit
switching between fast and slow motion for HeLa-R (left) and HeLa-L (right) cells.
The plots show traveled distance versus time. Steep slopes represent short stages of
fast motion, with almost constant velocity, which are preceded or followed by longer
periods of random walk drifts.
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Figure 4.10. Single frame (left) from a time-lapse image data set acquired for
studying AR dynamics, with the objects detected by our algorithm marked with
white squares, and the results (right) of tracking using the algorithm. All objects
with sufficiently high local SNR as determined by the h-parameter (Section 4.2.5)
were detected and correctly tracked as confirmed by visual inspection.

4.7 Discussion and Conclusions

In this chapter we have proposed a novel algorithm for simultaneous tracking of many
nanoscale objects in time-lapse fluorescence microscopy image data sets. The algo-
rithm, which is built within a Bayesian tracking framework, shows several important
improvements compared to our previous work [141, 145]. Tracking accuracy is im-
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Figure 4.11. Displacements and relative angle distributions in the case of auto-
matic (top) and manual (bottom) analysis of AR dynamics.
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Figure 4.12. Examples of the velocity (left) and relative angle (right) time series
for three automatically analyzed AR tracks.

proved by using marginalization of the filtering distribution and one of the state
variables, for which the optimal solution (the Kalman filter) is used. In addition,
improved robustness is achieved by integrating a jump Markov system into the frame-
work, which allows the use of multiple dynamics models for object motion prediction.
Since common Bayesian tracking algorithms are designed to deal with only one spe-
cific type of motion, they often fail when used for real biological applications, where
usually more complex motion patterns need to be analyzed.

The proposed algorithm was tested on synthetic image data as well as on real
time-lapse fluorescence microscopy data acquired for studying the dynamics of three
different types of intracellular objects: microtubules, vesicles, and androgen recep-
tors. Results from the synthetic data experiments clearly showed the superiority
of the proposed algorithm over manual tracking as well as our previous Bayesian
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tracking approaches, which were already demonstrated to be superior to alternative
non-Bayesian tracking algorithms. The real data experiments confirmed the validity
of the tracking results produced by the proposed algorithm. Based on these results
we have started using our algorithm for attacking specific biological questions.





Chapter Five

Microtubule Dynamics Analysis

using Kymographs and

Variable-Rate Particle Filters

It is a truth very certain that when it is not in our power to

determine what is true we ought to follow what is most probable.

— René Descartes,

Discours de la Méthode (1637)

Abstract — Studying the dynamics of intracellular objects is of fundamental im-
portance in understanding healthy life at the molecular level and to develop drugs
to target disease processes. One of the key technologies to enable this research is
the automated tracking and motion analysis of these objects in microscopy image
sequences. To make better use of the spatiotemporal information than common
frame-by-frame tracking methods, two alternative approaches have recently been
proposed, based on either Bayesian estimation or space-time segmentation. In this
chapter, we propose to combine the power of both approaches, and develop a new
probabilistic method to segment the traces of the moving objects in kymograph rep-
resentations of the image data. It is based on variable-rate particle filtering and uses
multiscale trend analysis of the extracted traces to estimate the relevant kinematic
parameters. Experiments on realistic synthetically generated images as well as on
real biological image data demonstrate the improved potential of the new method
for the analysis of microtubule dynamics in vitro.

Based upon: I. Smal, I. Grigoriev, A. Akhmanova, W. J. Niessen, E. Meijering, “Microtubule Dy-
namics Analysis using Kymographs and Variable-Rate Particle Filters”, submitted.
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5.1 Introduction

M
otion analysis of subcellular objects plays a major role in understanding
fundamental dynamical processes occurring in biological cells. Since many
diseases originate from a disturbance or failure of one or more of these pro-

cesses, their study is of interest not only to life scientists, but also to pharmaceutical
companies in their attempts to develop adequate drugs. Even though many intra-
cellular interaction mechanisms are well understood these days, many questions still
remain unanswered. In some cases, where the analysis in living cells (in cultures or
in vivo) is confounded by other intracellular processes, it makes sense to study the
objects of interest in vitro, where the influence of other structures or processes is
removed, reduced, or known [14,101].

Intracellular dynamics is usually visualized using advanced microscopy imaging
techniques, such as fluorescence confocal microscopy, where the objects of interest
are labeled with fluorescent proteins. Alternatively, differential interference contrast
(DIC) microscopy can sometimes be used, which does not require labeling [112,156].
In either case, the optical resolution of the microscope is much lower (on the order
of 100 nm) than the size of the objects of interest (on the order of nanometers),
causing the latter to be imaged as blurred spots (without sharp boundaries) due to
diffraction. The quality of the images is further reduced by high levels of measurement
noise [112, 185]. Both types of distortions contribute to the ambiguity of the data,
making automated quantitative image analysis an extremely difficult task.

In time-lapse microscopy, where hundreds to thousands of 2D or 3D images are
acquired sequentially in time, the main task is to track the objects of interest (pro-
teins, vesicles, microtubules, etc.) and compute relevant motion parameters from
the extracted trajectories. In practice, manual tracking is labor intensive and poorly
reproducible, and only a small fraction of the data can be analyzed this way. The
vast majority of automatic tracking methods [52, 71, 95, 96, 132, 160, 161] developed
in this field consist of two stages: 1) detection of objects of interest (independently
in each frame), and 2) linking of detected objects from frame to frame (solving the
correspondence problem). Since the methods employed for the first stage operate on
data with low signal-to-noise ratio (SNR), the linking procedure in the second stage
is faced with either many false positives (noise classified as objects) or false negatives
(misdetection of actually present objects).

Contrary to these two-stage tracking methods, which typically use only very few
neighboring frames to address the correspondence problem, methods that make better
use of the available temporal information usually show better results. Such trackers
are either built within a Bayesian estimation framework [141,142], which in any frame
uses all available temporal information up to that frame, or they consider the 2D+t or
3D+t image data as one spatiotemporal 3D or 4D image, respectively, and translate
the estimation of trajectories into a segmentation of spatiotemporal structures [17,
128].

In this chapter, we propose to combine the power of the latter two approaches,
and develop a variable-rate particle filtering method that implements the Bayesian
estimation framework for tracing spatiotemporal structures formed by transforming
the original time-lapse microscopy image data into a special type of spatiotemporal
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representation: kymographs [12, 22, 64, 130]. This combined approach, which to the
best of our knowledge has not been explored before, results in more accurate extraction
of the spatiotemporal structures (edge-like image structures in our case) compared to
particle filtering applied directly to the image sequences on a per-frame basis.

The chapter is organized as follows. In Section 5.2, we describe the biological
application considered in this chapter and the proposed methods to model, acquire,
transform, preprocess, and analyze the image data. In Section 5.3, we present ex-
perimental results of applying our method to synthetic image sequences, for which
ground truth was available, and to real DIC microscopy image data of microtubule
dynamics. A concluding discussion of the main findings is given in Section 5.4.

5.2 Methods

5.2.1 In Vitro Microtubule Dynamics Model

Microtubules (MTs) are polymers of tubulin, which assemble into hollow tubes (diam-
eter ∼25 nm) in the presence of guanosine triphosphate (GTP), both in vivo and in
vitro [37,107]. In vivo, MTs are responsible for the support and shape of the cell and
play a major role in several intracellular processes such as cell division, internal cell
organization, and intracellular transport. MT dynamics (also referred to as dynamic
instability) is highly regulated, both spatially and temporally, by a wide family of MT
associated proteins (MAPs) [67]. To understand the specific interactions between reg-
ulatory factors and microtubules is of great interest to biologists. Misregulation of
MT dynamics, for example, can lead to erroneous mitosis, which is a characteristic
feature in neurodegenerative diseases.

Microtubule dynamic instability is a stochastic process of switching between
growth and shrinkage stages, regulated by MAPs [99]. The growth velocity, ν+, de-
pends on soluble tubulin concentration available for polymerization and GTP-tubulin
association and dissociation rates. The shrinkage velocity, ν−, which is usually an
order of magnitude higher than the growth velocity, is independent of tubulin concen-
tration and is characterized only by the dissociation rate of guanosine diphosphate
(GDP) tubulin from the depolymerizing end. The growth velocity in vivo can be
up to 10 times faster than in vitro. Two other important events that characterize
dynamic instability are rescue (switching from shrinkage to growth) and catastrophe
(switching from growth to shrinkage) [99]. In practice, the analysis of MT dynamics
includes estimation of ν+, ν−, and the rescue and catastrophe frequencies, fres and
fcat. The rescue rate in vitro is very low unless specific rescue factors are added to
the assay and might be difficult to estimate reliably [101].

Recent studies reveal a special class of MAPs, plus-end-tracking proteins (+TIPs),
that are able to accumulate at MT growing ends [6, 27, 67, 137]. The mechanisms by
which +TIPs recognize MT ends have attracted much attention and several explana-
tions have been proposed [4,27,67]. One way to understand the mechanism employed
by individual +TIPs and the molecular mechanisms underlying their functions is by
measuring the distribution and displacement of +TIPs in time. However, due to lack
of robust and accurate automatic methods, the manual analysis usually is a labor
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Figure 5.1. Dynamics model describing microtubule behavior in vitro.

intensive procedure which very likely leads to user bias and loss of important infor-
mation. In the case of experiments in living cells it is extremely hard to decouple
the effect of other regulators while studying +TIPs influence on MT dynamics. The
advantage of in vitro investigation is the minimal environment in which the influence
of various +TIPs can be dissected individually. Recent in vitro studies start to reveal
the mechanisms of +TIPs end-tracking and the regulation of MT dynamics by indi-
vidual +TIPs [182]. This can potentially lead to combining multiple +TIPs in order
to reconstitute the in vivo MT dynamics and observe the collective effect of +TIPs.

The stochastic behavior of the MT tip can be modeled using a dynamical system
with three states (Fig. 5.1): G (growth), S (shrinkage), and S0 (no dynamic activity).
Each state is characterized by a velocity parameter ν̃ ∈ {ν+, ν−, ν0} and a duration
time interval τ̃ ∈ {τ+, τ−, τ0}, describing the duration of the corresponding stage.
The following state transitions are allowed: S0 → G (the MT starts to grow), G→ S
(catastrophe), S → G (rescue), and S → S0 (the MT is completely disassembled). At
each time point the MT can “stay” only in one of the states and for a period of time
no longer than the corresponding τ̃ for that state. In our simulations, the time and
velocity parameters are generated randomly (Section 5.3.1), and because of that it is
allowed to “leave” the state S sooner than τ− if the MT is completely disassembled
in shorter time. If after time τ− the MT was not disassembled completely (did not
reach state S0), a rescue occurs (S → G) and the MT switches to growing. A similar
three-stage model of MT dynamics can be designed for the in vivo situation. In this
case, state So should be replaced with a state that corresponds to a “pause” event [37],
and all the transitions (arrows in Fig. 5.1) should be bidirectional.

5.2.2 Imaging Technique and Kymographs

In our studies, the dynamic behavior of MTs is imaged using DIC microscopy [102],
which is effectively used for biological specimens that cannot be visualized with suf-
ficient contrast using bright-field microscopy. The resulting images (see Fig. 5.2 for
an example) are similar to those obtained with phase-contrast microscopy and de-
pict objects as black/white shadows on a gray background with good resolution and
clarity. DIC microscopy works by separating a polarized light source into two beams
that take slightly different paths through the sample and then converting changes in
optical path length to a visible change in brightness [102]. The advantages of DIC
over fluorescence microscopy is that the samples do not have to be stained. The main
limitation of this imaging technique is its requirement for a thin and transparent
sample of fairly similar refractive index to its surroundings.
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Figure 5.2. Example of a DIC microscopy image. Microtubule nucleation initiates
from stable tubulin “seeds”. In the experiments, “observation lines” are drawn along
MT bodies to construct kymographs.

Automatic analysis of MT behavior in vitro using time-lapse DIC microscopy
images is a complicated task. The goal is to follow (track) the fast-growing (so called
“plus”) end of each MT so as to obtain 2D paths in the image plane, from which all
the parameters of interest (velocity and frequency estimates) can be computed. One
of the main problems is that in DIC microscopy images, the object appearance (and
especially the MT tip) depends on the imaging conditions (the relative angle between
the sample and the microscope polarization prism) and cannot be easily modeled by
appearance models, as in the case of fluorescence microscopy imaging. Additionally,
the real object location is further obscured by diffraction, modeled by the point-spread
function (PSF) of the microscope.

Another issue that requires careful consideration is the temporal sampling rate.
In our experiments, images are acquired every second, which is in fact a quite high
sampling rate taking into account how slowly microtubules grow in vitro (30-40 nm
per second). This relatively high sampling rate is both a blessing and a curse. It is
a blessing because it allows one to observe the motion in more detail and possibly
detect rare and extraordinary movements that would otherwise go unnoticed. It is
also a curse, however, as the growth and shrinkage velocities are usually such that
the change in MT length from one frame to the next is (much) less than one pixel (in
our experiments, the pixel size is 80×80 nm2), even if the spatial sampling is done at
the Nyquist rate. This is on the same order as the positional estimation errors made
by manual or automatic approaches [141]. As a result, instant velocity estimates (ν+

or ν−) computed as the ratio of positional change over elapsed time between two
consecutive frames, are doomed to be highly inaccurate.

In order to exploit all image data and at the same time obtain more accurate
results, we abandon the idea of frame-by-frame tracking of objects directly in the
original data, and we propose to base the estimation of motion parameters on a
transformation of the data that is more amenable to multiscale analysis. Specifically,
we propose to use a kymograph representation [130] (also called a kymoimage in this
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Figure 5.3. Example of a kymograph obtained from the DIC microscopy images,
showing the dynamics of both microtubule ends.

chapter) for each MT. It is constructed by defining (manually or automatically) an
“observation line” L (Fig. 5.2) in the original image along the MT body. The length
of L should approximately equal the maximum expected length of MTs in the sample.
Image intensity values are then sampled equidistantly along L, yielding a vector of
“measurements” at time t, Jt = {Jt(j) : j = 1, . . . , Y }, where Y is the number
of samples for the selected MT in every image frame. In practice, to increase the
SNR, the measurements Jt(j) are obtained by averaging pixel values in the vicinity
of j, along a line perpendicular to L. The resulting kymoimage (see Fig. 5.3 for an
example), I(t, y) = {Jt : t = 1, . . . , T}, is the collection of measurement vectors,
where every column t contains the measurements Jt as pixel values, and T is the
number of frames in the image sequence. In our experiments, MT nucleation from
stable tubulin oligomers was studied [28]. These “seeds” always remain present and
cannot be completely disassembled. In the kymoimages (Fig. 5.3) they are clearly
visible as a bright horizontal strip.

To estimate the kinematic parameters of interest from the kymoimages, the edge
location y(t) (corresponding to the MT tip) should be accurately extracted (slopes
should be preserved). In kymoimages, the instant velocity ν at any time t′ is estimated
as ν = (dy/dt)t=t′ = tan (ϕ), where ϕ is the angle between the time axis and the
tangent to y(t) at t = t′. As a result, small errors in the angle estimates may lead
to large errors in the velocity estimation, due to the nonlinearity introduced by the
tangent (the closer ϕ is to 90 degrees, the larger the errors).

In this chapter, the analysis is conducted in three subsequent steps: 1) preprocess-
ing, 2) edge extraction, and 3) multiscale trend analysis. Step 1 enhances the quality
of the image using edge preserving filtering. Step 2 traces the edges by a particle fil-
ter capable of using multiscale measurements. Finally, step 3 analyzes the extracted
edges by splitting them into relevant parts and performing linear approximation in
order to compute all the necessary parameters. The three steps are described in more
detail in the following subsections.

5.2.3 Edge Preserving Smoothing

The main challenge in estimating the growth velocity ν+, shrinkage velocity ν−, and
the two transition frequencies fres and fcat, is to accurately segment the edges in the
kymoimages (Fig. 5.3). Two main approaches to edge detection are differentiation
and model fitting. In practice, differentiation, being a noise enhancing operation,
requires some form of smoothing, which in turn entails the risk of blurring edge in-
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Figure 5.4. Application of various edge preserving smoothing methods to our
image data (top). The left column shows the results of smoothing, the middle
column depicts the edge information extracted using the Gaussian derivatives, and
the right column shows the distribution of intensity values in the smoothed images.

formation. Better results may be obtained by the use of nonlinear, edge preserving
filters. Fig. 5.4 shows the results of applying the most frequently used nonlinear
filtering techniques to our image data: the median filter [149], the maximum homo-
geneity neighbor (MHN) filter [49], the bilateral filter [163], the mean-shift filter [34],
and anisotropic diffusion [116]. The examples clearly demonstrate that noise can be
reduced to some extent while preserving edge information. However, they also show
that edges may still not be clearly defined in (parts of) the image. Subsequent edge
extraction by means of Gaussian differentiation [159] may result either in detection of
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noisy background structures (at small scales), or in too much positional uncertainty
(at larger scales), neither of which is acceptable for accurate slope estimation of the
linear parts of the edge y(t).

To overcome the problems caused by differentiation, we propose to use model fit-
ting for edge detection, using particle filtering (PF) methods. The PF can be exploited
to reduce the overload of fitting the model in every pixel position, by incorporating
information about the edge model, the image noise distribution, and the probability
of finding the edge in the neighborhood of a pixel, by taking into account the proba-
bility of edge existence at neighboring pixels. In this case, the use of edge preserving
prefiltering is still advantageous. The PF mainly replaces the edge extraction part,
which in differentiation based approaches such as Canny’s algorithm [25] is usually
based on hard thresholding.

5.2.4 Variable-Rate Particle Filtering

The prefiltered kymoimage is an input for the next step, where particle filtering (PF)
is performed to estimate the edge location y(t). Particle filters [9, 126] implement
the concept of Bayesian estimation, where at each time point t a system state xt is
estimated on a basis of previous states, noisy measurements zt obtained from sen-
sors, and prior knowledge about the underlying process [9]. For our application, the
simplest working implementation of PF can be constructed with the state vector xt,
which describes the position of the edge in every column t of the image I(t, y), and
the measurements zt, which are the intensity values in the corresponding column t of
I(t, y). Prior knowledge about the system is specified by the dynamics model, which
describes the state transition process, and the observation model:

xt = ft(xt−1,vt), zt = gt(xt,ut), (5.1)

where ft and gt are possibly nonlinear functions and vt and ut are white noise sources.
The choice of these functions is application specific and is given below. Alternatively,
the same state estimation problem can be formulated by specifying two distributions,
p(xt|xt−1) and p(zt|xt), instead of (5.1) [9, 126].

The solution of the state-space problem given by (5.1) is the posterior proba-
bility distribution function (pdf) p(x0:t|z0:t), where x0:t = {x0, . . . ,xt} and z0:t =
{z0, . . . , zt}, which can be found either exactly (when ft and gt are linear and vt and
ut are Gaussian) using the Kalman filter [126] or, in the most general case, using
approximations such as sequential Monte Carlo (MC) methods [9, 39]. In the latter
case, the posterior pdf is approximated with a set of Ns MC samples (referred to as

“particles”), {x(i)
0:t, w

(i)
t }Ns

i=1, as

p(x0:t|z0:t) =

Ns
∑

i=1

w
(i)
t δ(x0:t − x

(i)
0:t), (5.2)

where x
(i)
0:t describes one of the possible state sequences (path) and w

(i)
t is the weight

indicating the probability of realization of that path. The solution using PF is given
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by a recursive procedure that predicts the state from time t− 1 to t and updates the
weights based on newly arrived measurements zt as

x
(i)
t ∼ p(xt|x(i)

t−1) and w
(i)
t ∝ w

(i)
t−1p(zt|x(i)

t ), (5.3)

i = 1, . . . , Ns. The minimum mean square error (MMSE) or maximum a posteriori
(MAP) estimators of the state can be easily obtained from p(x0:t|z0:t) [9].

Commonly, the state sampling rate is determined by the rate at which the mea-
surements arrive. In the application under consideration, where the MT dynamics is
characterized by prolonged periods of smoothness (growth and shrinkage stages) with
infrequent sharp changes (rescue and catastrophe), it is possible to obtain a much
more parsimonious representation of the MT tip trajectory if the state sampling rate
is adapted to the nature of the data – more state points are allocated in the regions
of rapid variation and relatively fewer state points to smoother sections. Unfortu-
nately, this idea cannot be implemented using the standard PFs because the number
of state points, which would typically be much smaller than the number of observa-
tions, is random and unknown beforehand. In order to deal with this randomness,
variable-rate particle filtering (VRPF) methods have been proposed recently [56,57].
The VRPF can be compared to the more conventional interactive multiple models
(IMM) approach, which uses switching between a discrete set of candidate dynamical
models [11, 52], but was shown to outperform IMM in most cases [56]. The VRPF,
which was initially proposed for tracking of highly maneuvering targets [56], is nowa-
days successfully applied in other fields, for example DNA sequencing [61], but has
not been investigated before in microscopy.

Contrary to the standard state-space approach, where the state variable xt evolves
with time index t, within the VRPF framework the state xk is defined as xk = (θk, τk),
where k ∈ N is a discrete state index, τk ∈ R

+ > τk−1 denotes the arrival time for the
state k, and θk denotes the vector of variables necessary to parametrize the object
state. In tracking applications, the vector θk includes variables such as position,
velocity, heading, etc. For our application, we define θk = (yk, vk), where yk is the
edge position at time τk along the observation line L, and vk = (dy/dt)t=τk

describes
the direction of the edge at t = τk in the image I(t, y). Similarly to the standard PF,
it is assumed that the state sequence is a Markov process, so the successive states are
independently generated with increasing k according to

xk ∼ p(xk|xk−1) = pθ(θk|θk−1, τk, τk−1)pτ (τk|θk−1, τk−1). (5.4)

These assumptions and models, apart from the constraint τk > τk−1, are very general,
and the specific choices are dictated by the application under investigation.

The measurements zt, t ∈ N, occur on a regular time grid and in the case of
the standard PF can be uniquely associated with the corresponding state xt. In the
VRPF framework, the underlying state process is asynchronous with the measurement
process and the rate of arrival of the measurements is typically (but not necessarily)
higher than that of the state process. In order to define the appropriate observation
model (also called the likelihood) in this case, where there may be no corresponding
state variable for the measurement at time t, the data points zt are assumed to be



122 5 Microtubule Dynamics Analysis using Kymographs

independent of all other data points, conditionally upon the neighborhood Nt of states
xNt

= {xk; k ∈ Nt}, that is

zt ∼ p(zt|x0, . . . ,x∞) = p(zt|xNt
). (5.5)

The neighborhood Nt is constructed as a deterministic function of the time index
t and the state sequence x0:∞ and thus it is a random variable itself (this feature
is not present in the standard state-space models). For practical (computational)
reasons, the neighborhood Nt will contain only states whose times τk are “close” to
the observation time t. Furthermore, the interpolated state θ̂t = ht(xNt

) is used,
where ht(.) is a deterministic function of the state in the neighborhood Nt. The
observation density (5.5) is then expressed as

p(zt|xNt
) = p(zt|θ̂t). (5.6)

In general, the construction of the state process and the neighborhood structure is not
unique and for any given model and different choices will lead to different algorithmic
trade-offs.

Having all the definitions, we aim to recursively estimate the sequence of variable-
rate state points as new measurements become available. Similarly to the standard
PF, the VRPF distribution p(x0:N+

t
|z0:t) can be obtained using the two-step predict-

update procedure, similar to (5.3) [56, 57], where N+
t denotes the index of the state

variable in Nt that has the largest time index τk. Using the factorization (5.4), we
model the MT dynamics with the transition priors

pθ(θk|θk−1, τk, τk−1) = p(vk|vk−1, yk, yk−1, τk, τk−1)p(yk|vk−1, yk−1, τk, τk−1)

= p(vk|vk−1)δ(yk − yk−1 − vk−1(τk − τk−1)), (5.7)

pτ (τk|θk−1, τk−1) = U[τk−1+τ0,τk−1+τ1], (5.8)

where U[a,b] denotes the uniform distribution in the range [a, b]. Thus, the states xk

for the prediction-update procedure are sampled as

τk − τk−1 ∼ U[τ0,τ1],

yk = yk−1 + vk−1(τk − τk−1),

vk ∼ p(vk|vk−1).

(5.9)

The sampling of the new states xk at time t is performed only for those particles

x
(i)
k−1 for which τ

(i)
k−1 ≤ t, which also reduces the computational load compared to the

standard PF implementation.
The crucial point here is to efficiently model the prior p(vk|vk−1) in order to catch

the rapid changes in edge orientation (corresponding to the state transitions described
in Section 5.2.1). The underlying assumption about the MT dynamics in this study is
that the MT end can either grow with nearly constant velocity ν+, shrink with nearly
constant velocity ν−, or show almost no activity (ν0 ≈ 0). This idealization of reality
can be justified by specifying additionally the variances for the velocity estimates,
σ2

ν+ , σ2
ν− , σ2

ν0 , which account for small deviations in the measured velocities from the
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average values ν+, ν−, and ν0. Taking into account three possible types of motion,
we define the following prior p(vk|vk−1) for the velocity component vk

p(vk|vk−1) =



























(1 − a)N (vk−1, σ
2
ν+) + aN (ν−, σ2

ν−), for vk−1 > Vth,

(1 − a)N (vk−1, σ
2
ν−)+

a
(

N (ν+, σ2
ν+) + N (ν0, σ2

ν0)
)

/2, for vk−1 < −Vth,

(1 − a)N (vk−1, σ
2
ν+) + aN (ν+, σ2

ν+), for |vk−1| < Vth,

(5.10)

where 0 < a < 1 is a weighting parameter that balances the mixture components
corresponding to different types of motion in the transition pdf (in tracking applica-
tions, a would correspond to the probability of object/target birth). The threshold
Vth defines which prior should be used: it defines the smallest velocity below which
all the small changes in the MT length are considered to belong to state S0. Since
all three types of MT motion are quite different, the performance of the algorithm
is not influenced by possible inaccuracies in setting up the threshold Vth, which can
be estimated in advance from the experimental data. Additionally, the thresholding
at Vth does not imply that at every time point we assume that the system evolves
according to only one model. Due to the probabilistic nature of the VRPF, at every
time step the posterior pdf describes the probability to find the MT in each of the
three states.

In order to define the likelihood p(zt|xNt
), we model the edge appearance using

an observation model that we have previously used successfully for tracking of tubular
structures in noisy medical images [133, 134]. The proposed model describes a small
perfectly sharp edge and consist of two rectangular regions, SB and SF (black and

white rectangles in Fig. 5.5, respectively). For each intermediate state θ̂t = ht(xNt
),

which is required for the likelihood computation, the neighborhood is defined as Nt =
{k, k−1; τk−1 ≤ t < τk}. For the MT length changes, linear interpolation between two
neighboring states θk and θk−1 is used, yt = yk−1+vk−1(t−τk−1), and the orientation

of the rectangles for each time point t is defined by the velocity component v
(i)
k−1. The

regions SB and SF are defined as follows

SB(θ̂t) = SB(τk−1, τk, vk−1) =

{(

l−vk−1b√
1+v2

k−1

, lvk−1+b√
1+v2

k−1

)

: l ∈ [0, lv], b ∈ [0, d]

}

,

SF (θ̂t) = SF (τk−1, τk, vk−1) =

{(

l+vk−1b√
1+v2

k−1

, lvk−1−b√
1+v2

k−1

)

: l ∈ [0, lv], b ∈ [0, d]

}

,

where lv = (τk − τk−1)
√

1 + v2
k−1.

To measure the likelihood of edge existence at some image position with an ori-
entation defined by the velocity component of the state vector, the average image
intensity values, µB and µF , are computed over the regions SB and SF . The likeli-
hood is defined as

p(zt|xNt
) =

{

exp
(

µF −µB

γ

)

− 1, µF − µB > 0,

0, µF − µB ≤ 0,
(5.11)
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Figure 5.5. The observation model used in the experiments, which compares the
intensity distribution in two rectangular regions (black and white strips) and defines
the likelihood of edge existence (a). Examples of applying the MTA to the extracted
edge using the VRPF in order to compute the kinematic parameters (b-d).

which defines the pdf of the edge location and favors sharp edges over smoother noisy
intensity transitions. Two model parameters that control the sensitivity to the edge
location, the width d and the scaling factor γ, should be specified. The length lv is
automatically defined by the time sampling functions (5.8). The variety in the length
of the observation model adds a multiscale property to the analysis. In general, for
small values of lv the estimation of µB and µF is less accurate than for larger values
of lv. Additionally, for large lv the sensitivity of the observation model to the edge
orientation increases – the likelihood deceases rapidly for small misalignments of the
observation model with the edge. Usually this is a desirable property, because the
edge can be located more precisely. The disadvantage of using only large lv is the
disability of the observation model to capture the fast motion transition stages.

Alternatively, the gradient image can be used as measurements for the VRPF,
which represents the edges computed using the Gaussian derivatives. In this case,
the pixel value at some position in the gradient image is the likelihood for finding the
edge. Depending on the scale at which the derivatives were computed, the slopes of
the tangent lines, which are related to the velocity values, can be accurately estimated,
but only in regions having the same motion type. It can be seen from Fig. 5.4 that in
the regions of the gradient image where catastrophes are present, the edge appearance
is distorted – the transition between the growth and shrinkage is smoothed. This leads
to a lowering of the angles of the tangent lines and, as a result, to underestimation
of the velocity values. Due to the mentioned nonlinearity, this underestimation is
especially severe for the shrinkage velocity.

In order to derive the MMSE estimator, the principle of fixed-lag smoothing is
used, which greatly improves the final results. Here, the MMSE estimate of the state
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at time t− ∆t is computed using the posterior as distribution p(x0:N+
t
|z0:t), that is

ŷt−∆t =

Ns
∑

i=1

w
(i)
t ht(xNt−∆t

). (5.12)

In other words, the estimation of the edge position at time t is delayed until the
measurements at time t+ ∆t will be processed and the posterior updated.

5.2.5 Multiscale Trend Analysis

Having the estimated edge ŷt after applying the VRPF, we employ multiscale trend
analysis (MTA) [188] in order to automatically compute all the parameters of inter-
est. At this stage of our analysis, it is necessary to detect all the catastrophe and
rescue events and split the live history ŷt into parts of growth and shrinkage, possibly
separated by stages of no activity (state S0),

The MTA was originally proposed for analysis of trends in time series and was re-
cently successfully applied for analysis of MT transport in melanophores [189]. Com-
pared to methods that try to construct an optimal piecewise linear approximation
Lǫ(t) with a minimal number of segments for a given error ǫ, the MTA builds a multi-
level hierarchy of consecutively more detailed piecewise linear approximations of the
analyzed time series at different scales. In general, it is not known beforehand which
scale should be used for the analysis, but some prior knowledge about the applica-
tion can significantly narrow down the range of levels that should be analyzed after
applying MTA.

The following robust procedure was experimentally found to produce accurate
estimates of the kinematic parameters using MTA. First, MTA decomposition is per-
formed for a number of levels, l = {1, . . . , NL}, where NL is a fixed (large) number.
Each level in the decomposition can be represented with a set of nodes {sq}l

q=1 that
partition ŷ(t) on the interval [0, T ], where each node is given by four parameters,
(tq0, t

q
1, α

q, ỹq), and describes the linear approximation of ŷ(t) on the interval [tq0, t
q
1]

with slope αq and intercept ỹq = ŷ(tq0). In our implementation of MTA, the number
of nodes (piecewise linear approximations) at level l is equal to l, and the first level
(l = 1) is given by the base line y = y0, where y0 = mint ŷ(t). At each level l, the num-
ber of catastrophes (local maxima in the approximation of ŷ(t) at that level) Ncat(l),
is computed. Due to the nature of the signal ŷ(t) and the way MTA works, for some
range of hierarchy levels the number of catastrophes will stay constant (dNcat/dl = 0).
In general, the function Ncat(l) is non-decreasing. By finding the maximum in the
histogram of {Ncat(l) : l = {1, . . . , NL}}, which shows how many levels contain the
same number of catastrophes, we can obtain the number of actual catastrophe events
N∗

cat. From the set of levels {lj} that correspond to N∗
cat (satisfying Ncat(lj) = N∗

cat),
the median is selected, l∗, as the level for further parameter computations.

For the selected decomposition level and each catastrophe event Cm, m = {1, . . . ,
N∗

cat}, which occurs at time tcm, the two sets of neighboring nodes, {sq : tcm−1 < tq0 <
tcm ∩ αq > 0, q = 1, . . . , l∗} and {sq : tcm < tq1 < tcm+1 ∩ αq < 0, q = 1, . . . , l∗} are
analyzed (see Fig. 5.5(c)), where tc0 = 0 and tcN∗

cat+1 = T . On both sides of the
local maximum Cm, the nodes with the steepest slope αq are selected and the linear
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approximations corresponding to those nodes are extrapolated until the intersection
with y = y0, giving the values t̃0m and t̃1m. The rescue event Rm′ (m′ ∈ N) is detected
between two catastrophes Cm and Cm+1 if t̃1m > t̃0m+1. In this case, the local minimum
in the approximation of ŷ(t) on the interval [t̃0m+1, t̃

1
m] gives the position of the rescue,

tRm′ . Then, the approximation is recomputed for ŷ(t) on the intervals [t̃0m, t
c
m] and

[tcm, t̃
1
m]. If the rescue event is positioned between two catastrophes Cm and Cm+1,

the approximation is recomputed on the interval [tcm, t
R
m′ ]. The new approximation is

given by a new set of nodes S∗ = {s∗q}
2N∗

cat
q=1 (see Fig. 5.5(d)), which is used to compute

the kinematic parameters: the total growth and shrinkage times (T+, T−) and the
corresponding velocity (ν̂+, ν̂−) and frequency fcat and fres estimates:

T+ =
∑

∀s∗

q∈S∗

αq>0

(tq1 − tq0), ν̂+ =
1

T+

∑

∀s∗

q∈S∗

αq>0

(tq1 − tq0)α
q, (5.13)

T− =
∑

∀s∗

q∈S∗

αq<0

(tq1 − tq0), ν̂− =
1

T−

∑

∀s∗

q∈S∗

αq<0

(tq1 − tq0)α
q, (5.14)

fcat = N∗
cat/T

+, fres = N∗
res/T

−, (5.15)

where N∗
res is the number of rescue events. In practice, the VRPF outputs a good

piecewise linear approximation of the edges, so that the described procedure based
on MTA runs robustly and accurately.

5.3 Experimental Results

The performance of the proposed VRPF-based method was evaluated using both
synthetic images (Section 5.3.1) and real data from studies of MT dynamics in vitro
(Section 5.3.2). The synthetic images, for which the ground truth was available, gave
the possibility to explore the accuracy and robustness of the method depending on
the image quality (different SNR levels) and the parameter values that model the
MT dynamics. The experiments on real data enabled us to compare the estimated
kinematic parameters with manual analysis by expert biologists.

5.3.1 Evaluation on Synthetic Data

5.3.1.1 Simulation Step

The proposed technique was evaluated using computer generated kymoimages for dif-
ferent SNRs. The dynamics of the MT tip was simulated according to the model
described in Section 5.2.1 (Fig. 5.1). The values of the model parameters were ran-
domly generated each time the MT changes its state, by drawing a sample from the
Gamma distribution, τ ∼ G(4, 1), and, depending on which state the MT is entering,
the duration times were defined as τ+ = 20τ , τ− = 10τ , τ0 = 10τ . The correspond-
ing velocity values were drawn from the Gaussian distribution, ν+ ∼ N (0.5, 0.005),
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Figure 5.6. Examples of the synthetic images used in the experiments. The sim-
ulated MT tip dynamics (a) is used to create the synthetic images for different
SNR levels (b), for which the gradient images (c) are computed using the Gaussian
derivatives at scale σG = 3.

ν− ∼ N (−3, 0.005), ν0 ∼ N (0, 0.05). These model values are representative of prac-
tical values.

Having the simulated dynamics y(t), 0 < t < T (see Fig. 5.6(a) for an example), we
created corresponding images of size T ×Y , where T = 1000 and Y = maxt y(t)+2y0
for several SNR levels. Padding with a strip of size T × y0, y0 = 20, was applied to
the top and bottom of the image to avoid border problems when using the described
rectangular observation model (Section 5.2.4). The height of the generated images
was in the range of 100 − 150 pixels, which corresponds to 8 − 12µm (∆t = 1s and
∆y = 80 nm). For all t, the image pixels were filled with background intensity
IB = 100 if j > y(t) + y0 and otherwise with foreground intensity IF = IB + σSNR,
where σ = 10. To create the final noisy image, each pixel value was replaced with a
random sample from the distribution N (I(t, j), σ2). For the chosen values of IB and
σ = 10, this corresponds to the Poisson noise model, which is dominant in images
obtained using light microscopy [185]. Examples of synthetic images for various SNRs
are shown in Fig. 5.6(b). Again, for visual comparison, the edge information (the
gradient magnitude) obtained using the Gaussian derivatives at scale σG = 3 is shown
in Fig. 5.6(c).

The parameters of the described VRPF algorithm were fixed to the following
values: ν+ = 0.5, ν− = −3, σ2

ν0 = 0.5, σ2
ν+ = 0.05, σ2

ν− = 0.5, Vth = 0.15, d = 6,
τ0 = 3, τ1 = 10, ∆t = 20, Ns = 500, NL = 80, a = 0.01, γ = 10. Since the
ground truth was available in these experiments, the accuracy of extracting the edges
was evaluated using a traditional quantitative performance measure: the root mean
square error (RMSE) [104]:

RMSE =

√

1

|T |
∑

t∈T

(yt − ŷt)2, (5.16)
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Figure 5.7. Sample results of extracting the edge information from the noisy
synthetic images using the proposed VRPF and two types of standard PFs in com-
parison with the ground truth.

where yt defines the true position of the edge at time t, ŷt is a MMSE estimate of
yt given by the VRPF, T is the set of time points for which the edge exists, and |.|
denotes the set size operator.

5.3.1.2 Results

The proposed VRPF method was evaluated using 20 synthetically generated images.
Examples of edge extraction for SNR = 0.6 are shown in Fig. 5.7. In addition to
the proposed VRPF, we also implemented two standard particle filters, denoted PF1

and PF3, in which the state transition process is synchronous with the measurement
process (see Section 5.2.4). PF1 uses only one state transition model, p(xt|xt−1),
which describes nearly-constant velocity motion [141]. To capture abrupt changes
in the edges, the variance of the process noise in this transition model had to be
made rather large. Due to this high variance, the typical overshoots just after the
catastrophe events (see Fig. 5.7(b)) highly corrupted the slope estimates, in particular
the estimation of the shrinkage velocity. Additionally, for the low SNR image data,
the filter frequently lost the edge and traced spurious background structures. PF3 uses
the same set of transition models as the VRPF. Contrary to the observation model
used in the VRPF, however, a rectangular observation model of the same width d
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Figure 5.8. More detailed results of extracting the edge information from the
noisy synthetic images using the proposed VRPF and two types of standard PFs in
comparison with the ground truth. The plots are zooms of the first two peaks in
Fig. 5.7 and show the results combined.
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Figure 5.9. Results of edge extraction using the Canny edge detector for two
different values of the hysteresis thresholds.

but fixed length lv = 5 was used. The zoomed results in Fig. 5.8 clearly show that
the edge ŷ(t) estimated using the standard PFs is typically less smooth and piecewise
linear. For visual comparison, the edge information extracted using the Canny edge
detector [25] for two different values of hysteresis thresholds is shown in Fig. 5.9.

The results of applying MTA for kinematic parameter estimation based on the
edges extracted using PF3 and VRPF are shown in Table 5.1 (results for PF1 are
not given here, since this filter frequently failed to find the edges at all, as indicated
above). The RMSEs for both PF3 and VRPF in finding the edge are approximately
the same, but the velocity estimates computed using the linear approximation are
different. This difference depends on the absolute value of the velocity, and for higher
velocity values (especially the shrinkage velocity), VRPF is about 3-7% more accurate
than PF3. The results also show that prefiltering of the images does not improve the
estimates significantly. This indicates that the observation model robustly estimates
the mean intensities in the regions SB and SF even at very low SNRs. Prefiltering in
this case worsens the estimation by blurring the already hardly visible edges before
applying the VRPF.
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Table 5.1. Results of parameter estimation in synthetically generated images of
microtubule dynamics using MTA based on the edges extracted with different com-
binations of prefiltering and particle filtering methods.

SNR RMSE ν+± sd ν−± sd fcat fres
Ground truth values

- - 0.50±0.005 -3.00±0.005 0.009 0.018
VRPF without prefiltering

0.4 2.54 0.47±0.07 -2.41±0.79 0.011 0.019
0.6 1.43 0.50±0.03 -3.03±0.61 0.009 0.018
0.8 1.23 0.49±0.02 -2.91±0.62 0.009 0.017
1.0 1.15 0.50±0.01 -2.96±0.37 0.009 0.017
1.2 0.96 0.49±0.01 -2.95±0.34 0.009 0.018

VRPF with bilateral prefiltering
0.4 2.01 0.48±0.07 -2.44±0.83 0.010 0.017
0.6 1.86 0.50±0.02 -2.86±0.40 0.009 0.015
0.8 1.64 0.49±0.02 -2.93±0.34 0.009 0.017
1.0 1.33 0.49±0.03 -3.05±0.36 0.009 0.017
1.2 1.25 0.49±0.02 -2.98±0.32 0.009 0.018

VRPF with anisotropic diffusion prefiltering
0.4 2.41 0.47±0.08 -2.14±0.56 0.010 0.019
0.6 2.55 0.49±0.08 -2.91±0.64 0.010 0.021
0.8 1.44 0.49±0.03 -2.98±0.39 0.009 0.018
1.0 1.13 0.49±0.02 -2.91±0.44 0.009 0.018
1.2 1.05 0.49±0.02 -2.91±0.34 0.009 0.018

PF3 without prefiltering
0.4 2.72 0.47±0.08 -2.44±1.02 0.006 0.026
0.6 1.46 0.50±0.05 -2.71±0.92 0.011 0.014
0.8 1.12 0.50±0.05 -2.73±0.21 0.009 0.017
1.0 0.98 0.49±0.02 -2.81±0.27 0.009 0.015
1.2 1.02 0.49±0.02 -2.79±0.31 0.009 0.018

We also assessed the sensitivity of the proposed VRPF method to changes in
the expected velocities. To this end, the parameter values ν+ and ν− were varied.
It was observed that deviation of these parameters from the ground truth values
decreased the accuracy of the method. In practice, however, this inaccuracy can be
easily reduced, by running the algorithm iteratively, in a “bootstrapping” fashion.
First, the initial velocity values ν+ and ν− are approximately specified, with large
standard deviations σν+ and σν− . After the first run, these parameters, which are still
inaccurate but now closer to the optimal values, are reestimated. Then, the algorithm
is initialized with the new estimates and rerun. In the experiments, we found that
this approach always resulted in estimates in the range (ν±σν) defined by the ground
truth.



5.4 Discussion and Conclusions 131

(a)

200 400 600 800

time [s]

2
3
4
5
6
7
8
9 VRPFy(t)

(b)

Figure 5.10. Example of a kymograph generated in the experiments on real DIC
microscopy image data with SNR ≈ 1 (a) and the results of applying the proposed
VRPF (b).

5.3.2 Evaluation on Real Data

For the validation on real data we collected three representative DIC microscopy
image sequences acquired to study the influence of different concentrations of EB3
(end-binding protein 3) and GFP-EB3 (EB3 fused to the green fluorescent protein)
on the MT growth and shrinkage velocities (ν+ and ν−) and the catastrophe rate
(fcat). The sequences were taken from experiments with MT nucleation from stable
tubulin seeds, where 15µM of tubulin was added (Experiment I), or, in addition,
1µM of EB3 (Experiment II), or 1µM of GFP-EB3 (Experiment III) [78]. From each
sequence, 10-20 MTs were selected by biologists, and the observation lines were drawn
manually. The image sequences contained about 1000-1200 frames (one per second)
of size 700× 500 pixels (of size 86× 86 nm2). To estimate the parameters of interest,
for each experiment 10 kymographs were constructed and analyzed manually and
using the proposed VRPF method. The results are presented in Table 5.2, where
the speed estimates are also converted to µm/min. The usage of these units is more
common in biological experiments and it also allows straightforward comparison with
the recently published results [78]. An example of edge extraction using VRPF in
real data is shown in Fig. 5.10. A comparison of the estimates obtained by manual
and VRPF-based analysis suggests that the proposed automatic method may replace
the laborious manual procedures.

5.4 Discussion and Conclusions

In this chapter we have proposed a new approach for the automatic analysis of in
vitro microtubule dynamics imaged using time-lapse differential interference contrast
microscopy. It is based on a transformation of the 2D image sequences into kymo-
graphs (space-time images) for each microtubule along a corresponding observation
line. By using this representation, the task of tracking microtubule tips on a per-frame
basis in the noisy images, which from our previous work is known to be a difficult
and error-prone problem, is replaced by a segmentation of spatiotemporal structures
(edges in our case). For the extraction of these structures from the kymographs, we
have proposed a variable-rate particle filtering method, which is better capable of
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Table 5.2. Results of parameter estimation in real DIC microscopy image data sets
using manual analysis versus VRPF.

ν+± sd ν−± sd fcat ν+ ν−

[pix/frame] [pix/frame] [µm/min] [µm/min]
Experiment I (pure tubulin)

Manual 0.19±0.04 -2.06±0.43 0.0021 0.56 -10.63
VRPF 0.17±0.07 -1.89±0.52 0.0020 0.51 -9.72

Experiment II (tubulin and EB3)
Manual 0.52±0.05 -2.78±0.65 0.0133 2.68 -14.34
VRPF 0.49±0.07 -2.84±0.51 0.0141 2.52 -14.65

Experiment II (tubulin and GFP-EB3)
Manual 0.49±0.08 -2.88±0.41 0.0132 2.52 -14.86
VRPF 0.50±0.06 -2.72±0.50 0.0145 2.58 -14.03

dealing with abrupt changes than standard particle filtering methods. The method
is built within a Bayesian framework and optimally combines the measurements and
prior knowledge about the underlying processes. For the estimation of important
kinematic parameters from the extracted edges, we have adopted multiscale trend
analysis.

The quantitative evaluation of the proposed method was done using realistic syn-
thetic images as well as real microscopy image data from biological experiments.
From the results of the experiments on synthetic data, where the ground truth of
the microtubule tip position was available, it was concluded that the method is ca-
pable of accurate estimation of the important kinematic parameters. Moreover, it
was concluded that the method is more robust and more accurate than standard
particle filtering methods. For the real data, the proposed method was compared
to manual analysis carried out by expert biologists. The results of this comparison
clearly demonstrated that the automatically estimated parameters are in good agree-
ment with the results obtained manually. Together, these observations lead to the
conclusion that the proposed method may replace laborious manual analyses.



Chapter Six

Summary

If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.

— John Louis von Neumann (1903–1957)

A
dvances in fluorescent probing and microscopic imaging technology have rev-
olutionized biology in the past decade and have opened the door for studying
subcellular dynamical processes. A simple description of sometimes complex

patterns of movement in living cells may give insight in the underlying mechanisms
governing these movements. However, accurate and reproducible methods for pro-
cessing and analyzing the images acquired for such studies are still lacking. Since
manual image analysis is time consuming, potentially inaccurate, and poorly repro-
ducible, many biologically highly relevant questions are either left unaddressed, or
are answered with great uncertainty. Hence, the development of automated image
analysis techniques for accurate and reproducible tracking and motion analysis of
subcellular structures from time-lapse microscopy image data is crucial.

Recent results in psychophysics and human vision research have revealed the
highly integrated nature of vision systems in using spatial, temporal, and prior infor-
mation [23]. Local motion signals are often ambiguous, and many important motion
phenomena can be explained by hypothesizing that the human visual system uses
temporal coherence to resolve ambiguous inputs. It has therefore been proposed that
input data are temporally grouped and used to predict and estimate the motion flows
in image sequences. Such temporal grouping can be expressed in terms of a Bayesian
generalization of standard Kalman filtering. Existing tracking techniques, whether
commercial or academic, generally make very limited use of temporal information
and prior knowledge.

The subject of this thesis is particle filtering methods and their application for
multiple object tracking in different biological imaging applications. Particle filter-
ing (PF) is a technique for implementing recursive Bayesian filtering by Monte Carlo
sampling. A fundamental concept behind the Bayesian approach for performing infer-
ence is the possibility to encode the information about the imaging system, possible
noise sources, and the system dynamics in terms of probability densities. Neverthe-
less, the Bayesian tracking framework is rather a “recipe” than a ready-to-use solution
to a given problem, which should be implemented in practice, for example using the



134 Summary

PF approximation. In general, the construction of particle filters is not unique, and
for any given application will lead to different algorithmic trade-offs. As stated by
some methodologists in this field “the design of efficient particle filters is still more of
an art than a science” [126]. In this thesis, a set of novel PF based methods for sub-
cellular motion analysis is developed. The applicability of these methods for robust
and accurate detection and tracking of large numbers of small objects in 2D and 3D
image sequences obtained by fluorescence microscopy imaging as well as for dynamics
analysis using kymoghraphs is demonstrated and evaluated.

Contrary to the conventional two-step (detection and linking) approaches to track-
ing, Bayesian tracking does not require a separate object detection procedure. Never-
theless, robust and accurate detectors can be efficiently used in the Bayesian frame-
work, especially to initiate new tracks and terminate existing ones, when the object
appears in or disappears form the field of view, respectively. In Chapter 2, the perfor-
mance of six unsupervised and two supervised (machine learning) detection methods
for the detection of small spots in fluorescence microscopy images is quantitatively
evaluated. It is shown that overall, the supervised methods (AdaBoost and Fisher
discriminant analysis) perform better, in that they show the highest true positive
rate (at very low false positive rate) and the lowest sensitivity to parameter changes,
for all types of image data considered. Nevertheless, the differences in performance
are not large compared to some of the unsupervised methods, especially the so-called
h-dome detector (HD) proposed in the chapter. Based on extensive experiments, the
conclusion is drawn that when a detector with overall good performance is needed,
the mentioned supervised detectors or the unsupervised HD detector are to be pre-
ferred. The disadvantage of the supervised methods is that they rely on a training
stage, which involves the extraction of positive and negative samples from the image
data beforehand. This requires manual annotation of thousands of objects in order
to achieve sufficient discriminating power, and is extremely tedious, time consuming,
and observer dependent. Taking this into account, the unsupervised HD detector is
much easier to use in practice. Finally, when the SNR is sufficiently high (> 5 as
a rule of thumb), the other unsupervised detectors perform just as well, and require
only minimal adjustment of their parameters to the specific application.

Chapter 3 describes the derivation of a novel particle filter for quantitative anal-
ysis of subcellular dynamics, in this case for microtubule growth analysis. The algo-
rithm exploits prior information about the microtubule dynamics and imaging process,
which makes it perform superior in the presence of severe noise in comparison with
existing frame-by-frame approaches, which break down at SNR < 4–5 [26,32]. Addi-
tionally, the algorithm naturally deals with photobleaching effects. Experiments on
synthetic data confirm that the proposed PF yields reliable tracking results even in
data with SNR as low as 2, contrary to two other popular tracking tools, and that it is
potentially more accurate than manual tracking by expert human observers. Applied
to real fluorescence microscopy image sequences from microtubule dynamics, the al-
gorithm performs comparable to human observers. This is explained by the fact that
the latter experiments were limited to comparing distributions and averages, which
may conceal small local discrepancies, especially when the objects’ velocities vary over
time. Instant velocities were also analyzed per track but could not be quantitatively
validated due to the lack of ground truth.
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Since common Bayesian tracking algorithms are designed to deal with only one
specific type of motion, they may fail when used for biological applications where
more complex motion patterns need to be analyzed. Therefore, in Chapter 4, the
algorithm developed in Chapter 3 is extended to be capable of tracking different
types of subcellular objects with different types of motion patterns. The tracking
accuracy is improved by using marginalization of the filtering distribution and one
of the state variables, for which the optimal solution (the Kalman filter) is used. In
addition, improved robustness is achieved by integrating a jump Markov system into
the framework, which allows the use of multiple dynamics models for object motion
prediction. The proposed algorithm is tested on synthetic image data as well as on real
time-lapse fluorescence microscopy data acquired for studying the dynamics of three
different types of intracellular objects: microtubules, vesicles, and androgen receptors.
Results from synthetic data experiments clearly show the superiority of the proposed
algorithm over manual tracking as well as previous Bayesian tracking approaches,
which were already demonstrated to be superior to alternative non-Bayesian tracking
algorithms. The real-data experiments confirm the validity of the tracking results
produced by the proposed algorithm. Based on these results, the algorithms are now
being explored in practice for addressing specific biological questions.

Finally, Chapter 5 demonstrates the applicability of PF methods to another bio-
logical application: the analysis of microtubule dynamics in vitro, imaged using differ-
ential interference contrast microscopy. A novel algorithm is proposed that combines
variable-rate particle filtering (VRPF) and multiscale trend analysis for analyzing the
motion of the growing or shrinking tips of microtubules in 2D spatiotemporal images
(kymographs). The proposed VRPF optimally combines image information and prior
knowledge about the underlying microtubule dynamics and is capable of following
the microtubule end even in situations where rapid motion changes (after rescue or
catastrophe) occur. As demonstrated by experiments on synthetic data, the method
is capable of accurate estimation of the important kinematic parameters. In these ex-
periments, the error of locating the microtubule tip in kymographs is measured and
its influence on the estimation of the important kinematic parameters (growth and
shrinkage velocities, rescue and catastrophe frequencies) is studied. From theoretical
considerations it is known that even relatively small errors in tip localization can
lead to large errors in the final parameter estimates, due to the nonlinear relationship
between the estimated slopes and the computed velocities. Indeed, the experimental
results show increased uncertainty in velocity estimation for higher velocities. Applied
to real data, the proposed method produces parameter estimates in accordance with
estimates obtained manually by expert biologists.
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[174] J. Vermaak, A. Doucet, P. Pérez, “Maintaining multi-modality through mixture tracking”, in
Proceedings of the IEEE International Conference on Computer Vision, pp. 1110–1116, 2003.



146 Bibliography

[175] J. Vermaak, N. Ikoma, S. J. Godsill, “Extended object tracking using particle techniques”, in
Proceedings of the IEEE Aerospace Conference, vol. 3, pp. 1876–1885, 2004.

[176] B. J. Vermolen, Y. Garini, I. T. Young, R. W. Dirks, V. Raz, “Segmentation and analysis
of the three-dimensional redistribution of nuclear components in human mesenchymal stem
cells”, Cytometry Part A, vol. 73, no. 9, pp. 816–824, 2008.

[177] L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and
efficient algorithms”, IEEE Transactions on Image Processing, vol. 2, no. 2, pp. 176–201,
1993.

[178] P. Viola & M. Jones, “Rapid object detection using a boosted cascade of simple features”, in
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. I–511–I–518, 2001.

[179] L.J. Van Vliet, D. Sudar, I. T. Young, “Digital fluorescence imaging using cooled charge-
coupled device array cameras”, in Cell Biology: a Laboratory Handbook, K. Simons (ed.),
2nd. ed., Academic Press, New York, pp. 109–120, 1998.

[180] C. Vonesch, F. Aguet, J.-L. Vonesch, M. Unser, “The colored revolution of bioimaging”, IEEE
Signal Processing Magazine, vol. 23, no. 3, pp. 20–31, 2006.

[181] T. Voorn-Brouwer, A. Kragt, H.F. Tabak, B. Distel, “Peroxisomal membrane proteins are
properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular trans-
port”, Journal of Cell Science, vol. 114, no. 11, pp. 2199–2204, 2001.

[182] R.A. Walker, E.T. O’Brien, N.K. Pryer, M.F. Soboeiro, W.A. Voter, H.P. Erickson, E.D.
Salmo, “Dynamic instability of individual microtubules analyzed by video light microscopy:
rate constants and transition frequencies”, Journal of Cell Biology, vol. 107, pp. 1437–1448,
1988.

[183] Q. Wen, J. Gao, A. Kosaka, H. Iwaki, K. Luby-Phelps, D. Mundy, “A particle filter framework
using optimal importance function for protein molecules tracking”, in Proceedings of the IEEE
International Conference on Image Processing, vol. 1, pp. 1161–1164, 2005.

[184] J. Wolf, W. Burgard, H. Burkhardt, “Robust vision-based localization by combining an image-
retrieval system with Monte Carlo localization”, IEEE Transactions on Robotics, vol. 21, no. 2,
pp. 208–216, 2005.

[185] Q. Wu, F. A. Merchant, K. R. Castleman, Microscope Image Processing, Elsevier Academic
Press, Burlington, MA, 2008.

[186] Y. Wu, J. Lin, T. S. Huang, “Analyzing and capturing articulated hand motion in image
sequences”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 12,
pp. 1910–1922, 2005.

[187] K. Yin Kong, A. I. Marcus, J. Young Hong, P. Giannakakou, M. D. Wang, “Computer
assisted analysis of microtubule dynamics in living cells”, in Proceedings of the 27th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3982–
3985, 2005.

[188] I. Zaliapin, A. Gabrielov, V. Keilis-Borok, “Multiscale trend analysis”, Fractals, vol. 12, no. 3,
pp. 275–292, 2004.

[189] I. Zaliapin, I. Semenova, A. Kashina, V. Rodionov, “Multiscale trend analysis of microtubule
transport in melanophores”, Biophysical Journal, vol. 88, pp. 4008–4016, 2005.

[190] B. Zhang, J. Zerubia, J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope
point-spread function models”, Applied Optics, vol. 46, no. 10, pp. 1819–1829, 2007.

[191] X. Zhou & S. T. C. Wong, “Informatics challenges of high-throughput microscopy”, IEEE
Signal Processing Magazine, vol. 23, no. 3, pp. 63–72, 2006.

[192] C. Zimmer, E. Labruyère, V. Meas-Yedid, N. Guillén, J.-C. Olivo-Marin, “Segmentation and
tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-
based drug testing”, IEEE Transactions on Medical Imaging, vol. 21, no. 10, pp. 1212–1221,
2002.



Samenvatting

D
e ontwikkeling van fluorescentie microscopie heeft in de afgelopen tien jaar
bijgedragen aan revolutionaire vooruitgangen in de biologie en heeft nieuwe
wegen geopend voor het bestuderen van intracellulaire dynamische processen.

Een eenvoudige beschrijving van soms complexe bewegingspatronen in levende cel-
len kan inzicht geven in de onderliggende mechanismen die deze bewegingen bepalen.
Nauwkeurige en reproduceerbare methoden voor het verwerken en analyseren van de
beelden die gemaakt worden voor dergelijke studies zijn echter nog schaars. Omdat
handmatige beeldanalyse tijdrovend is, mogelijk onnauwkeurig, en slecht reprodu-
ceerbaar, worden veel vraagstukken die biologisch zeer relevant zijn niet behandeld,
of beantwoord met grote onzekerheid. Het is daarom cruciaal dat er automatische
beeldanalysetechnieken worden ontwikkeld voor het accuraat en reproduceerbaar vol-
gen en analyseren van intracellulaire structuren in microscopische beeldseries.

Recente onderzoeken hebben aangetoond dat het menselijk visueel systeem in ho-
ge mate spatiële en temporele informatie integreert. Locale bewegingssignalen zijn
vaak voor velerlei uitleg vatbaar, en veel van deze dubbelzinnige verschijnselen kun-
nen worden opgelost door het veronderstellen van samenhang in de tijd. Men heeft
daarom voorgesteld om invoerdata te groeperen in de tijd en deze daarna te gebrui-
ken voor het voorspellen en schatten van de bewegingsstromen in beeldseries. Een
dergelijke groepering in de tijd kan worden beschreven in termen van een Bayesi-
aanse generalisatie van het zogenaamde Kalman filter. Bestaande technieken, hetzij
commercieel, hetzij academisch, voor het volgen van objecten in beeldseries maken
in het algemeen zeer beperkt gebruik van tijdsinformatie en a priori kennis over de
(beweging van de) objecten.

Het thema van deze dissertatie is de ontwikkeling en toepassing van zogenaam-
de “particle filtering” methoden voor het volgen van meerdere subcellulaire objecten
in biologische beeldseries. Particle filtering (PF) is een techniek voor het uitvoeren
van recursieve Bayesiaanse schattingen door middel van Monte Carlo bemonstering.
De Bayesiaanse aanpak biedt de mogelijkheid om informatie over het beeldvormende
systeem, mogelijke ruisbronnen, en het dynamisch gedrag van de te volgen objecten
te modelleren in termen van kansdichtheden. Het is echter meer een recept dan een
direct toepasbare oplossing voor een gegeven probleem, en moet daarom in de prak-
tijk geconcretiseerd en gëımplementeerd worden, bijvoorbeeld met behulp van de PF
benadering. De keuze voor een PF benadering levert echter niet een uniek algoritme
op, en er zullen voor verschillende toepassingen verschillende algoritmische afwegingen
moeten worden gemaakt. Zoals door sommige methodologen in het vakgebied wordt
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gezegd, is het ontwerpen van efficiënte PF algoritmen nog steeds meer een kunst dan
een wetenschap. In deze dissertatie wordt een aantal nieuwe PF methoden beschreven
voor intracellulaire bewegingsanalyse. De toepasbaarheid van deze methoden wordt
gedemonstreerd en geëvalueerd, zowel voor robuuste en nauwkeurige detectie en het
volgen van grote aantallen kleine objecten in 2D en 3D beeldseries verkregen met
behulp van fluorescentie microscopie, als voor de analyse van dynamische parameters
in zogenaamde kymografische beelden.

In tegenstelling tot de conventionele twee-staps methoden (spatiële detectie ge-
volgd door temporele associatie) voor het volgen van objecten, heeft de Bayesiaanse
aanpak geen afzonderlijke object-detectie procedure nodig. Robuuste en nauwkeurige
object-detectoren komen echter wel degelijk van pas in het Bayesiaanse kader. In
het bijzonder kunnen ze worden gebruikt in beslissingsprocedures voor het starten
van nieuwe objectpaden en het beëindigen van de bestaande paden, respectievelijk
wanneer een nieuw object verschijnt of een bestaand object uit het blikveld ver-
dwijnt. In Hoofdstuk 2 worden acht methoden voor de detectie van kleine objecten
in fluorescentie-microscopiebeelden kwantitatief geëvalueerd. Er wordt aangetoond
dat zogenaamde “machine-learning” (ML) methoden (in dit geval AdaBoost en Fis-
her discriminant-analyse) in het algemeen beter presteren. Deze methoden resulteren
in de hoogste correct-positieve detectie ratio (bij een zeer lage fout-positieve detec-
tie ratio) en de kleinste gevoeligheid voor parameterwijzigingen, voor alle beschouwde
beelddata. De verschillen in prestatie tussen de ML en sommige van de overige metho-
den zijn echter niet groot, vooral niet als wordt vergeleken met de zogenaamde h-dome
detector (HD), die in het hoofdstuk wordt voorgesteld. Op basis van de resultaten
wordt de conclusie getrokken dat wanneer een detector met goede algemene presta-
ties is vereist, de genoemde ML methoden of de HD detector de voorkeur verdienen.
Het nadeel van de eerstgenoemde methoden is echter dat ze afhankelijk zijn van een
trainingsfase, waarvoor eerst positieve en negatieve monsters uit de beelddata dienen
te worden geëxtraheerd. Dit vereist de handmatige annotatie van duizenden objec-
ten om voldoende onderscheidingsvermogen te verkrijgen, wat niet alleen vervelend
en tijdrovend werk is, maar bovendien waarnemer-afhankelijke resultaten oplevert.
Met het oog hierop is de HD detector veel gemakkelijker in het gebruik. Wel moet
worden opgemerkt dat wanneer de signaal-ruisverhouding voldoende hoog is (>5 als
vuistregel), alle bestudeerde methoden vergelijkbaar presteren, en er slechts minimale
aanpassing van de parameters nodig is voor gebruik in een specifieke toepassing.

Hoofdstuk 3 beschrijft het ontwerp van een nieuw PF algoritme voor kwantita-
tieve analyse van de beweging van subcellulaire objecten, in dit geval de groei van
microtubuli. Het algoritme gebruikt a priori informatie over het dynamisch gedrag
van microtubuli en het beeldingvormingsproces. Hierdoor levert het bij lage signaal-
ruisverhoudingen (<5) superieure prestaties vergeleken met de eerder genoemde twee-
staps methoden. Bovendien houdt het algoritme op een natuurlijke manier rekening
met blekingseffecten, welke vaak voorkomen in fluorescentie microscopie. Experi-
menten met synthetische data bevestigen dat het voorgestelde algoritme betrouw-
bare resultaten levert, zelfs wanneer de signaal-ruisverhouding in de data kleiner is
dan 2, dit in tegenstelling tot twee andere populaire methoden waarmee wordt ver-
geleken. Ook wordt aangetoond dat het algoritme potentieel nauwkeuriger is dan
handmatige data-analyse door ervaren menselijke waarnemers. Toegepast op echte
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fluorescentie-microscopiebeeldseries van microtubuli, levert het algoritme prestaties
die vergelijkbaar zijn met die van menselijke waarnemers. Dit is te verklaren doordat
de laatstgenoemde experimenten beperkt waren tot het vergelijken van verdelingen en
gemiddelden van bewegingsparameters, waarbij kleine lokale verschillen onopgemerkt
kunnen blijven, vooral wanneer de snelheden van de objecten variëren. Instantane
snelheden zijn ook per object geanalyseerd, maar konden niet kwantitatief worden
gevalideerd vanwege het gebrek aan objectieve referentiedata.

Over het algemeen wordt er bij de ontwikkeling van Bayesiaanse algoritmen voor
het volgen van objecten uitgegaan van slechts één type dynamisch gedrag. Hierdoor
kunnen deze algoritmen falen wanneer ze worden gebruikt voor biologische toepas-
singen waarin complexere bewegingspatronen moeten worden geanalyseerd. Daar-
om wordt in Hoofdstuk 4 het in Hoofdstuk 3 ontwikkelde algoritme uitgebreid zo-
dat het verschillende typen subcellulaire objecten met verschillende soorten bewe-
gingspatronen kan volgen. De nauwkeurigheid van het algoritme is verbeterd door
marginalisatie van de kansdichtheden en één van de toestandsvariabelen, waarvoor
de optimale, analytische oplossing (het Kalman filter) wordt gebruikt. Verder is
de robuustheid verbeterd door gebruik te maken van een zogenaamd jump-Markov-
systeem, wat het gebruik van meerdere dynamiekmodellen voor de voorspelling van
objectbeweging toelaat. Het voorgestelde algoritme is op zowel synthetische data als
op echte fluorescentie-microscopiebeeldseries getest. De laatstgenoemde data komen
voort uit studies naar het dynamisch gedrag van drie verschillende typen intracellu-
laire objecten: microtubuli, vesicles, en androgeenreceptoren. De resultaten van de
experimenten met synthetische data tonen duidelijk aan dat het voorgestelde algorit-
me superieur presteert ten opzichte van handmatig verkregen resultaten en eerdere
Bayesiaanse benaderingen, waarvan reeds werd aangetoond dat deze beter presteren
dan alternatieve niet-Bayesiaanse algoritmen. De experimenten met echte data beves-
tigen de geldigheid van de resultaten geproduceerd door het voorgestelde algoritme.
Gebaseerd op deze resultaten wordt nu in de praktijk onderzocht of de algoritmen
kunnen helpen bij het oplossen van specifieke biologische vraagstukken.

Tenslotte wordt in Hoofdstuk 5 de toepasbaarheid van PF methoden op een ande-
re biologische applicatie gedemonstreerd: de analyse van het dynamische gedrag van
microtubuli in vitro, afgebeeld door middel van differentiële interferentiecontrast mi-
croscopie. Er wordt een nieuw algoritme voorgesteld dat “variable-rate” PF (VRPF)
combineert met multischaal-trendanalyse voor het analyseren van de beweging van
groeiende of krimpende uiteinden van microtubuli in 2D spatiotemporele beelden (ky-
mografen). Het voorgestelde VRPF combineert beeldinformatie met bestaande kennis
van de onderliggende dynamiek van microtubuli en is in staat het uiteinde van het mi-
crotubulus te volgen zelfs in situaties waarin snelle bewegingsveranderingen optreden.
Zoals aangetoond door experimenten op synthetische data is de methode in staat de
belangrijke kinematische parameters nauwkeurig te schatten. In deze experimenten
is de fout in het localiseren van het uiteinde van microtubuli in kymografen gemeten,
en is de invloed van deze fout op de schatting van belangrijke kinematische parame-
ters (zoals groei- en krimpsnelheden en de frequenties van schakelen tussen groei en
krimp en vice versa) bestudeerd. Vanuit de theorie is bekend dat zelfs relatief kleine
fouten in de localisatie van de uiteinden van de microtubuli kunnen leiden tot grote
fouten in de parameterschattingen, door het niet-lineaire verband tussen de geschatte
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hellingen en de berekende snelheden. De experimentele resultaten laten inderdaad
een verhoogde onzekerheid zien in de snelheidsschatting bij hogere snelheden. Toe-
gepast op echte data produceert de voorgestelde methode parameterschattingen die
overeenkomen met schattingen die handmatig zijn verkregen door ervaren biologen.
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