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Kurzfassung

Jährlich sterben mehrere Tausend Verkehrsteilnehmer auf Europas
Straßen. Fahrerassistenzsysteme trugen in den letzten Jahren wesentlich
zur Reduktion der Straßenverkehrsopfer in der EU bei [1]. Jedoch blieb
die Anzahl der Unfälle mit ungeschützten Verkehrsteilnehmern weitge-
hend konstant [2]. Bei Zusammenstößen zwischen Fußgänger und LKW
können schon geringe Kollisionsgeschwindigkeiten zu schweren Verlet-
zungen oder Tod führen. Deshalb ist eine zuverlässige Prävention er-
forderlich.

Dafür ist zunächst die Erkennung, Vermessung und Verfolgung von
Fußgängern im Fahrzeugumfeld erforderlich. Ein neuartiger Sen-
sordatenfusionsansatz zur Fußgängerverfolgung von einem LKW aus
wurde entwickelt, implementiert und für die Echtzeitanwendung im
LKW parametriert. Der Ansatz basiert auf dem Joint Integrated Proba-
bilistic Data Association Filter (JIPDA) und nutzt Daten von drei Radaren
und einer Monokularkamera. Während ein Nahbereichsradar, ein
Fernbereichsradar und die Kamera das frontale Umfeld des Fahrzeugs
überwachen, liefert ein an der rechten Seite des Fahrzeugs angebrachtes
Radar Messungen aus dem Totwinkelbereich. Fußgänger werden in sich
nicht überlappenden Sensorsichtbereichen und über einen sensorisch
blinden Bereich hinweg mit heterogenen Sensoren verfolgt. Somit wer-
den vorhandene Objektinformationen auch für den sensorisch blinden
Bereich verfügbar gemacht und an den sich anschließenden zweiten Er-
fassungsbereich weitergegeben. Ein Vergleich eines erweiterten Kalman-
filters mit globaler Nächster-Nachbar-Datenassoziation hinsichtlich De-
tektionsperformanz und Genauigkeit belegt die Vorteile des neu entwick-
elten Ansatzes.

Neben den Informationen über Objekte im Fahrzeugumfeld ist für die
Einschätzung des Gefährdungspotenzials einer Situation, die Vorhersage
der Bewegung des eigenen Fahrzeugs wichtig. Es wurde ein neuar-
tiger, robuster Ansatz entwickelt, welcher die Trajektorien des eigenen
Fahrzeugs rein auf Basis fahrzeugeigener CAN-Daten in die Manöver
Spurfolgen, Abbiegen und Spurwechsel klassifiziert und den zukünfti-
gen Pfad prädiziert. Die Genauigkeit des neuen Prädiktionsansatzes
wurde anhand der später tatsächlich gefahrenen Trajektorie bewertet,



und die Ergebnisse wurden mit jenen eines etablierten Standardansatzes
verglichen. Die Prädiktionsgenauigkeit kann durch den neu entwickelten
Ansatz im Vergleich zum Standardansatz signifikant erhöht werden.

Zur Bestimmung der Kollisionsgefahr des eigenen Fahrzeugs mit an-
deren Verkehrsteilnehmern, insbesondere Fußgängern, werden zunächst
die stochastisch erreichbaren Zustandsmengen der Verkehrsteilnehmer
entlang ihrer Pfade für Zeitpunkte und Zeitintervalle berechnet. Aus den
Überlappungsbereichen der Erreichbarkeitsmengen kann schließlich die
Kollisionswahrscheinlichkeit mit einem detektierten Verkehrsteilnehmer
als Gefährdungsmaß bestimmt werden. Der Vorteil des neuen Ansatzes
im Vergleich zu einem herkömmlichen Ansatz besteht darin, dass sen-
sorische Ungenauigkeiten und Unsicherheiten in der Vorhersage ex-
plizit berücksichtigt werden können. Dadurch führt der neue Ansatz in
Szenarien, in denen die Unsicherheiten stark realisiert sind, zu stabileren
Entscheidungen.
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1 Introduction

1.1 Motivation

Several thousand road users die in traffic accidents on European streets
every year. Advanced driver assistance systems (ADAS) contributed to
the decreasing number of traffic victims in the European Union during
the last years [1]. Systems of active safety like the electronic stability con-
trol (ESC), forward collision warning (FCW) towards other vehicles and
the lane departure warning (LDW) have shown their benefit in such a
way that these systems became legal requirements in commercial vehi-
cles heavier than 3.5 tons in the European Union.

However, the goal of accident-free driving has not been reached yet. Es-
pecially, the number of lethal accidents with vulnerable road users stayed
about constant throughout the last years [2]. Beside the social cost of road
traffic injuries, the economic cost of road crashes and injuries is estimated
to be about 2 % of the gross national product (GNP) in high income coun-
tries [3]. The negligible mass of pedestrians and cyclists compared to
cars is a physical disadvantage in collisions. Extremely precarious situa-
tions result if a vulnerable road user collides with a truck. As pedestrians
and cyclists are strongly endangered and vulnerable even at small colli-
sion speeds, reliable prevention is required. Active safety systems that
avoid collisions with vulnerable road users and consider the singularities
of trucks and their drivers have to be developed.

Truck drivers usually drive for hours before they enter urban environ-
ment to deliver their freight. Operator fatigue after a long trip might
be one reason why pedestrians at crosswalks are overlooked. Complex
crossing scenarios can be another one, for instance in situations where
several pedestrians cross the street at once and others enter the blind spot
area of the truck. Full concentration of the driver is required in order to
avoid collisions during turning maneuvers. Systems that support drivers
in such demanding situations by surveillance of the vehicle’s blind spot
are desirable.

There are several ADAS using sensor systems for environment percep-
tion that warn the driver of a potential collision with another car or even
conduct an emergency braking autonomously if the driver does not react.

1



1 Introduction

Yet, systems that react to vulnerable road users are rare and the number
of implemented use cases is very limited [4]. A shorter time to market
of these systems can be reached if the environment perception uses sen-
sors that already exist at the truck, such as radar sensors for FCW and a
monocular camera for LDW. Radars detect cars reliably due to their large
cross section of strongly reflecting metal, while they initially have not
been designed to detect pedestrians that only provide diffuse reflections.
The provided radar cross section (RCS) values and absorption character-
istics are similar to those of reflections of rough ground or bushes. Thus,
a high false alarm rate and low detection probabilities that are not dis-
tributed uniformly have to be taken into account for sensor data fusion for
pedestrian tracking. Beside estimation of the state, information about the
certainty of the sensor framework is strongly desired for an evaluation of
the situation and a consequential application decision. If a system inter-
venes into the responsibility of the driver to avoid collisions by steering or
braking, there must not be any doubt about the criticality of the situation
and the existence of detected objects. The dynamics of pedestrians are
highly volatile. Pedestrians do not necessarily follow the lane, but may
suddenly start to cross it. This makes the situation evaluation (prediction)
by an ADAS much more complex than in the context of vehicles driving
ahead on the same or adjacent lanes. In a scenario where a pedestrian is
located on the roadside, the pedestrian might walk into the driving cor-
ridor of the ego vehicle1 as he might not have recognized the oncoming
vehicle (truck) or over-estimated the gap. However, he might just stay on
the roadside or walk along the street. Warnings for the driver have to be
provided early enough to enable a collision avoidance, although the situa-
tion might change completely in the meantime. False alarms decrease the
driver’s acceptance for the system and therefore need to be suppressed.
Hence, an ADAS for pedestrian protection not only requires a reliable
detection and tracking algorithm that provides information about spa-
tial uncertainties and the object’s probability of existence (PoE) but also
a situation evaluation that can properly handle the uncertainties of the
pedestrians’ motion as well as the ego vehicle’s motion.

1.2 Focus and Contributions of the Thesis

This thesis is focused on several aspects of environment perception and
situation analysis in ADAS of commercial vehicles for protection of vul-

1 The vehicle hosting the developed system is referred to as ego vehicle in this work.
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1.2 Focus and Contributions of the Thesis

nerable road users. The main contributions refer to environment percep-
tion and situation evaluation.

Environment Perception

A novel sensor fusion approach for pedestrian tracking from a truck is
developed, implemented and parametrized for real-time application. The
approach is based on the Joint Integrated Probabilistic Data Association
(JIPDA) filter and uses detections from radar sensors and a monocular
camera. Pedestrians are tracked in distinct fields of view (FOV) and
across a sensory blind region using heterogeneous sensors. Thereby,
tracks can be confirmed earlier than when using single filters for each
FOV. Moreover, object information is made available in the sensory blind
region. Information that is only available in one FOV can be exploited in
another FOV and enables, for instance, a more reliable object classification
in the FOV behind the sensory blind region.

Pedestrian detections are filtered from the reflection points of a laser
scanner. The radars’ and the camera’s spatial inaccuracies and their detec-
tion performances are measured dependent on measurement properties
and current object states using the pedestrian detections from the laser
scanner as reference measurements. An own implementation of the ex-
tended Kalman filter (EKF) with global nearest neighbor data association
(GNN) enables a comparative evaluation of the performance of the de-
veloped approach.

Situation Evaluation

Information about objects in the vehicle’s environment represents one ba-
sic component to evaluate the risk of a situation. The prediction of the
ego vehicle’s motion behavior builds the second component. Therefore,
a new approach that classifies trajectories of the ego vehicle into the ma-
neuvers turn, lane change and lane following is presented. The approach
uses data from CAN (Controller Area Network) only and is based on the
Longest Common Subsequence (LCS) method and a Bayesian classifier.
The trajectory of the ego vehicle is predicted based on the classified ma-
neuver and adjustable model trajectories. The performance of the devel-
oped approach is evaluated in comparison to the ground truth and an
established approach.

The prediction of the collision risk with a pedestrian requires the under-
standing of typical pedestrian behavior. Therefore, pedestrian trajectories

3
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Figure 1.1 Overview of the developed system with its main components.

and pedestrian motion behavior are analyzed in an exploratory study.
The results are compared to the results from the literature.

A conditioned crash probability of a pedestrian with the ego vehicle is
then computed based on stochastic reachable sets and Markov chain ab-
straction where the algorithm accounts for uncertainty in the road users’
motion and in the existence of a tracked object as well as for temporal and
spatial uncertainties.

1.3 Structure of the Thesis

Figure 1.1 depicts the main components of the developed approach. The
data acquisition is taken as given. A novel method for pedestrian tracking
fusing data from radar sensors and a camera is introduced. For situation
evaluation, the trajectories of the road users are predicted and the colli-
sion probability of the ego vehicle with a detected road user is computed.
The thesis is structured into seven chapters which are shortly described.

4



1.3 Structure of the Thesis

Chapter 2 covers the fundamentals of ADAS and their structure. It intro-
duces different categories of ADAS and basic conditions for developing
such systems. Subsequently, the fundamentals of environment percep-
tion, the measurement principles of applied sensors as well as the back-
ground of sensor fusion are described. Moreover, the chapter outlines the
basics for situation evaluation in context with vulnerable road users such
as typical crash scenarios and typical pedestrian dynamics.

Chapter 3 concentrates on the theoretical foundations that are re-
quired for object tracking including different approaches for data asso-
ciation. Furthermore, the basics of classification, discrete event systems
and Markov chain abstraction are introduced, as these constitute the re-
quired theoretical background for the situation evaluation.

The first part of Chapter 4 refers to related work regarding sensor data
fusion using radar and camera, pedestrian tracking, and tracking across
sensory blind regions. The following sections present the implementa-
tion of two pedestrian tracking approaches using two radar sensors at
the front bumper, a monocular camera behind the wind shield, and a
radar sensor on the right side of the truck. The two tracking approaches
are based on different concepts of data association — GNN and JIPDA.
A new procedure is introduced for measuring sensor properties with re-
spect to pedestrian detection. A major contribution is stated by the fact
that pedestrians are tracked across a sensory blind region from a moving
platform.

Chapter 5 enumerates the most relevant, recent and existing ap-
proaches for maneuver classification, trajectory prediction, and threat
assessment where the demand for novel approaches is discussed. The
chapter is dedicated to a new prediction approach for the ego vehicle’s
trajectory and the computation of a novel risk measure for collisions be-
tween the ego vehicle and pedestrians using stochastic reachable sets
and Markov chain abstraction. The results of an own study regarding
pedestrian motion behavior in traffic constitute one basis of the stochastic
reachable sets.

Chapter 6 compares and discusses the results obtained by the devel-
oped approaches to the results of existing and established methods. It is
shown that the detection performance of the novel approach for pedes-
trian tracking based on JIPDA outperforms the GNN-based approach.
Especially, turn maneuvers of the ego vehicle can be classified well, so
that the prediction of the ego vehicle’s path becomes more accurate with
the developed approach than with the established approach for this ma-
neuver class. The evaluation of the developed approach for computation

5
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of a crash probability of the ego vehicle with another road user indicates
that sensory and situational uncertainties should be accounted in every
risk assessment approach. The thesis concludes with a summary and an
outlook on potential future work in Chapter 7.

6



2 Advanced Driver Assistance Systems

2.1 Categorization and Regulatory Standards

ADAS have contributed to the decrease of the number of traffic victims
during the last years. While passive safety technologies (such as airbags
or rear under-run protection devices) become relevant during an accident
and mitigate its effects, active safety systems operate continuously in
order to avoid potential accidents.

Four different classes of ADAS can be distinguished [5] from the func-
tional perspective. The boundaries are fuzzy and thus, systems may be-
long to more than one class at once.

Autonomous systems intervene actively in the vehicle dynamics with-
out a situational initiation by the driver. Examples are the anti-lock brak-
ing system (ABS) and the ESC, which were introduced into commercial
vehicles in the years 1981 and 2001 for the first time [6]. These sys-
tems manipulate the actors without the driver’s influence. These systems
are usually applied when situations are not controllable by any human
driver, for instance, braking of single tires, as performed by ESC, might
be required to control an otherwise hopeless situation.

Comfort systems accomplish a part of the driving task and should
thereby relieve the driver. However, his engagement is required at least
in the sense of supervision. The final responsibility for the vehicle con-
trol stays with the driver. Thus, the system’s behavior needs to be com-
prehensible and predictable for the driver. Moreover, he shall be able to
override any system reaction. This requirement was formulated in the
Vienna Convention on Road Traffic [7] in 1968, where it reads in article 8,
subparagraph 5: ’Every driver shall at all times be able to control his vehicle
or guide his animals.’ A prominent example for a comfort system is the
adaptive cruise control system (ACC) that controls the speed dependent
on the distance and relative speed to preceding objects.

Driver information systems provide information supporting drivers
in their control action without direct intervention in the driving behavior.
Navigation systems, traffic sign recognition for no-passing zone informa-
tion or speed limit assistance systems (SLA) or even lane departure warn-
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ing systems that alert drivers when they start to cross the lane marking
without having set the turn signal are some examples of such information
systems.

Efficiency enhancing systems are especially relevant in commercial
vehicles since one third of the costs for truck-based freight companies is
caused by fuel [8]. The systems aim for a vehicle control with optimized
energy consumption. This can be performed, e.g., by informing the
driver about curves or road gradients ahead for a more predictive
way of driving or by directly controlling the gears, the engine speed
and the energy distribution in hybrid drives. If the behavior of other
road users could be predicted as well, for instance by using car-to-car
communication, this knowledge could be exploited not only for collision
avoidance functions but also for a more efficient vehicle control.

Computer vision-based ADAS necessitate environment perception mod-
ules that are able to deal with the object diversity and environmental con-
ditions of the real world. The required information for an assistance func-
tion has to be retrieved reliably in a sufficient FOV. The extent of fulfill-
ment often determines the systems’ costs. This usually leads to trade-
offs, so that for instance, the number of function use cases is reduced to
scenarios where the criticality of the situation can be recognized unam-
biguously. The availability of dedicated sensors is a key element for the
realization of corresponding functions where self-surveillance and self-
diagnosis of the components are requirements. The impact of environ-
mental conditions on the system behavior is inevitable, but the system
shall detect its capabilities within the current situation and provide a con-
fidence level or plausibility value of its information. For example, a cam-
era with a soiled lens should not provide data based on the soiled spots,
but report its state.

The imperfection of different components of an ADAS is inherent in
the system. Suited system architectures and self-surveillance are required
to guarantee a safe system behavior with uncertain components. The
ISO26262 [9] (Road Vehicles — Functional Safety) is a guideline for the
required careful development and production process of these systems.
It aims at functional safety but does not set requirements for the perfor-
mance of a function. Systematic errors, e.g., due to wrong specifications
or wrong implementation, have to be eliminated. System stability as well
as system robustness in case of component failure, should be guaranteed.

This ISO standard assigns a degree of criticality to a system based on
the following three criteria: severity of a possible injury due to a sys-
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tem failure, controllability of the system and the situation by the driver,
and failure frequency of the system. The required analysis has to be per-
formed based on a set of imaginable scenarios that the system could un-
dergo. The system obtains one of four Automotive Safety Integrity Lev-
els (ASIL) after the system classification based on these criteria. Con-
ventional quality standards are sufficient for the development and pro-
duction process of systems with the lowest level ASIL A. Systems that
have assigned the highest integrity level (ASIL D) need to satisfy de-
manding criteria regarding redundancy of data and algorithms, docu-
mentation, formal verification, measurement and component tolerances,
self-diagnosing capabilities, design review, and component tests among
others.

A driver assistance system can be considered as a closed-loop control sys-
tem (see Figure 2.1) with a human (driver) and an artificial controller.
Good coordination of both controllers is required for cooperative behav-
ior, but a clear segregation between the responsibilities of the human
driver and the machine for the driving task is not trivial. Auditive, vi-
sual or haptic feedback are solutions to inform the driver that the system
will take over control if he fails to react within a certain time interval. The
artificial controller aims to follow the set target and bases its decisions
on sensor data and information gained through data fusion. The situ-
ation evaluation module processes information about the environment
and needs to incorporate the driver’s wish. It classifies the situation be-
fore a decision for a certain system behavior is made and a request is sent
to the actuators.

The capability of sensor-based environment perception is still below hu-
man abilities, in particular considering the reliability — meaning the cor-
rectness of statement that an object exists and the consistency of the es-
timation result, or the classification performance. However, artificial en-
vironment perception (computer vision) provides advantages as well —
such as a shorter latency time in the processing chain consisting of per-
ception, decision, and action or a higher metric accuracy. Moreover, com-
puter vision does not suffer from distraction or fatigue.

Section 2.2 describes the basics regarding automotive environment per-
ception. It includes a description of the sensors that have been utilized in
this work as well as an overview over different methods and motivations
to fuse their data.
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Figure 2.1 Schematic of control loop in ADAS: Control of driver overrides
ADAS control.

2.2 Automotive Computer Vision

The environment perception module that is presented in this work is ca-
pable to fuse data from different sensor modules in a generic way. Knowl-
edge about usable sensor types and their measurement principles is re-
quired to realize an abstract interface, so that this section provides infor-
mation about sensors that are applicable to automotive computer vision
and pedestrian detection.

2.2.1 Sensor Modules

A sensor module is defined as a component consisting of a sensor and a
data processor enabled for algorithmic calculation. The latter provides
interpretation or perception services based on the sensor data. This is
often also referred to as intelligent sensor. The sensor modules used in this
work can be grouped into the classes range sensors, imaging sensors and
proprioceptive sensors. Their functional principle will be described in the
following.
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Range Sensors

Range sensors apply an active measurement principle to determine the
distance to an object. Object positions in polar coordinates are obtainable
if a directional reference is available.

Radar (radio detection and ranging) sensors use electro-magnetic
waves for distance measurement. Radar waves are transmitted into a des-
ignated direction in space by a directive antenna. The waves are reflected
from any object representing a large change in the dielectric constant or
diamagnetic constant. If the wavelength is much shorter than the target’s
size, the wave will bounce off in a way similar to the way light is reflected
by a mirror. A receiver antenna located at the radar module can detect the
reflected wave.

An object reflects a limited amount of radar energy. Objects with con-
ducting surfaces, such as metal, reflect strongly, so that objects like cars
can be detected very well. Objects like pedestrians can be detected in
principle but entail much lower reflection amplitudes due to higher ab-
sorption. The RCS is a measure for the detectability of an object. The RCS
of a radar target is the hypothetical area required to intercept the trans-
mitted power density at the target such that if the total intercepted power
was re-radiated isotropically, the power density actually observed at the
receiver is produced [10]. A target’s RCS depends on its relative size to
the wavelength, the reflectivity of its surface, the direction of the radar re-
flection caused by the target’s geometric shape, and the polarization with
respect to the target’s orientation.

Two classes of radar sensors can be distinguished: continuous wave
(CW) radars and pulse Doppler radars. A so-called FMCW radar (Fre-
quency Modulated Continuous Wave) results if the frequency of the
transmitted wave of a CW radar is periodically modified (sweep). The
frequency shift between the reflected wave and currently sent waves en-
ables the computation of the signal travel time τt. The multiples of the
sweep period time lead to an ambiguous determination of the radial dis-
tance r to the object using the speed of light c:

r =
cτt

2
. (2.1)

Pulse Doppler radars transmit short wave packages in certain time in-
tervals. The signal travel time τt between transmission and reception
is utilized for distance computation (see Equation 2.1). Radar sensors
can detect the velocity of objects relative to the propagation direction of
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the wave using the Doppler effect1 (range rate ṙ). The maximum unam-
biguously detectable relative speed depends upon the cycle duration of a
sweep.

There are three typical methods to obtain angle measurements as di-
rectional reference of the range sensor. Manual scanning radars use me-
chanical deflection of a concentrated beam to measure their environment
in multiple steps. Multiple beam radars use the superposition of several
transmission beams with different directions. The known receiver charac-
teristic enables the inference about the angle with the strongest reflection.
Single beam radars require several receiver antennas at different positions.
The phase difference of a reflected wave between the single receiving an-
tennas can be utilized to compute the angle of a detected object.

The utilized automotive radars work at frequencies around 76 GHz
to 77 GHz. Therefore, objects in ranges at which other electro-magnetic
wavelengths, such as visible light or infrared light, are attenuated too
much, can be detected by radar since the radio waves are barely absorbed
by the medium through which they pass. This is beneficial, as radar sen-
sors can be designed in a way that they also work during bad weather
conditions like fog, rain or snow fall. On the one hand, radar sensors
are well suited for the separation of stationary and moving objects due to
their capability of direct, radial speed measurement. On the other hand,
the discrete and widening beams limit the angular resolution. Moreover,
multi-path propagation and diffraction can lead to false measurements,
i.e., ghost objects. Measurements become inaccurate if a part of the ra-
diation diffuses and does not reflect at an object’s surface. However, cur-
rently applied automotive radar sensors provide radial distance measure-
ments with standard deviations below 10 cm [11].

Lidar sensors (light detection and ranging) utilize the travel time of
concentrated, monochromatic light for distance measurement. A trans-
mitting diode creates a laser (light amplification by stimulated emission
of radiation) pulse that reaches the surface of an object where optic effects
like refraction and reflection are induced. The reflected part of the light
energy can be detected by a receiving diode. The relative velocity using
the Doppler effect is not determined in automotive applications due the
enormous metrological effort that would be required for determination of
the small frequency difference between transmitted and received signals.
Angular measurements are performed using an arrangement of several

1 The Doppler frequency is computed by using the frequencies of the transmitted and the
received signal.
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directed diodes (multi-beam-lidar) or using a rotating mirror that deflects
the laser beam to several different directions. Beside lidars providing in-
formation about distance and horizontal angle of an object, there are laser
scanners that additionally measure vertical angles of the reflections.

On the one hand, distance measurement with lidar sensors is very ac-
curate (< 2 cm [12]) since the beam is usually reflected at the surface of
the object. Moreover, the angular resolution, especially of laser scanners,
is very high (up to 0.09◦ [12]). On the other hand, the optical measure-
ment principle can lead to erroneous measurements in rain, snow and
fog or when the sensor is spoiled. Furthermore, laser scanners are much
more expensive than the automotive sensors described above.

Imaging Sensors

Monocular cameras (grayscale or color) represent the environment as 2D
image. Color cameras usually provide a lower resolution than grayscale
cameras due to the required measurement channels for color separation,
but they enable the separation of different color spectra. A color filter
array covers the photo sensor using 50 % green, 25 % red and 25 % blue
which results in a so-called Bayer pattern.

Today’s automotive cameras use CMOS (complementary metal oxide
semiconductor) sensors for photon detection that exploit the photo effect
(imager). Compared to charge-coupled devices (CCD), CMOS sensors
do not suffer from the blooming effect where a light source overloads
the sensitivity of the sensor causing the sensor to bleed the light source
onto other pixels. They consume less power than CCDs and require less
specialized manufacturing facilities rendering them less expensive. Au-
tomatic exposure control (shutter) and contrast correction can be realized
dependent on the application and outer illumination and can thereby re-
duce motion blur.

Automotive computer vision has to handle highly dynamic environ-
ments such as low sun and shadow. The available bit depth per pixel is
typically limited (i.e. 8 bit), so that the exposure control is optimized for
a certain region of interest (ROI). High dynamic range imaging (HDRI)
techniques combine several image frames with different exposure times
using non-linear coding of the image data and thereby expand the dy-
namic range of the images. Regarding the choice of the camera’s lens, it
is important to consider the focal length fopt and the maximum aperture
angle. The focal length determines the magnification of objects projected
onto the image plane, and the aperture angle is responsible for the light
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intensity of an image. Shorter focal lengths give a wider FOV compared
to longer focal length lenses. The wider the aperture angle, the faster
the shutter speed may be for the same exposure. Wide-angle lenses (60◦

to 114◦ horizontal aperture) suffer from low resolution and low quality
at long distances, while normal lenses (28◦ to 60◦ horizontal aperture)
balance between a wide FOV and a high resolution at long distances.
Typical automotive cameras provide 25 to 80 frames per second (FPS).
On the one hand, a high angular resolution and a high information
content foster a high-quality analysis of the image by classifiers. On
the other hand, this induces a high data rate that needs to be processed
in real-time, so that a tradeoff is made between the aperture angle, the
image resolution, and the computational demand. The texture strongly
depends on illumination and weather conditions, which might influence
the classification process. The three-dimensional world is projected onto
the two-dimensional image, so that information is lost. Power flow2 tries
to estimate depth information from motion and can compensate for that
loss in a limited way, but is computationally expensive.

Stereo cameras consist of an arrangement of two monocular cameras
with a known distance (basis). Disparities between corresponding pixel
pairs of both cameras are utilized for distance measurement of an de-
tected object. Finding pixel correspondences is computationally demand-
ing and ambiguous, and wrong assignments, especially in periodic tex-
tures, lead to incorrect distance computations. Furthermore, the distance
accuracy is limited by the resolution, especially at long distances.

Proprioceptive Sensors

Proprioceptive sensors measure signals originating from within the ve-
hicle. The sensors monitor the internal status and serve the determina-
tion of acceleration, speed, orientation and relative position of the vehi-
cle. GPS (global positioning system) sensors, encoders and gyroscopes
are examples for proprioceptive sensors. Typical accelerometers and
gyroscopes in automotive applications are fabricated as micro-electro-
mechanical systems (MEMS). Here, the sensors send their data via CAN
to the processing computer. CAN is a multi-master broadcast serial bus
standard for connecting ECUs. In case that several nodes try to send mes-
sages at the same time, the message with the highest priority (smallest nu-

2Power flow is caused by relative motion between object and camera.
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merical ID value) overwrites all other messages. The data is used to gain
information about the ego vehicle’s state and to predict its future behav-
ior. More detailed information about accelerometers, gyroscopes, wheel
speed encoders and the measurement principle of the steering wheel an-
gle can be found in Appendix A.1.

2.2.2 Sensor Data Fusion

Data fusion is a formal framework comprising means and tools for the al-
liance of data originating from different sources [13]. Its general purpose
is to obtain information of enhanced quality compared to information
from single sensor solutions where the exact definition of ’enhanced qual-
ity’ is application-specific. Data fusion is a multi-disciplinary research
area borrowing ideas from many diverse fields, such as signal process-
ing, information theory, statistical estimation and inference, and artificial
intelligence. Information fusion is an integral part of the perception of
numerous technical and biological systems [14]. The core advantages of
a multi-sensor system are an enhanced detection certainty and measure-
ment accuracy when using redundant data as well as an enlarged FOV
and an increased number of state variables that can be measured directly
when using complementary sensors. Accuracy is defined as the mean de-
viation of the state estimation from the reality, and it is influenced by the
sensors and the applied algorithms. The data fusion approach shall han-
dle uncertain, incomplete, or even defective data. Outliers and spurious
data should be identified using the redundancy which enhances the con-
fidence and reliability of measurements. Reliability is referred to as the
correctness of a statement in relation to an object existence. Moreover, the
estimation result has to be consistent.3 Extended spatial and temporal
coverage improves the detection performance. A good detection perfor-
mance comprises a high true positive rate compared to the false alarm
rate and it is often described by receiver operating characteristic (ROC)
curves.

A well-designed data fusion method should incorporate multiple time
scales in order to deal with timing variations in data (data rates). Incor-
poration of a recent history of measurements into the fusion process is
desirable in dynamic environments to obtain information about dynamic
processes that would not be observable otherwise. Heterogeneous and

3 Interpretation in statistics: Increasing the sample size has the effect that an estimator’s
result is getting closer to the real value.
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homogeneous data should be processable (data modality). Data align-
ment or registration takes care of the transformation from each sensor’s
local frame into a common frame before fusion.

The vehicle’s environment model shall be devised in such way that it is
suitable for different applications at once. Thus, if an additional applica-
tion is added that requires a lower or higher confidence about the objects
in the environment than an existing application, there should be no need
for a change in the fusion algorithm or in the interface. For example, the
different applications should be able to react based on objects having a
sufficient PoE.

Numerous simplifications are required regarding the level of detail of
the underlying model classes as well as their number and type diversity
due to the complexity of the real world.

There are different possibilities to categorize the structures and meth-
ods of data fusion approaches. Distinctions can be made by the archi-
tecture, the abstraction level of the input data, or the sensor integration.
Furthermore, one can distinguish between implicit and explicit fusion
approaches as well as between grid-based and parametric approaches.
These categories will be described in the following.

Durrant-Whyte [15] classifies a sensor system into three basic sensor
types where all three classes may be present simultaneously in real-world
applications:

p complementary (supplementary): combine incomplete and indepen-
dent sensor data to create a more complete model, e.g., by utilizing
different FOVs due to distinct mounting positions or different mea-
surement principles,

p competitive (redundant or contrary measurement results): reduce ef-
fects of noisy and erroneous measurements, increase reliability, ac-
curacy and decrease conflicts where contrary events require special
decision processes,

p cooperative (enhancing the quality): extension of the measurement
space by one stochastic state-space dimension that cannot be mea-
sured directly (higher-level measurement).

The sensor data can be fused implicitly or explicitly. Implicit fusion
processes the measurements and updates the model (temporal filtering)
when new measurements are available (non-deterministic), which re-
quires consistent data processing. Data can be associated based on a
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sensor-specific abstraction level, which is advantageous when using het-
erogeneous sensors that measure different state dimensions. Further-
more, asynchronous sensors are applicable and adding additional sensors
is relatively simple, as they are not coupled in the association and filter
update step. Last but not least, the implementation of a fault-tolerant
system behavior is usually simpler than for explicit fusion. In contrast,
explicit fusion fuses all data sources in one association step at the same
time requiring temporal filtering and a common abstraction level of the
data processing for all sensors (dependent on the object description). The
requirement of synchronous sensors or measurements is often hard to ful-
fill with standard automotive sensors.

A synchronous and thus deterministic system behavior is desirable, but
not all of today’s automotive sensors can be triggered, so that the system
has to be designed as an asynchronous system due to technical limita-
tions.

The abstraction level at which the data fusion takes place has to be cho-
sen carefully and it is a trade-off between information content and com-
plexity. Three different abstraction levels can be distinguished according
to [16]:

p Signal / raw data level: direct combination of signals from different
sensors which requires comparability of the measured signals as
well as their registration and synchronization; highest information
content as there is no data reduction causing an immense data vol-
ume,

p Feature level: fusion of signal descriptors to obtain enhanced esti-
mates of certain signal characteristics is useful if there is no spatial
and temporal coherence of the data,

p Symbol level: combination of symbolic signal descriptors (symbols,
objects, decisions, equivalence classes) to make decisions based on
associated probabilities.

Figure 2.2 illustrates the enumerated fusion levels including the suitable
data models, the aim of the specific fusion and an example.

Considering the fusion architecture, one can differ between centralized
fusion with one decision center, distributed fusion with local decision
centers and a combination of both. Usually, limitations in communication
bandwidth, required real-time capability, and the complexity of data
processing lead to a mixed architecture in which information is processed
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Figure 2.2 Comparison of fusion levels with types of fused data, prerequisites,
suitable data models and goal.

locally in distributed decision centers, and only the processing results are
transferred to a central decision center.

Finally, there are two fundamental distinctions in fusion methods [16]:
grid-based (geometric) and parametric (numeric) approaches.
Grid-based fusion approaches combine synchronous and sequential dis-
tance measurements from homogeneous or heterogeneous sensors to ob-
tain a so-called occupancy grid with associated obstacle probabilities (sit-
uation picture). The occupancy probabilities of the different grid loca-
tions are accumulated and compared with a threshold during the map-
ping process. Continual measurements from different positions update
the grid. The object probability for a certain location is assumed to be
high if repeated measurements indicate high occupancy values for the
corresponding cells [17].
The parametric fusion approaches can be categorized into feature-based
and probabilistic approaches, fuzzy methods and neural approaches.
Feature-based approaches include the weighted average, the Kalman
filter [18] methods and its extensions to non-linear systems (Extended
Kalman filter (EKF) [19], Unscented Kalman filter (UKF) [20–22], infor-
mation filter [23, 24]), while probabilistic approaches deal with meth-
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ods related to classic and Bayesian statistics [25] as well as Dempster’s
and Shafer’s theory of evidence [14, 26]. In contrast to classical statistics
(maximum-likelihood (ML) frameworks), Bayesian statistics (maximum-
a-posteriori (MAP) frameworks) do not only consider the observations
but also the measurand as a realization of a random variable. The essen-
tial advantage of the latter is that it yields the probability distribution of
the parameter of interest given the measurement data, whereas the classi-
cal approach only describes the probability distribution of the sensor data
for a given parameter value [27].

Grid-based models, particle filters and Kalman filtering have been the
most common data fusion techniques for a long time. Interval calculus,
fuzzy logic and evidential reasoning have been proposed to deal with per-
ceived limitations in probabilistic methods such as complexity, inconsis-
tency, precision of models and uncertainty about uncertainty [28]. Hybrid
methods combine several fusion approaches to develop a meta-fusion al-
gorithm.

Artificial neural networks (ANN) are based on interconnected process-
ing units to solve a specific task. These networks use supervised or un-
supervised (Kohonen maps) learning mechanisms for classification and
recognition and are widely used for data fusion of several complementary
sensors [29]. Their application is especially advantageous if it is difficult
or impossible to specify an explicit algorithm for data combination. Un-
fortunately, ANN lack of possibilities to incorporate prior knowledge on
the magnitudes involved in the fusion task [16]. Bayesian fusion allows
relatively simple descriptions of the magnitudes involved in the data fu-
sion and therefore, it is well suited in context with measurement data [16].
Furthermore, objective knowledge and vague information can be incor-
porated into the fusion approach. Probability density functions (PDF)
express the available knowledge in Bayesian fusion theory. Prior knowl-
edge about the measurand is represented by the prior PDF, whereas infor-
mation regarding the measurement method is described by the likelihood
function. A physical model of the measurement process or an empiric de-
termination can provide this knowledge [25].

In this work, the parametric Bayesian fusion-based approach EKF is
used in a mixed architecture to fuse pedestrian data from the heteroge-
neous sensor types radar and camera mounted at different positions of a
commercial vehicle. Data is fused on the feature level. Different methods
for the association of object and measurement data are used. The meth-
ods are introduced together with the required filter equations in Chap-
ter 4. The focus of this work is on the probabilistic modeling and not on

19



2 Advanced Driver Assistance Systems

the state estimation, so that no other filters for state estimation have been
investigated. A more detailed description of the used fusion concept, the
sensors and the chosen architecture follows in Chapter 4 as well.

2.3 Knowledge Base for Situation Evaluation

The sensor data fusion module provides a model of the environment by
perception of its elements in time and space. Not only the tracking of
obstacles is a challenge, but also obtaining detailed information about a
traffic scenario including the actions of the ego vehicle and the interac-
tions with other traffic participants.

A human driver judges the risk of a situation in advance. The attentive
human is still the best known ’predictor of traffic scenarios’ due to his
experience and his high-resolution environment perception. However,
human drivers can suffer from fatigue or might be overstrained, for
instance, in situations where they should decide if people walking on
the sidewalk towards the street will stop or keep on walking to cross
the street. In such situations of uncertainty, drivers usually react more
cautiously, e.g., drive more slowly or steer an evasion trajectory. If
ADAS forced a more cautious way of driving in such situations due to
incomplete situation awareness, this would not be accepted by most
drivers. Hence, an ADAS has to reach a sufficient level of certainty that
the situation being judged is risky before it intervenes. The guideline
ISO31000 [30] describes risk as the combination of the occurrence probabil-
ity of a harmful event with the amount of damage caused by the event.

The situation evaluation module interprets the meaning of situation ele-
ments and forecasts their states for the near future. The aggregation of
all relevant information serves the understanding of the situation, which
is the basis for making a correct decision regarding the allocated objec-
tives or the desired end-state. The chosen action should then change the
situation in the most preferable way.

The environment model of a car is much less complete and includes
less details than the environment model of a human, so that only a lim-
ited number of situations can be recognized and differed. Therefore, sit-
uations are divided into classes. A recognized situation is assigned to the
class which it is most similar to (situation mapping) [31]. ADAS are devel-
oped for the reaction in very specific situations. A typical situation would
be ’risk of rear-end collision’ and may include the following available pat-
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terns: a car is in front on the ego lane, the car in front decelerates, the dis-
tance between the own car is below a speed-dependent threshold value.
Then, there could be three possible reactions to this situation: brake to
avoid the collision, evade the car by steering or keep-on-driving and col-
lide with the car in front. Each reaction implies a risk since braking might
evoke a collision with the following traffic and steering might induce a
crash with the oncoming traffic or the road border or might lead the ve-
hicle off the road. Since only a limited number of patterns and details can
be captured, it is not possible to evaluate every hazard, to create more
patterns and to differ between more sub-situations. Therefore, the pos-
sible reactions are usually limited to braking or keep-on-driving in this
situation. The task of the situation evaluation module in the driver assis-
tance system would be to recognize — based on the available patterns —
if a situation is as critical that a specific reaction should be applied or not.

Information about detected elements in the environment and about
the ego vehicle’s state itself underlies spatial and temporal inaccuracies.
Furthermore, there might be objects in the environment that have not
been detected or even false detections. Thus, the situation evaluation is
based on a more or less inaccurate, incomplete and uncertain environ-
ment model. Moreover, two situations may develop in different ways, al-
though the setting initially looked the same. In a situation where a pedes-
trian approaches the lane from the right, the pedestrian might either stop
at the road edge or might keep on walking onto the lane, so that a col-
lision with the own vehicle could follow. There are uncertainties in the
prognosis. All these facts have to be taken into account implicitly (in the
general system design) or explicitly (in each situation). A sufficient level
of certainty compared to the induced hazard has to be reached before a
system reaction is applied.

A prediction model is required to forecast the evolution of the situa-
tion. Constant velocity (CV) models are commonly used to predict the
future states of pedestrians, while constant turn models in combination
with constant speed (CTCV) or constant acceleration (CTCA) models are
mostly used to forecast the future states of vehicles. Modern approaches
do not only consider a linear evolution, but include variations of speed,
acceleration and yaw rate within certain boundaries.

ADAS are designed for specific use cases that are deviated from de-
tectable, classifiable, and distinguishable situations that often lead to ac-
cidents according to accident analysis and statistics. On the one hand,
these accident statistics help to identify situations that often lead to an
accident as well as implicated hazards. An adequate system reaction in
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these situations is most effective for the reduction of the number of traffic
victims. On the other hand, accident statistics illustrate how situations
evolve and thus, they support the development of models for situation
prognosis.

Inattention of the driver during the last three seconds before the colli-
sion is a contributing factor in 93 % of the crashes with passenger cars [32]
where inattention can be categorized into secondary task engagement, fa-
tigue, non-specific eye glance, and driving-related inattention (i.e., due to
checking of the rear-view mirrors or the blind spot). Thus, many acci-
dents could be avoided or reduced in severity if the driver gets a warning
in this time frame.

The next subsections describe the statistical relevance of situations that
often lead to accidents involving pedestrians. The following subsection
concentrates on typical pedestrian behavior, which is an important basis
to forecast pedestrian states, to predict upcoming situations, and to esti-
mate the risk of a setting.

2.3.1 Studies on Pedestrian- and Truck-related Accidents

The development of ADAS avoiding potential accidents with vulnerable
road users requires a thorough understanding of how the settings of these
accident types look like and how often they take place. Collisions be-
tween vehicles and pedestrians or bicyclists are evaluated as particularly
critical since vulnerable road users are unprotected and often suffer from
lethal injuries as a result of crashes. Where people live can also influence
their exposure to road traffic risk. In general, people living in urban areas
are at greater risk of being involved in road crashes, but people living in
rural areas are more likely to be killed or seriously injured if they are in-
volved in crashes. One reason is that motor vehicles tend to travel faster
in rural areas [3].

Traffic strongly differs between Western countries and countries with
emerging markets like India or China, especially in the urban areas. This
work refers to the development of ADAS for countries with traffic com-
parable to that in Germany, the USA or Japan.

In Germany, most accident studies are based on the database GIDAS
(German In-Depth Accident Study), the database of the German Federal
Statistical Office and the database of the German Insurers Accident Re-
search (IAR). The information depth of the IAR database increases the one
of the Federal Statistical Office, but is limited regarding the informative
value of some accident database attributes compared to GIDAS [33, 34]
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since there has been no analysis directly at the site of the accident [35].
Only a few collisions of commercial vehicles with vulnerable road users
are described in detail. More information is available regarding accidents
involving passenger cars and vulnerable road users. It is expected that
most of the settings that lead to a collision of a vulnerable road user look
similar for passenger cars and commercial vehicles. Moreover, most as-
pects of the developed approach for risk assessment can be transferred to
passenger cars. Therefore, statistics for both classes are presented.

About 14 % of all passenger car accidents and about 20 % of all pas-
senger car primary collisions with killed or seriously injured persons in
the IAR database included pedestrians. Hummel et al. [35] found that
pedestrians are recognized as critical very late and that more than 70 %
of collisions between passenger cars and pedestrians in the database took
place at car speeds of about 30 km/h.

The GIDAS database of 2009 and the database of the German Federal
Statistical Office of 2009 provides the information that 7.7 % of all ac-
cidents involving a commercial vehicle and another road user have been
collisions with pedestrians, whereas the fraction of killed persons in these
accidents is even higher: 10.4 %. 90 % of the pedestrian accidents that in-
clude a commercial vehicle take place in the built-up environment.

The DEKRA report of 2011 [2] states that two thirds of all accidents
in Europe take place within built-up areas where 47 % of the killed road
users are pedestrians or bicyclists. These vulnerable road users are often
insufficiently lit during twilight and during the night. They are often
recognized too late due to several reasons like occlusion by other objects
or driver distraction. Pedestrians older than 65 years and children are
particularly endangered.

Half of the vulnerable road users that were killed in German traffic
in 2009 have been older than 65 years, although people older than 65
years represented only about 20 % of the population. Older pedestri-
ans have problems to overlook traffic from various directions at the same
time when they cross wide streets or intersections with dense traffic [36].
Age-related physical, perceptual and cognitive limitations and the miss-
ing ability to compensate for these limitations make it difficult for older
people to perceive if a gap is sufficient for them to cross the street [37].
Additionally, younger road users tend to underestimate the accident risk
for older road users [38]. The walking speed that is considered as normal
is not reached by about a tenth of the older persons [39] and it takes more
time for older people to perceive and react upon light signals. Older bi-
cyclists often do not watch out for traffic from behind and have problems
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Figure 2.3 Situations with passenger cars and pedestrians that frequently lead
to accidents. Adapted from [41].

maneuvering the bicycle [40]. Moreover, Bernhoft et al. [40] state that al-
though the older road users generally are more careful than the younger,
it seems that health problems may cause older persons to reconsider their
behavior in favor of a more risky one, e.g., cross the road irrespective of
crossing facilities nearby in order to avoid detours.

Children younger than 15 years constitute the second group that is
particularly endangered when moving in traffic as pedestrian or bicy-
clist [2]. Firstly, they are less experienced. Secondly, they are smaller than
older pedestrians, so that cars or other objects occlude them more easily.

Typical situations leading to collisions with pedestrians have to be
identified to develop an ADAS for the avoidance of accidents. The ac-
tion group vFSS (German: vorausschauende Frontschutzsysteme) [41]
has analyzed the GIDAS database to identify typical accident situations
of pedestrians with passenger cars that occur in Germany and abroad.
Accidents involving passenger cars and vulnerable road users lead the
statistics, followed by those involving commercial vehicles. About 60 %
of the collisions where road users were injured or killed in built-up areas
took place at crosswalks (42.2 %), at stops (12.7 %) or in restricted traffic
zones (5.7 %) [2]. These are regions where drivers could expect pedestri-
ans, but often they do not see them.
Situations where pedestrians cross the streets from different sides with
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and without occlusion (S1, S2, S5) have been documented most frequently
(see Figure 2.3). Turning maneuvers of passenger cars (S3, S4) lead less
frequently to accidents. Collisions where the pedestrians walk along the
road typically occur on country roads and highways (S6). Situations with
pedestrians crossing the street led to 817 accidents with injured persons
(2.3 %) and to a fraction of 5.6 % of the accidents in which people got
killed [41].

The 50 %-random sample of the German Federal Statistics Office (years
2005 to 2009) includes 84116 commercial vehicles with a maximum per-
missible weight of 6 tons and more. 49 % of the collisions with a pedes-
trian occurred during crossing situations.

The analysis of Hummel et al. [35] showed that about 13 % of the ac-
cidents with commercial vehicles occur during turning maneuvers. A
vehicle primarily collided with a pedestrian or a bicyclist in 80 % of these
cases. It is assumed that a system that warns the driver from obstacles in
the vehicle’s blind spot at the right side before and during turning ma-
neuvers could have avoided 31.4 % of the lethal turning accidents and
43.5 % of those ones with seriously injured persons. This means that such
a system could have avoided 4 % of the lethal accidents and 5 % of all
accidents with seriously injured persons related to the total number of
accidents that include commercial vehicles.

2.3.2 Pedestrian Motion Analysis

A pre-requisite for the successful development of a system that avoids
collisions with pedestrians is the reliable detection and tracking of pedes-
trians. But that is not enough to achieve a good balance between reac-
tions to pedestrians that are a hazard and false positive reactions, e.g.,
due to pedestrians at the pavement who may not intend to cross the street.
Hence, influencing factors and parameters have to be identified that allow
an unambiguous prediction of the intention and behavior of a pedestrian.
The trajectory is only one possible parameter and subject to errors since
there is no trajectory estimation for a stationary pedestrian. Furthermore,
pedestrians can start walking suddenly, change their direction abruptly
or stop. A pedestrian walking parallel to the street might not be consid-
ered as a hazard by a collision avoidance system that is only based on
trajectory computation although the pedestrian might continuously turn
his head towards traffic and could cross the street in less than one second.

Himanen and Kumala analyzed 799 events with pedestrians and vehi-
cles. Their results indicate that the most important explanatory variables
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to predict the probability that a pedestrian crosses the street were the
pedestrian’s distance from the kerb, the city size, the number of pedestri-
ans crossing the street simultaneously, the vehicle speed and the vehicle
platoon size [42].

The time gap until car and pedestrian would collide (time-to-collision
— TTC) as an additional parameter has been analyzed in [43]. The au-
thors found a minimum time gap size of 2 seconds and a maximum of
11 seconds. On roads with smaller width, tighter gaps were chosen. A
smaller TTC range of 3 to 7 seconds has been identified in a study with
German pedestrians in [44]. Similarly to Oxley et al. [37], results propose
that distance information, rather than the TTC, is the relevant criterion on
the basis of which pedestrians decide to cross the street or not. When cars
approached with higher speeds, the test participants chose larger gaps
but smaller TTCs. Consequently, a driver has to expect a more dangerous
behavior from pedestrians when he is driving faster.

Pedestrian motion parameters are important to design a system that
avoids collisions with pedestrians. Several user and environmental fac-
tors influence pedestrian speeds. Pedestrian speed and acceleration pa-
rameters have been analyzed in several studies dependent on gender, age,
state of the traffic light signal, road geometry and social behavior (single
pedestrians or groups) [45–48]. Table A.1 in Appendix A.2 summarizes
the results of the corresponding authors. According to these authors, the
mean speed of pedestrians is about 1.4 m/s. Older pedestrians walk more
slowly so that their mean speed of 0.9 m/s lies below the average of all
pedestrians. Moreover, jogging pedestrians reach speeds of about 3 m/s,
while running male pedestrians reached a mean speed of 5 m/s.

Crosswalks with traffic lights are designed for a pedestrian speed of
1.22 m/s (4 ft/s) according to [47]. Carey [45] found that pedestrians
starting their crossing during the flashing DON’T WALK sign typically
cross faster than those who start during the WALK sign. This is plausible
since these pedestrians know that they are running out of time. Further-
more, the road users moved slightly slower when crossing with others
instead of alone.
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This chapter describes the methods that have been used in this thesis and
outlines the required theoretical foundations. Sensor data is fused to de-
tect and track objects in the environment. The required steps are illumi-
nated in the first two sections. Classification techniques are presented
in Section 3.3. They enable the detection of pedestrians in images and
help to distinguish between different maneuver classes of the ego vehi-
cle. Stochastic reachable sets are computed for the ego vehicle and the de-
tected road users to predict their future states. Therefore, the last sections
are dedicated to the description of discrete event systems and hybrid au-
tomatons, reachability analysis and Markov chain abstraction.

3.1 Object Tracking

There are several approaches for object tracking, as described in the previ-
ous chapter. This work focuses on Bayesian state estimation, the Kalman
filter and its extension to non-linear systems (EKF). The applied feature-
based object tracking process can be divided into the following steps, as
depicted in Figure 3.1.

Raw data is recorded by the sensors in the first step. The second step
provides pre-filtered data that is referred to as measurements in the fol-
lowing. Several approaches exist for association of tracked objects with
measurements and will be described later. The update of the objects’ state
estimations is the central element of the tracking procedure and it is de-
scribed in the following subsections. The object management module de-
cides whether objects should be deleted in case there are no more mea-
surements available for that object or when the object’s PoE is very low.
Furthermore, it decides which measurements should lead to the creation
of new objects in the environment model (object birth).

3.1.1 Bayesian State Estimation

Object tracking algorithms try to estimate the number of objects in a scene
and they compute the objects’ states over time utilizing uncertain mea-
surement data zk (imprecise, noisy, defective or missing) from sensors
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Figure 3.1 Steps of the Object Tracking Procedure.

and prior knowledge about the sensor properties (measurement princi-
ple) p(Z|X), where X are all object states. Moreover, dynamic systems
provide information about the state’s history and about the object’s be-
havior over time (system dynamics).

Applying the Bayesian rule [49, 50] with pre-existing knowledge of all
measurements Z1:k = (z1, . . . , zk)

T until time point k, one can compute
the knowledge base at time point k:
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p(xk|Z1:k) =
p(Z1:k|xk)p(xk)

p(Z1:k)
=

p(zk, Z1:k−1|xk)p(xk)

p(zk, Z1:k−1)
(3.1)

=
p(zk|Z1:k−1, xk)p(Z1:k−1|xk)p(xk)

p(zk|Z1:k−1)p(Z1:k−1)
(3.2)

=
p(zk|Z1:k−1, xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
. (3.3)

The PDF of the measurement principle in Equation 3.3 depends on all
preceding measurements until time point k. It is assumed that the current
measurement depends only on the current state and not on the state his-
tory or measurement history (p(zk|X1:k, Zk:k−1) = p(zk|xk)). Thus, Equa-
tion 3.3 can be simplified according to:

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
(3.4)

=
p(zk|xk)p(xk|Z1:k−1)´

p(zk|xk)p(xk|Z1:k−1)dxk
. (3.5)

The size of the measurement history Z1:k and the state history X1:k are
growing linearly over time, so that they exceed all memory capacities.
Therefore, technically realizable measurement systems can only observe
dynamic systems that incorporate the Markov property [51]: The Markov
process of first order states that the current state depends only on the
previous state. It can be applied without loss of generality, and thus:

p(xk|Z1:k−1, X1:k−1) = p(xk|xk−1). (3.6)

The prior knowledge base p(xk|Z1:k−1) can now be computed recur-
sively based on the knowledge base of the previous time step using the
Chapman-Kolmogorov equation:

p(xk|Z1:k−1) =

ˆ
X

p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1. (3.7)

Process or motion models provide the transition probability p(xk|xk−1)
and make it possible to incorporate problem-specific knowledge about
motion limitations, directions, or object information. They enable the es-
timation of the object state at time point k. Their description contains a
(time-variant) function f including stochastic noise νk ∼ N (·, 0, Qk) with
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covariance Qk to account for the model error due to uncertainty about the
exact model motion or due to approximation:

xk = f (k, xk−1, νk). (3.8)

Eventually, an external, deterministic controller input uk can influence the
system using the controller function g:

xk = f (k, xk−1, νk) + g(uk). (3.9)

Measurements from different sensors help to improve the state estimation
of an existing object due to their different positive properties. The mea-
surements are included in an update step. The measurement model of
the sensor provides the likelihood function of the measurement p(zk|xk),
describes the measurement process of the sensor and is represented by
the measurement function h. It transforms the state space to the sensor-
dependent measurement space and enables that the state update (inno-
vation) is performed directly based on the sensor data:

ẑk = h(k, xk, ηk), (3.10)

where ηk ∼ N (·, 0, Rk) with covariance Rk represents stochastic noise
that accumulates measurement errors.

In conclusion, the recursive Bayesian state estimation is accomplished
in two phases. First, the knowledge base is projected onto the next time
point of a measurement in the prediction step using the process model
and Equation 3.7. Next, information from the current measurement is
included into the knowledge base in a correction step (update or innova-
tion) using the Bayesian rule, see Equation 3.5.

Subsections 3.1.2 and 3.1.3 introduce two concrete implementations of
the Bayesian state estimation for one object using linear and non-linear
functions. Subsection 3.1.4 provides the required extensions for multi-
object tracking.

3.1.2 Kalman Filter

The Kalman filter [18] recursively estimates the state of a time-variant
state variable with minimum error variance in the presence of noisy data
in a time-discrete system. It is designed for Gaussian distributed state
variables. Linear functions enable a simplified representation of the pro-
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cess model (Equation 3.8) and the measurement model (Equation 3.10)
using matrix multiplications:

xk = Fkxk−1 + νk and (3.11)
zk = Hkxk + ηk, (3.12)

where Fk represents the system matrix (process model matrix) and
Hk the measurement matrix at a time point k. The noise terms νk
and ηk have to result from a zero-mean, white Gaussian noise process
(E{νk} = E{ηk} = 0). Furthermore, the requirement for their mutual,
statistic independence is ascertained by evanescent auto-correlations for
the time shifts κ 6= 0 (white noise) and an evanescent cross-correlation:

Φνν(κ) = Ek{νkνT
k−κ} = QδKD(k, k− κ), (3.13)

Φηη(κ) = Ek{ηkηT
k−κ} = RδKD(k, k− κ), (3.14)

Φνη(κ) = Ek{νkηT
k−κ} = 0 ∀κ, (3.15)

where δKD(k, k − κ) is the Kronecker Delta function. The Kalman filter
aims to compute the distribution of the knowledge base p(xk|Z1:k) =
N (xk, x̂k, P̂k). Its estimated mean and the estimated covariance of
the state are predicted using the transition probability p(xk|xk−1) =
N (xk, Fkxk−1, Qk) which results in

x̂k|k−1 = Fk x̂k−1|k−1 and (3.16)

P̂k|k−1 = FkP̂k−1|k−1FT
k + Qk, (3.17)

where Qk is the covariance matrix of the process noise. The measurement
matrix serves the transform of the predicted state and of its covariance to
the measurement space:

ẑk|k−1 = Hk x̂k|k−1, (3.18)

R̂k|k−1 = HkP̂k|k−1HT
k . (3.19)

The innovation step accounts for the measurement with its state-
dependent likelihood function p(zk|xk) = N (zk, Hkxk, Rk) which re-
quires the residuum γk between measurement zk and the measurement
prediction ẑk|k−1. The corresponding covariance matrix Sk is called inno-
vation covariance matrix:

γk = zk − ẑk|k−1, (3.20)

Sk = R̂k|k−1 + Rk = HkP̂k|k−1HT
k + Rk. (3.21)
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The innovation covariance matrix Sk and the predicted state covariance
matrix P̂k|k−1 serve the computation of the filter gain Kk (Kalman gain):

Kk = P̂k|k−1HT
k S−1

k . (3.22)

The Kalman gain weights the impact of the predicted state and the mea-
surement on the state estimation at time point k in the update step:

x̂k|k = x̂k|k−1 + Kkγk, (3.23)

P̂k|k = P̂k|k−1 −KkHkP̂k|k−1 (3.24)

= P̂k|k−1 −KkSkKT
k (3.25)

= [I−KkHk]P̂k|k−1[I−KkHk]
T + KkRkKT

k , (3.26)

where the last form should be chosen for a numerically more stable im-
plementation (Joseph form) [23].

The filter equations show that certain measurements — represented
by low values in the measurement covariance matrix Rk — increase the
Kalman gain in favor of the measurements that are considered with a
higher weight. On the other hand, a low uncertainty of the predicted state
(low values in covariance matrix P̂k|k−1) results in a higher weighting of
the predicted state.

The initial state x0 is presumed to follow a Gaussian distribution with
known expectation value x̂0 and covariance matrix P̂0. The gain matrix K
is chosen in such a way that the expectation value of the mean squared er-
ror between the true state x∗k and the estimation E{L} = E{‖x∗k − xk|k‖2}
is minimized [18]. If the initial state and the noise matrix follow a Gaus-
sian distribution, the distribution of the state estimation is Gaussian un-
der linearized operations as well. Therefore, the Kalman filter is an opti-
mal filter with respect to the squared error.

3.1.3 Extended Kalman Filter

If the function of the process model or the function of the measurement
model or both are non-linear, the prediction and the innovation step do
not result in a Gaussian distribution. Consequently, the Kalman filter can-
not be applied anymore. The extended Kalman Filter (EKF) [23] linearizes
the models at the operating point of the current state estimation, so that
the recursive and efficient Kalman filter approach is applicable nonethe-
less. The Taylor series approximate non-linear process model functions
f (x) and measurement model functions h(x), respectively.
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In case of a first order EKF, the process matrix Fk of the Kalman filter is
replaced by the Jacobian matrix of the non-linear function f (x):

FJ =
∂ f (x)

∂x

∣∣∣∣
x=x̂k−1|k−1

=


∂ f1

∂x(1)
· · · ∂ f1

∂x(n)
...
. . .

...
∂ fn

∂x(1)
· · · ∂ fn

∂x(n)

 , (3.27)

where n is the dimension of the state space (number of components of
f (x)). Accordingly, the measurement matrix Hk is replaced by the Jaco-
bian HJ

k of the non-linear measurement function h(x) with linearization
at the operating point x̂k|k−1. The Jacobian matrices are then used for the
projection of the state covariance matrix.

An EKF of second order would additionally require the Hessian ma-

trix FH = ∂2 f (x)
∂xm∂xn

to determine the quadratic term of the Taylor approxi-
mation.

3.1.4 Multi-Object Tracking

Complex traffic scenarios with several road users require tracking of mul-
tiple objects at once. Multi-instance filters initialize and administrate sep-
arate state estimation filters for each object. Their alternatives are based
on finite set statistics (FISST) [52]. Different realizations can be found
in [52–57]. This work uses multi-instance filters where the state estima-
tion is unambiguous at all times due to an object identification number
(ID).

Multi-object tracking is much more complex than tracking a single ob-
ject since the number of objects to be tracked is not constant and needs
to be considered as a stochastic, time-variant variable N∗, the so-called
cardinality. Furthermore, the number of measurements M per time step
is also time-variant, and sensor-specific limitations lead to missing detec-
tions or false alarms. The number of measurements depends on the num-
ber of existing targets, which cannot be determined directly due to the
sensor-induced variable number of measurements. Moreover, the associ-
ation of measurements with objects is uncertain but must be presumed to
be known for the state estimation in the Kalman filter. Finally, objects can
occlude each other and can thereby influence their traceability.

The birth and disappearance of objects have to be modeled to estimate
the cardinality N∗ (cardinality problem). Simultaneously, a sensor-specific
model needs to account for missing detections as well as for false alarms

33



3 Theoretical Foundations and Methods

since they have a direct impact on the estimation of the object cardinal-
ity N∗.

Assigning the M sensor measurements of unknown origin to the N cur-
rently tracked objects is required. This step is called data association.
Most approaches compute a binary association matrix A ∈ {0, 1}N,M

with elements aij:
aij = 1⇔ xi ↔ zj, (3.28)

where the symbol↔ represents the assignment of measurement zj to ob-
ject xi. Usually, the Mahalanobis distance dmh(xi, zj) is used as statistical
measure to evaluate the association between measurement zj and object
xi based on the predicted measurement ẑi,k|k−1 = h(x̂i,k|k−1):

dmh(xi, zj) =
√
(zj − ẑi,k|k−1)

TS−1
ij (zj − ẑi,k|k−1), (3.29)

where the innovation covariance matrix Sij between object xi and mea-
surement zj is used. Each measurement is associated with the object to
which it has the lowest distance dmh until there are no more measure-
ments [58]. Usually, Greedy approaches [59] are applied to solve this lo-
cal optimization problem. This so-called local nearest neighbor (LNN)
method or nearest neighbor standard filter (NNSF) is fast but provides a
suboptimal solution.

In contrast, the GNN is a maximum likelihood (ML) estimator for the
data association problem [60] and provides the globally optimal solu-
tion Aglobal by minimizing the sum of all distances:

N∑
i=1

M∑
j=1

dmh(xi, zj)→ min. (3.30)

The complexity of the corresponding algorithms is higher than for the
LNN method. The trivial approach enumerates all possible combinations
to identify the minimum (maximum of the ML-estimator):

Nc =
max{M, N}!

(max{M, N} −min{M, N})! . (3.31)

The runtime increases exponentially in the worst case (M = N) with the
numbers of measurements and objects, respectively since there are N!
possible combinations. Stirling’s formula [61] can be used to estimate the
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worst case runtime of the algorithm τwc
r ∈ O(NN) (standard Landau no-

tation [59]) that just enumerates all possible combinations. The solution of
this global optimization problem is in the class of problems that are solv-
able within polynomial time (P-hardness). There are several algorithms
for the computation of the GNN association matrix (e.g., the auction al-
gorithm) [62], where the Kuhn-Munkres algorithm reaches a worst case
complexity of O(max{M, N}3) [63]. The Kuhn-Munkres theorem trans-
forms the problem from an optimization problem into a combinatorial
one of finding a perfect matching.

Here, a cost matrix-based implementation is chosen according to [64].
An equal number of object hypotheses and observations is assumed for
simplicity of description, but the principle works similarly for differing
numbers. In a distance matrix D with entries dij, each matrix row repre-
sents an object hypothesis xi, 1 ≤ i ≤ N, and each column represents an
observation zj, 1 ≤ j ≤ M. The entries dij correspond to the Mahalanobis
distance between the object hypothesis xi and the measurement zj if
the distance is below a certain threshold (e.g., 3). The entry dij is set to
infinity (extremely large value) in case the MHD increases the threshold
(forbidden assignment) taking the gating condition into account. The
algorithm searches for the lowest sum of matrix entries, so that each row
and each column is represented once. Matlab or C implementations for
solving the optimization problem can be found, for example, in [64].

The objects’ state estimations as well as their measurements underlie spa-
tial and temporal uncertainties. The computation of a guaranteed, correct
solution for all situations is impossible. On the one hand, objects may dis-
appear and hence, no further measurements will be received from them.
On the other hand, detections can drop, and although the object still ex-
ists, the measurement data does not include a detection of the object.
Moreover, false detections (clutter) or objects that have not been tracked
yet may induce erroneous conclusions. Objects that have been initiated
by false detections can be assigned to sporadically appearing false alarms
or can take the measurements from correct object representations.

The state uncertainty of objects that have been initiated by a false de-
tection can become very high due to missing associated detections. The
statistic distance dmh between the measurement and the false object may
become smaller than for the correct object then, although the Euclidean
distance is smaller for the latter. This behavior fosters wrong associations,
especially when the current prediction of the real object is very distant
from the real object state and/or the current realization of the true mea-
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Figure 3.2 Ambiguous association possibilities between objects xi and measure-
ment z. Although the minimal Euclidean distance is between mea-
surement z and object x2, the minimal statistical distance lies be-
tween measurement z and object x1.

surement underwent a strong realization. Figure 3.2 shows an example
for the described association scenario with two objects and one measure-
ment in the sensor space. The Mahalanobis distance between measure-
ment z and object x2 is smaller than for object x1, although the Euclidean
distance between measurement z and object x1 is smaller. Consequently,
an association approach is required that considers these effects, which is
represented by the JIPDA.

3.2 JIPDA-based Object Tracking and Existence
Estimation

3.2.1 Probabilistic Data Association

The previously enumerated effects — missing detections, false detections
and spatial vicinity of object and measurement — have to be considered
in data association at the same time. A possible solution is provided
by the probabilistic multi-object data association with integrated estima-
tion of existence (Joint Integrated Probabilistic Data Association, JIPDA).
Probabilistic data association filters utilize probabilistic data association
weights βij instead of a binary ones.

The basic idea of all probabilistic data association approaches is the
computation of association probabilities between all N object hypothe-
ses x1, . . . , xN and all M measurements z1, . . . , zM instead of computing
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3.2 JIPDA-based Object Tracking and Existence Estimation

binary decision values in the association matrix A with entries aij:

aij = βij = p(xi ↔ zj). (3.32)

If a missing detection is assumed and only the predicted state estima-
tion is available, the weight βi0 for j = 0 is computed. Avoiding hard
decisions can reduce the impact of false associations and can thereby im-
prove the state estimation. The corresponding association process will
be described in Section 3.2.2. The recursive state estimation procedure is
similar to the Kalman filter and can be divided into the two phases pre-
diction and innovation. The basic difference is that the soft association
decisions evoke the state innovation to be based on the whole set of mea-
surements Zk received at time point k instead of being based on a single
measurement. The measurements are weighted with the data association
weights βij leading to a new PDF:

p(xi,k|z1, . . . , zM) =
M∑

j=0

βij p̃j(xi,k|zj), (3.33)

where p̃j(xi,k|zj) are the results of the state innovation with the corre-
sponding measurement zj (compare Equation 3.23 and Equation 3.26).
The predicted state estimation for the case of a missing detection is the
PDF p̃j(xi,k|x0) = p(xi,k|k−1).

Unfortunately, the multi-modal distribution (Equation 3.33) is not
Gaussian in general. Thus, the posterior PDF needs to be approximated
by a single Gaussian distribution to keep the distribution properties.
Therefore, innovation hypotheses xij are computed for single associations
as in Equation 3.23. These single associations serve as auxiliary quantities
for the final state update:

xij = x̂i,k|k−1 + Kijγij, i = 1, . . . , N; j = 0, . . . , M, (3.34)

where the Kalman gain and the residuum for missing detections (j = 0)
are set to Ki0 = 0 and γi0 = 0. The preliminary state estimations xij
will be weighted and accumulated later. Moreover, they enable the com-
putation of the probabilistic association weights βij. A prerequisite for
their computation is that each measurement results from only one ob-
ject and each object causes only one measurement. Furthermore, the
state-dependent detection probability pD(xi) has to be known. The con-
crete computation of the association weights βij is described in Subsec-
tion 3.2.4.
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The update of the object state estimation and its state covariance matrix
utilizes the weighted mean of all innovation hypotheses:

x̂i,k|k =
M∑

j=0

βijxij, (3.35)

P̂i,k|k =
M∑

j=0

βij[P̂i,k|k−1 −KijSijKT
ij + εij], (3.36)

where εij is the hypothesis error correcting the approximation error due
to unimodal modeling of the multi-modal distribution (in eq. 3.33) and
the uncertainty that results from the association alternatives. It is com-
puted by:

εij = (xij − x̂i,k|k)(xij − x̂i,k|k)
T. (3.37)

3.2.2 Existence Estimation

The computation of the probabilistic association weights βij in Equa-
tion 3.33 is based on the objects’ PoEs for the JIPDA filter. Similarly to
the state estimation, a Markov chain consisting of a prediction and a in-
novation step models the PoE. The existence of an object is defined as
follows:

Definition 3.1 An object is denoted as existent in the environment model
if it is really present and it is relevant for the vehicle environment per-
ception due to its object class and it is located within a defined tracking
region around the ego vehicle.

The probability of the event that object x exists at time point k is given by

pk(∃x) := p(∃x|Xk−1, Z1:k) = p(∃x|xk−1, Z1:k), (3.38)

where the Markov property has been applied, as the PoE of an object is
expected to depend only on the previous time step. The PoE provides a
value p(∃xi) between 0 and 1. This value can be interpreted in such way
that objects with the same history of attributes, measurement vectors and
spatial constellations have been real, positive objects in p(∃xi) · 100 %
of all cases. The measure can be validated statistically and is retrieved
from a statistical basis for a correctly determined PoE. In the following,
all objects get assigned a PoE that can be applied as a quality measure of
the object.
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3.2 JIPDA-based Object Tracking and Existence Estimation

Standard Kalman filter approaches and other filters assume the real exis-
tence of the object whose state should be estimated. They apply a mea-
sure of quality for each object hypothesis xi for validation. Often the mea-
sure is tested against sensor-dependent or application-dependent heuris-
tic threshold values. Some methods for retrieving this quality measure are
summarized in [60], for instance the number of successful measurement
associations since object initialization, a measure for the covariance of the
state estimation or a combination of different measures. First, the ob-
tained values depend on the sensor or the application, second, the heuris-
tic values are often not reliable.

Additionally, a probabilistic quality measure for the existence of an ob-
ject, such as a reliable PoE, can provide a great benefit for later system
applications where only one object interface would be required. For ex-
ample, safety-relevant functions that actively control the vehicle require
higher PoEs than functions that only warn or inform the driver. Further-
more, application-independent sensor models without thresholds would
enable the implementation of a generic sensor fusion framework.

All objects with a PoE higher than any definable threshold ξdel can be
tracked until their PoE falls below this threshold. The choice of the thresh-
old ξdel influences the detection ability of the total system. If ξdel is chosen
small, the probability of detection is high (less falsely suppressed object
hypotheses). On the other hand, this leads to an increase in computa-
tional cost, as more hypotheses need to be tracked at the same time.

The JIPDA algorithm for existence estimation consists of the two
phases prediction and innovation, just like the Kalman filter for state
estimation. The existence of an object is predicted after its prior state
and its prior state covariance have been estimated according to Equa-
tion 3.16 and Equation 3.17. The existence prediction is based on the state-
dependent persistence probability pS(xk|k−1) representing the probability
that the object will not disappear, but survive [65]:

pk|k−1(∃x) = pS(xk|k−1)pk−1|k−1(∃x). (3.39)

The persistence probability pS(xk|k−1) enables modeling effects like object
disappearance from the defined tracking region around the ego vehicle
using the probability pFOV(xk|k−1) and exceeded state constraints with
pSC(xk|k−1), e.g., if the object velocity of a pedestrian exceeds 10 m/s, its
PoE should be low. Munz [65] additionally modeled mutual occlusion
of objects and lowered the PoE of the occluded objects since these are
considered as non-existing objects in his definition.
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Pedestrians should be tracked instead of cars in this work and occlusion
in street crossing scenarios does not mean that these objects do not exist.
Instead, the occlusion could be taken into account in the detectability of
occluded objects.

A gating method can decrease the computational complexity by lim-
iting the number of potential associations. However, gating can affect
the number of available detections. Therefore, it has to be taken into
account when computing the association weights βij and the posterior
PoE pk|k(∃x) based on the complete association hypotheses.

3.2.3 Gating Method

Gating is a method that enables exclusion of unlikely combinations of
measurements and objects. It exploits the spatial proximity of object and
measurement. Gating regions are defined around the measurement pre-
dictions ẑi,k|k−1 of each object xi where the size of the region is based
on some distance measure, e.g., the Mahalanobis distance dmh between
the predicted measurement and a received measurement. Measurements
may only be associated with an object if they are located within the gat-
ing region of the object’s predicted measurement. The gate size is defined
in such way that a measurement of an object is within the gating region
with gating probability pg. As in [65], elliptic gating regions with the
Mahalanobis distance as distance measure are applied here.

If the measurement residua γij = zj − ẑi,k|k−1 follow a Gaussian distri-
bution, the squared Mahalanobis distance follows a χ2-distribution. The
gating parameter dgate corresponds to the value up to which one has to
integrate this χ2-distribution with Nfree degrees of freedom to obtain the
gating probability pg. The degree of freedom Nfree corresponds to the di-
mension of the measurement space. Increasing degrees of freedom lead
to higher values of the gating parameter dgate if the gating probability pg
is held constant. The binary gating matrix G with entries gij is computed
to tell if a measurement zj is within the gating region of object xi:

gij =

{
1 , (dmh(xi, zj))

2 ≤ dgate

0 , else.
(3.40)

Objects are grouped into clusters Ccl, where each cluster contains at least
one object (compare [66]). A cluster Ccl is non-empty if there is beside
object xi at least one additional object xl competing for the same mea-
surement zj (gij = 1∧ gl j = 1).
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3.2 JIPDA-based Object Tracking and Existence Estimation

The following statements consider only one object cluster Ccl with Nc ob-
jects and Mc measurements in it. The number Mg

j represents the number
of measurements within the gating region of object xi.

3.2.4 Computation of Association Hypotheses with Gating

Small gate sizes increase the probability of missing detections (detections
that are located outside the gating region). This fact has to be taken into
account when computing the probability of the association hypotheses.
Furthermore, one has to consider the probability of false detections, that
is not spatially or temporally constant in the vehicle environment. One
assumes the same prior probability for a false detection for each measure-
ment, so that the expectation value for the number of false detections M̂fa

can be computed as in [65]:

M̂fa =
Mc∑
j=1

Nc∏
i=1

(
1−

pD(xi) pg pk|k−1(∃xi)

Mg
j

)gij

. (3.41)

The prior probability for each association hypothesis p(Ed) is computed
based on the expectation value for the number of false detections M̂fa.
The sets Xna(ed) and Xa(ed) represent sets of objects that have not been
detected in the hypothesis Ed and that have been assigned to a measure-
ment, respectively:

p(Ed) = η−1 ·
∏

xi∈Xna(ed)

(
1− pD(xi)pg pk|k−1(∃xi)

)
·

∏
xi∈Xa(ed)

(
Vd

M̂fa
Λ(zm(i,d)|xi)pD(xi)pg pk|k−1(∃xi)

)
, (3.42)

where zm(i,d) is the measurement that is assigned to object xi within the as-
sociation hypothesis Ed and η is a normalization constant. It is computed
in such way that the probabilities of all association hypotheses p(Ed) sum
up to 1. Vd denotes the volume of the gating region of all objects in the
cluster and Λ(zj|xi) represents the prior probability density for measure-
ment zj [58, 60]:

Λ(zj|xi) =
1
pg

ˆ
N (zj, Hjx̂i, Rj)N (xi, x̂i, P̂i) dxi. (3.43)
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Both the case of a missing detection for an existing object and the case
that a measurement results from a non-existing object have to be consid-
ered. The introduction of pseudo-measurements as in [60, 65] simplifies
the notation. The set of measurements is enlarged by two symbols to
represent missing detections ∅ and non-existence of an object @, so that
Z∗ = {z1, . . . , zM, ∅,@}. Analogously, a clutter source that is represented
by the symbol © and the symbol b for a new born object are added to the
set of objects (X ∗ = {x1, . . . , xN , ©, b). A pair e = (x ∈ X ∗, z ∈ Z∗) rep-
resents a single association, while the set E = {ei} constitutes a complete
association. The special elements ∅,@, © and b may be multiply used,
whereas the other elements from the sets X ∗ and Z∗ may only be used
once.

Each association hypothesis E consists of elementary assignments e be-
tween elements representing measurements or missing detections and
objects, clutter sources, or newly born objects. The single probability that
an object xi exists but could not be observed is:

p(e = (xi, ∅)) =
(1− pD(xi) pg) pk|k−1(∃xi)

1− pD(xi) pg pk|k−1(∃xi)

∑
E :(xi ,∅)∈E

p(E), (3.44)

whereas the probability that an object xi exists and a measurement zj re-
sults from that object can be written as:

p(e = (xi, zj)) =
∑

E :(xi ,zj)∈E
p(E). (3.45)

Thus, the posterior PoE for object xi can be computed by summarizing
the probabilities of all elementary assignments that assume the existence
of object xi:

pk|k(∃xi) = p(e = (xi, ∅)) +
∑

j:gij=1

p(e = (xi, zj)). (3.46)

Consequently, the data association weights for each combination of object
and measurement can be determined as the ratio of the corresponding
elementary, single assignment and the posterior PoE of the corresponding
object xi:

βij =
p(e = (xi, zj))

pk|k(∃xi)
for j > 0, (3.47)
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Figure 3.3 Principle of state and existence estimation in JIPDA filtering.

βij =
p(e = (xi, ∅))

pk|k(∃xi)
for j = 0. (3.48)

Finally, Equation 3.35 and Equation 3.36 update the object’s state estima-
tion and its covariance. Figure 3.3 summarizes the principle of state and
existence estimation of the resulting EKF with JIPDA (EKF-JIPDA).

3.2.5 Hypotheses Tree for the JIPDA Implementation

An efficient algorithm is required for the computation and the enumer-
ation of the association hypotheses. A realizable, intuitive and extensi-
ble implementation is provided by a graph-based realization using a hy-
potheses tree as in [60, 65, 67]. The hypotheses tree enables a systematic
enumeration of all association hypotheses.

The path e0, . . . , eL(d) from the root node e0 to leave node eL(d) repre-
sents an association hypothesis Ed = {e0, . . . , eL(d)} that is independent
of the order, see Figure 3.4 for the illustration of a simple hypothesis tree
with two objects and two measurements. The product of the probabil-
ities of the single assignments returns the probability of the association
hypothesis:

p(Ed) =
∏
e∈Ed

p(e). (3.49)

If a hypothesis Ed contains the single assignment e = (xi, zj) where mea-
surement zj is associated with object xi, the hypothesis Ed belongs to the
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Figure 3.4 JIPDA Hypotheses Tree for two objects and two measurements: Each
node contains one element from set X ∗ (in front of comma) and one
from Z∗.

set of true positive associations ETP
ij (Ed ∈ ETP

ij ). Furthermore, if the hy-
pothesis Ed expects that xi exists (although it might not have been de-
tected) and does therefore not contain the single assignment e = (xi,@),
the hypothesis Ed belongs to the set E∃i for object existence (Ed ∈ E∃i ).
Marginalization leads to the posterior PoE of object xi [67]:

pk|k(∃xi) =

∑
E∈E∃i

p(E)∑
E p(E) . (3.50)

Analogously, the association weights βij can be determined by:

βij =

∑
E∈ETP

ij
p(E)∑

E∈E∃i
p(E) . (3.51)

Lookup tables can serve for an efficient computation of the hypothe-
ses probabilities. The basic elements are stated by the node probabili-
ties. Mählisch [60] proposes a computation rule dependent on the type
of association. There, the inference probability pTP(zj) represents the
probability that measurement zj results from a real object. The proba-
bility is estimated from the specific measurement values and features.
The counter event is the false alarm probability pFP(zj) = 1 − pTP(zj).
Thereby, sensor-specific existence evidence is directly incorporated in the
JIPDA filter [65]. The normal distributionN (zj, ẑj, Rj) represents the spa-
tial uncertainty of measurement zj. The likelihood probability pΛ(xi, zj)
models the elementary impact of the spatial proximity between measure-
ment and object. It is based on the Mahalanobis distance and takes into
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account that an object xi is more likely to exist if there is a measurement zj
close to it:

pΛ(xi, zj) = exp(−1
2

γT
ijS
−1
ij γij). (3.52)

The detection probability pD(xi) depends on the object state and en-
ables modeling sensory blind regions within the defined tracking region
around the ego vehicle and sensor-dependent detection limitations.

The probability of object birth pB models the probability that a mea-
surement results from an unobserved object. There are three kinds of
birth processes:

p First detection, since the source of a measurement has just entered
the defined tracking region around the vehicle or is located within
the detection range for the first time.

p An object has just left the region where it was occluded by another
tracked or irrelevant object, and no object has been tracked there so
far.

p Detection of objects that have not been detected earlier due to miss-
ing detections, dynamic pitching of the ego vehicle or due to other
effects.

If this birth probability is high enough, a new object hypothesis is instanti-
ated. Each sensor receiving a measurement zj has to generate a new object
hypothesis xHj ∼ N (xHj , x̂Hj , PHj ). However, the new object hypothesis is
not considered for the state estimation of already tracked objects.

The probability of object birth is decomposed into three components.
A sensory part constitutes the first component and it is represented by
the sensory inference probability of the potential object pTP(zj) based on
the properties of measurement zj. The second component can take into
account map data, so that no objects can be born, e.g., if they are behind
a wall. As no map data is available here, this component is not mod-
eled in this work. The third component depends on the current environ-
ment model that is compared to object hypotheses resulting from mea-
surements. It considers the spatial uncertainty of objects existing in the
environment model and their PoE.

Since an integrated description of the state uncertainty and of the exis-
tence uncertainty of each object and each object hypothesis is required, a
probabilistic hypothesis density function (PHD) is defined based on the
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FISST theory from [52]. The JIPDA method corresponds to a representa-
tion of the Multi-Bernoulli distribution of the FISST modeling [60]. There-
fore, the Multi-Bernoulli PHD defined on objects xi can be expressed by

Dk(xi) = pk|k(∃xi)N (xi,k, x̂i,k|k, P̂i,k|k), (3.53)

where a derivation can be found, e.g., in [65]. The integral over the Multi-
Bernoulli PHD function of an object xi corresponds to the object’s PoE.
The PHD function is only defined for point objects without dimension or
orientation — information that is relevant in many automotive applica-
tions of environment perception. Munz [65] presented a compact repre-
sentation for car objects. Here, the approach is slightly different. The hor-
izontal dimension of a pedestrian is defined as square (squarexi ,w

(x, y))
with edge length w (e.g., 0.5 m for pedestrians) that is shifted to the pedes-
trian’s position. The dimension of a pedestrian could also be represented
by a circle with a given radius.

The PDF for the occupation of a position on the x, y-plane by an ob-
ject is denoted as pocc(x, y). It is provided by multiplication of the two-
dimensional convolution of the distribution of the object position and the
shifted square with the PoE of the object [65]:

pocc(x, y) = pk|k(∃xi)[N ((x, y)T, (x̂, ŷ)T, P̂xy
i ) ∗ squarexi ,w

(x, y)], (3.54)

where P̂xy
i contains only the first two elements of P̂i representing the state

covariance of the object position. The time index k is neglected from now
on. This PDF can also be interpreted as dimensional probabilistic hy-
pothesis distribution (DPHD) pocc(x, y) = Dd

xi
(x, y). However, the DPHD

Dd
xi
(x, y) does not fulfill an important property of a PHD since it repre-

sents a dimensional object instead of a point object that could be modeled
by a Dirac distribution. Therefore, the two-dimensional carrier space of
the DPHD is separated into small cells. The probability of the occupancy
of an area A of a cell is obtained by integration. The numerical approxi-
mation applies lower and upper sums:

D̃d
xi
=

ˆ
A
Dd

xi
≈
∑

x

∑
y
Dd

xi
(x, y) · dxdy, (3.55)

where dx and dy represent the edge lengths of small grid cells in the x, y-
plane. The result is denoted as discrete DPHD function D̃d

xi
and corre-

sponds to a local occupancy map. The probability of occupancy is ob-
tained directly from the fusion results of the JIPDA method after each
fusion cycle.
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The discrete, dimensional probabilistic hypothesis density function
(DPHD) is dedicated to the simultaneous representation of the object hy-
potheses and the present objects. One checks if the positions of the poten-
tial new object xHj overlap with positions of objects from the environment
model:

D̃xHj ∩X
d
env

(x, y) = min

(
1,

N∑
i=1

D̃d
xHj

(x, y) · D̃d
xi
(x, y)

)
, (3.56)

where Xenv = {x1, . . . , xN} represents the set of objects in the environ-
ment model. The results of the object overlap per cell are not independent
from each other. The distribution is reduced to the mode of D̃d

xHj ∩Xenv
(x, y)

to enable a simple computation of the overlap probability [65]:

pI(zj|x1, . . . , xN) = max(D̃d
xHj ∩Xenv

(x, y)). (3.57)

The distribution pI(zj|x1, . . . , xN) is an indicator for the probability that
there is an overlap between the object hypothesis generated by measure-
ment zj and at least one present object from the environment model. It
incorporates uncertainty in the spatial distribution and in the existence
estimation. The probability that an object hypothesis and an object in the
environment model represent the same physical object is given by

pHΛ (zj|xi) = exp(−1
2
(x̂Hj − x̂i)

T(P̂Hj + P̂i)
−1(x̂Hj − x̂i)), (3.58)

where P̂i is the covariance matrix of xi and P̂Hj is the covariance matrix of

the new object hypothesis xHj . The equation evaluates the Mahalanobis
distance between the object xi from the environment model and the new
object hypothesis.
Finally, the probability of birth based on the current environment model
and a received measurement zj is given by

pB(zj|x1, . . . , xN) = (1− pI(zj|x1, . . . , xN))
N∏

i=1

(1− pHΛ (zj|xi)). (3.59)

It is possible to compute the probabilities of the single assignments (node
probabilities) based on the described probabilities where one formula is
provided for each node type.
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True positive association node (TP):

p(e = {xi, zj}) = pk|k−1(∃xi) · pTP(zj) · pD(xi) · pΛ(zj|xi) · pg. (3.60)

False positive association node (FP):

p(e = {©, zj}) = (1− pTP(zj)). (3.61)

False negative association node (FN):

p(e = {xi, ∅}) = pk|k−1(∃xi) · ((1− pD(xi)) + pD(xi) · (1− pg)). (3.62)

True negative association node (TN):

p(e = {xi,@}) = 1− pk|k−1(∃xi). (3.63)

Birth association node:

p(e = {b, zj}) = pTP(zj) · pB(zj|x1, . . . , xN). (3.64)

The computation of the probabilities for the complete association hy-
potheses of measurements to objects builds the basis of the association
method. The JIPDA method gets more and more complex with an in-
creasing number of objects or measurements due to the manifold combi-
natorics. The computational effort can be reduced enormously if gating is
applied to exclude very unlikely combinations prior to the computation
of the associations.

3.2.6 Object Management in JIPDA Filtering

The object management instantiates new object hypotheses, initializes ob-
ject states, and manages the object list efficiently. If the birth probability
pB(zj) exceeds the threshold value ζB, the object hypothesis xHj resulting
from the measurement zj of the sensor is added to the object list which is
referred to as instantiation. Otherwise, the object hypothesis is rejected.

Initialization of an object state means the identification of initial state
values. Sensors often allow a state initialization only with high uncer-
tainties leading to big gating regions after the prediction step. Thus, the
effort for data association becomes high due to complex ambiguities and
the computational demand increases. Multi-step approaches are advan-
tageous, especially for dynamic state variables. Static state variables that
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cannot be observed by the sensor (e.g., the components of the object di-
mension) are initialized using prior values from statistics. A new ob-
ject hypothesis is included within the environment model with the status
uninitialized in case of the multi-step approach. An initialization is accom-
plished in one of the next measurement cycles after data association with
the new sensor data.

The initialization considers only measurements that result very likely
from unobserved objects. The required association weight βbj is com-
puted within the JIPDA based on the birth model. In this case, a nearest
neighbor association approach usually suffices for the resolution of ambi-
guities since only a few candidates exist for initialization. Object speeds
and object sizes have to be within plausible ranges. Therefore, the object
has to pass these consistency tests before final object initialization. If all
conditions are met, the initial PoE p(∃xj)init of the object hypothesis is
computed according to

p(∃xj)init = pTP(zj)pB(zj|x1, . . . , xN)pfasso(i, j), (3.65)

where pfasso(i, j) is the probability of a false association between measure-
ment zj and another object xi. It can be chosen as constant prior probabil-
ity that has been determined statistically.

An alternative approach for object initialization, called multi-hypoth-
esis initialization (MHI) is described in [65]. It initializes multiple object
hypotheses xi1, . . . , xiK at once. Thereby, the PoEs of objects in a group are
explicitly coupled and a normalization of the PoEs of all objects belong-
ing to the group has to be accomplished after prediction and innovation
using normalization weights. The choice of normalization weights may
cause an amplified effect of the PoEs versus 1 or 0 for object hypotheses
that contradict each other. Therefore, the first approach is applied here.

3.2.7 Algorithm Complexity and Real-Time Computation

The runtime of the presented JIPDA method is within the complexity
class O(NM) if a uniform measure of complexity is chosen. The runtime
increases exponentially with the number of measurements M (within a
cluster). It is assumed for simplicity reasons that N ≤ M. This means
that at least as many measurements are received as objects are present in
the current environment model. The assumption is reasonable for most
sensors. If M < N, the complexity would be O(MN) and all considera-
tions could be accomplished analogously.
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The number of required computation steps is proportional to the number
of nodes in the hypotheses tree. The runtime of the approach is basically
influenced by the computation of hypotheses in the tree, and thus, it in-
creases exponentially with the number of measurements and currently
tracked objects, respectively. An upper bound for the computation of an
iteration has to be guaranteed for the implementation in an electronic con-
trol unit independently of the complexity of the currently observed sce-
nario. Therefore, the method requires an adaption. There are some JPDA
(Joint Probabilistic Data Association) approximation methods in the liter-
ature that compute the data association probabilities βij directly without
enumerating the events. Several authors proposed approaches for a re-
duction of the computational effort. A short summary can be found in
Chapter 4.1.2. Here, the adaptive procedure for a reduction of the hy-
potheses number as proposed by Munz [65] is applied. The reduction of
contradictory hypotheses enables a guaranteed maximum runtime where
only alternative hypotheses on the state level are excluded. All alterna-
tives (non-existence, missing detection, false detection, object birth and
correct detection) are considered for the estimation of existence. There-
fore, the applied gating method is adapted in a way that gating regions
for objects are reduced in measurement regions where many gating re-
gions overlap. These regions would cause complex hypotheses trees due
to the high combinatoric diversity. This adaption is accomplished until
the complexity of the problem is reduced sufficiently to enable algorithm
termination within the given maximum time. The gating probability pg
enables an direct adaption of the gating regions. The JIPDA method de-
generates to an IPDA (Integrated Probabilistic Data Association) method
with local nearest neighbor association in the extreme case. A missing
measurement due to the reduced gating region is then interpreted as a
missing detection.

3.3 Classification and Parameter Estimation

Classification techniques are applied to distinguish between different ma-
neuver types of the ego vehicle in the situation evaluation section. Clas-
sification is a technique for the prediction of group membership for data
instances on the basis of a training set of data containing observations
whose group membership is known. The target variable of the learn-
ing problem may only take on a small number of discrete values. Oth-
erwise, if the target variable that should be predicted is continuous, it
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is called parameter estimation. While parameter approaches like linear
regression use a finite number of parameters, the number of parameters
grows linearly with the number of training samples Nt in non-parametric
approaches, such as locally weighted regression.

Training Set

Learning 
Algorithm

Hypothesis 
hʣ( ) with 

Parameters ʣ
Feature Set X

Target 
Variable:
Class Y

Figure 3.5 Principle of supervised learning: A training data set serves the opti-
mization of the parameters Θ of the hypothesis function hΘ. Given
the features x ∈ X as input variables, the hypothesis function hΘ
later determines the class of an input sample as the target variable Y .

Machine learning distinguishes between supervised and unsupervised
learning.1 This work focuses on supervised learning.

The principle of supervised learning is depicted in Figure 3.5. A train-
ing set

〈
x(i), y(i)

〉
with i = 1, . . . , Nt serves the optimization of the pa-

rameters Θ of the hypothesis function hΘ(·). Given the input variables x
containing the features, the hypothesis function hΘ later determines the
class of an input sample as the target variable y. More formally, a given
training set should enable to learn a function hΘ : X 7→ Y , so that hΘ(x)
is a good predictor for the corresponding value of y ∈ Y . An important
expression in context with classification and parameter estimation is the
likelihood ΛΘ = p(y|x, Θ). Its maximization with respect to the parame-
ters Θ serves finding the parameters of the hypothesis function hΘ(·) for
a given training data set. The parameters Θ should be chosen in such

1Unsupervised learning algorithms are usually applied when it is difficult to provide ex-
plicit supervision (unambiguous labels for every input) to a learning algorithm in se-
quential decision making and control problems. Then, one only provides a reward func-
tion to the algorithm that indicates to the learning agent when it is doing well or badly
(reinforcement learning). It is the learning algorithm’s responsibility to find the actions
over time that give the largest rewards. Reinforcement learning has been successfully
applied in diverse fields such as autonomous helicopter flight, cell-phone network rout-
ing, marketing strategy selection or factory control.
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way that the observed results become most probable based on the given
model.

Moreover, an important distinction between learning algorithms is
made by the kind of model they rely on, such as linear and non-linear
models. For example, Generalized Linear Models (GLM) are based on
distributions from the exponential family, such as the Gaussian, the
Bernoulli or the Poisson distribution. Furthermore, one distinguishes
between discriminative and generative supervised learning algorithms.
While the first try to learn p(y|x) directly or try to learn mappings directly
from the space of inputs X to the labels {0, 1}, the latter try to model
p(x|y) and p(y).

Discriminative learning algorithms (such as logistic regression) use
a given training set to find a decision boundary between the different
classes. The algorithm checks in the classification step of a new sample
on which side of the boundary it falls, and makes its prediction accord-
ingly.

Generative learning algorithms try to find a description of known
classes using features and the prior probability of a sample belonging to
a class (class prior p(y)). Then the features of a new sample are checked
for similarity against the features of the known classes for classification.
After modeling the class priors p(y) and p(x|y), the algorithm uses the
Bayesian rule to derive the posterior distribution on y given x:

p(y|x) = p(x|y)p(y)
p(x)

. (3.66)

Common methods for supervised learning are, e.g., support vector ma-
chines (SVM) and naive Bayesian classifiers. Linear SVM algorithms are
utilized in this work to identify pedestrians in camera images where his-
tograms of oriented gradients (HOG) build the features. A naive Bayesian
classifier serves the classification of driving maneuvers of the ego vehicle
— such as lane following, lane change or turn, see Chapter 5.2.

SVMs belong to the class of non-linear classifiers with a discriminative
model and have usually a higher predictive accuracy than naive Bayesian
classifiers that are based on a generative model. However, the latter are
normally easier to interpret and use Equation 3.66. The prediction speed
of Bayesian classifiers is very high and their memory usage is low for
simple distributions, although the speed may be lowered and the mem-
ory usage may be increased by complex kernel distributions. SVMs show
good properties for prediction speed and memory usage when there are
only a few support vectors.
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Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) are
other exemplary approaches for behavior understanding that are not
used here. DTW is a template-based dynamic programming matching
technique. HMMs outperform DTW in the processing of undivided suc-
cessive data. Bayesian networks incorporate the advantage to use prior
knowledge and to model dynamic dependencies between state parame-
ters, also these dependencies make the model design and its computation
much more complex.

Support Vector Machines

SVMs are based on the idea of large margins and are one of the most
prevalent applications of convex optimization methods in machine learn-
ing. One defines separating hyperplanes (decision boundaries) between
the classes in such way that the distances of the samples of each class to
the hyperplane are maximized. The idea is that the farther a sample is lo-
cated from the hyperplane on one side, the more confident one is that the
sample belongs to the class on the corresponding side of the hyperplane.
Thus, one tries to maximize the distance of the samples to the hyperplane
— the so-called margin. A functional margin is related to the geomet-
ric margin via normalization. The class labels for binary classification
problems are usually denoted by y ∈ {−1, 1} instead of {0, 1} in context
with SVMs. The feature points with the smallest margins to the decision
boundary are the so-called support vectors. The number of support vec-
tors can be much smaller than the size of the training set. SVMs can learn
high dimensional feature spaces when one chooses a kernel formulation
where the kernel can be computed efficiently. Since the development of
the pedestrian detection and classification algorithm is not part of this
work and only the results are used and evaluated, the SVM algorithms
are not presented in more detail here. An introduction to SVMs can be
found, e.g., in [68].

Naive Bayesian Classifier

The classification of e-mails into spam and non-spam is a popular appli-
cation of the naive Bayesian classifier. The classifier is MAP-based and
therefore uses a generative model where one aims to maximize the right
hand side of Equation 3.66:

ŷ = arg max
y

p(y|x) = arg max
y

p(x|y)p(y)
p(x)

= arg max
y

p(x|y)p(y). (3.67)
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If one models p(x|y) and p(y) to make a prediction, it is not necessary to
calculate the denominator since it is independent of y. However, the pa-
rameter vector will end up with too many parameters in problems with
high-dimensional feature vectors x if the feature vector is modeled ex-
plicitly with a multinomial distribution over all possible outcomes (fea-
ture combinations). Moreover, this requires giant data sets for train-
ing. Therefore, one applies the naive Bayesian assumption that expects
conditional independence of all features x(i) given y, e.g., p(x(k1)|y) =
p(x(k1)|y, x(k2)). Even though the Bayesian classifier uses an extremely
strong assumption, it works well on many real world problems — even
when the assumptions are not met. Laplace smoothing is usually applied
if the training set does not contain all possible features with all states, so
that p(x(i)|y(j) = z) = 0 and thus, the class posterior probabilities result
in 0/0. The algorithm cannot provide a prediction anymore. The assump-
tion that the probability of an event that has not been seen in the finite
training data set is 0 might be statistically misleading. Therefore, Laplace
smoothing avoids ending up with zeros by setting p(x(i)|y(j) = z) to a
very small value and subsequent normalization of all probabilities. The
naive Bayesian classifier often works well and it is a good starting point
due to its simplicity and ease of implementation.

3.3.1 Model Selection and Model Evaluation

When designing a classification algorithm, one has to think of an appro-
priate model for the given problem. The model choice should aim for a
minimization of the generalization error of a hypothesis. The generalization
error of a hypothesis is the expected error on examples that were not nec-
essarily included in the training set. On the one hand, a model A might
fail to accurately capture the data structure and under-fits the data even
though there is an infinitely large amount of training data which results
in an error called bias. On the other hand, another model B might per-
fectly fit to the examples within the training set but does not necessarily
provide good predictions for additional samples. There is a large risk that
the model does not reflect the wider pattern of the relationship between
x and y, although it fits patterns in the small, finite training set very well.
This leads to the second component of the generalization error consisting
of the variance of the model fitting procedure. There is a trade-off between
bias and variance, so that a third model C — something in the middle —
might perform better than the extremes A and B.
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Empirical risk minimization aims for minimization of the generalization
error. Therefore, one defines the training error for a hypothesis hΘ as the
fraction of misclassified training examples. The generalization error is
then defined as the probability that hΘ will misclassify a new example
(x, y) from the same distribution. Empirical risk minimization picks the
hypothesis function hΘ that leads to the smallest training error from the
class of hypothesis functions H. The training error is close to the gener-
alization error with high probability if the size of the training data set Nt
is large. If a larger class of hypothesis functions is used, the bias will
decrease but the variance will increase, see [69] for evidence. If the hy-
pothesis class is infinite and has Np parameters, the number of training
examples required for an algorithm trying to minimize the training error
is usually roughly linear in the number of parameters Np of classH.

If the classes in the data are not separable, there will always be a classi-
fication error. However, one aims to keep the consequences of misclassifi-
cation as low as possible. The required evaluation criteria to numerically
express the consequences of a classifier decision can be a cost matrix C
where the elements cij represent the costs that are created when a sam-
ple belongs to class j but the classifier decides for class i. The classifier
performance can be evaluated by analysis of the mean costs where the
classification results from a validation training set are related to the ele-
ments of the cost matrix C

ε̂(hΘ) =

Nclass∑
i=1

Nclass∑
j=1

cij · eij, (3.68)

where an element eij of matrix E represents the fraction of samples that
were assigned to class i and belonged to class j. Thus, the matrix diag-
onal (i = j) contains the fractions of correct classification. The elements
of the cost matrix C may depend upon the problem and require further
knowledge about the model.

Hold-out cross-validation (simple cross-validation) and Ns-fold cross-
validation are popular methods to select the model with the best per-
formance from a finite set of models M = {M1, . . . , MNp}. The cross-
validation algorithms are applicable for model selection as well as for
evaluation of a single model or algorithm. In this work, 10-fold cross-
validation is applied for training and evaluation of the maneuver classi-
fier. The principle is described in Appendix A.3 or in [69].

Feature selection is a special case of model selection. It is useful to
find meaningful features and the right number of features for the learning
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task. If there are Nf features, then the feature selection can be considered
as a model selection problem with 2Nf possible models, since every fea-
ture can be relevant or less important. Wrapper model feature selection
aims to find the feature subset with the smallest generalization and can
be applied with forward search or with backward search. The first starts
with one feature and enlarges the feature subset until more or less all pos-
sible combinations have been tested, while the latter starts with a set of
all features and reduces this set until there are no more features in it. Both
algorithms are quite expensive and complete forward search takes about
O(Nf

2) calls to the learning algorithm.

3.4 Discrete Event Systems and Hybrid Automatons

Discrete (Dynamic) Event Systems (DES) model dynamics that cannot be
captured by differential equations or by difference equations. The word
discrete does not mean that the time or the state have to be discrete. It
rather refers to the fact that the dynamics are made up of events, although
these events can evolute continuously. In this work, DESs are used to
model and to predict the behavior of the ego vehicle and the behavior of
detected road users in its environment.

DES that combine time-driven dynamics with event-driven dynamics
are referred to as hybrid systems. One can associate a set of differential
equations describing the evolution of the continuous variables of interest
to each discrete state of the system. A hybrid system is capable to describe
switching dynamics and exhibits both continuous and discrete dynamic
behavior. The most common modeling framework for hybrid systems is
provided by the hybrid automaton. It is imaginable as an extension of
a timed automate with guards where arbitrary time-driven dynamics at
each discrete state characterize one or more continuous state variables.

The continuous state x may take values within continuous sets where-
upon only a single initial discrete state q from the set of discrete states
(q ∈ Q) is assumed. In the case of several initial discrete states (modes),
the analysis of reachable states can be performed for each mode sepa-
rately. Thus, the system state can be expressed by (q, x) with x ∈ X (usu-
ally X ⊆ Rn).

The state evolution of the hybrid automaton starts in the initial mode
q0 and in an initial state x(0) ∈ X 0. The mode specific flow function fflow
describes the development of the continuous state. As long as the con-
tinuous state is within a guard set G, the corresponding transition may
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be taken. It has to be taken if the state would leave the invariant inv(qi).
When the transition from the previous mode qi to the next mode qj is
taken, the system state is updated according to the jump function hjump
and the flow function fflow within the next invariant inv(qj). The tran-
sitions between discrete states are forced by exogenous events from the
outside and endogenous events that occur when a time-driven state vari-
able enters a particular set and violates an invariant condition. If the en-
dogenous event evokes a guard condition, an exogenous event is sub-
sequently required to cause a transition related to this guard condition.
Figure 3.6 illustrates the principle of the reachable sets in a hybrid au-
tomaton. Here, the hybrid automaton is defined based on the definition
in [70, 71] with additional consideration of uncertain parameters and re-
strictions on jumps and guard sets:

Definition 3.2 (Hybrid Automaton):
A hybrid automaton, denoted by Gha, is an eleven-tuple

Gha = (Q, q0,X , inv,X 0,U ,P , T , fflow, gguard, hjump) (3.69)

where
Q = {q0, . . . , qNmode} is a finite set of discrete states or modes,
q0 is an initial discrete state,
X is a continuous state space (usually Rn),
inv : Q 7→ 2X is a mapping resulting in a set that defines an invariant
condition (also called domain) for each mode q (inv(q) ⊆ X ),
X 0 is an initial continuous state, so that X 0 ⊆ inv(q0)
U is a set of admissible control inputs (usually U ⊆ Rm),
P ⊆ I p is the parameter space,
T is a set of discrete state transitions with T ⊆ Q×Q where a transi-
tion from qi ∈ Q to qj ∈ Q is denoted by (qi, qj),
fflow : Q×X × U × P → Rn is a flow function defined as vector field
for the time derivative of x : ẋ = fflow(q, x, u, ρ),
gguard : T 7→ 2X is a mapping function that results in a set G defining a
guard condition G ⊆ Q×Q×X for each transition from qi to qj where
gguard((qi, qj)) ∩ inv(qi) 6= ∅,
hjump : T × X 7→ X is a jump function returning the next continuous
state after a transition.

57



3 Theoretical Foundations and Methods

Invariant

Guard Sets

Mode 1 Mode 2

Jump

Reachable Set

Guard 
Sets

Figure 3.6 Visualization of reachable sets of a hybrid automaton.

The input u is assumed to be locally Lipschitz continuous2 and the input
sets Uq depend on the mode q. A different set of parameters can be chosen
for each mode q. The jump function hjump is restricted to a linear map.

Hybrid systems are well known in process engineering, especially for
supervision, e.g., of a chemical process. The supervision task usually has
qualitative aims like the question whether the temperature in a reactor
is within a safe range. Therefore, one abstracts the physical, continuous-
variable system by quantization of all continuous-variable signals. How-
ever, it might be difficult to solve the supervision task on the qualitative
level due to the mixed continuous and discrete nature of the quantized
system, since differential equations have to be solved under several in-
equality constraints induced by the quantizers.

Stochastic automatons represent the system in a purely discrete de-
scription that is abstracted from the quantized system. They enable quan-
titative performance measures in presence of uncertainty. The stochas-
tic automaton is described by a set of transition probabilities instead of
differential equations and inequality constraints. If the system shows a
non-linear behavior, methods relying on steadiness or on a Lipschitz con-
straint can be applied. Completeness of the model is a crucial require-
ment for the stochastic automaton to allow the transferability of its re-
sults to the supervision result for the quantized system [72]. A stochastic
automaton will be applied to predict potential future states of different
classes of road users in this work. Several aspects of uncertainty will be
taken into account where state sets of the road users will be represented
by intervals.

Intervals provide an efficient representation of sets. One can apply
interval arithmetics — a technique which can be applied to most stan-
dard operations and functions — on set representations in form of multi-

2 A function is Lipschitz continuous if it is differentiable everywhere and the absolute
value of the derivative is bounded by the defined Lipschitz constant.
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dimensional intervals. The I-representation of a multi-dimensional inter-
val describes a set by I := [a, a], a ∈ Rn, a ∈ Rn, a < a.

Interval arithmetics are often applied when more accurate techniques
for set computations fail or are too time-consuming. Unfortunately, in-
terval arithmetics might provide very conservative solutions resulting in
possibly unacceptable over-approximations. For example, formulations
using a zonotope3 representation as in [71] for sets are less sensitive to
over-approximation but make the computation much more complex and
computationally demanding. Therefore, interval sets are used in this
work. Basic operations for interval computations are described in Ap-
pendix A.4.

3.5 Reachability Analysis

Reachability analysis is a mean to determine a set of states reachable
by a system f (x(t), u(t), ρ(t)) that depends on time t if it starts from a
bounded initial set of states x(0) ∈ X 0 ⊂ Rn (e.g., in form of an interval
set) with a parameter vector ρ ∈ P ⊂ Rp and based on a set of input
trajectories u([0, τ]) ∈ U ⊂ Rm. u([0, τ]) denotes the union of inputs⋃

t∈[0,τ] u(t) within the time interval [0, τ]. One can compute reachable
sets for points in time and for time intervals. In this work, reachable sets
are computed for the speeds and the positions of the road users to pre-
dict their future states. The sets are represented by intervals. They take
into account uncertainty in the estimated state and in the prediction of
the road user’s behavior.

Reachable sets for time pointsR(τ) correspond to the union of all pos-
sible system states at t = τ:

R(τ) =
{

x(τ) =
ˆ τ

0
f (x(t), u(t), ρ(t))dt

}
, (3.70)

The union of reachable sets at time points within the time interval t ∈
[0, τ] results in the reachable set of a time intervalR([0, τ]):

R([0, τ]) =
⋃

t∈[0,τ]

R(t). (3.71)

3A zonotope is a polytope which can be obtained as the Minkowski sum of finitely
many closed line segments in Rn. Zonotopes are centrally symmetric, compact, convex
sets [73].
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Exact continuous reachable sets and discrete reachable sets are required
for the application in a hybrid automaton. If the continuous reachable
set hits certain guard sets, new discrete states may be reached. The
computation of a continuous reachable set starts based on the initial state
X 0 from its initial mode q0. One determines the reachable set for time
sub-intervals R([(k− 1)τ, kτ]) and ascertains that the reachable set does
not leave the invariant. If the set left the invariant at time point tinv,
one would check for the intersection Rint

j of hit guard sets with the
continuous reachable set. Each guard set is associated with a transition
(qi, qj) determining the next mode. The jump function hjump maps the
intersection set Rint

j to the new mode R+
j . Although the reachable set

may hit several guard sets within one mode, only the evolution of one
future mode can be computed at a time. Therefore, one writes the future
modes qj, the reachable sets after the jump R+

j , and the minimum time
for enabling transitions to a list. Then, one works through the list from
top to bottom and computes the corresponding reachable sets where all
sets and states of a data structure are interpreted as new initial states.

Stochastic differential equations serve the description of continuous
stochastic systems where a deterministic drift term and a stochastic dif-
fusion term are used to obtain the derivative of random variables [74,75].
Stochastic automatons with probability-based transitions from one dis-
crete state to the other are able to model discrete stochastic systems where
the probability of the transition may depend on a finite set of discrete in-
puts [70]. A stochastic reachable set of a continuous system for a point
in time is used as a synonym for the probability density function of the
state in this work, where the definition is adopted from [71], so that the
stochastic reachable set for a time interval t ∈ [0, τ] can be expressed cor-
respondingly by integration over time

fx(x, [0, τ]) =

ˆ τ

0
fx(x, t) ft(t)dt, ft(t) =

{
1/τ, for t ∈ [0, τ],
0, otherwise.

(3.72)

where fx(x, [0, τ]) represents the probability density function of the ran-
dom state vector x and t is a random variable which is uniformly dis-
tributed within the time interval [0, τ]. A conversion of stochastic reach-
able sets to reachable sets enables the application of stochastic reachable
sets in combination with hybrid systems. This reachable set is the subset
of the stochastic reachable set with probability values that are non-zero.
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3.6 Markov Chain Abstraction

The Markov chain is a very popular example for a stochastic automaton.
Markov processes are stochastic processes where the future is condition-
ally independent from the past history, given the current state. Stationar-
ity is the property of a system to maintain its dynamic behavior invariant
from time shifts. If a stochastic process is defined over a finite or count-
able set, one refers to that discrete-state process as chain. The combination
of both properties leads to a Markov chain:

p(xk+1|xk, xk−1, . . . , x0) = p(xk+1|xk) ∀0 ≤ k. (3.73)

State transitions may only occur at time instants 0, . . . , k in case of a
discrete-time Markov chain. The Markov property is memoryless, so
that all past state information is irrelevant and no state age memory is
required. The probability of a transition to a new state depends only on
the current state value in a semi-Markov process and state transitions may
occur at any time then.

Markov chain abstraction is a method that computes a probability dis-
tribution instead of using the original system dynamics. The Markov
chain abstraction can be applied to continuous and to hybrid systems. It
has to be created in a way that it represents the original system’s behavior
with sufficient accuracy. The state space of the continuous system Rn has
to be discretized for abstraction first, since Markov chains are stochastic
systems with a discrete state space. The continuous state space is sam-
pled to single cells and combined with the discrete modes resulting in
one discrete state space. Following, the number of Markov chain states
depends on the product of the number of cells of the continuous state
space Ncont and the number of modes (discrete states) Ndis, so that the
Markov chain has up to Nx = Ncont · Ndis states. Therefore, the approach
is only reasonable for systems with less than three to five state variables.
The number of states for the Markov chain is smaller if there is a unique
map of the continuous to the discrete state of the hybrid system which is
the case when the invariants of a hybrid system do not intersect. Then
one only needs to map the continuous state space of the hybrid system to
the discrete state space of the Markov chain. The formal definition of a
Markov chain is adapted from [70]:

Definition 3.3 (Discrete-Time Markov Chain):
A discrete Markov chain MC = (Q, p0, Ψ) consists of

p Q ⊂N+: the countable set of modes,
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p p0
i = P(x0 = i): the initial probability with random state x : Ω →
Q, where P(·) is an operator determining the event probability
and Ω the set of elementary events,

p Ψij = P(xk+1 = i|xk = j): the transition matrix enabling the map-
ping pk+1 = Ψpk.

The Markov chain is updated after each time increment τ ∈ R+ according
to the transition matrix Ψ, so that τ states the relation between the discrete
time step k (written in the index) and the continuous time t leading to the
continuous time tk = k · τ at time step k.
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Figure 3.7 Exemplary Markov chain with three states and transition matrix Ψ.

Figure 3.7 depicts an example for a Markov chain with three states rep-
resented by nodes. The arrows represent the transition probabilities Ψij
from state j to state i (1 ≤ i, j ≤ 3).

The Markov chain is created by sampling the state space of the original,
continuous system into cells representing discrete states. Afterward the
transition probabilities from one cell to the another are determined and
saved in the transition matrix of the Markov chain.

The continuous state space X ⊂ Rn and the input set U ⊂ Rm are
discretized to hyper-rectangles of equal size, meaning that each coor-
dinate of X and U is fragmented into equidistant intervals. Thus, an
n-dimensional interval xi =]xi, xi] = Xi describes the cell with index i
where xi, xi ∈ Rn. Figure 3.8 shows a visualization of the discretization
of the state space X ⊂ R2 for the two-dimensional case.

Correspondingly, an m-dimensional interval uα =]uα, uα] = U α repre-
sents the input cell with cell index α, where uα, uα ∈ Rm. The state space
X is a subset of Rn. The remaining subset in that space Rn\X is called the
outside cell and has assigned the index 0. The outside cell is elementary
when the transition probabilities of the Markov chain shall be calculated.
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Figure 3.8 Visualization of the discretization of the state space X ⊂ R2 for the
two-dimensional case and discretization of the input space U ⊂ R1.

3.6.1 Computation of Transition Probabilities

The continuous dynamics of the original system serve the computation
of the transition probabilities Ψij. One has to determine the transition
probabilities for each discrete input value α and state pair (i, j), so that:

Ψα
ij = P(xk+1 = i, yk = α|xk = j, yk = α). (3.74)

In this work, the transition probabilities are computed using a large
number of simulation runs. Therefore, a final set of initial states is gener-
ated from a pre-defined grid on the initial cell Xj. Furthermore, the input
cell U α is discretized to obtain a final set of input values u([0, τ]). These
input values are constant throughout the time interval [0, τ]. The input
trajectory û(t) and the parameter vector ρ are based on a corresponding
probability distribution and defined input dynamics.

One runs simulations according to the system dynamics
f (x(t), u(t), û(t), ρ) of the time interval [0, τ] with combinations of
all initial states with all inputs u([0, τ]). Here, sampling of the initial
state cells Xj and the input cells U α from uniform grids is applied, but
one could also use simulations generated from random sampling (Monte
Carlo simulation).

One starts with Nsim,α
j simulations in cell Xj with input u ∈ U α. Nsim,α

i,j
is the number of these simulations reaching cell Xi after time τ, so that
the ratio of both numbers leads to the transition probabilities:

Ψα
ij(τ) =

Nsim,α
i,j

Nsim,α
j

. (3.75)

The computation of the transition probabilities for a bounded set of ñ
equidistant intermediate points of time t̃0, t̃1, . . . , t̃n ∈ [0, τ] enables the
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approximation of the probability that another state is reached within the
time interval [0, τ]. The arithmetic mean of the intermediate transition
probabilities determines the transition probability for the time interval

Ψα
ij([0, τ]) =

1
ñ

ñ∑
k=1

Ψα
ij(t̃k). (3.76)

Unfortunately, the computation of transition probabilities using Monte
Carlo simulation or sample-based simulation does not provide a com-
plete model due to the limited number of simulation runs. The probabil-
ities of some transitions might be set to 0 even though they are non-zero,
but there was no simulation for the corresponding state transition. How-
ever, the Monte Carlo approach approximates the exact solution quite
exactly when the number of simulation runs tends to infinity. Further-
more, the Monte Carlo approach enables the utilization of different noise
distribution models for additional inputs, such as Gaussian white noise.

If the continuous dynamics fulfill the Lipschitz continuity, a system can
be numerically simulated making the presented approach applicable to
all continuous and hybrid systems. One has to ascertain a proper as-
signment of probabilities to possible executions in hybrid systems with
non-deterministic behavior, for example if transitions are enabled but not
enforced. As the mode of a continuous state within a cell is uncertain
for originally deterministic systems, both the abstraction of deterministic
systems and stochastic systems result in a discrete stochastic system.

3.6.2 Markov Chain Update

A Markov chain update means the projection of one state distribution to
the next state distribution using the transition matrix. It can be performed
for input α and time points k by multiplication of the transition matrix Ψα

with the probability vector pk. The input u has to stay within the input
cell U α for the time interval [tk, tk+1] (tk = k · τ), which is denoted by
index [k, k + 1] in the following, whereas the input û(t) is not considered
any longer, as it is already incorporated within the state transition prob-
abilities of the Markov chain. The input u may change its value for the
next time interval. The probability vector pk at the beginning of the time
interval serves the determination of the probability vector of the time in-
terval p[k,k+1] as auxiliary term, so that the update is performed according
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to

pk+1 = Ψα(τ)pk , (3.77)
p[k,k+1] = Ψα([0, τ])pk . (3.78)

The iterative multiplication of the probability distributions with the tran-
sition matrices evokes an additional error, as the probability distribution
within a cell is treated as if it was replaced by a uniform distribution in
the next time step [71]. Smaller discretization steps reduce this error but
increase the computational effort.

3.6.3 Markov Chain Update with Uncertain Input

If besides the state of a system, its inputs are uncertain as well, the
Markov chain’s update requires the introduction of a conditional prob-
ability pα|i (P(y = α|x = i)). The sum over all values of α is the total
probability of the state pi =

∑
α pα

i . The joint probability of the state and
the input is given by

pα
i = pα|i · pi. (3.79)

The Markov chain has to be updated for all possible values of α. One ob-
tains the update of the joint probability vector pα containing all possible
state values for a fixed input α using

pα
k+1 = Ψα(τ)pα

k , (3.80)
pα
[k,k+1] = Ψα([0, τ])pα

k . (3.81)

The conditional input probabilities pα|i are updated immediately at time
points k to enable the modification of the input probabilities pα. There-
fore, one requires the input transition matrix Γi,k that depends on the cur-
rent state and the time. It describes the probability of changing the input
from input β to input α (Γαβ

i,k ). Thus, the conditional input probabilities

pα|i correspond to

pα|i
k

′
=
∑

β

Γαβ
i,k · p

β|i
k . (3.82)

If one multiplies Equation 3.82 with pi,k and uses Equation 3.79, it be-
comes clear that one can update the joint probabilities pα

i instead of pα|i,
since the state probability pi does not change immediately, and therefore:

pα
i,k
′ =

∑
β

Γαβ
i,k · p

β
i,k . (3.83)
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As presented in [71], the joint probabilities pα
i are combined to a new

probability vector p̃T = [p1
1 p2

1 . . . pNu
1 p1

2 p2
2 . . . pNu

2 p1
3 . . . pNu

Nx
] for a sim-

pler notation and an elegant combination of the state transition values Ψα
ij

with the input transition values Γαβ
i , where the values Nu and Nx relate

to the number of discrete inputs and states. Consequently, also the corre-
sponding state and input transition values have to be rearranged.

If the dimension of the resulting matrix becomes large and there are
only a few non-zero entries meaning that the resulting matrices are very
sparse, special algorithms designed for the multiplication of sparse ma-
trices [76] can accelerate the computation. The big advantage of Markov
chain abstraction lies in the fact that the computationally expensive part
can be accomplished offline ahead when the computation time is almost
unlimited. Probability distributions can be computed efficiently during
online operation of a system.

This chapter explained the existing methods that have been used in this
thesis. Object tracking is performed using two approaches for data asso-
ciation. The concrete implementation for pedestrian tracking with radars
and monocular camera will be described in Chapter 4. The situation eval-
uation module is described in Chapter 5. It uses a Bayesian classifier
to distinguish between different maneuver classes. Moreover, stochastic
reachable sets are computed using Markov chain abstraction to predict
the uncertain future states of the road users.
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4 Implementation of two Pedestrian Tracking
Approaches

This chapter is dedicated to the description of the system architecture and
the implementation of the pedestrian tracking approaches using radars
and monocular camera. The first section provides an introduction to ex-
isting approaches for pedestrian tracking, fusion of monocular camera
and radar as well as to tracking across sensory blind regions. The sec-
ond section provides information about the hardware and the system ar-
chitecture, while the further sections introduce the used state model for
pedestrians and the ego vehicle as well as the used approach for sensor
measurement together with its results. The chapter closes with the de-
scription of the applied track management methods.

4.1 Related Work on Sensor Fusion and Pedestrian
Tracking

4.1.1 Existing Approaches for Automotive Pedestrian Tracking

Linzmeyer [77] developed a pedestrian detection system using detections
from radar and segmented data from thermopile sensors. Object posi-
tions are fused separately from the object type using a Kalman filter in
combination with simple weighted fusion. Dempster’s and Shafer’s the-
ory of evidence serves the fusion of the object types.

Fayad and Cherfaoui [78] presented a generic method to fuse data from
asynchronous sensors with complementary and supplementary FOVs by
tracking detected objects in a commune space. They use standard Kalman
filters with nearest neighbor data association to filter pedestrian states.
The tracking confidence is calculated and updated based on the score of
Sittler [79] using a likelihood ratio, while detection and recognition con-
fidences are updated using basic belief assignment. In experiments, they
only use a lidar sensor and do not fuse multi-sensor data nor validate
their results. Furthermore, they perform the fusion in a commune sen-
sor space which is not adequate when using different sensor types and
accurate measurement covariances shall be provided.
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Meuter et al. [80] use an unscented Kalman filter for pedestrian tracking
from a moving host using a monocular camera. Their approach does not
provide any object existence information and it requires the generation
of a region of interest using the ’inverse perspective matching profile’,
which reduces the computational demand but impairs the detection per-
formance of the algorithm.

Gate et al. [81] use a Kalman filter LNN to track potential pedestrian
detections of a laser scanner. The resulting tracks generate regions of in-
terest to classify pedestrians in a video image. The probability that the
final tracks result from pedestrians is computed based on detection notes,
recognition notes and tracking notes. The advantage of the approach is
its low computational complexity; however, the decisive role given to the
laser scanner represents a drawback.

Chávez-Garcia et al. [82] fuse data from frontal radar and mono-vision
on the detection level before tracking using Dempster-Shafer occupancy
grids. Four Kalman filters handle the motion models and the most prob-
able branch is selected as most probable trajectory (Interacting Multiple
Model). This approach is not dedicated for asynchronous sensors, has a
low detection performance and does not provide existence information
about the tracked objects.

Westenhofen et al. [83] generate regions of interest by using a transpon-
der system and detect pedestrians in video images based on HOG fea-
tures. An EKF tracks the pedestrians (constant turn rate and constant
velocity assumption).

Lamard et al. [84] dealed with occlusions in multiple target tracking by
modifying the sensor detection probability map in a Multiple Hypothesis
Tracker (MHT) and a Cardinalized Probability Hypothesis Density Filter
(CPHD), respectively. They presented results using measurements from
a camera. In contrast to Reuter et al. [85] who used a sequential Monte
Carlo multi-target Bayes (SMC-MTB) filter based on FISST for pedestrian
tracking, Lamard et al. modeled the occlusion probability not as a binary
value and took into account the uncertainty of the targets state. The pre-
sented approach provides a target PoE that is based on the hypothesis
probability which uses the track score. However, it does not exploit the
inference probability from the measurements for the PoE nor has the ap-
proach been presented using detections from radar and monocular cam-
era.

None of the enumerated approaches tracks pedestrians using measure-
ments from radar and monocular camera and provides a reliable PoE.
Moreover, only a few authors presented their tracking results using real
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measurement data. If the other author’s approaches provide a PoE, it
does not influence the state update or does not exploit the sensory infer-
ence probability. There is no approach that uses a JIPDA filter for pedes-
trian tracking and sensor data fusion with monocular camera and radars.
Therefore, a generic approach for pedestrian tracking that fuses data from
radars and monocular camera and provides a reliable PoE has been de-
veloped in this work.

4.1.2 Related Work on Sensor Fusion using Probabilistic Data
Association

The JIPDA filter was published in 2002 for the first time by Musicki [86,
87]. It has originally been designed for aerospace surveillance and is
strongly related to other probabilistic approaches for data association,
like the PDA [88] or its multi-object variant JPDA [58], which is a sub-
optimal single-stage approximation to the optimal Bayesian filter. Re-
stricted extensions of the JPDA allow the formation of new tracks [89].
The JIPDA filter is a sequential tracker in which the associations between
several known targets and the latest observations are made sequentially.
The state estimation itself is based on an Kalman filter.

Mählisch [60] suggested an implementation of the JIPDA filter to track
vehicles, while Munz [65] combined the JIPDA filter with Dempster’s and
Shafer’s theory of evidence to model sensory existence evidence using a
monocular camera and a lidar for longitudinal vehicle tracking. Thereby,
he enhanced the detection performance of the fusion system. Further-
more, he extended the approach to a generic sensor-independent fusion
framework including several improvements in order to guarantee real-
time performance of the JIPDA filter — such as a dynamical reduction of
gate sizes leading to a limited number of possible combinations and thus,
to a bounded computation time. Excluding certain dependencies of as-
sociation events [90] leads to a significantly simplified computation rule
for the association probabilities, which is utilized in the cheap Joint Prob-
abilistic Data Association (cJPDA) filter [91]. This method was applied to
vehicle environment perception based on video data in [92]. A more exact
approach has been presented in [93], but it assumes a constant detection
rate near 1. This is not applicable if the state-dependent probabilities of
detection should be accounted for.

Horridge, Maskell et al. [94, 95] circumvent the combinatorial explo-
sion by representing the structure of the target hypotheses in a kind of
net. The hypothesis tree consists of repeated subtrees which only need to
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be computed once. The method exploits the redundancy in an ordered
list of objects used to describe the problem. They process the objects in a
tree structure exploiting conditional independence between subsets of the
objects. The disadvantage of this method is that the complexity strongly
depends on the processing order of the objects and the maximum com-
putation time cannot be guaranteed.

Under-segmentation refers to a situation where only one measurement
is provided from multiple objects. It may be caused by the limited reso-
lution of a sensor, e.g., poor angular resolution in case of a radar sensor.
Measurements from objects located close to each other merge. Zuther
et al. have studied this effect in [96]. The opposite effect is called over-
segmentation, where several measurements are provided from one object.
The effect is particularly relevant when using data from laser scanners.
The assumption that one object causes one measurement has to be re-
jected then. An approach where a set of measurements may be assigned
to one object is proposed as multiple association JIPDA in [65]. The last
problem is circumvent by merging two measurements to one target if they
are expected to result from the same pedestrian.

None of the known approaches utilizes radars and a monocular cam-
era, nor is it specifically designed for pedestrian tracking. In contrast to
the work of Munz [65], occluded objects and objects in the close, right sen-
sory blind region are defined as existing objects in this work. Pedestrian
tracking with radars and monocular camera from a moving commercial
vehicles implies some special challenges, e.g., since the vehicle’s cabin
strongly vacillates, so that the dynamic camera rotation angles strongly
deviate from the stationary ones effecting the camera-based distance esti-
mation. Moreover, no measurement results for the corresponding sensor
types have been presented by other authors. Usually, spatially constant
sensor noise and constant detection probabilities (except for the outer
parts of the FOV) are assumed. Here, the sensors are measured under
laboratory conditions and in real-world urban scenarios. The JIPDA filter
obtains values dependent on the state and measurement from a look-up-
table then.

4.1.3 Existing Approaches for Tracking across Sensory Blind Regions

Different approaches for blind region tracking have been proposed for
surveillance, e.g., of public areas or office buildings, using stationary cam-
eras with distinct FOVs. Some assume a known camera topology [97],
while others estimate it from the data, e.g., by temporal correlation of
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exit and entry events [98, 99]. Tracking is performed on each camera us-
ing a Kalman filter [100] or a particle filter [101] before the information
is shared with the other cameras or before the object information is in-
tegrated into a common ground plane tracker, e.g., by intersecting the
targets’ principal axis [101]. Known transition times and probabilities be-
tween the FOVs support the association process [97, 102–104] as well as
the object’s appearance information [105].

The appearance model may contain a Gaussian distribution for the
change of object shape [97, 100, 106] or (color) brightness transfer func-
tions [107, 108], e.g., for (fuzzy) histogram matching [109]. Black et
al. [102] use a camera network model to determine the regions where the
object is most likely to reappear when an object is terminated within an
exit region. The object handover region models consistency of a linked
entry and exit region along with the expected transition time between
each region [109]. Javed [104] obtain correspondence among cameras by
assuming conformity in the transversed paths of people and cars. More-
over, Loke [106], Rahimi [110] and Wang [105] utilize target’s dynamics
to compensate for the lack of overlap between the cameras’ FOVs.

A common characteristic of [97, 100, 103, 107–109] is that they require
some form of supervision, or rely on known object correspondences in
training data between non-overlapping views, while [98, 99, 102, 106, 110]
work unsupervised and operate in correspondence-free manner, which
increases the robustness of the algorithm.

Many of the upper approaches provide good results and are adequate
for surveillance of areas which the algorithms have been trained for, but
the system is moving in this application. Even if the vehicle stops at a red
light, the area that has to be observed is different from that around the
vehicle of another stop. The trajectories of the objects that walk around
the vehicle change as well, so that information like matching trajectory
fragments before and after the blind region cannot be used.

A camera is only available for one of the two FOVs here, meaning that
no shape matching or appearance model is applicable. The only informa-
tion that can be used is the matching of the state information (conformity
of the object motion) and the measurement properties which indicate that
the detection represents a pedestrian. A matching between the reflection
amplitude of one radar sensor or the RCS value of the other one cannot
be exploited, since the reflection amplitudes of the blind spot radar are
distributed rather randomly for all classes of objects than dependent on
the object appearance.
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Figure 4.1 A: Testing truck with mounted sensors for frontal environment per-
ception (camera, radar, laser scanner); B: Visualization of the sen-
sory FOVs, where LRR stands for long range radar and SRR for short
range radar.

4.2 System Description

The test vehicle that has been used for data recording and system integra-
tion during the work on this thesis is shown in Figure 4.1 A. The camera
that is used for pedestrian detection is located directly behind the wind-
shield and a few centimeters above the breast. The short range radar
sensor (SRR) and the long range radar sensor (LRR) are combined within
one housing and their antennas are integrated on the same rotating drum
allowing to switch between modes for long range and short range detec-
tion. The position of the used radar sensor system for frontal environment
perception is below the license plate. A blind spot radar sensor (BSR)
monitors a region on the right side of the vehicle and is mounted on the
first lower step tread. An illustration of the sensory FOVs is given in Fig-
ure 4.1 B. A laser scanner is used as reference sensor to provide ground
truth data. It is either mounted on the bull bar or on the upper step tread
on the right side of the truck.

The following subsection describes the utilized sensors as well as how
pedestrians are detected and classified by these sensors.
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4.2.1 Camera

A monocular camera serves the optical detection and classification of
pedestrians. It is mounted in a height of 2.47 m with 0.12 m lateral offset
to the left behind the windshield. The pitch angle to the ground is 4.2◦.
The utilized camera optics provide 35◦ horizontal angle of view and 23◦

vertical angle of view with a focal length of about 7 mm on axis. A CMOS
image sensor converts the image to 752 horizontal pixels and 480 vertical
pixels with a bit-depth of 8 bit leading to a resolution of about 21 px/◦.
The wavelength range of the sensor is within 410 nm and 720 nm with a
sensitivity of 4.8 V/lux-sec. The camera expects 12 V for power supply
and has a dynamic range of 110 dB. The image processing can be per-
formed in average on 33.33 frames/s. The exposure time is automatically
adapted to the environmental illumination conditions.

The image is sent via low voltage differential signaling (LVDS) to a
measurement interface hardware that changes the format and sends the
image data via universal serial bus (USB) to a computer where the image
processing is performed within a framework that is based on C++. The
pixels are interpreted as gray values within the framework. A lens cor-
rection algorithm as in [111] aims to compensate the lens distortion using
the intrinsic parameters of the camera.

Pedestrian Detection and Classification in the Image

A summary of proposed and evaluated methods for pedestrian detection
using visible light cameras can be found, for instance, in the contributions
of Gandhi and Trivedi [112] or of Enzweiler and Gavrila [113]. Enzweiler
and Gavrila [113] provided an overview of monocular pedestrian detec-
tion from methodological and experimental perspectives. They cover
the main components of a pedestrian detection system and the underly-
ing models. They consider wavelet-based AdaBoost cascade, HOG with
linear SVM, neural networks using local receptive fields, and combined
shape-texture detection. Their experiments on 20,000 images with anno-
tated pedestrian locations captured on-board a vehicle driving through
urban environment indicate a clear advantage of HOG with linear SVM
at higher image resolutions and lower processing speeds, and a superior-
ity of the wavelet-based AdaBoost cascade approach at lower image res-
olutions and (near) real-time processing speeds. More recent approaches
for video-based pedestrian detection have been presented by the same
authors in [114, 115], while Goto et al. [116] published a cascade detector
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with multi-classifiers utilizing a feature interaction descriptor for pedes-
trian detection and direction estimation.

Grayscale 
Image

HOG 
Classification

Non-Maxima 
Suppression

ROI 
Generation

Pedestrian
Tracking

Figure 4.2 Visualization of pedestrian classification approach.

In this work, the camera-based pedestrian detection and classification al-
gorithm is based on the work of histograms of [113, 117, 118] and HOG
features with linear SVMs are used. Figure 4.2 visualizes the applied
principle. The system utilizes an initial set of regions of interest (ROIs)
generated for various detector scales and image locations using a flat-
world assumption and ground-plane constraints, which means one se-
lects a box of pixels that represents possible object dimensions at certain
distances. The resulting pixel boxes selected as ROI (sub-images) are sent
to the classification module that uses features from HOG computations
on gray-scale image data [117].

The first classification step returns multiple detector responses at
near-identical locations and scales. Therefore, a confidence-based non-
maximum suppression (NMS) algorithm performs pairwise box cover-
age to the detected bounding boxes. Two system detections zI

i and zI
j are

subject to NMS if their coverage

Ξ(zI
i , zI

j) =
A(zI

i ∩ zI
j)

A(zI
i ∪ zI

j)
(4.1)

is above a certain threshold value (e.g., 0.5), where the coverage Ξ(zI
i , zI

j)

is the intersection area related to the union area. A bandwidth mean-
shift-based mode-seeking strategy determines the position in x-y-scale-
space [119]. The final detection’s score is the maximum of all scores
within the mode. This procedure showed to provide more robust results
than applying kernel density to form the final score as done in [120].
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The algorithm finally provides a value between −1 and 1 for each object
hypothesis to express its confidence whether there is a pedestrian within
the sub-image (1) or not (−1). Only hypotheses with a classification result
greater than 0 are processed in the JIPDA filter.

4.2.2 Frontal Radar Sensors

The utilized front radar sensors are mounted in the lateral center at the
front rear (0.04 m in front of the camera) about 0.39 m above the ground.
The lower left corner of Figure 4.3 shows the outer appearance of the
frontal radar sensors. The LRR with 17 antennas and the SRR with 15 an-

Waveguide

Twist reflector

Tilting 
movement

Transreflector

Elevation adjustment

Drum with grooved 
surface

Drum

Figure 4.3 Appearance and antenna concept of frontal radar sensors (SRR,
LRR), adapted from [11].

tennas are combined within one housing and they use the same electronic
control unit (ECU). The mechanically scanning antennas are located on
one rotating drum, see Figure 4.3 for the antenna concept. A generator
provides a radio frequency signal that propagates along a waveguide.
This waveguide is located closely to a drum with a grooved surface build-
ing a periodic leaky wave antenna. The electro-magnetic energy is scat-
tered at the grooves of the drum leading to a directed radiation with an
angular distribution and amplitude according to the design of the drum
surface. Continuous rotation of the drum and different surface properties
at different rotation angles enables antenna beam scanning and adjust-
ment of the antenna beam shape in the azimuthal plane of the sensor.
Thereby, one obtains different scans with different angular segments and
resolutions. The polarizer and the twist reflector build a folded reflector
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assembly for adjustment in the elevation plane. The wave emitted by the
waveguide is reflected at the polarizer and hits the tiltable twist reflector
surface shaping the beam in the elevation plane and twisting the polar-
ization plane of the radio frequency wave by 90◦ so that it can pass the
polarizer.

The system operates in simultaneous transmit and receive mode, where
frequencies between 76 GHz and 77 GHz are used. The maximum angu-
lar resolutions are 1◦ for the long range and 4◦ for the short range. Two
targets can be resolved as such if they differ in the range more than 2 m or
in the range rate more than 5 km/h. The accuracy of the speed measure-
ments is specified to be 0.5 km/h for the LRR and 1 km/h for the SRR.
The long range scan provides measurements from an azimuthal aperture
angle of ±9◦ within a range of 0.25− 200 m, while the short range sensor
scans the environment from 0.25− 60 m within ±28◦. The radar sensors
have originally been designed for adaptive cruise control applications, so
that the detection range is lower for pedestrians (50 m and 35 m) due to
weaker reflections and priority to more strongly reflecting targets in the
radars’ pre-processing unit. The radar accuracies have been measured for
pedestrians and the results are presented in Subsection 4.4.2.

The sensor ensemble utilizes a chirped radar modulation scheme (pulse
compression radar, chirps of certain shape with different frequencies).
The signal-to-noise ratio (SNR) is better compared to a pulse Doppler
radar, since a higher amount of radio frequency energy is utilized due to
longer duty cycles. Two succeeding fast Fourier transforms (FFT) sepa-
rate the range and velocity information in the received signals. The trans-
mitted signal has to be designed in such way that the width of the inter-
correlated signals is smaller than the width obtained by a standard pulse
after matched filtering (e.g., rectangular pulse results in a cardinal sine
function). The resulting cycle time corresponds approximately to 66 ms
(far and near range scan in one cycle). Figure 4.4 visualizes the main com-
ponents of the radar sensors in a block diagram.

The sensor arrangement expects some ego vehicle information from the
Controller Area Network (CAN), e.g., the vehicle speed. A development
interface provides the radar data on the following abstraction levels: peak
list, untracked targets (detections with features), tracked objects as well
as filtered and tracked objects, whereas the untracked targets (64 for each
radar range) are used for pedestrian tracking in this work. A special hard-
ware changes the data format, so that it can be sent via USB to the pro-
cessing computer. The communication from the sensor to that hardware
is performed via an Ethernet connection.
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RF Transceiver
· 77 GHz PLL
· Chirp Generator
· Receiver

Antenna

Converter
· MUX
· Amplifier
· A/D
· DAC

ECU
· Digital Filter
· Cycle Control
· FFT for Distance
· FFT for Relative Speed
· Peak List Generator
· Radar Target Processing

Figure 4.4 Block diagram of frontal radar sensor components: a radio frequency
(RF) transceiver with phase-locked loop (PLL) for voltage controlled
oscillation to obtain chirps and to receive reflections from the an-
tenna; a converter to multiplex the received, analogue signal (MUX),
amplify it and convert it to a digital signal (A/D) as well as to con-
vert digital to analogue signals (DAC) for the reverse direction; an
electronic control unit (ECU) for signal processing and control.

Pedestrian Data Filtering from Radar Reflections

The detection performance of the radar may be spatially varying, e.g., due
to manufacturing tolerances. The resolution of radar sensors is limited
(bandwidth-dependent), especially if a weakly reflecting object (pedes-
trian) stands close to a bigger and more strongly reflecting object (car).
As long as the two objects differ significantly in at least one dimension,
the objects may be separated. However, the accuracy of the radar’s range
and range rate measurement outmatches the camera, since it is almost in-
dependent of the cabins pitch angle and of heuristics like a ground plane
assumption.

For cars, the positions of reflecting areas on the rear-end can be com-
puted very accurately. However, pedestrians do not reflect only from
the body surface but also from inner body parts and due to the radar’s
mounting position only legs can reflect within short distances. Often only
one of the two pedestrian legs is provided as target by the sensors mak-
ing in hard to track the pedestrian with simple motion models and to set
up tracks based on single measurements. The provided Doppler speed is
based on the leg measurements as well, so that it varies between standstill
and the double pedestrian body speed if the ego vehicle does not move.
If both legs are provided — which was usually not the case for the SRR
and LRR — merging the measurements to one could help to obtain the
pedestrian’s body position and speed information. Otherwise, the values
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of the sensor’s measurement covariances have to be increased based on
average pedestrian step sizes and the pedestrian speed.

The sensor module computes an RCS value based on the measurements
of the SRR and LRR for each detection. It should be around 1 m2 for com-
plete, adult pedestrians. This measure can be a first indication that the
reflecting object is a pedestrian, since objects like cars should provide sig-
nificantly higher RCS values. There are many other object classes that
lead to similar RCS values, e.g., some arrangements of gravel. Moreover,
objects with very small RCS values are often suppressed in a dense envi-
ronment (due to radar design for ACC application), so that not all pedes-
trian reflections can be obtained then. Furthermore, heavy fog or rain can
reduce the assigned pedestrian RCS values, so that they are not detected
at all during these weather conditions. The Doppler speed in combina-
tion with the ego motion results in another indicator signal for pedestrian
filtering. Pedestrians can only move with a certain maximum speed, so
that extraordinarily fast targets (e.g., faster than 10 m/s) can be excluded
from further computations.

4.2.3 Blind Spot Radar

The radar sensor monitoring the right side of the ego vehicle (blind spot)
is referred to as BSR here. It is oriented to the right side and is mounted on
the lowest right step tread at the side rear about 0.45 m above the ground
and 0.44 m longitudinally behind the frontal radar sensors with a lateral
offset of −1.24 m, see Figure 4.5. It uses a single antenna for transmission
(single beam monopulse) and four antennas for receiving the echoes. A
FMCW measurement principle with so-called star PD wave forms (phase
distortion, fast ramping) results in measurements for range and Doppler
speed. The carrier frequency is within the range of 76 GHz to 77 GHz
and the bandwidth for frequency modulation is about 250 MHz. A phase
mono-pulse approach leads to angle measurements utilizing four patch
antennas on ceramic. The phase shift between antennas with the distance
of about λ/2 (half wave length) is evaluated to obtain an unambiguous
measurement for the angle. Another antenna pair with a larger distance
(about 3λ/2) is evaluated to increase the accuracy of the measurement.
The distances between the single antennas impact the directional charac-
teristic of the sensor. The FOV expands within ±75◦ azimuthal aperture
angle and a range of 0.2 m to 60 m, whereas the sensor is less sensitive at
positive angles above 50◦ and in the very near range (< 1 m). The sensor
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Figure 4.5 Mounting positions of blind spot radar and laser scanner at right
vehicle side.

is able to discriminate between targets that deviate at least 1 m in range or
around 0.5 km/h in speed — parameters that depend on the bandwidth.

Similarly to the SRR’s and LRR’s RCS value, the BSR provides an ampli-
tude value that could be applied to filter pedestrians, but the evaluation
(Section 4.4.3) showed that the signal quality is very poor, so that it is not
used.

The BSR operates at a 12 V basis and targets are sent to the computer for
tracking via a private, high speed CAN. Here, only two devices are con-
nected to each other and the BSR is the only device that transmits data
on the CAN. The message IDs correspond to the 64 target IDs of the sen-
sor. This leads to the special case of constant delay times for transmission
over this serial bus. Peak-CAN-adapters convert the CAN data and send
it via USB to the computer for further processing.

4.2.4 Laser Scanner

A laser scanner running on a 12 V basis has been used as reference sen-
sor for pedestrian detections of the sensors used for pedestrian tracking.
The measurement accuracy of single measurements (reflections) is very
high. However, the sensor does not provide complete pedestrian mea-
surements but the distance with the corresponding angle in which laser
beams have been reflected by the environment. Thus, the pedestrian data
has to be computed from the point cloud which is described after enu-
meration of the technical sensor data.
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The sensor has 64 vertically fixed, eye-safe lasers for scanning the en-
vironment mechanically to obtain 360◦ FOV in the azimuth and +2◦ to
−24.8◦ in the elevation. Each laser sends 5 ns pulses with a wavelength
of 905 nm. While the angular resolution of single measurements in the
azimuth is specified to be 0.09◦, it should be about 0.4◦ in the elevation.
The detection range for materials with low reflectivity (e.g., pavement)
is 50 m and increases with a higher reflectivity (e.g., cars) to more than
120 m, whereas the range accuracy is specified to be below 2 cm. En-
tire unit spins are performed at a rate of 5 to 15 Hz (300 to 900 rotations
per minute). The sensor is able to measure more than 1.33 · 106 reflection
points per second and sends its data via Ethernet to the processing com-
puter at a rate of 100 Mbps using the user datagram protocol (UDP). The
internal latency of the measurement results is specified to be smaller than
0.05 ms.

Pedestrian Data Filtering from Scanner Data

Figure 4.6 shows the main computation steps to obtain pedestrian detec-
tions from the scan data. Ground reflections are removed from the data

Scan 
Data

Remove Ground 
Reflections 

using Partial 
Regression Lines

Build Clusters 
using DBSCAN 

Algorithm

Find Center of 
Gravity of 

filtered Cluster 
Results

Filter by Cluster 
Dimensions

Figure 4.6 Procedure for pedestrian filtering from laser scanner data.

in a first step by estimating ground plane patches of a few square meters.
It is not advantageous to estimate only one ground plane since, for ex-
ample, sidewalks in raised position would evoke aslope ground planes,
so that not all ground plane points could be removed on the one side
and relevant data would be eliminated on the other side. For estima-
tion of the ground plane patches, the 3D reflection points are reduced to
two dimensions by setting their lateral value to zero (y = 0) first. Next,
one estimates a partial regression line through the resulting points us-
ing the least squares method. Appendix A.5 briefly describes the applied
least squares method that provides the coefficients of the partial regres-
sion line. The application of the y-coordinate vector of the data enables
the description of the corresponding ground plane patch. All scan points
below this patch and those closely above are removed from the data.
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The remaining points belong to the objects of the environment, e.g.,
houses, bushes, cars, street lamps or pedestrians. An algorithm for
density-based spatial clustering of applications with noise (DBSCAN)
proposed by Ester et al. [121] in 1996 helps to build clusters of scan
points that represent these extended objects. The advantage of this clus-
ter algorithm is that it requires only one input parameter as domain
knowledge and supports the user by determining it. Furthermore, it
discovers clusters with arbitrary shape, which is important for pedes-
trian detection, and it works very efficiently even under noise. The com-
plexity is O(NpointslogNpoints), where Npoints is the number of points.
For example, Chameleon [122] is another hierarchical clustering algo-
rithm that provides good cluster results but has a higher complexity
(O(NclNpoints + NpointslogNpoints + N2

cllogNcl), where Ncl is the number
of clusters). It requires the number of clusters as given input which is
not available when detecting a variable number of objects in the envi-
ronment [123]. The shared near neighbor algorithm (SNN) by Ertoz et
al. [124] is strongly related to DBSCAN but defines the similarity between
points by looking at the number of nearest neighbors that two points
share. It is thereby able to detect clusters with different densities, which is
not required here, since the density of reflection points from laser scanner
shows only little variation in the considered near range.

The DBSCAN algorithm is utilized for several applications in diverse
disciplines, for example, for the creation of thematic maps in geographic
information systems, for processing queries for proteins with comple-
mentary surfaces in molecular biology, or for separating discrete sources
from noise of a survey of the sky in astronomy [125]. The key idea of
the DBSCAN algorithm is that the neighborhood of a given radius has
to contain at least a minimum number of points for each point of a clus-
ter, meaning that the density in the neighborhood has to exceed a cer-
tain threshold. The choice of a distance measure between point pairs
(〈qs, qt〉 , s 6= t) determines the shape of a neighborhood. Here, the Eu-
clidean distance between point pairs is applied as distance measure.

Ester et al. [121] define a threshold distance ε for the neighbor-
hood Nε(qs) of a point qs. There has to be another point qt in the
database Dpoints that is within the range of ε:

Nε(qs) = {qt ∈ Dpoints|dist(qs, qt) ≤ ε}. (4.2)

Figure 4.7 visualizes different classes of points that will be defined and
their neighborhood regions. If a point qt has at least Nmin points qs in its
ε-neighborhood Nε(qt), it is a core point (qs ∈ Nε(qt) ∧ |Nε(qt)| ≥ Nmin).
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Figure 4.7 Cluster with visualization of DBSCAN with Nmin = 3, where the
two blue points represent border points that are density connected
via the gray core points. They are density reachable from the core
points. The red points represent noise.

Each point in the ε-neighborhood of that core point is directly density
reachable from qt. The relationship of direct density reachability is non-
symmetric.

The definition is closely related to density reachability of a point qs from
a point qt with respect to ε and Nmin. One claims that there is a chain of
points q1, . . . , qn, q1 = qt and qn = qs, so that subsequent points in that
chain are directly density-reachable from qs. Two border points qs and qt
of the same cluster Ccl might not be density reachable from each other.
However, there might be a core point qcore in the cluster that is density
reachable with respect to ε and Nmin from both border points qs and qt,
so that the border points are density connected.

Finally, the formal definition of a cluster Ccl with respect to ε and Nmin
follows. It is a non-empty subset from the database of points Dpoints that
fulfills the conditions for maximality and connectivity:

1. ∀qs, qt: if qs ∈ Ccl ∧ qt is density-reachable from qs with respect to ε
and Nmin, then qt ∈ Ccl.

2. ∀qs, qt ∈ Ccl: qs is density connected to qt with respect to ε and Nmin.

Noise can be defined as subset Snoise of the database Dpoints. It con-
tains all points that do not belong to any cluster Ccl,id (Snoise = {qs ∈
Dpoints|∀id : qs /∈ Ccl,id}), see Figure 4.7 for an illustration of different
point classes.

The parameters ε and Nmin have to be defined before a cluster can be
discovered. Then, one chooses an arbitrary, non-classified point from
the database Dpoints and sets it as seed point qcenter. A region query
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around the seed point qcenter collects all Nε points lying within the radius
ε around qcenter and checks whether qcenter fulfills the core point condi-
tion. In case qcenter is not a core point, qcenter is temporarily classified as
noise and the algorithm iterates over the remaining non-classified points
in the database Dpoints until it finds a point fulfilling the core point con-
dition. Next, the algorithm tries to find all points in the database that are
density reachable from that core point. If Nε is equal to the minimum
number of required neighborhood points Nmin or exceeds it, the center
point qcenter is a core point. All points within its ε-neighborhood are clas-
sified as members of a new cluster Ccl,id with an unused ID id. Moreover,
they are considered as new seed points qseed

t ∈ Sseed, t = 1, . . . , Nε, if
they have not already been classified as noise. Next, the original seed
point qcenter is deleted from the seed set Sseed. Each remaining seed point
qseed

t ∈ Sseed is considered a new center point, so that further region
queries may result in additional seed sets Sseed

qt if the points qseed
t ful-

fill the core point condition. Then, all points in the ε-neighborhood of the
new core points are density reachable and belong to the cluster Ccl,id.

The used center points are removed from the seed sets Sseed after the re-
gion query. The algorithm iterates over the seed sets until they are empty.
Then it chooses new non-classified points from the database Dpoints and
repeats the procedure with new cluster IDs until all points in the database
have been classified. Although some points may have been classified
as noise initially, they may be located in the ε-neighborhood of another
point, so that they can be classified as border point of a cluster Ccl,id later.
A flow chart of the DBSCAN algorithm is contained in Appendix A.6.

Spatial access methods, such as R∗-trees [126], support the efficient
computation of the ε-neighborhood of the points which decreases the
complexity of the algorithm.

The parameters ε and Nmin can be obtained interactively using a sorted
k-dist graph [121] for a given k. One iterates over all points of the scan
database Dpoints, computes the distances of each point qs to all other
points within the set of scan points Dpoints and sorts the distances in as-
cending order for each point qs. One takes the k-th distance value from
each list and writes it to another list. This list is then sorted in descend-
ing distance order and is plotted. At some point, a kind of valley can be
observed and the threshold ε is set to the distance value at the ’valley.’
Nmin is set to the value of k. All points that show higher k-dist values are
considered as noise then. The choice for k is 4 in this work, since the 3D
data represents a surface instead of a volume, see Figure 4.8.
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clusters

e

Figure 4.8 4-dist graph to obtain the distance threshold parameter of the DB-
SCAN clustering algorithm. The computation was performed based
on the points of the clusters on the left side.

Subsequently, the obtained clusters are filtered by their dimension.
Pedestrians are not expected to be taller than 2 m or smaller than 1 m.
Their lateral expansion is assumed to be within 0.5 m and 1.5 m. With
these limitations, only a few clusters remain and the centers of gravity
of these clusters are taken as the longitudinal and lateral values of the
pedestrian detections. When the scanner is mounted on the step tread on
the right side, it can only see reflections from pedestrian legs in the short
range, so that the dimensions for filtering are adapted to leg detection in
this range and two legs are fused to one pedestrian detection.

The described approach is quite simple but works very well in un-
crowded scenes that have been used for measurement of the sensors
described above. All pedestrians could be detected and there were no
false detections in the scenes. More complex approaches that include
the computation of an outline contour of vehicles have been presented
by Steinemann [127] using laser measurements or by Kidono [128], who
recognized pedestrians using high-definition lidar. It is likely that the lat-
ter works more reliably in crowded scenes than the approach presented
above considering the false alarm rate but it will hardly provide a better
detection rate.

Ego Vehicle

Since the ego vehicle is moving in traffic, the so-called ego motion has to
be taken into account during the tracking procedure. The absolute speed
ve of the back axle and the yaw rate Φ̇e serve the computation of the ego
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vehicle’s states. The information is received from the vehicle CAN after it
has been filtered by an extended Kalman filter in the ECU of the electronic
stability program. The speed is computed based on the wheel speeds and
the wheel circumference. Mählisch [60] proposed an approach that esti-
mates the ego motion x̂e = (ve, Φ̇e) and its covariance matrix P̂e based
on the measurement’s steering wheel angle, wheel speeds of all single
wheels and the yaw rate. Unfortunately, no single wheel speeds are avail-
able on CAN here, so that this information cannot be exploited. An ad-
ditional process function fe models and compensates for the ego motion
after the prediction of the objects’ states in each cycle. The resulting state
uncertainty is taken into account in the updated covariance matrix P̂k|k−1.
The correctness of the sensors’ distance estimation depends on the correct
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Figure 4.9 Dynamic pitch angle over time when driving over a piece of wood
with trailer at 50 km/h without consideration of tire suspension.

estimation of the rotation angles, especially, on the pitch angle of the cam-
era. The rotation angles are dynamic when the ego vehicle is moving due
to suspension. The low-frequent part of the pitch angle variation due to
acceleration and deceleration can be estimated and compensated online
using a linear function that determines the dynamic pitch angle offset de-
pendent on speed and acceleration. The more high-frequent part of the
pitch angle variation, e.g., due to driving over rough ground or gully
covers, is taken into account in the sensors’ measurement covariance ma-
trices R. Tests on various surface types (including driving over a piece of
wood) with different speeds have been performed. The spring deflection
between the cabin and the frame has been measured at the four corners
as well as the spring deflection between the frame and the axles. Thereby,
the resulting additional variance of the camera coordinates could be cal-
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culated dependent on the pitch angle variance. Figure 4.9 shows a plot
of the resulting pitch angle offset over time when driving over a piece of
wood with trailer at 50 km/h. The maximum deviation of the pitch angle
from the static case increases when the truck does not pull a trailer due to
the reduced mass on the rear axle.

4.3 Coordinate Systems and Sensor Calibration

Different mounting positions and orientations of the single sensors re-
quire that the data is transformed from the sensors’ coordinate systems
to one common vehicle coordinate system. Its origin is defined in the
middle of the rear axle on the ground. The definition for axis and angle
orientation is chosen according to the DIN70000 [129]. Thus, the x-axis
points longitudinally to the vehicle front, the y-axis builds the perpendic-
ular, lateral component pointing to the left, while the z-axis points to the
top (right-handed coordinate system). The rotations yaw, pitch and roll
are defined positive when they are applied counter-clockwise (mathemat-
ically positive). Figure 4.10 illustrates the applied coordinate system. The
coordinates in the vehicle coordinate system are denoted by xVC, yVC and
zVC.

x

y

z
yaw

pitch

roll

Figure 4.10 Illustration of the applied vehicle coordinate system according to
DIN 70000.

Three-dimensional rotation and translation enable the transform of the
Cartesian sensor coordinate systems into the Cartesian vehicle coordi-
nate system and vice versa. Utilization of homogeneous coordinates
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xH = (x, y, z, 1)T ∈ R4 is recommendable. Then, the transform to vehicle
coordinates xH,VC is a single multiplication of the homogeneous sensor
coordinates xH,SC with the transformation matrix

TSC2VC =

(
Rrot t

0 1

)
∈ R4×4, (4.3)

where

Rrot = Rrot,x(α)Rrot,y(β)Rrot,z(γ), (4.4)

Rrot,x(α) =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , (4.5)

Rrot,y(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 , (4.6)

Rrot,z(γ) =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 . (4.7)

Rrot ∈ R3×3 is the rotation matrix depending on the yaw angle α, the
pitch angle β and the roll angle γ and the translation vector t ∈ R3, so
that

xH,VC = TSC2VC · xH,SC. (4.8)

The FOV of each sensor is described in the corresponding sensor coordi-
nate system using a value for the range and the horizontal aperture angle.
The fusion process takes place in the measurement space of each sensor,
so that a measurement function h(·) transforms all state predictions (prior
states) to the measurement space. Moreover, track initialization requires
a function that transforms single measurements to the state space. The
applied measurement functions are provided in Section 4.5.

4.3.1 Spatial Calibration

The spatial calibration determines the rotation angles between the single
sensors and between the vehicle coordinate system and the sensor coordi-
nate systems as well as the corresponding translations. Thus, it provides
the required parameters of the transformation matrices TRC2VC, TCC2VC
and TLC2VC transforming radar coordinates, camera coordinates and laser
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Figure 4.11 Calibration Target.

scanner coordinates to vehicle coordinates. The relative position and ori-
entation of two sensors, e.g., camera and radar, is retrievable by

TRC2CC = (TCC2VC)
−1TRC2VC. (4.9)

A special target is applied for cross calibration in this work, see Fig-
ure 4.11. Three quadratic metal plates (1 m × 1 m) are arranged per-
pendicularly to each other. The target is positioned at different distances
to the vehicle in various, relative angles, so that the whole relevant mea-
surement space is covered. The inner side of the target should be oriented
to the sensors. Furthermore, the diagonal through the ground plate and
the intersection point of all three plates should also intersect with the sen-
sors’ x, y-positions. The arrangement of the metal plates serves as corner
reflector for the radar, so that the received reflections result from the ver-
tical edge of the target. The laser scanner can detect the same edge, since
there are several scan points on the target. If one fits three planes into
these points and intersects the resulting vertical planes, the result is the
vertical edge. A checkerboard pattern on each metal plate enables the
detection of the target by the camera. Before the extrinsic calibration of
the camera is performed, the camera will already have undergone an in-
trinsic calibration, so that the focal length and the principal point of the
optical mapping are known. Moreover, an algorithm will have corrected
the lens distortion using a procedure that is described in [111]. An image
is then taken and an image processing algorithm detects the points where
the white and black squares meet by correlation of all rotation possibili-
ties of a scaled checkerboard pattern template at all image positions. One
obtains maximum correlation coefficients when the pattern position and
orientation matches to one of the three target sides. Thereby, one retrieves
the positions of the crossing points in image coordinates [130].

88



4.3 Coordinate Systems and Sensor Calibration

The knowledge that all target plates are perpendicular to each other can
be used to set a constraint. The sensor vehicle and the calibration target
are located on the same even plane for all target distances. The boundary
points of the squares on the vertical plates build parallel rows in defined,
known heights over the ground plane, whereas the rows of one plate are
perpendicular to those of the other one. Different target positions pro-
vide different image coordinates of the boundary points. Fitting a plane
through the boundary points enables the computation of the height of the
camera mounting position, the roll and the pitch angle.

The longitudinal and lateral position of the camera is measured using
standard measurement equipment. Positioning of the calibration target
in various distances on the elongation of the vehicle’s longitudinal axis
enables the computation of the yaw angle within an acceptable accuracy.

Since the position and the orientation of the camera in the vehicle co-
ordinate system are known now and are contained in the transformation
matrix TCC2VC, cross calibration to the camera can be applied to compute
the extrinsic calibration parameters of all remaining sensors. Sensor po-
sitions are measured approximately using standard measurement equip-
ment in a first step. The pitch angle of the radar sensor is neglected. The
front radar and the camera shall provide the same lateral and longitudinal
value in vehicle coordinates for the vertical edge of the target providing
an equation system based on target measurements in different positions
up to 45 m. The solution of the equation system using error minimization
with the least squares method provides the parameters of the transfor-
mation matrix TRC2CC enabling the computation of the transformation
matrix TRC2VC of the front radar.

In a similar way, one calculates the transformation matrix of the laser
scanner mounted at the vehicle front but without negligence of the pitch
angle by setting the constraint that the vertical edge of the target which
has been detected by the laser scanner has to be perpendicular to the
ground plane. Table 4.1 summarizes the resulting positions and orien-
tations of all sensors including the reference sensor (laser scanner). The
BSR does not have a common FOV with the front sensors. However, if
the laser scanner is mounted on the second step tread of the right side, it
detects targets at the front within an angle of about 120◦ (210◦ total). A
corner reflector on a thin stand is positioned at various distances and an-
gles within the common FOV of the laser scanner and the SRR. The corner
reflector serves as target for the SRR, while the laser scanner at the side
detects the stand. This enables a cross calibration between SRR and the
laser scanner with sufficient accuracy. Next, the BSR is cross calibrated to
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Sensor Position Orientation
x y z roll - α pitch - β yaw - γ

Cam 5.28 m 0.12 m 2.47 m 1◦ 4.2◦ 0.3◦

SRR 5.32 m 0.00 m 0.39 m 0◦ 0.0◦ 0◦

LRR 5.32 m 0.00 m 0.39 m 0◦ 0.0◦ 0◦

BSR 4.88 m -1.24 m 0.45 m 0◦ 0.0◦ −102◦

Laser 5.49 m 0.00 m 1.70 m 0◦ 3.0◦ 0◦

Front
Laser 4.88 m -1.44 m 0.70 m 0◦ 0◦ −88◦

Side

Table 4.1 Sensor positions and orientations.

the laser scanner, so that the transformation matrix TBC2VC is obtained.
Table 4.2 shows the obtained detection ranges and corresponding aper-
ture angles.

Sensor FOV Maximum Minimum
angle range range

Cam ±17.5◦ 70 m 10 m
SRR ±28◦ 35 m 2 m
LRR ±9◦ 50 m 2 m
BSR ±75◦ 30 m 2 m
Laser 360◦ 45 m 7 m
Front (180◦)
Laser 360◦ 45 m 2 m
Side (180◦)

Table 4.2 Sensor FOVs for pedestrian detection.

4.3.2 Temporal Calibration

The state estimation based on motion models and measurement data
should refer to the same time point for data association. The timestamp of
a measurement has to be known exactly in the prediction step or when us-
ing an initialization approach based on several measurement cycles. For
example, if the sensors do only provide the position of dynamic obstacles,
the speed can be estimated from differentiation of the positions and exact
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time increments. Therefore, a fusion architecture should provide a global
system time with sufficiently high resolution and accuracy. Each sensor
measurement should get assigned a corresponding timestamp then and
all computations (update and prediction) should be performed based on
these. However, the sensors that are available here do not provide times-
tamps based on a global time, so that they can only get assigned a times-
tamp when they are received in the processing computer. The sensor-
specific delays due to measurement duration (acquisition time), sensor-
internal preprocessing and communication have to be determined but
underlie stochastic variations. The delays are not perfectly constant, e.g.,
since the radars and the camera send their data at cycle times that are
computed internally and not directly after measurement. However, the
constant part of the temporal offset can be determined and compensated.

The fusion must be adapted to the delay of the slowest sensor system.
Worst case delays arise when a measurement from the sensor with the
shortest latency is received immediately after a measurement from the
sensor with the longest latency. Sensor measurements should be pro-
cessed in the order of measurement to avoid a defective state estimation
in the JIPDA filter. If the latencies of the single sensors lie within the
same magnitude, the influence of different latencies is small and the mea-
surements can be processed in the order of arrival in the computer and
the delay is minimized. Otherwise, it is recommendable to store arriv-
ing measurement data in a buffer and to process it in the correct order,
so that one measurement cycle from each sensor has been processed be-
fore data from the first sensor is processed again. The latency problem
can be solved by a time-indexed buffer of observations, state vectors and
existence estimations. The buffer size depends on the maximum accept-
able observation delay. Westenberger et al. [131] proposed and compared
two methods to deal with out-of-sequence measurements in JIPDA for
temporally asynchronous measurements. Here, a time-indexed buffer is
applied. Measurements from sensors with a higher update rate can be ne-
glected if later measurements arrive before there are measurement cycles
of the sensors with longer cycle times.

As described above, two frontal radar sensors (SRR, LRR) with iden-
tical latencies, a monocular camera and a radar monitoring the vehicle’s
right side (BSR) provide the measurements for the fusion process. Their
constant-delay offsets (measurement to arrival in computer) have to be
determined as parameters for the fusion framework. Huck et al. [132] pre-
sented an approach for exact time-stamping of asynchronous measure-
ments in a multi-sensor setup that was based on the work of [133, 134].
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They compensated jittering timestamps using filter techniques, proposed
a procedure to get timestamps closer to unknown measurement times-
tamps and determined latencies between measurements from different
sensors with a test drive using cross-correlation.

Here, the same procedure has been used. The latency of the camera
has been computed to be 42 ms, which does not include the image pro-
cessing that is done in the computer. The SRR and LRR show a latency
of 133 ms. The BSR could have been temporarily mounted at the front of
the ego vehicle. The latency of the laser scanner has not been computed
but estimated. The procedure described in [132] is not directly applica-
ble here since the laser scanner does not send after whole rotations. The
impact of this simplification is negligible, since pedestrians and the ego
vehicle move rather slowly and a fixed definition of a pedestrian posi-
tion induces higher tolerances. It is hard to define a reliable position of
a pedestrian, since he changes his shape during motion. The filtered ego
motion data that is received via a public vehicle CAN from the ESC-ECU
does not have a constant latency either, especially due to the numerous
devices that send on the CAN with different priorities and cycle times.
However, speed and yaw rate change only slowly in relevant scenarios,
so that the resulting inaccuracies are acceptable.

4.4 Sensor Measurement

All Bayesian state estimators require knowledge about the measurement
variances and covariances. The JIPDA filter approach for pedestrian
tracking expects information about some additional properties like the
probability of missing detections (1 − pD) and the probability of false
alarms pFP. The probability of detection pD and the probability for a false
alarm pFP characterize the detection quality of a sensor. The values can
be derived from statistical detection failures like missed detections (false
negatives) and false alarms (false positives). The JIPDA takes these prob-
abilities into account during the tracking and the fusion process, quanti-
fying the existence of an object xi via the PoE p(∃xi)k|k at time point k.
Ghost objects (false alarms) should induce smaller PoEs than real objects.

Different approaches in literature assume that the false alarm probabil-
ity is a prior known, parametric, spatial distribution. Mostly, a Poisson
distribution is assumed, e.g., in [86]. The assumption of constant false
alarm probabilities is usually not fulfilled, since the sensor vehicle moves
in the environment through various situations. Therefore, the false alarm
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probability pFP(zj) is chosen dependent on the measurement properties
here. The attributes of the measurement determine the probability that
the measurement is a false alarm. Thus, a sensory inference probability
is used to circumvent assumptions about constant false alarm probabil-
ities. Inference probabilities are easy to obtain from classification-based
detectors. As described above, a HOG classifier is applied for pedestrian
detection with subsequent non-maximum suppression. A ROC curve de-
pending on the resulting confidence values has been computed using la-
beled ground truth data. Thus, the inference probability of a false alarm
is the ROC value that corresponds to the confidence value of a detection
after non-maximum suppression. Accordingly, the posterior probability
for a true positive is pTP(zj) = 1− pFP(zj).

The probability of detection of a sensor pD describes the confidence
that an object is detected by the sensor. As the probability of detection of-
ten depends on the current state of an object xi, it should not be modeled
uniformly. Usually, it is retrieved from statistics. The probability of detec-
tion may depend on different orientations of the objects to the sensor, the
weather or the illumination (e.g., motion blur at sunset makes detection
performance of the camera worse). Furthermore, sensor-dependent oc-
clusion could be taken into account. For example, a radar usually detects
objects that are located on the same angle within a distance of a few me-
ters, whereas the camera usually does not detect the second object then.

Statistical information for the sensors’ measurement variances and
the other two sensor characteristics pFP(zj) and pD(xi) requires refer-
ence data. The covariance matrices of the sensors’ noise have been
obtained using pedestrian detections from the laser scanner as ground
truth data, whereas it has been manually checked that no false alarms
were in the ground truth data. The measurements have been recorded
from the stationary sensor vehicle using different pedestrians equipped
with various accessories. As the JIPDA requires information about
the state-dependent detection performance of the sensors, measure-
ments with other objects that are no pedestrians have been performed
as well to trigger false alarms. Here, not only measurements from
the stationary sensor vehicle but also from test drives in town and
on country roads were included in the data. Moreover, information
from manually labeled video sequences that have been recorded on ur-
ban streets was utilized as additional ground truth data for the de-
tection performance. The frontal radar sensors and the camera have
been measured during the supervised Bachelor thesis of Daniel Pen-
ning [221] and parts of the measurement results have been published
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together with first tracking results at a scientific conference [207].
The measurement space was fragmented into sensor-dependent grids

with at least 100 measurements per grid cell (from laser scanner and mea-
sured sensor). Detections within a time frame around each reference mea-
surement have been used for spatial association of sensor detections and
ground truth data. In a first step, the association is performed using
Cartesian vehicle coordinates of each measurement and the Euclidean
distance as measure for association. Then, one computes preliminary
covariance matrices dependent on detections in the measurement space
based on the retrieved associations. In the following step, the association
of ground truth data with the detections in the corresponding time frame
is repeated in the measurement space using the Mahalanobis distance as
measure for association. The final measurement covariance matrices RS

of the sensors are computed based on these associations for each grid cell:

zdev
i = zS

i − zref
i , (4.10)

µdev
z =

1
Ncell

Ncell∑
i=1

zdev
i , (4.11)

RS
lm =

1
Ncell − 1

Ncell∑
i=1

(zdev
il − µdev

z )(zdev
im − µdev

z ), (4.12)

where Ncell is the number of associations in the cell and the indexes l and
m represent the corresponding rows of the measurement vector. zS

i de-
notes the measurement vector from radar or camera and zref

i the reference
measurement vector (ground truth).

The probability of detection pD(xi) without consideration of occlusion
and the false alarm probability pFP(zj) have been determined under al-
most ideal conditions. Ratios have been computed using the reference
measurements and associated detections of the corresponding grid cell
according to:

pD(x) =
Nasso

Nref
, (4.13)

pFP(z) = 1− Nasso

Ndet
, (4.14)

where Nasso represents the number of detections that have been associ-
ated with a reference measurement, Nref the number of reference mea-
surements and Ndet the number of detections from the measured sensor.
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4.4.1 Measurement Results of the Camera

It has been mentioned in Section 4.2.4 that the dynamic pitch angle of
the camera leads to some additional noise which cannot be neglected.
The dynamic pitch angle due to acceleration and deceleration can be es-
timated and compensated, but the more high-frequent part of the pitch
angle deviation, e.g., due to rough ground or gully covers, is taken into
account as noise. In case of a pitch angle variance of (1◦)2, the variance
in the vertical image coordinates v has to be increased by (21 px)2. The
coordinate [u, v] = [0, 0] would correspond to a point located far away on
the left.

A

C

B

D

Figure 4.12 Variances and detection rate of adult pedestrians by the camera for
a stationary ego vehicle.

The measurements have been performed with adult pedestrians and a
stationary ego vehicle to evaluate the sensors’ performance without dy-
namic impact. The variance σ2

u of the horizontal image coordinates u is
< 15 px2, see Figure 4.12. The higher inaccuracies in the lower right cor-
ner can result from lens distortion effects that could not be eliminated by
calibration. The variance σ2

v of the vertical image coordinates v is < 5 px2

in the upper part of the image and < 35 px2 in the lower part of the image.
The increased values in the near range result from the fact that pedestrian
detections include more pixels in the near range and thereby a higher
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variation in pixels. The variance distribution of the object height σ2
h is

similar to the variance of the vertical image coordinates in the way that
it increases from about 20 px2 in the far range to up to 60 px2 in the near
range. The inaccuracies are enlarged in the upper right part of the image.
Although the camera controls the exposure time dependent on the illumi-
nation, the noise slightly increases during sunset, sunrise and illumina-
tion conditions with bad contrast. Under good measurement conditions,
the detection rate within the FOV of the camera (10 m < x < 45 m) is
about constant (pD,C ≈ 0.95), see Figure 4.12 D. It decreases with worse il-
lumination conditions, e.g., due to the motion blur, and in more crowded
scenes with changing background. If there is a high number of pedes-
trians on the street, not all pedestrians are detected due to computational
reasons. For example, if a large group of pedestrians crosses the street, the
camera module will not detect all group members. The detection rate de-
creases to about 50% then. The detection rate decreases in the near range
less steeply than on the side since some pedestrians are still detected al-
though their foot point already disappeared.

4.4.2 Measurement Results of the LRR and SRR

The pitch angle deviation caused by rough ground or acceleration of the
ego vehicle is not explicitly modeled for the radar sensors, since their dis-
tance measurement principle is not based on this angle. However, high
pitch angles may reduce the detection performance, since the road surface
then reflects the biggest part of the waves which is detected by the sensor.
Therefore, the sensor does not provide any target measurements in these
situations. The measurement variances have been determined using mea-
surements from pedestrians that usually do not leave the grid cell during
one measurement sequence. Thus, standing but not completely frozen
pedestrians have been measured. Since the radar sensor is mounted only
0.39 cm above the ground and does not have a large vertical aperture an-
gle, only pedestrian legs are detected, especially, in the near range. Thus,
the angular variance and radial variance are higher for walking pedestri-
ans. One defines a value for the standard deviation of pedestrian knees
from the body center and takes this value into account by adding the re-
sulting covariances to the ones obtained from standing pedestrians. The
variance of the range rate is set constant and has been taken from the
specification data sheet [11], since there are no reference measurements
available for this signal. One has to adapt the variance of the range rate
as well, since the measurements result from pedestrian legs that are either
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A B

C D

Figure 4.13 Determined angular and radial variance and detection rate (C) of
the LRR for stationary moving pedestrians: The sensor detects only
legs, especially in the near range. Additional variance in the pedes-
trian position due to walking is not included here, but added later.
Subgraph D shows range-dependent RCS values of pedestrian mea-
surements.

stationary or show values around the double pedestrian speed or more.
Therefore, the variance values are chosen considerably higher then pro-
vided by the data sheet.1

The measurement results refer to results obtained from measurements
with mainly standing pedestrians and do not include this additional vari-
ance. The variance of the azimuthal angle σ2

Φ decreases with the range
and is not constant in the near range. It shows local maximums which can
be explained by the arrangement and the characteristics of the antennas,
see Figure 4.13 A. The range variance of the LRR is usually below 0.1 m2

and is even lower in the near range, see Figure 4.13 B. The range accuracy
of the SRR is comparable to the LRR within the same range except for the
near range at the right side, where it increases a little bit.

The detection rate of the LRR pD,LRR mounted at the front bumper is
quite constant in wide regions (≈ 0.7) but decreases (down to 0.4) around
0◦ within the range up to 30 m, see Figure 4.13 C. A similar behavior can

1Suppliers usually measure their radar sensors using corner reflectors.
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A B

C D

Figure 4.14 Determined angular and radial variance and detection rate (C) of
the BSR for standing pedestrians: The sensor detects only legs, es-
pecially in the near range. Additional variance in the pedestrian
position due to walking is not included here, but added later. Sub-
graph D shows the amplitude values of pedestrians detections over
the range.

be observed for the SRR that is combined with the LRR in one housing.
The SRR has a higher aperture angle but its angular accuracy is lower.
The appendix contains plots of the measurement results of the SRR for
standing pedestrians.

As mentioned above, there is a dependency between the false alarm rate
of the radar and the obtained radar cross section (RCS) for pedestrians.
A radar shows different interference waves in different heights. If an ob-
ject approaches a sensor, it intersects different interference levels leading
to a high variation in the RCS [135]. This behavior has been utilized to
enable a kind of classification of the radar objects. Figure 4.13 D shows
how the RCS values of the true positive measurements corresponding to
pedestrians increase with the distance up to about 0 dB ∼ 1 m2. The RCS
values are smaller in the near range, since only legs can reflect within
short distances.
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4.4.3 Measurement Results of the BSR

The BSR has a higher aperture angle than the LRR and the angular ac-
curacy of the single detections is consequently smaller but comparable
to the SRR with less than 3(◦)2. The variance of the range accuracy is
within a few centimeters, see Figure 4.14 A and B. The sensor has been
designed for the detection of vulnerable road users, but it does not de-
tect the whole body in the near range due its low mounting position. In
contrast to the frontal radar sensors, the BSR usually detects both legs, so
that one can determine the body position between the legs. There are of-
ten up to six detections from one pedestrian due to different speeds of the
pedestrian’s extremities (separation by Doppler speed). Two detections
from one pedestrian are the minimum, whereas other objects evoke only
single detections. Thus, the number of detections from one pedestrian
and the detection distances to each other can be applied as classification
attribute for pedestrians. Then, the detections are grouped to one target.
The mean values of the single detection properties are taken as measure-
ment properties of the resulting target. The detection rate of pedestrians
by the BSR is about constant and very high — more than 90 % in a wide
range, see Figure 4.14 C.

The amplitude value was intended to serve as BSR feature for pedes-
trian classification — comparable to the RCS value of the frontal radar
sensors. It should represent the reflectivity of a detected target. Thus,
reflections from cars should show higher values than reflections from
pedestrians. The amplitudes provided by the sensor of various target
types were all located within the same range (see Figure 4.14 D), so that
this feature is not very useful and is not considered any further.

4.5 Process and Measurement Models

Since vehicles are limited in their rotational capabilities due to their ar-
chitecture, a state model with constant turn rate and constant velocity
(CTRV) based on the single track model is applied for vehicles — includ-
ing the ego vehicle. In case of very small yaw rate values, this state model
is reduced to a constant velocity and constant orientation model (CVCO)
due to singularity. The origin of the local vehicle coordinate system at
time point k is located in the middle of the back axle on the ground.

A constant speed model is chosen for pedestrians due to their increased
rotational degree of freedom. Beside the position vector [x, y]T, one is in-
terested in the pedestrian’s longitudinal and lateral speed [vx, vy]T over
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ground in the world as well as in his height s (size). The width is not
tracked, since the shapes of pedestrians change too much during motion
(walking, running), making it hard to define the pedestrian width then.
Therefore, the pedestrians are modeled as vertical line objects in the pro-
cess model, although their dimension is taken into account in the birth
model of the JIPDA filter. The pedestrians are assumed to follow a linear
state model with constant longitudinal and lateral speed. The object state
vector at time point k corresponds to xk = [x, y, vx, vy, s]T.

4.5.1 Pedestrian State Model

The presented tracking approach serves the state estimation of multiple
pedestrians in the environment. The prior state estimation x̂k|k−1 in local
vehicle coordinates for a stationary ego vehicle at time point k can be
computed using the constant speed assumption, so that

x̂k|k−1 = fped(x̂k−1|k−1) (4.15)

=


xk|k−1
yk|k−1

vx,k|k−1
vy,k|k−1
sk|k−1

 =


xk−1|k−1 + vx,k−1|k−1 · ∆t
yk−1|k−1 + vy,k−1|k−1 · ∆t

vx,k−1|k−1
vy,k−1|k−1
sk−1|k−1

 , (4.16)

where ∆t is the time increment representing the time between the last
update and the current measurement. The vector [x, y]T represents the
pedestrian’s position in Cartesian vehicle coordinates, vx and vy her
speed components in the world and s her height (size). As long as no ego
motion is taken into account, the process model is linear and no Jacobian
matrix has to be computed.

Since the process model neglects all terms of higher order such as the
pedestrian acceleration, the process model error is included in the nor-
mally distributed process noise ωped ∼ N (05, Qped) with covariance ma-
trix

Qped =


1
3 ∆t2σ2

vx 0 1
2 ∆tσ2

vx 0 0
0 1

3 ∆t2σ2
vy 0 1

2 ∆tσ2
vy 0

1
2 ∆tσ2

vx 0 σ2
vx 0 0

0 1
2 ∆tσ2

vy 0 σ2
vy 0

0 0 0 0 σ2
s

 . (4.17)
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Figure 4.15 Single Track Model.

4.5.2 Ego Motion Estimation

State variables of other road users can only be described relatively to the
coordinate system of the stationary ego vehicle so far. However, the ego
vehicle is usually not stationary but moves between different measure-
ment cycles. This has to be considered in the prior state estimation and in
the process model.

Wheel slip and drift are neglected and extreme driving maneuvers are
not considered here. The time-dependent tangential speed ve,k and the
yaw rate around the vertical axis φ̇e,k describe the ego vehicle’s dynamics
based on the single track model, see Figure 4.15. The state model for vehi-
cles is based on the assumption of constant speed and constant turn. The
additional input vector ue,k compensates for the ego vehicle’s translation
between the two time steps k− 1 and k:

ue,k =
ve,k−1

φ̇e,k−1


sin (φ̇e,k−1∆t)

1− cos (φ̇e,k−1∆t)
0
0
0

 . (4.18)

The rotation matrix Re,k takes into account the vehicle’s rotation around
its vertical axis within the corresponding time interval:

Re,k =

[
cos (φ̇e,k−1∆t) − sin (φ̇e,k−1∆t)
sin (φ̇e,k−1∆t) cos (φ̇e,k−1∆t)

]
. (4.19)
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Derivatives of higher order like the acceleration are neglected, which is
considered in the normally distributed process noise ωe ∼ N (02, Qe)
with

Qe =

[
σ2

ve σve σφ̇e

σφ̇e
σve σ2

φ̇e

]
. (4.20)

Consequently, the prior state estimation x̂k|k−1 for time step k can be ob-
tained using the discrete process model f (x̂k−1|k−1) for the pedestrian and
the ego vehicle:

x̂k|k−1 = f (x̂k−1|k−1) (4.21)

=


cos(∆φe)x + sin(∆φe)y− ve(φ̇e)−1 sin(∆φe)

− sin(∆φe)x + cos(∆φe)y− ve(φ̇e)−1[cos(∆φe)− 1]
cos(∆φe)vx + sin(∆φe)vy
− sin(∆φe)vx + cos(∆φe)vy

s

 ,

(4.22)

where the time indexes k have been neglected and ∆φe corresponds to
φ̇e∆t.

The Jacobian matrix Fk of the process model

Fk =
∂ f

∂(x, y, vx, vy, s, ve, φ̇e)

∣∣∣∣
x̂k−1|k−1,v̂e, ˆ̇φe

(4.23)

serves the computation of the prior estimation of the covariance ma-
trix P̂k|k−1 of the state:

P̂k|k−1 = Fk

[
Qped 0

0 Qe

]
FT

k , (4.24)

where the uncertainty of the state is propagated.
The special case of an evanescent yaw rate of the ego vehicle (straight

driving) leads to the fact that the first two rows of f (x̂k−1|k−1) are un-
determined. Therefore, the limit function f0(x̂k|k−1) and its Jacobian are
applied instead if the absolute value of the yaw rate φ̇e is below a thresh-
old value εφ̇e

:

x̂k|k−1 = f0(x̂k|k−1) (4.25)

= lim
φ̇e→0

f (x̂k|k−1) = [x− ve∆t, y, vx, vy, s]T. (4.26)
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The pitch behavior of the ego vehicle due to rough ground or accelera-
tion impacts the estimation of the object’s longitudinal coordinate x. It
can be modeled as rotation around the y axis of the vehicle’s coordinate
system. However, there are no sensors available here that measure the
vehicle’s pitch angle. In this work, the dynamic pitch angle component
that is induced by speed and acceleration of the ego vehicle is tried to be
compensated for by assuming a linear relation between the pitch angle
and the acceleration. All other effects that lead to a dynamic pitch angle
are sub-summarized in the measurement noise of the sensors radar and
camera.

4.5.3 Radar Measurement Model

The predicted state needs to be converted to the measurement space for
data association. Therefore, the prior state estimation x̂k|k−1 in Cartesian
vehicle coordinates of time point k is transformed to the sensor coordinate
system using the transformation matrix T−1

SC2VC from Equation 4.3. x̂S
k|k−1

denotes the prior state estimation in Cartesian sensor coordinates.
In case of the radar, the transformation matrix contains the translation
vector tR and the rotation matrix RR

rot. Each radar measurement provides
the range r to a detected target in m, the bearing angle φ in ◦ and the
range rate ṙ in m/s. Since the range rate is a relative velocity measure,
the components vx,k|k−1 and vy,k|k−1 representing the speed over ground
have to be transformed to relative speed components vR

x,k|k−1 and vR
y,k|k−1

depending on the ego vehicle’s motion, so that

x̂R
k|k−1 =


xR

k|k−1
yR

k|k−1
vR

x,k|k−1
vR

y,k|k−1
sR

k|k−1

 =


r11 · xk|k−1 + r12 · yk|k−1 + tx
r21 · xk|k−1 + r22 · yk|k−1 + ty

r11 · (vx,k|k−1 − ve,x) + r12 · (vy,k|k−1 − ve,y)
r21 · (vx,k|k−1 − ve,x) + r22 · (vy,k|k−1 − ve,y)

sk|k−1


(4.27)

where rlm and t� represent the entries of the rotation matrix and the trans-
lation vector, respectively. ve,x and ve,y denote the longitudinal and lat-
eral speed of the ego vehicle, where the time indexes have been neglected.
Then, the non-linear radar measurement function hR(x̂R

k|k−1) transforms
the prior state estimation to the measurement space according to

hR(x̂R) = [r(x̂R), φ(x̂R), ṙ(x̂R)]T, (4.28)
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where

r(x̂R) =
√
(xR)2 + (yR)2, (4.29)

φ(x̂R) =


arctan

(
yR

xR

)
, if xR ≥ 0,

arctan
(

yR

xR

)
+ 180◦, if xR < 0∧ yR ≥ 0,

arctan
(

yR

xR

)
− 180◦, if xR < 0∧ yR < 0,

(4.30)

ṙ(x̂R) =
√
(vR

x )
2 + (vR

y )
2 · sin

(
φ(x̂R) + φv(x̂R)

)
, (4.31)

where

φv(x̂R) =



arctan
(

vR
y

vR
x

)
, if vR

x ≥ 0,

arctan
(

vR
y

vR
x

)
+ 180◦, if vR

x < 0∧ vR
y ≥ 0,

arctan
(

vR
y

vR
x

)
− 180◦, if vR

x < 0∧ vR
y < 0.

(4.32)

Since the angle for tracking is larger than 180◦ (π), one has to resolve
ambiguities in the angle computation. The measurement function is non-
linear due to the quadratic terms, the fractions, and the trigonometric
components. However, the application of the EKF requires a linear func-
tion, so that the non-linear measurement function hR(x̂R

k|k−1) is linearized

at x̂R
k|k−1 using the Jacobian matrix HR

k :

HR
k =

∂hR(x)
∂(x, y, vx, vy, s)

∣∣∣∣
x=x̂R

k|k−1

. (4.33)

4.5.4 Camera Measurement Model

The HOG classifier running on the camera image provides the pedestrian
hypotheses (measurements) in image coordinates (pixels). The origin of
this coordinate system is located in the upper left corner of the image. The
object position in the image is represented by the coordinate vector [u, v]T

which is the foot point of the pedestrian in the middle of the detected box
(half box width), and the pedestrian height sI in pixels. The pedestrian is
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Figure 4.16 Camera pinhole model: The three-dimensional camera coordinates
are projected onto the two-dimensional image plane where the in-
tercept theorem holds.

expected to stand on the ground plane. The association in the measure-
ment space requires the transform of the prior state estimation x̂k|k−1 from
the current ego vehicle coordinate system to the Cartesian camera coor-
dinate system (x̂C

k|k−1) using the transformation matrix T−1
CC2VC. Next, one

has to project the state estimation x̂C
k|k−1 to image coordinates. Since the

lens distortion is corrected using the parameters of the intrinsic calibra-
tion before any computations are performed on the image frames (e.g.,
HOG detections), the measurement function can be obtained from the
pinhole camera model, see Figure 4.16. The pinhole model requires the
values of the optical center [Mu, Mv]T and the focal length fopt as param-
eters of the measurement function hC(x̂C

k|k−1) that projects the prior state
estimation to image coordinates:

hC(x̂C) = [u(x̂C), v(x̂C), h(x̂C)]T, (4.34)

where

u(x̂C) = − fopt
yC

xC + Mu, (4.35)

v(x̂C) = − fopt
zC

xC + Mv, (4.36)

sI(x̂C) = fopt
sC

xC . (4.37)
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As for the radar, the measurement function of the camera is non-linear, so
that it has to be linearized at x̂C

k|k−1 for application in the EKF using the

Jacobian HC
k of the measurement function hC(x̂C

k|k−1):

HC
k =

∂hC(x)
∂(x, y, vx, vy, s)

∣∣∣∣
x=x̂C

k|k−1

. (4.38)

The inverse transform of the measurement function, requires the appli-
cation of the homography condition. It assumes that the pedestrians are
located on the ground and that the ground is flat (z = 0). Furthermore,
the correctness of the inverse transformation strongly depends on the cor-
rect estimation of the rotation angles, especially the pitch angle.

4.5.5 Existence Models

All sensors underlie uncertainties and false positive detections can never
be excluded. Nonetheless, one desires to maximize the detection rate of
a sensor system, but its false positive rate shall be minimized. If active
applications should react to an object based on the data from the en-
vironment perception module, the confidence that the object really ex-
ists has to be high. Standard approaches based on LNN or GNN usu-
ally consider only measurements with features exceeding some thresh-
old, e.g., the HOG confidence value of the camera. An object would only
be handed over to the application if measurements have been assigned
to the object for a certain number of cycles. Sometimes a heuristic con-
fidence value of the object is provided based on the measurement cycles
since the time of object birth and the corresponding number of associated
measurements. This approach is straightforward, but the detection rate
due to previous thresholding decreases with a reduced false positive rate.
When one track is lost and detected again, a new ID is assigned, so that
a single physical object might get assigned numerous IDs during its ob-
servation. This is often acceptable if the algorithm output is only used for
one application and only a short data history is required in the situation
evaluation module. In case that several applications process their data
and constant IDs for a physical object are desired, it would be more help-
ful to track the objects based on all available measurements and provide a
PoE for each object, so that the subsequent applications can decide if the
object confidence suffices for a reaction or not. This requires that the PoE
be more than just a heuristic value and motivates the application of the
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JIPDA, where the object existence is tracked based on a persistence model
and an existence measurement model.

Existence Models using the JIPDA

The object persistence model corresponds to the process model for exis-
tence estimation in the JIPDA. The prior PoE of the object for time step k
is predicted based on the PoE of the previous time step k − 1 and the
probability of survival pS(xi) (compare Section 3.2.2). Objects that exceed
state constraints, for instance such ones having an abnormally high speed
(|v| > 4 m/s) or being located outside the FOV should have a low chance
to survive. The probability of survival pS(xi) is set to an experimentally
obtained value of 98 % otherwise, so that

pk|k−1(∃xi) = pS(xi) · pk−1|k−1(∃xi), (4.39)

where

pS(xi) =


0.00001, if

√
v2

x,k−1|k−1 + v2
y,k−1|k−1 > vmax,

0.00001, if xi outside tracking region,
0.98, else.

(4.40)

The existence model quantifies existence information of a sensor based
on object measurements. The probability of object existence is modeled
based on the sensory inference probability pTP(zj) that describes the false
alarm process depending on measurement attributes as well as on the
probability that there will be no measurement although the object exists
(1− pD(xi)). Furthermore, the probability of object birth is modeled and
provides a valuable support for the track management.

Data-based statistic approaches are used to determine the sensor char-
acteristic in this work. The laser scanner measurements serve as refer-
ence data, as described in Section 4.2.4. The sensory inference probabil-
ity pTP(zj) of the camera is determined based on the value that is pro-
vided by the ROC curve of the HOG classifier and subsequent NMS. The
measurements of the front radars contribute in different way to the exis-
tence estimation, since the provided RCS values are a criteria for pedes-
trians but do not contain additional information. Only measurements
with RCS values within the measured band are processed, but no sen-
sory inference probability is computed based on this value. A constant
value pFP(zj) = 0.25 is assumed for each measurement. An existence es-
timation p∗k|k(∃xi) is computed based on this value. If the resulting value
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exceeds the prior existence estimate pk|k−1(∃xi), it is assumed that there
has been a detection of the object and the posterior estimate is set to the
value of the prior estimate pk|k(∃xi) = pk|k−1(∃xi). Otherwise, the poste-
rior value is set to the computed lowered PoE pk|k(∃xi) = p∗k|k(∃xi). Con-
sequently, missing detections can lower the PoE of an object, but associ-
ated measurements only rarely impact the existence estimation. Thereby,
the insufficient classification ability of the radar can be compensated.

Correct modeling of the state-dependent detection probability pD(xi) is
essential for the detection performance of the total system. Rough inaccu-
racies, e.g., due to an inaccurate calibration, evoke that tracked obstacles
are discarded or that their PoE rises too slowly.

Usually, the detection probability pD depends on the pedestrian state,
e.g., on the pedestrian position in the FOV of the sensor. The estimation
problem reveals that the object state xi is unknown, so that one consid-
ers the detection probability as conditional PDF pD(xi|xi) of the variate
xi ∼ N (xi,k|k−1, x̂i,k|k−1, P̂i,k|k−1). However, the JIPDA approach expects
the non-conditional PDF of the detection process, which can be obtained
using the law of total probability [65]:

pD(xi) =

ˆ ∞

−∞
pD(xi|x̂i)pD(x̂i)dx̂i (4.41)

=

ˆ ∞

−∞
. . .
ˆ ∞

−∞
pD(xi|x, y, . . .)pD(x, . . . , s) dx . . . ds. (4.42)

To the author’s experience, the detection capability of the sensors depend
on the pedestrian positions for the camera and not on their speed or orien-
tation. The size of a pedestrian is a determining factor as well, since the
maximum detection range of taller pedestrians is higher. It is expected
that the detection probability decreases (for instance, −10 % for pedestri-
ans shorter than 1.5 m compared to taller pedestrians). This assumption
was not validated, as no children were available as test persons.

Objects can be separated more easily from other objects by the radar if
they differ in speed. However, no speed dependency could be observed
for free standing or moving pedestrians. Moreover, the reference sensor
provides a ground truth for the object position but not for the speed, so
that the detection probability pD(xi) is only modeled dependent on the
object position (refer to previous sections for illustration).

Different sensors like radar and the monocular camera consider differ-
ent objects as relevant. The radar detects various object types but does
not classify them. It does not provide a reliable measure for the sensory
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inference probability pTP(zj) of a pedestrian, while the camera system
only detects the objects for which its classifier has been trained. Since
one is only interested in the relevant objects (e.g., pedestrians), only these
should be tracked and should have assigned a high PoE.2 Here, the con-
flict is solved by reducing the impact of the front radars’ detections on
the existence update, whereas missing detections can lower the PoE of an
object as described above.

4.6 Track Management

4.6.1 EKF-JIPDA Track Management

An important step in the tracking procedure is the track management.
Unobserved objects, e.g., as they just entered the FOV, require initializa-
tion when they newly appear and objects that disappeared or receive no
more measurements have to be removed from the track list.

The EKF with JIPDA implicitly includes the track management, as the
probability of birth is estimated from measurement-based object hypothe-
ses and the existing environment model. A new object is set up if there is
no other object within the same gating region or the probability of birth
exceeds the PoE that would result if the measurement was assigned to an-
other object. Object removal from the track list exploits the object’s PoE.
If the PoE falls below a certain threshold value (< 0.0001), the object is
deleted. Thus, no special heuristics are required.

The low reflection values of pedestrians and the limited classification
ability of the radar lead to the fact that reflections from other weakly re-
flecting objects have to be accepted as well. Therefore, no application
would accept a track that is only based on weakly reflecting targets from
the frontal radars. This differs for tracks resulting from strongly reflect-
ing obstacles like cars and thus, higher object confidences. Since a camera
confirmation would be required for any reaction to pedestrians, only the
camera is allowed to initialize a pedestrian track in the front area and the
radar information is only used for an improved state estimation, track
confirmation and to lower the PoE in case of missing detections. One

2Munz [65] separated the object existence into a relevant and an irrelevant part developing
an extension of Dempster’s and Shafer’s theory of evidence. He took into account that
not all sensors are able to distinguish between the two classes relevant and irrelevant,
and that they are ignorant which information other sensors provide. The implementa-
tion of this approach for pedestrians could be content of future work.
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advantage of this procedure is that the computational complexity is re-
duced because less objects have to be tracked. As the LRR and the SRR
usually detect only one of the two legs and the accuracy of the leg speed
is very low, especially, in case of lateral pedestrian motion, this informa-
tion cannot be used for the initialization of the track and an initialization
with speed 0 is favored. If the algorithm detects the front leg in the first
measurement cycle and the retral leg in the next cycle, the track would
be initialized with a speed component to the wrong direction if only two
measurement cycles were used. Therefore, at least three measurements
from the same pedestrian would be required to initialize a track if only
one leg is detected at once.

In case of the BSR, at least both pedestrian legs are detected providing
a higher pedestrian confidence and enabling a radar-based track initial-
ization. Usually, there are more than three detections per pedestrian. As
pedestrian speeds are usually low, the pedestrian tracks are initialized
based on one measurement as stationary obstacles with a high uncer-
tainty in the speed-dependent components of the state covariance matrix
instead of applying a multiple-step initialization.

4.6.2 EKF-GNN Track Management and Object Confidence
Computation

The EKF with JIPDA (EKF-JIPDA) provides the PoE of an object as con-
fidence value which can be used as criterion for the track management.
This is not the case for the EKF with GNN (EKF-GNN). The EKF-GNN
only processes measurements that satisfy the HOG-based threshold or
have their RCS value within the defined band. Then an object has to be
assigned to measurements at least for a certain number of cycles εNa in
a row for confirmation. Another criterion for object confirmation is that
the fraction of associations and total cycles has to exceed a certain thresh-
old value. An object is deleted from the object list if there has not been
any association for more than εNna measurement cycles or the fraction of
missing associations becomes too high. These values have to be set de-
pendent on the object’s position, since there have to be expected less as-
sociations in the sensory blind region than within the fields of detection.
The data association for the EKF-GNN and the corresponding track man-
agement have been implemented during the supervised Diploma thesis
of Wladimir Gerber [222].

The object confidence that is often desired in subsequent situation eval-
uation modules is determined as ratio of the number of measurements as-
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sociated with the object since its birth Na and the number of cycles since
object birth Na + Nna (object age). This confidence value is often sufficient
for objects with a low age but loses its meaning for longer tracks. It does
neither take into account the object state nor the measurement properties.
If a track should be kept alive across a sensory blind region, a heuristic
has to define how long a track may stay alive without measurement asso-
ciation in this region, e.g., dependent on the speed of the ego vehicle.

Apart from that, initialization is comparable to the EKF-JIPDA. Objects
in the vehicle front may only be initialized by the camera, while the BSR
is allowed to initialize tracks within its FOV.

4.7 Tracking across the Sensory Blind Region

Figure 4.1 B visualizes that there is no common FOV of the LRR, the
SRR and the camera with the BSR but a sensory blind region between
the frontal FOVs and the FOV on the side. It would be advantageous
for some applications to obtain some information about that region as
well, but there are even more reasons why it is worth to track across the
blind regions instead of using separate filters for the front and for the side.
First, the camera-based classification is a big advantage for pedestrian de-
tection, since radars can only barely distinguish between pedestrians and
other weakly reflecting objects. If the objects from the front were handed
over to the side, this classification knowledge could be conserved. More-
over, it always takes some time until a track is confirmed and the cer-
tainty of the state estimation has increased. If only one track has to be set
up, the confirmation time could be shortened and earlier reactions would
be possible in critical situations. Moreover, situation evaluation modules
prefer one constant ID for one physical object (instead of two), which is
not possible for separate tracking filters. Therefore, tracking across the
blind region is desired.

If there are no more measurement associations, the values of the state
covariance matrix grow when using an EKF, while the state is predicted
and estimated based on the process model. Potential accelerations and
a potential direction change are taken into account by the process noise
propagation.

Since no sensor can detect an object in the sensory blind region, the
probability of detection pD is zero in this region. In case of the JIPDA-
EKF, the PoE of objects in this region will decrease as well. The node
probabilities p(xi, zj) = 0 and p(xi, ∅) = pk|k−1(∃xi) lead to the fact that
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the update step is not able to provide additional information and expects
the object still to exist, while the existence prediction lowers the PoE by
multiplication with the persistence probability pS. If the object’s PoE falls
below a certain threshold level, the object is deleted from the environment
model. Thus, if an object with a high PoE enters the sensory blind region,
it will survive longer than an object with a lower PoE.

When the object enters the FOV of the next sensor, it can be updated
again based on the measurement data. Hence, the tracking probability of
an object across the blind region depends on the conformity between the
real object motion and the (linear) prediction model, on the object’s PoE
when it left the former FOV, the provided probability to survive pS and
the measurement properties when it reappears in the new FOV. A generic
implementation is realized by virtually enlarging the FOV of the BSR in
such way that it covers the blind region.

Occlusion can be modeled in a similar way. The region of occlusion
with a small probability of detection can be represented by a Gaussian
distribution that depends on the covariance matrix and position (and di-
mensions) of the occluding object. Furthermore, the detection probability
of a pedestrian by the radar could be reduced if the pedestrian approaches
an object that provides a reflection with a high RCS value that covers the
pedestrian echo, e.g., a car. If the camera detects a pedestrian and the
radar shows a high RCS value at the same position, one can reduce the
radars’ probability of detection and increase it with increasing distance of
the pedestrian from the car [207].
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Chapter 4 described the creation of an environment model containing
pedestrians. The objects’ state estimations and the corresponding un-
certainties have been determined as well as the objects’ PoEs. However,
the mere knowledge about pedestrian states in the environment does not
help to avoid collisions. A situation evaluation module has to assess
the criticality of the objects (pedestrians) and the situation. A favorable
approach is to predict the future states of the ego vehicle including the
driver behavior as well as the future states of the pedestrians. Next, the
possible whereabouts of both road users at equal time points are inter-
sected to assess the collision risk. The whereabouts can be based on de-
terministic positions or follow a type of probability distribution, so that
the intersection has to take this into account. A similar approach is ap-
plied here. Probable paths of the road users are computed for a temporal
prediction horizon of up to three seconds in a first step. Then the future
states of the road users along these paths are computed for time points
and time intervals using Monte-Carlo techniques and Markov chain ab-
straction, which leads to reachable sets. Finally, a conditional collision
probability is computed by intersection of these reachable sets. The ap-
proach takes into account the path probabilities, potential deviation from
the corresponding paths and uncertainty regarding the dynamics along
the corresponding path. Furthermore, the PoEs of tracked objects as well
as the variance in the state estimation are incorporated.

Many accidents could be avoided or reduced in severity if the driver
is warned three seconds before a potential collision. Furthermore, non-
avoidable false alarms, inaccuracies in the environment perception, and
uncertainty in the situation prediction as well as the requirement that the
driver must keep the control of the system at all times demands a warning
phase — optical, acoustical and/or haptical — before an active system re-
action. The driver must have the chance to overrule the system, to brake
on his own, to initiate an evasion maneuver or to cancel the system re-
action to avoid a collision with an obstacle. Moreover, the system warns
the following traffic by activating the warning lights to avoid rear-end
collisions with the following traffic. The system should initiate a warn-
ing phase about three seconds before a potential collision due to these

113



5 Situation Evaluation

requirements and based on results from accident analysis.
The next section starts with a summary of the state of the art in the field

of related situation assessment and explains the deficits of the existing ap-
proaches. The first subsection is dedicated to approaches for maneuver
classification and trajectory prediction, see Subsection 5.1.1, whereas the
expression maneuver classification is also referred to as driver intention pre-
diction in literature. The subsequent Subsection 5.1.2 gives an overview of
existing methods that have been proposed for risk assessment in the last
decade. Section 5.2 introduces a novel approach to predict the ego ve-
hicle’s path based on previous maneuver classification, while Section 5.3
describes the proposal for the computation of reachable sets and their in-
tersection for the single road users. The resulting conditional crash prob-
ability is applicable as a new criticality measure in combination with a
threshold to decide about the initiation of an active system reaction.

5.1 State of the Art regarding Situation Assessment

5.1.1 Related Work on Maneuver Classification and Trajectory
Prediction

Standard approaches for motion prediction apply standard filter meth-
ods like the Kalman filter and forecast the vehicle’s position based on a
recursive prediction of the system state to the next time step until the de-
sired prediction horizon is reached. Many common model-based meth-
ods assume constant velocities and constant yaw rates, which can result
in large deviations from the real trajectory, especially in case of turning
maneuvers.

Long-term behavior prediction and classification has been intensively
studied in surveillance context [136–140], i.e., for anomaly detection.
Those approaches usually use object motion patterns reflecting the
knowledge of the scene and information about the fixed environment.
Since vehicles move within the environment, so that background and mo-
tion patterns change, these requirements are not met anymore.

Approaches based on a long-term motion prediction for urban crossing
scenarios with moving systems have been presented in [141, 142]. There,
the motion patterns of vehicles are represented by trajectories defined as
ordered tuples. The approach learns motion patterns by building a mo-
tion database consisting of observed trajectories and measures the simi-
larity between trajectories. A particle filter framework generates a large
number of motion hypotheses and assigns a likelihood value to them.
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The drawback is that the environment has to be known exactly and many
trajectories have to be stored in large databases and accessed online. If
the road geometry differs from the one stored in the database, the system
might not perform well. Keller [143] used a similar method to predict a
probabilistic pedestrian path based on learned motion features that are
obtained from a stereo camera. The potential of his approach to judge
whether or not a pedestrian will cross the lane increased the one of other
approaches, but the method was not able to predict the behavior correctly
in one half of the situations.

Dagli et al. [144] proposed a cutting-in vehicle recognition functional-
ity for adaptive cruise control utilizing a probabilistic model for situation
analysis and prediction. Kasper et al. [145] enhanced this approach to
27 driving maneuvers (including merging and object following) in struc-
tured highway scenarios by using traffic scene modeling with object-
oriented Bayesian networks. Lane-related coordinate systems are applied
together with individual occupancy grids for all vehicles. The approach
is basically designed for path prediction of surrounding vehicles and not
the own one. The drawback is that lane markings are required and the
network has been trained for highway speeds only. No evaluation of data
from urban traffic or turn maneuvers has been presented.

Aoude et al. [146] estimate reachable sets to obtain a probabilistic de-
scription of the future paths of surrounding agents. The proposed ap-
proach combines the ’rapidly-exploring random tree reach’ algorithm
(RRT-Reach) and mixtures of Gaussian processes. RRT-Reach was intro-
duced by the authors as an extension of the closed-loop RRT (CL-RRT) al-
gorithm to compute reachable sets of moving objects in real-time. A mix-
ture of Gaussian processes is a flexible parametric Bayesian model used
to represent a distribution over trajectories. The mixture is trained using
typical maneuvers learned from statistical data, and RRT-Reach utilizes
samples from the Gaussian processes to grow probabilistically weighted
feasible paths of the surrounding vehicles. In contrast to the work of this
thesis, they incorporate data from world obstacles into trajectory predic-
tions and show their approach only for a car-like vehicle in a simple sce-
nario. Laugier et al. [147] predict trajectories a short period ahead using
HMMs and Gaussian processes. However, their approach requires vi-
sual environment perception and telemetric data. Wiest et al. [148] infer a
joint probability distribution as motion model using motion patterns that
have been observed during the previous training. A standard and a vari-
ational Gaussian mixture model are compared and serve the trajectory
prediction by calculation of the probability of future motion conditioned
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on the motion pattern of the near past. The variational Gaussian mixture
model showed acceptable results; however, the approach has only been
trained and tested on data from three intersections. No lane changes have
been trained or tested. Thus, the robustness of the approach for a higher
variety of intersections with different geometries has not been shown.

Hayashi et al. [149] address the prediction of stopping maneuvers con-
sidering the driver state. They use two different driving models depen-
dent on the driver’s state (normal or hasty based on heart rate variability).
An HMM serves modeling of each driving pattern.

Huahagen et al. [150] combine a fuzzy-based rule to model basic ma-
neuver elements and probabilistic finite-state machines to capture all pos-
sible sequences of basic elements that constitute a driving maneuver. The
approach was evaluated on the recognition of turn maneuvers. Unfortu-
nately, the proposed approach does not provide a parameterizable way
for trajectory prediction and has not been evaluated for lane change ma-
neuvers.

Tomar et al. [151] use a multi-layer perceptron (MLP) to predict the fu-
ture path of a lane changing vehicle. The inputs of the network model in-
clude the relative velocity of the vehicles involved in the lane change and
traveling in the passing lane, acceleration/deceleration, safety distance
(time between the vehicles), and the current safety states of the vehicles.
The neural network is able to predict the future states of a lane changing
vehicle only in certain discrete sections of the lane change path. The ap-
proach performs well for highway speeds, but it has not been designed
for urban scenarios and does not incorporate any other maneuvers.

Tsogas et al. [152] base their approach of maneuver and driver intention
prediction on Dempster’s and Shafer’s theory of evidence. Transitions
from one maneuver to another are modeled by a state diagram. However,
lane marking detection is required for their solution.

Polychronopoulos [153] proposed a hierarchically structured algorithm
that fuses the traffic environment data with car dynamics in order to pre-
dict the trajectory of the ego-vehicle in highway scenarios. Lane change
maneuvers are detected based on the lateral offset to the road border.

Zong et al. [154] combine an ANN and an HMM in their integrated
model to identify the driver’s intention and to predict the maneuvering
behavior of the driver. They verified their approach applying driving
simulator tests on straight roads performing double-lane changes at cer-
tain vehicle speeds.

Taniguchi et al. [155] predict driving behavior using an unsupervised
learning approach. They apply a semiotic, double articulation structure
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where they assume that unsegmented driving behavior is segmented into
several short-term behaviors based on its linearity or its locality of distri-
bution in its observed state space. They use only data that is available
on CAN, but their evaluation does not include the accuracy of the re-
sulting path prediction, especially, in case of wrong symbol prediction.
They only evaluated the number of correctly predictable symbols. Fur-
thermore, they tested their approach only on data from a few hundred
meters of driving.

Liebner et al. [156] predict the driver’s intent to turn or to go straight
in presence of a preceding vehicle at an intersection, where they also
predict the driver’s intent to stop at the intersection before he completes
the maneuver. They classified the driver’s maneuver intention using a
Bayesian classifier with uniformly distributed prior intention distribu-
tion and proposed a method to extract characteristic, desired velocity
profiles that give the driver model the chance to account for turn-related
deceleration. Unfortunately, their classification and prediction approach
depends on the distance from the intersection center, so that it can only be
used when GPS and map data are available. Furthermore, the approach
has only been tested at one intersection. Therefore, its robustness is not
guaranteed.

All of the described approaches show deficits and are not useful for the
desired application. A novel and efficient approach is required that is
robust to inaccurate sensor data, various road geometries and different
drivers as well as to truck configurations with and without trailer. Fur-
thermore, only data that is available on CAN should be required and no
information from the environment perception. The new approach shall
be designed for urban scenarios, where lane markings, road border infor-
mation or following of the ego lane are not necessarily assumable. These
features are not included in the existing approaches. It should provide
the probability of the predicted paths.

One of the potential applications of the path prediction should provide
information if the driver has seen an obstacle, for example a pedestrian,
and is therefore able to avoid it by steering and/or braking without any
system reaction. Therefore, driver interaction with possibly critical obsta-
cles should not be considered for the prediction.

A new approach is presented using only ego-state data from CAN to
predict future trajectories in a robust, computationally efficient way for
the application on urban streets without lane markings. One advantage of
the new approach is that it enables a pre-selection of relevant objects that
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should be tracked and should be provided on CAN. Another advantage
is given by the fact that its results can be used for situation evaluation,
e.g., in collision mitigation systems.

The proposed approach classifies maneuver types like turn, lane
change and lane following based on a set of prototype trajectories using
the longest-common-subsequence (LCS) method1 in combination with a
Bayesian classifier.2 Maneuver prediction has been performed using the
LCS method with a large database, sequences of higher dimension (four
or six instead of two) as well as differential GPS and map data in other
works, but not with single prototype trajectories and in combination with
a Bayesian classifier.

5.1.2 Related Approaches for Risk Assessment

ADAS targeted at active safety have focused on preceding traffic and re-
action to motorized road users in cars or trucks for a long time. These
traffic participants mostly follow continuous and linear dynamic models
within the relevant or considered time horizon, properties that have been
exploited in [167–170]. The authors apply deterministic threat assessment
and predict single trajectories for each object and use these to compute
various threat measures, e.g., the metric time-to-collision (TTC) [171], pre-
dicted minimum distance or predicted time to minimum distance [172].
Predicted trajectories are often based on statistical estimation methods,
e.g., the Kalman filter, while in the threat assessment only a point esti-
mate is used. Time metrics characterize the situation’s criticality by time
intervals until a predicted critical event occurs. The critical event may
also be the latest moment at which an imminent collision can be avoided
by a certain maneuver, i.e., braking or steering [173]. Coelingh et al. pre-
sented their approach for a collision warning with full auto brake and
pedestrian detection in [174]. The system is based on single trajectory
predictions and the computation of the resulting TTC. It is the first sys-

1The LCS method has been applied in various disciplines. For example, it has been used
for the analysis of ribonucleic acid (RNA) [157,158] or for the recognition of handwritten
symbols [159]. Several algorithms have been developed to optimize the approach for the
various applications [160–164].

2Bayesian networks have also been applied in several fields of research. A very popular
application of the naive Bayesian classifier is spam filtering or text categorization. Ue-
bersax [165] proposed Bayesian networks for breast cancer risk modeling in medicine,
while Friedman [166] used them in biology to discover interactions between genes based
on multiple expression measurements.
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tem with pedestrian protection that has been on the market in passenger
cars.

Polychronopoulos et al. [172] use several prediction models to repre-
sent possible future maneuvers, but the different possibilities are con-
densed into a single prediction without considering them as distinct pos-
sibilities. A systematic approach to choose warning thresholds in differ-
ent deterministic methods is given in [175], while Jansson [176] presented
an overview of different deterministic threat assessment methods.

Two types of uncertainties are relevant for criticality assessment: First,
the prediction uncertainty that is present, since the system can only make
assumptions about the future actions and plausible behavior of the road
users. Second, the inaccuracies of the sensors perceiving the current situ-
ation and providing the attributes of the detected objects.

Berthelot et al. [177] determine a collision probability (P(TTC ∈ R))
that relies on a non-Euclidean distance function for extended objects and
its statistical linearization via the unscented transformation. In [178], they
extend their work and compute the probability distribution of the TTC
induced by an uncertain system input.

Rodemerk et al. [179] develop a general criticality criterion for driv-
ing situations where the areas that objects could cover and the amount
of overlap determine the collision probability depending on the calcula-
tion time. The model for trajectory prediction assumes constant lateral
and longitudinal accelerations. Lefèvre et al. [180] estimate the collision
risk at road intersections with a dynamic Bayesian network, where they
compare driver intention and expectation.

Ferrara et al. [181] investigate the possibility of reducing the number
of accidents involving pedestrians or other vulnerable road users, like
cyclists and motorcyclists. They use a supervisor scheme to choose the
appropriate current control mode for each controlled vehicle and manage
the switches among low-level controllers. They consider the sliding mode
control methodology suitable to deal with uncertainties and disturbances.

Wakim et al. [182] applied Monte-Carlo simulations to predict collision
probabilities with pedestrians, where they model pedestrian dynamics
with four states (static, walk, jog and run) as truncated Gaussians using
an HMM. Large [183] applies a cluster-based technique to learn motion
patterns using pairwise clustering. Pedestrian motion is predicted using
the cluster mean value. The resulting trajectory is used to estimate the col-
lision probability of the pedestrian with a vehicle. Gandhi summarized
additional approaches for pedestrian collision avoidance in [112].

Westenhofen et al. [83] calculate the collision risk between vehicles
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and pedestrians based on the vehicles’ driving tubes that are determined
by means of the linear bicycle model taking into account physical con-
straints. A pedestrian movement area is determined using a physiologi-
cal model that returns the acceleration and turning capability of a human
for a specific walking speed. They compare the intersection between the
movement area of the vehicle and the movement area of the pedestrian
to the total movement area of the pedestrian to determine the collision
risk. The transponder-based system is advantageous when object occlu-
sion has to be handled; however, system tests with artificially generated
dummy scenarios showed a significant number of false system reactions.

Smith and Källhammer [184] used location and motion information of
pedestrians to identify when drivers would accept system alerts. The re-
sults are based on environment information that is not provided by the
sensors, such as exact and robust lane information, road border elements
between the road and the sidewalks. Thus, the approach cannot be ap-
plied here.

Monte-Carlo techniques [185–188] incorporate the option to consider
complex, highly non-linear vehicle dynamics, but the techniques usually
require many simulation runs for suitably capturing the possible evolu-
tions. Nevertheless, these methods cannot cover all possible behaviors in
principle.

Additional approaches for stochastic threat assessment including other
disciplines are given in [71, 176, 185–192]. Broadhurst el al. [191] aim to
produce collision-free trajectories and proposed a method for a predic-
tion and path planning framework for road safety analysis. They con-
sider combined actions and interactions of all detected objects and ob-
jects that may enter or leave the scene. Their map-based approach mod-
els object interaction using game theory, where all object decisions are
enumerated in a decision tree. The computation of the car’s trajectory
uses the given initial state of the car and a series of control inputs (accel-
eration and steering). They already incorporate knowledge about sensor
uncertainty due to incorrectly classified objects, imprecise measurements,
missing detections or grouping multiple objects into a single detection
result. In later works, Broadhurst el al. [185] and Eidehall et al. [186]
consider many (thousand) different possibilities for all objects by trying
to approximate the true probability distribution of the predictions using
Monte-Carlo sampling. The current states of all objects are assumed as
given stochastic variables. They suggest a driver preference distribution
to model the aspects distance to intended path, deviation from desired ve-
locity, longitudinal acceleration and steering angle or lateral acceleration.
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The cost of a maneuver of a single object for the entire time interval is
computed, where weights can balance the costs between velocity or path
deviation. In that work, they did not consider sensor uncertainty and
used only synthetic data. They were interested in determining which fu-
ture control inputs are safe and which are dangerous. Eidehall et al. [186]
consider road friction as the limiting factor for longitudinal input at low
speeds and engine power at high speeds. The dynamics of pedestrians
and bicycles are modeled assuming constant accelerations.

Danielsson and Eidehall [187, 192] use Monte-Carlo simulation to find
threats in a road scene. They adapt their model for calculations in coor-
dinate system that is aligned to a curved road. They use time intervals
for their computations but they do not consider position intervals. Their
algorithm was only tested with recorded data and they did not show that
the algorithm was running in real-time with the required number of sam-
ples. Even though the number of samples in the final distribution is high,
many of the samples are based on the same parents, limiting the statisti-
cal variation. The results are not repeatable as the sample generation is
random, which is different in this work due to a pre-computed transition
matrix.

Stochastic verification techniques have been investigated to increase
air traffic safety [190]. Althoff [71] presented a scalable approach for real-
time prediction of potentially hazardous situations based on stochastic
reachable sets of traffic participants by defining discrete actions, e.g.,
acceleration or braking. He took into account multiple road users.
However, the work concentrates on road users like cars and trucks that
follow the road according to defined dynamic models. The algorithm is
designed for safety verification of planned paths in an autonomous car.

For the development of ADAS in commercial vehicles, the human driver
has to be taken into account as the controlling instance. Therefore, the
planned trajectory of the ego vehicle has to be estimated from signals
(e.g., acceleration and steering angle). Thus, the focus of this work is not
on path planning but on checking whether or not a collision with another
road user is probable to occur and on deciding if an active system reac-
tion should be triggered. It is assumed that drivers do not recognize the
vulnerable road users, so that no interaction between the driver and the
other road users shall be taken into account. The consideration of pos-
sible false detections from the environment perception is very important,
since these might lead to a more critical situation evaluation and therefore
trigger a false system reaction. This would make the application more
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dangerous from the perspective of functional safety, since the application
is compared to a system not equipped with this functionality.

The newly-developed approach considers different prototype paths
that are followed with a certain probability. In contrast to [71], pedestri-
ans are explicitly modeled in this work. As pedestrians do not necessarily
follow the lane, possible prototype paths on which they will walk are de-
fined, and path probabilities are assigned according to the positions and
velocities of previous measurement cycles.

5.2 Maneuver Classification and Trajectory Prediction

The principle of the novel approach for maneuver classification and tra-
jectory prediction is visualized in Figure 5.1 and can be summarized as
follows. Data from CAN is recorded, filtered and buffered to obtain in-

Truck

Ego Motion 
Buffer [v, φ’]

Trajectory
[x,y]

LCS 
Computation

Bayesian 
Classifier

Trajectory 
Prediction

CAN

Figure 5.1 Principle of the approach for maneuver classification and trajectory
prediction.

formation about the history of the trajectory (ego motion buffer). The past
trajectory sequence is compared to different so-called prototype trajecto-
ries using the LCS method providing a first classification indicator. The
meaning and the determination of the prototype trajectory is explained
below. The result of this primary classification step is fed to a Bayesian
classifier together with other signals to estimate the maneuver class that
is intended by the driver, where the maneuvers turn, lane change and
lane following are possible outcomes. Next, the prediction is performed
using information from the prototype trajectory of the estimated maneu-
ver class. The development of the approach for maneuver classification
and trajectory prediction has been supported by the supervised student
research project of Matheus Dambros [223]. First results have been pre-
sented in [208].
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5.2 Maneuver Classification and Trajectory Prediction

A trajectory T(·,·) is defined as a sequence of Ntr pairs containing odo-
metric data like velocities v and yaw rates φ̇ or xy-positions in Cartesian
space with associated timestamps tk:

Tv,φ̇ = ((v0, φ̇0), t0), . . . , ((vk, φ̇k), tk), ((vNtr−1, φ̇Ntr−1), tNtr−1) (5.1)

Tx,y = ((x0, y0), t0), . . . , ((xk, yk), tk), ((xNtr−1, yNtr−1), tNtr−1) (5.2)

where tk < tk+1 for k = 0, . . . , Ntr − 1. The first form of trajectory repre-
sentation implies the advantage that a rotation of the trajectory is repre-
sented by a subtraction of the rotation angle from the yaw angle.

The number of trajectory sequence elements can either be limited by a
fixed number of samples Ntr, a maximum length ltr in meters or by its
duration ∆td = tNtr− 1 − t0. The number of elements Ntr can vary in the
two latter cases, since the measurements are not always taken at equidis-
tant points in time. Wiest et al. [148] applied a Chebyshev decomposition
on the components of the trajectory to obtain a uniform representation
of the trajectory and used the resulting Chebyshev coefficients as input
features for their model. However, evaluations showed that simple lin-
ear signal interpolation suffices here. Moreover, the interpolation of the
signal values makes the strongly quantized yaw rate signal smoother.

The trajectory representation does not depend on a specific sensor type
and may result from several different sensor types. Other authors [60,65]
determined the motion of the ego vehicle using axle speeds and single
wheel speeds as well as data from yaw rate sensors. Unfortunately, the
available test truck does not provide single wheel speeds nor GPS infor-
mation on CAN so that only the speed information from the axles and the
data from the yaw rate sensor can be utilized. The quantized values of the
yaw rate sensor have to be corrected using a temperature depending fac-
tor and offset. This circumstance makes it hard to always correctly record
and predict the ego vehicle’s path but requires a robust approach for tra-
jectory prediction that does not depend on the sensor’s performance and
accuracy.

The filtered yaw rate data and the rear-axle speed information of the
ego vehicle are written to a buffer that contains the data from a duration
of three seconds. Samples with zero speed, e.g., due to waiting times
at red lights, are cut and excluded from the data since they do not pro-
vide any informational benefit. Next, the data is converted to path posi-
tions [xe, ye]T in Cartesian space by integration according to the following
equations
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xe,k = xe,k−1 + ve,k · sin(φe,k) · ∆t, (5.3)
ye,k = ye,k−1 + ve,k · cos(φe,k) · ∆t, (5.4)
φe,k = φe,k−1 + φ̇e,k · ∆t, (5.5)

where φ̇e,k is the yaw rate at time point k and ve,k the corresponding tan-
gential ego speed. The oldest sample contained in the trajectory buffer
defines the origin of the Cartesian coordinate system. This type of tra-
jectory representation depends on the orientation, the scale and the start
position.

A B C

Figure 5.2 Various trajectory representations recorded on various streets and
intersections: A) turn maneuvers; B) lane following maneuvers; C)
lane change maneuvers.

Figure 5.2 shows different representations of the maneuver classes turn,
lane change and lane following in Cartesian space, where no distinction is
made between maneuvers to the left and to the right. The labeled maneu-
vers have been recorded on various streets and intersections. The figure
illustrates that a maneuver classification approach using only data from
single intersections and streets is not expected to perform very robustly.

However, one contribution of this work is the classification of maneu-
vers, although their representations might be manifold. There are many
intersections where the streets do not cross perpendicularly, so that the in-
ner angle of a turn maneuver might be very large and the corresponding
trajectory looks similar to lane following on a curved street. Therefore,
a distinction between turn and lane following for the manual labeling is
made as follows: Maneuvers including inner angles with less than 135◦

are considered as turn maneuvers and all the ones with larger inner an-
gles as lane following. The special challenge implied by lane change ma-
neuvers on curved streets will be discussed later.

Since the trajectory should be classified, it has to be comparable to other
trajectories of the same class requiring an efficient representation that is
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5.2 Maneuver Classification and Trajectory Prediction

independent from translation and rotation. This form can either be ob-
tained directly from the trajectory Tv,φ̇ containing speed and yaw rate or
from the Cartesian representation Tx,y. The explanation is based on the
Cartesian representation here for an easier illustration, see Figure 5.3. The

q1

l1

l2

l4Trajectory

Used History

Current Position
Prediction

A B

l3

q2

q3

Figure 5.3 Trajectory pieces in Cartesian space and computation of the repre-
sentation in arc lengths and angles. A) current position on trajectory
with used history data and predicted path; B) arc lengths and angles.

trajectory is transformed to a representation based on arc lengths and an-
gles. The length of a line segment between two successive measurement
points k and k + 1 represents an arc element lk:

lk =

[
xk+1 − xk
yk+1 − yk

]
, (5.6)

lk = ‖lk‖ =
√
(xk+1 − xk)2 + (yk+1 − yk)2. (5.7)

The computation of the counter-clockwise angles between these line seg-
ments leads to a sequence of angles. The calculation of the cross product
and the scalar product between two successive line segments lk and lk+1
supports the computation of angle θk between these two line segments:

θk = sign(lk × lk+1) ·
(

π + arccos

(
lk · lT

k+1
lk · lk+1

))
. (5.8)

The value π may be subtracted from the angle elements, since it is added
to all angle elements and does not provide any benefit. Furthermore, the
mean of the total angle sequence is subtracted from each element to make
the sequence independent from driving on a straight or a curved street.
The absolute values of the resulting angle sequence can be used to enable
a maneuver type classification that is independent of the direction.
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5 Situation Evaluation

The obtained trajectory representation Tl,θ contains concatenated pairs of
arc lengths and angles:

Tl,θ = (l0, θ0), . . . , (lk, θk), . . . , (lNtr−2, θNtr−2). (5.9)

An example of a recorded trajectory in Cartesian space and the com-
puted angle and arc length sequences over time can be found in Fig-
ure 5.4. According to own evaluations, the proposed method showed the
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Figure 5.4 Example of a trajectory in Cartesian space based on a sample every
100 ms and the corresponding angle or arc sequences over time: The
sequences between red crosses correspond to one second.

best properties considering stability, robustness and computational effort
compared to another method where an angle sequence was obtained from
angles between lines that connected the center of mass of the considered
trajectory sequence to the trajectory sample points. Moreover, a sampling
time of 0.1 seconds showed better LCS-based classification results than
using sampling times of 0.05 seconds.

5.2.1 Longest Common Subsequence

The obtained angle sequence of the trajectory is compared to prototype
trajectories using the LCS method in the next step. Each prototype tra-
jectory represents one maneuver class — a turn, lane change or lane fol-
lowing maneuver. Data observation demonstrates that specific, charac-
teristic functions describe the yaw rate signals of these different maneu-
ver classes. While the yaw rate signal of the maneuver class lane fol-
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lowing φ̇lf = φ̇e shows a constant behavior, the yaw rate signal of turn
maneuvers can be represented by a Gaussian curve φ̇turn:

φ̇turn,k = aturn · exp

(
−
( tp,k − bturn

cturn

)2)
+ dturn , (5.10)

where aturn = 0.01384, bturn = 0.00549, cturn = 2.479 and dturn =
−0.002 are parameters that have been estimated before from clus-
ters of recorded and labeled yaw rate signals. The time tp,k with
−τp,turn/2 ≤ tp,k ≤ τp,turn/2 represents the relative timestamps of the
prototype trajectory in seconds, where τp,turn = 9 s for turn maneuvers.
The duration of a lane following maneuver is set to 9 seconds as well.

Lane change trajectories imply a yaw rate signal that looks similar to a
sine or cosine curve. Nevertheless, an approximation by a superposition
of three exponential functions and a constant showed better results for
the approximation of the prototype yaw rate signal φ̇lc:

φ̇lc,k= alc,1 · exp

(
−
( tp,k − blc,1

clc,1

)2)
+

alc,2 · exp

(
−
( tp,k − blc,2

clc,2

)2)
+

alc,3 · exp

(
−
( tp,k − blc,3

clc,3

)2)
+ dlc , (5.11)

where −τp,lc/2 ≤ tp,k ≤ τp,lc/2 and τp,lc = 7.4 s. Appropriate values
for the parameters have been found for alc,1 = 0.001836, blc,1 = −1.118,
clc,1 = 1.424, alc,2 = 0.001391, blc,2 = 1.314, clc,2 = 1.186, alc,3 = −0.00133,
blc,3 = −0.07651, clc,3 = 0.714 and dlc = −0.0005. Figure 5.5 illustrates
the described characteristic and shows the unfiltered yaw rate signals to-
gether with its function-based approximations.

A combination of the characteristic yaw rate signals with the current
speed of the vehicles leads to a prototype trajectory Tv,φ̇,p for each ma-
neuver class. Finally, trajectory representations in Cartesian space Tx,y,p
and in form of arc and angle Tl,θ,p can be obtained as described above
and can be used for comparison with the history of the previous trajec-
tory piece Tl,θ,e− to obtain a similarity measure. The angle sequences of
both trajectories are interpreted as symbol sequences Tθ,p and Tθ,e−.
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Figure 5.5 Yaw rate φ̇e of recorded maneuvers (dashed curves) lane following,
turn and lane change (from top to bottom) and corresponding proto-
type yaw rates (solid curves).

The LCS method compares both sequences by looking for same symbol
orders in both sequences. The output is the length of the LCS. The com-
mon symbol sequence itself can be computed as well, but at much higher
computational effort. The LCS method has the advantage that symbols
do not have to follow directly after each other making more robust, e.g.,
to outliers, than a similar method called the longest-common-substring
method.

The sampling time has been set to 100 ms and the used driven trajectory
piece Tl,θ,e− has a temporal length of 3 s, which leads to a symbol number
of Ne− = 30. Based on the maneuver durations, the symbol sequence of
the lane change prototype Tθ,lc contains Mlc = 74 symbols, while the
symbol numbers of the other maneuver classes are Mturn = 90 and Mlf =
90.

A dynamic programming approach has been chosen for the implemen-
tation of the LCS value computation, since it avoids double computations.
The procedure may be divided into the computation of the length of the
LCS and the determination of the sequence itself. Only the length of the
LCS is relevant here, so that the computationally demanding part may
be neglected. The computation time and memory requirements can be
reduced by an optimization step. The dynamic programming algorithm
builds a matrix C of dimension Ne−×Mp, where Mp represents the num-
ber of symbols of the corresponding prototype trajectory. The matrix is
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initialized with zeros. The algorithm runs through lines and columns
checking if the absolute difference of the elements i of the first sequence
Tθ,p and the elements j of the second sequence Tθ,e− are below a given
threshold εT(i). In this case, the value of Ci,j + 1 is assigned to Ci+1,j+1.
Otherwise, the maximum of the adjacent values Ci,j+1 and Ci+1,j are set
for the value of Ci+1,j+1:

Ci+1,j+1 =


Ci,j + 1, if

∣∣Tθ,p(i)− Tθ,e−(j)
∣∣ ≤ εT(i)

∧ |i− j| < Ntol

max(Ci,j+1, Ci+1,j), otherwise,
(5.12)

where Ntol limits the number of symbols that may lay between similar
symbols. The element CMp,Ne− = Ci,j with i = Mp and j = Ne− corre-
sponds to the absolute length of the LCS of the two symbol sequences.
The values of εT(i) depend on the maneuver class, since the symbols in
the lane change sequences show a smaller range than the symbols in the
turn sequences. Signal clusters of the corresponding maneuvers serve the
computation of the threshold value, where the standard deviations from
the mean values appeared as proper measure. A normalization step is
performed next. It depends on the number of used symbols, so that all
LCS values are within a range of 0 to 100 and can be used for further
computations:

nlcs =
CMp,Ne−

min(Mp, Ne−)
· 100. (5.13)
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Figure 5.6 Visualization of the LCS principle: The length of longest common
subsequence of the sequences A and B is nlcs = 8 when εT = 0.

Figure 5.6 shows a short example for two sequences and their common
symbols. One obtains one LCS value nlcs for each comparison with a
prototype trajectory (nlcs,lf, nlcs,lc and nlcs,turn).
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5.2.2 Naive Bayesian Classifier

The Bayesian classifier is a statistic classifier that aims to maximize the
posterior probability of a class given its features. It has a decision function
that is maximum square.

Here, the features are based on the ego vehicle’s speed ve, the accel-
eration ae, the steering wheel angle φsteer,e, the yaw rate and the LCS
results nlcs. Additional features that will be explained later in this sec-
tion are computed based on these signals. Signals like kickdown and sig-
nals from turning lights, the brake pedal or the throttle have been inves-
tigated but provide only little benefit. Possible classes are the maneuvers
turn, lane change and lane following, so that the conditional probability
P(mv|nlcs,lf, . . . , ve) should be maximized. The Bayesian formula serves
this task:

P(mv|nlcs,lf, . . . , ve) =
P(mv)P(nlcs,lf, . . . , ve|mv)

P(nlcs,lf, . . . , ve)
(5.14)

=
P(mv, nlcs,lf, . . . , ve)

const
, (5.15)

where P(mv) is the prior probability of the maneuver class. The numer-
ator of Equation 5.15 is the joint probability model P(mv, nlcs,lf, . . . , ve)
and can be rewritten using the chain rule. This allows that any member
of the joint distribution can be calculated using only conditional probabil-
ities. The Bayesian classifier favors classes that occur more often, which is
the optimal strategy if the risk of a false classification is to be minimized.
If the prior probability is unknown, it could be assumed uniformly dis-
tributed, resulting in a maximum-likelihood classifier.

In this work, two approaches for the determination of the prior prob-
ability have been chosen. For the first approach, information about rep-
resentative routes for commercial vehicles in the urban and sub-urban
environment was obtained from a logistics company. These routes have
been driven by different drivers with and without trailer and data has
been recorded for about four hours. Then this data has been labeled by
manually assigning a maneuver class to each sample. The fraction of a
certain maneuver class in the data has been set as corresponding prior
probability. The prior probabilities have been computed to P(lf) = 0.87,
P(turn) = 0.09 and P(lc) = 0.04. The second approach trained the prior
probability of the maneuver classes based on the classification result. The
path prediction of a lane following maneuver is assumed to show the
lowest risk under presence of uncertainty compared to the maneuvers
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Figure 5.7 Bayesian classifier.

turn and lane change. Therefore, the prior probability P(lf) is set so high
that quasi no maneuver is falsely classified as lane change or turn ma-
neuver. The obtained prior probabilities are similar to the first approach
(P(lf) = 0.865, P(turn) = 0.095 and P(lc) = 0.04).

Determination of all conditional probabilities makes solving the prob-
lem very complex and requires many parameters. Therefore, the naive
conditional independence assumption is applied stating that each feature is
independent from any other feature, e.g., P(ve|mv, φsteer,e) = P(ve|mv).
The resulting classifier is called naive Bayesian classifier due to the condi-
tional independence assumption and can be formulated by:

P(mv|nlcs,lf, . . . , ve) = P(mv) ·
P(nlcs,lf|mv) · . . . · P(ve|mv)

const
. (5.16)

Conditional independence is not fulfilled for some of the features. For ex-
ample, nlcs depends on the speed ve and the yaw rate that is related to the
steering wheel angle φsteer,e under normal driving conditions. However,
naive Bayesian classifiers have worked quite well in practice, although
they work with over-simplified assumptions.3 The naive Bayesian classi-
fier requires a smaller amount of training data than many other classifiers
to estimate the parameters required for an accurate classification, which
makes it especially attractive when data sets contain many classes and
many features. The number of parameters that is required for the clas-
sifier depends on the number of classes (3 here), the number of features
(10 here) and the number of parameters it takes to describe the condi-
tional probability of a feature given its class (e.g., 1 in case of Bernoulli
variables, 2 in case of Gaussian distributions).

3Zhang [193] showed some theoretical reasons for the apparently high effectiveness of
naive Bayesian classifiers.
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A distribution for each feature and its parameters is estimated using a
training data set. Gaussian kernels4 model the feature distribution of
the speed ve. The LCS features nlcs are represented by bounded Gaus-
sian kernel distributions, where the distribution is bounded between 0
and 100. The steering wheel angle φsteer,e and the acceleration ae follow
simple Gaussian distributions. Furthermore, some special features have
been created from the signals. The standard deviation of the accelera-
tion σ3,ae and the standard deviation of the steering wheel angle σ3,φsteer,e
from the measurements of the last three seconds have been computed as
additional features to invoke the variable dynamic behavior of a maneu-
ver. The maximum speed range of the last 500 ms DMMR0.5,ve and the
maximum range of the angle φe within the last three seconds DMMR3,φe ,
both related to the corresponding time interval, serve as additional input
of the classifier, where DMMR is the abbreviation for differential maxi-
mum minimum range. Gaussian kernel distributions model the last four
features σ3,ae , σ3, φsteer,e, DMMR0.5,ve and DMMR3,φe .
The kernel density estimator function is given by:

fkernel(Nsample, b, x) =
1

Nsampleb

Nsample∑
i=1

K
(

x− xi
b

)
, (5.17)

where Nsample is the number of available samples, b the kernel band-
width, xi are the values of the single samples and K(·) is the kernel
function, which is a normal distribution N (µ, σ) = N (µ, b) here. The
bandwidth of the kernel is a free parameter that has to be optimized to
obtain the best density approximation. The kernel bandwidth has been
estimated using kernel density estimation based on [195]. Plots of the
resulting kernel densities can be found together with the classification re-
sults in Section 6.2. Figure 5.7 illustrates the resulting Bayesian classifier.

When the Bayesian classifier is applied to classify a maneuver based on
new samples, the posterior probability of that sample belonging to each
class is computed by inserting the feature into the corresponding distri-
bution function with class-dependent parameters. The largest posterior
probability determines the class that the new sample is expected to be-
long to according to the classifier.

4In statistics: Kernel density estimation (KDE) is a non-parametric way to estimate the
PDF of a random variable. KDE is a data smoothing problem where inferences about
the population are made based on a finite data sample [194]. If a Gaussian function is
chosen as kernel function, one refers to it as Gaussian kernel.
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5.2.3 Path Prediction

Two approaches have been developed for the ego vehicle’s trajectory pre-
diction. The first approach uses the computed prototype trajectories and
the obtained maneuver class as basis for the prediction. The estimated
maneuver class determines which prototype trajectory shall be chosen.
Then, the yaw rate of this prototype trajectory is combined with the cur-
rent ego vehicle speed and acceleration, so that a new trajectory Tv,φ̇+
results. A part of this trajectory can be taken as the estimated future tra-
jectory. In case of estimated lane following, the yaw rate is adopted to the
current situation by setting it constant to the current yaw rate. Thereby, a
prediction on streets with different curvatures is possible.

In case of lane change and turn maneuvers, it is important to know at
which point of the trajectory the ego vehicle is currently located to choose
the proper part of the newly generated trajectory for prediction. This
is possible using the LCS computation. The previously driven trajectory
piece Tl,θ,e− is compared to subsequences of the sequence Tv,φ̇+ that have
the same duration as Tl,θ,e− and lead to the same number of symbols Ne−.
The subsequences are obtained by shifting a window of length Ne− over
the symbol sequence of Tv,φ̇+. The subsequence that shows the highest
congruence with the previously driven trajectory piece Tl,θ,e− determines
where the predicted trajectory starts. Let iT be the start index of the corre-
sponding subsequence related to the total sequence. Then, the predicted
trajectory is the subsequence of Tv,φ̇+ that starts at index iT + Ne− + 1.

The second approach is based on the trajectory symmetry around the
reference points of lane change maneuvers and turn maneuvers. Apex
(turn) or inflection point (lane change) of the yaw rate signal from CAN
are determinable using a few heuristics and the evolution of the yaw rate
signal is axially symmetric around the apex or roughly symmetric with re-
spect to the inflection point, respectively. This knowledge is exploited for
the yaw rate prediction and thus, the path prediction. A constant speed is
used for prediction of lane change maneuvers, whereas the assumption of
constant acceleration is made for the prediction of turn maneuvers. The
trajectory Tv,φ̇+ is computed based on a constant yaw rate until the refer-
ence point is passed. Thus, the prediction is the same as for lane following
in this time interval. When the algorithm detects that the reference point
has been passed, the point reflected (lane change) or line reflected (turn)
yaw rate is used for prediction.

The second approach showed more accurate results for the prediction
due to a more flexible adaptation to differing road geometries. Further-
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more, the second approach is more efficient, since the current maneu-
ver section (before or after reference point) can be computed using a few
heuristics and no computationally expensive LCS computation has to be
applied. Therefore, only the second approach is considered for path pre-
diction in the following. The predicted path is a prerequisite for the next
step, where a new approach is presented that aims to assess the criticality
of a situation.

5.3 Risk Assessment

It is important to have some measure of criticality for evaluating whether
or not the selected control input of the driver is appropriate and if a cor-
rective action should be taken before a safety-critical application inter-
venes actively into the system. The additional warning phase makes the
situation evaluation more challenging, since the prediction needs to look
about three seconds into the future. A pedestrian can cross the driving
corridor (width of 3.5 m) with a constant speed of 1.5 m/s in only 2.3 s.

The dynamics of pedestrians are highly volatile and do often not follow
any known continuous or linear dynamic model. Due to the high level of
inaccuracy and uncertainty caused by measured data and barely known
future behavior of the road users, it is insufficient to consider only single
maneuvers in order to decide if a detected pedestrian should trigger a
system reaction. Multiple possibilities have to be evaluated.

Figure 5.8 summarizes the principle of the proposed approach. In an
offline step, the state space (position and speed) and the input space (ac-
celeration) are discretized to cell arrays representing uncertainty in the
position, the speed, and the acceleration of the road users. Transition
matrices for time points and time intervals are computed for each road
user class based on class-dependent parameters by using Monte-Carlo
simulation and Markov chain abstraction. In the online application, the
class-dependent transition matrices are loaded for the ego vehicle and
each detected road user. A stochastic reachable state set is computed for
each road user and a certain prediction interval using these transition ma-
trices as well as previously predicted paths. Intersection of the reachable
positions of the ego vehicle and a detected road user returns the condi-
tioned crash probability. In the crash probability, the approach takes into
account uncertainty in the future behavior of the road users and in the
real existence of detected road users. Prototype paths are assigned to the
ego vehicle and the pedestrians based on the observations from previous
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Online approach for all present road 
users:
· Interval sets of initial states from 

environment perception
· Estimation of paths and their 

probabilities
· Prediction of input probabilities
· Reachable sets of speed and 

position along the paths for time 
points and time intervals applying 
transition matrices dependent on 
road user class

· Reachable positions from reachable 
sets and estimated path deviations

· Intersection of reachable positions 
of ego vehicle and other road users

Offline approach for different 
classes of road users:
· Definition and discretization of 

state space and input space
· Definition of time increment for 

time steps and time intervals
· Monte-Carlo simulation for all 

initial state sets, input sets and 
parameters sets with state-
dependent dynamic equations 
using a hybrid automaton

· Transition matrices for time 
points and time intervals using 
Markov chain abstraction

Figure 5.8 Overview of the risk assessment approach: The offline computation
of transition matrices for the different road user classes contributes
to an efficient online computation of the reachable sets of the road
users.

measurement cycles. A probability is assigned to each path. An efficient
online algorithm computes the partial, conditioned collision probability
of the ego vehicle with a pedestrian under consideration of the path prob-
abilities by intersecting their stochastic reachable sets.

5.3.1 Study on Pedestrian Behavior

Typical pedestrian paths, the pedestrians’ dynamics along these paths, as
well as the maximum lateral deviation from the initial path have to be
determined. This requires the analysis of pedestrian motion behavior.

Parameters for pedestrian dynamics from the literature, such as accel-
eration and maximum speed, have been enumerated in Section 2.3.2. The
literature rather provides general information about pedestrian dynam-
ics than pedestrian behavior in traffic in specific situations. It does not
describe the dependency of the pedestrian behavior on the location and
the time of the day, both of which are important dependencies.

Therefore, an exploratory study including these features was carried
out in course of this work. Its goal was to gain additional information
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and to validate the results from the literature. The study results have been
obtained during the supervised Bachelor thesis of Isabel Thomas [224].

The central questions to be answered were: How do pedestrians choose
their paths and speeds across the street at different types of pedestrian
crossings? Which factors influence their behavior, such as interaction
with other pedestrians or attached accessories?

Hypotheses have been developed based on pedestrian observation in
the daily life before measurements have been recorded in traffic using the
available sensors. Different times of the day have been chosen for the
recordings. The truck was stopped or parked on different urban streets
with pedestrians and sidewalks — close to zebra crosswalks, crosswalks
at traffic lights, crosswalks without specific infrastructure, crossings, or
roundabouts. Pedestrian tracks were recorded and video data from sev-
eral hours served the comparison of similar situations, such as crossing
behavior at zebras with or without other pedestrians on the street. As
children younger than about 7 years appeared only rarely in the recorded
scenarios, the analysis does not include their behavior.

The major findings of the study are presented in the following: Usu-
ally, pedestrians try to find the shortest path across the street. However,
pedestrians will sometimes cross the street in a diagonal manner if the
destination is located laterally from the shortest path and there are no or
only few other pedestrians on the street. The maximum observed relative
deviation from the shortest path was 0.25 m/m, where zebra widths and
orientations as well as street widths served as reference. Furthermore,
deviations from the shortest path may be induced by slower or oncom-
ing pedestrians on the street. Pedestrians will rather take a detour to
avoid collisions with other pedestrians than adjust their speed. Pedes-
trian speeds on the street stayed about constant, except when the pedes-
trians were waiting for other slower pedestrians they seemed to know
(induced deceleration) or the traffic light switched from green to red (in-
duced acceleration). If there are still several pedestrians on the street, a
change in the traffic light will not lead to an acceleration. A related behav-
ior can be observed at zebra crosswalks. If a group crosses the street and a
car approaches the zebra crosswalk, the last individuals of the group will
tend to accelerate, while the others will keep their speed constant. Single
individuals with the aim to cross the street will usually decelerate at the
edge of the street and look around before they cross if there are not yet
any other pedestrians on the street. This is different to the case with other,
closely preceding pedestrians on the street. The individuals then keep on
walking without observable deceleration. Pedestrians will rather follow

136



5.3 Risk Assessment

piecewise straight paths (polygons) than walk on curved paths if their
motion is not limited by other road users and they walk parallel to the
street on sidewalks. However, the parallel orientation to the street is not
true if the street bypasses a square.

The results from the literature regarding pedestrian speed and acceler-
ation could be confirmed. Additional information was gathered. Groups
with about 1 m/s and older individuals with about 0.9 m/s on average
move more slowly than single and younger individuals (1.5 m/s on av-
erage) and their accelerations show also lower values. People with an es-
timated age above 65 years are classified as older individuals and groups
include more than three pedestrians moving to a similar direction. Pedes-
trians that carried a bag, held a child at their hand or towed a baby stroller
moved more slowly (1.2 m/s on average) than pedestrians without these
accessories. Maximum accelerations (4.5 m/s2 on average) have been ob-
served when pedestrians started to cross the street after they have been
stationary waiting for the green traffic light signal or a sufficient gap
between vehicles to cross. After having reached their natural walking
speed, accelerations stayed below 1 m/s2 on average.

There are differences for the speeds depending on the time of the day
and the location. In the rush hour or around closing times of schools,
pedestrians are forced to walk in groups and to interact. However, most
of the individuals are in a hurry then and are focused on their destina-
tion, while pedestrians in the time in between tend to have more time
and walk more slowly, e.g., since they are just on a shopping trip or on a
promenade.

5.3.2 Stochastic Reachable Sets of Road Users

Section 5.2 presented a novel method to estimate the future path of the
ego vehicle. The prior probabilities for different maneuver classes have
been determined from statistics. Furthermore, the naive Bayesian classi-
fier estimates a posterior probability for each maneuver class, although
the probability might not be completely correct. However, it provides a
good first indication. The predicted path from the presented approach
and its probability are utilized now. Moreover, potential future paths
for the two other maneuver classes are computed based on the speed-
dependent prototype trajectories and the corresponding best start point
from the LCS comparison. Thus, it is not required to know exactly which
maneuver path the ego vehicle will follow, since several paths can be as-
sumed with different probabilities at the same time. Opposite directions
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A B

Figure 5.9 Examples for potential paths of the ego vehicle (A) and pedestrians
(B).

are not taken into account, since left turn or left lane change maneuvers
have never been mistaken for right turn or right lane change maneuvers
and vice versa. An example for resulting possible future paths of the ego
vehicle is shown in Figure 5.9 A.

If the truck driver follows one of the paths, he will probably not keep
a constant speed. For example, he will decelerate before a turn maneu-
ver and accelerate afterward. Moreover, he might want to pass a traffic
light before it switches its lights from green to red and therefore accel-
erates. Furthermore, the ground or the vehicle itself may induce speed
changes. Deviations from the predicted paths are obvious, since the truck
never follows these perfectly. The prediction error — and thus the poten-
tial path deviation — increases with increasing distance from the current
location. The lateral standard deviation from the actually driven path in
meters depends on the maneuver class. The values depend on the predic-
tion horizon and the maneuver class.

Pedestrians follow straight path segments more or less and keep their
speed constant most of the time once they have reached their walking
speed (see Section 5.3.1). However, there might be incidents like an ap-
proaching car or slower persons they know that lead to smooth acceler-
ation or deceleration. Higher acceleration values are observable when a
pedestrian starts to cross the street after stationary waiting at the road-
side. A significant change in the direction could only be observed when
pedestrians followed the road and tried to cross it then. Of course, slight
path deviations are present due to the natural motion behavior of pedes-
trians or oncoming other pedestrians, and this is taken into account. The
direction of the straight predicted pedestrian path is estimated as moving
average from the pedestrian direction of the last measurement cycles. The
current coordinate system has its origin in the middle of the rear axle of
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the truck, so that the relative pedestrian directions from the environment
perception are stored in a ring buffer and are transformed to this coor-
dinate system using the yaw rate signal and the speed signal of the ego
vehicle. Thus, the uncertainty that results from the inaccuracy of these
signals shall be considered in the approach as well. The probability that
a pedestrian suddenly changes his direction is expected to be very small.
However, if she does, the measurement updates will reveal this change
and induce a correction. Examples for typical pedestrian paths are dis-
played in Figure 5.9 B.

As mentioned earlier, the measurement of the obstacle positions and
speeds is not always accurate. Therefore, the measurement values are
modeled by probability distributions with non-zero standard deviations.
The inaccuracies of the state estimations decrease for the applied sensors
radar and monocular camera the closer the objects get to the ego vehicle.
The real existence of the obstacles is subject to uncertainties, which is ex-
pressed by the PoE. The current position of the ego vehicle defines the
origin of the coordinate system, so that there is no inaccuracy in its cur-
rent position. However, the measurement of its dynamic parameters like
speed and yaw rate also shows inaccuracies that have to be modeled by
a proper distribution. Means are required to handle uncertainty in state
estimation and object existence as well as in state prediction.

The motion along the predicted path is assumed to be independent of
the lateral dynamics. This is reasonable, since the task of path follow-
ing is more or less independent of the task of keeping the velocity along
the path or the distance to someone ahead. This assumption simplifies
the probabilistic determination of the stochastic reachable sets of the road
users, as the lateral and the longitudinal probability distribution can be
computed independently in small dimensions.

A piecewise constant probability distribution f (δ) describes the lat-
eral dynamics of the road users as displacement from the predicted path,
see [196] for a statistical analysis of the lateral displacement of vehicles on
a road. For pedestrians, the lateral displacement from the path has been
obtained as part of the study conducted in this work. The probability dis-
tributions are normalized to the lane width for vehicles or to the assumed
path width for pedestrians, so that they can be applied to lanes and paths
of different widths. The deviation probability from the path is considered
as constant in time and is assumed to be independent of the probabil-
ity distribution along the path. The joint probability f (s, δ) results from
the product of the obtained lateral probability distribution f (δ) and the
longitudinal probability distribution f (s) ( f (s, δ) = f (s) · f (δ)). The dis-
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tributions f (δ) and f (s) relate to the deviation δ of the road user’s center
from the path and its position s on the path. The combined probability
distribution is described in a curved, path-aligned coordinate system as
in [186].

The probability distribution along the path is obtained from a dynamic
model with position s, velocity v and the absolute acceleration a. The
acceleration corresponds to the input command u and is normalized to
values within [−1, 1] where −1 represents full deceleration and 1 maxi-
mum acceleration. The function ρ(s) (in m) maps the path coordinate s
to the curvature radius. For vehicles, the radius of the path determines
the tangential acceleration at for a given velocity v and limits the normal
acceleration an because the absolute value of the combined accelerations
has to be smaller than the maximum, absolute acceleration amax. The ac-
celeration dynamics change at a switching velocity of vsw. For speeds
v > vsw ∧ u > 0 the aerodynamic drag is considered. The differen-
tial equations for the longitudinal dynamics is chosen according to [186],
where the second acceleration case is not used for the determination of
pedestrian dynamics (vsw → ∞):

ṡ = v, (5.18)

v̇ =


amaxu, if 0 < v ≤ vsw ∨ u ≤ 0,
amax

vsw
v u, if v > vsw ∧ u > 0,

0, if v ≤ 0,
(5.19)

under the constraint that |a| ≤ amax, where |a| =
√

a2
n + a2

t ,

an = v2/ρ(s), at = v̇. Only limited absolute accelerations amax are pos-
sible (Kamm’s circle). The constants amax and vsw are chosen dependent
on the specific properties of the different classes of road users. The dif-
ferential equations result in a hybrid system and non-linear continuous
dynamics. Moving backwards is not considered and a path to the op-
posite direction should be chosen instead. The hybrid automaton that
represents pedestrian motion is visualized in Figure 5.10.

The stochastic reachable positions of other road users and of the ego
vehicle within a certain time interval are computed to retrieve the prob-
ability of a crash as intersection of the stochastic reachable sets. Monte-
Carlo simulations that utilize the presented dynamics can lead to quite
accurate distributions of the predicted states. However, a higher number
of simulation runs increases the accuracy, so that the computational ef-
fort may become giant. The requirement for real-time capability cannot
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Figure 5.10 Hybrid automaton modeling pedestrian dynamics.

be satisfied if the accuracy is to be high. Therefore, Markov chains ab-
stract the original dynamics with sufficient accuracy supporting the pre-
sented deterministic computations. A large number of simulation runs
is performed during offline computation when the computation time is
almost unlimited. Thereby one obtains a transition matrix for each class
of road user with accurate state transition probabilities that can be saved
in a database. The system contains only few dimensions (2) here. Thus,
Markov chain abstraction is possible without extreme demand of storage
and exploding computational complexity.

The continuous state space (position and speed along a path) and the
input space are sampled to single cells. A unique map of the continuous
to the discrete state of a hybrid system exists if the invariants of a hybrid
system do not intersect, which is the case for the applied dynamics model.
The bounded, discrete and two-dimensional state space is transformed to
a vector where each element represents one state space cell for a simpler
notation.

A bounded set of initial states is generated from a pre-defined grid on
the initial cell Xj. An input value u([0, τ]) from a grid on the cell U α is
generated for each initial state then. It is constant during the time inter-
val [0, τ]. Finally, every initial state is simulated with the inputs u([0, τ])
and the parameter vector ρ of the time interval [0, τ] based on the sys-
tem dynamics. The probability distribution within all state and input
cells is strictly uniform. The assumption of a uniform distribution en-
ables the reconstruction of a piecewise constant probability distribution
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Parameter Truck Pedestrian Car Bicycle
vmax in m/s 18 6 18 9
vsw in m/s 4 - 7.3 1
amax in m/s2 7 5 9 7
sdetect in m 70 70 70 70
th in s 3.0 3.0 3.0 3.0
segment width in m 0.5 0.5 0.5 0.5
segment length in m 1 1 1 1

Table 5.1 Parameter definition: adapted from [71] for pedestrians based on sen-
sor information and own study.

of the continuous state x from the discrete distribution of the Markov
chain. The transition probabilities of the time step Ψα

ij(τ) and of the time
interval Ψα

ij([0, τ]) are computed as described in Section 3.6.

The input has to stay within the input cell Uα for the time inter-
val [tk, tk+1] (tk = k · τ), but it may change for the next time interval.
The Markov chain of each road user class is updated for the prediction
horizon th.

The discretization region of the state space X = s × v and the input
space U shall represent the movement of all relevant road users for the
whole temporal prediction horizon th. The total speed range reaches from
standstill to the maximum considered speed v = [0, vmax] and thus, the
maximum position range is s = [0, vmax · th + sdetect], where sdetect is the
maximum distance in which other road users (e.g., pedestrians) can be
detected. The dynamics depend on a parameter vector ρ of the road user
class from a set P and on the input u from the bounded set U ⊂ Rm.
Table 5.1 visualizes the applied values.

When other road users are detected by the environment perception
module during online operation, two transition matrices are loaded from
a database for each road user dependent on its class (e.g., pedestrian). The
normal distributions of the state estimation are transformed into piece-
wise, constant probability distributions in the discretized state space to
obtain the initial probability vector p0. State cells outside of the 3σ-
threshold (99.73 %) around the mean of the normal distribution get as-
signed a probability of 0.
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The probability vector of the next time step pk+1 can be predicted by
(compare Chapter 3.6.2)

pk+1 = Ψα(τ)pk. (5.20)

It serves the prediction of the probability vector of the next time interval

p[k,tk+1]
= Ψα([0, τ])pk. (5.21)

The iterative multiplication of the probability distributions with the tran-
sition matrices evokes an error because the probability distribution within
a cell is treated as if it was replaced by a uniform distribution in the next
time step. The reduction of this error is possible by choosing smaller dis-
cretization samples and increasing the computational effort.

A time-dependent input transition matrix Γk can take into account un-
certain input and thus, behavior models.

Pedestrians walking at normal speed (0.7 m/s to 1.7 m/s) are basically
expected to keep their initial speed and the probability of acceleration or
deceleration is small for the whole prediction horizon. Stationary pedes-
trians are expected to either keep standing or to accelerate fast, so that the
probability for medium acceleration values is low (deceleration not pos-
sible). If the pedestrians accelerate, they probably keep walking at nor-
mal speeds once they have reached the normal range. Pedestrians with
speeds up to 0.7 m/s are probably either in an acceleration phase or in a
deceleration phase. Thus, the probability of keeping the speed constant is
low. Faster pedestrians (faster than 1.7 m/s) have assigned a higher prob-
ability for deceleration than for acceleration until they reach the normal
speed range.

Pedestrian interaction might lead to the fact that one pedestrian waits
for another or the other accelerates to decrease the distance. Usually,
pedestrians at the road edge that want to cross the street without infras-
tructural crossing decelerate to watch out for approaching cars if there
are no other pedestrians on the street. A traffic light that switches from
green to red might induce an acceleration of the pedestrians on the cross-
ing, since they are running out of time. Of course, the detection of these
events, e.g., by using car-to-infrastructure communication, is a prerequi-
site.

A normal speed range for turn maneuvers of the ego vehicle is 10 km/h
to 15 km/h, as can be seen from the recorded data. Thus, a driver deceler-
ates or accelerates to that speed range before the crossing, where acceler-
ation is required if the driver had to stop at a crossing before turning, e.g.,
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due to a red light. After having passed the crossing, he accelerates up to
normal speed. Moreover, the recorded data showed that lane changes are
usually driven at a constant speed, while lane following had the highest
variability in speed and acceleration. The maximum speed is given by the
predicted curvature profile ρ(s) that could be based on GPS and map data
if it was available. Applied values for the speed profile will be provided
in Section 6.1.

The Monte-Carlo abstraction is not complete which is not required yet.
Therefore, special algorithms that have been designed for sparse matrix
multiplications like in [76] can accelerate the computation of the matrix
products. Negligence of small probabilities in the transition matrix and
the probability vector p̃ (p̃i < εp) and subsequent normalization to a sum
of one results in these sparse probability matrices and vectors with only
few non-zero entries. The threshold probability εp should be related to
the combined number of input cells Nu and state cells Nx:

εp =
εp∗

Nu · Nx
. (5.22)

Finally, one obtains the stochastic state distributions of all detected road
users and the ego vehicle. However, since the abstraction is not complete,
some occupied positions might appear empty. As a result, the risk could
be under-estimated because the collision risk is computed by intersection
of the stochastic position distributions of the ego vehicle and of the de-
tected road users. Therefore, the set of longitudinally reachable positions
is efficiently computed online. The initial state set is represented by a
two-dimensional interval. Two simulation runs are sufficient to obtain
the reachable positions given the presented dynamics, as the initial state
jointly contains the maximum initial position and speed. If two sets of
reachable positions intersect but the corresponding stochastic reachable
sets do not due to incomplete Markov chain abstraction, one assumes a
small value for the crash probability (compare [71]).

A vehicle with the initial condition x(0) = X 0 = s(0) × v(0) drives
along a straight path following the dynamics f (x(τ), u(τ)) = ẋ (x ∈ R2)
of equations (5.18) and (5.19). s(0) = [s(0), s(0)] is the initial position
interval and v(0) = [v(0), v(0)] is the initial speed interval. The reachable
two-dimensional interval of the vehicle state x(t) = [x(t), x(t)] for time
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point t is given by

x(t) = x(0) +
ˆ t

0
f (x(τ), u(τ))d τ, u(τ) = −1, (5.23)

x(t) = x(0) +
ˆ t

0
f (x(τ), u(τ))d τ, u(τ) = 1, (5.24)

where u ∈ [−1, 1] is a Lipschitz continuous input. Although the resulting
state interval x(t) is an over-approximation of the exact reachable set of
the state, one obtains the exact reachable set for the position. In case of a
curved path, the tire friction is considered by determination of the min-
imum and maximum admissible input values for a given curvature pro-
file ρ(s), compare [197]. The replacement of u(τ) = −1 by u(τ) = u(s(τ))
and u(τ) = 1 by u(τ) = u(s(τ)) enables the identification of the reach-
able position and speed on a curved path. Cutting off the previously
computed speed profile v(s) at vmax accounts for the consideration of the
speed limits (u(s) = 0, if v(s) > vmax). The maximum velocity is set to
65 km/h for trucks and passenger cars, because it is expected that the
drivers more or less respect the speed limit of urban areas. Thus, the
longitudinally reachable position interval s and speed interval v can be
computed analytically for a given input interval u that is constant for the
period of one computational time step t.

The analytical solutions of the longitudinal dynamics of the road users
for u ≤ 0 or 0 < v ≤ vsw is given by

s(t) = s(0) + v(0)t +
1
2

amaxut2, (5.25)

v(t) = v(0) + amaxut (5.26)

and

s(t) = s(0) +
(v(0)2 + 2vswut)

3
2 − v(0)3

3vswu
, (5.27)

v(t) =
√

v(0)2 + 2vswut (5.28)

represents the analytical solution for u > 0 and v > vsw. The analytical
solution for the case v = 0 is trivial.

The computationally expensive part can be accomplished offline when
the computation time is almost unlimited, while the probability distribu-
tion can be computed efficiently by sparse matrix multiplications during
online operation in the vehicle.
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5.3.3 Conditional Collision Probability

The intended purpose of the procedure is to identify the collision risk of
the ego vehicle with a vulnerable road user within the prediction hori-
zon th if the driver does not suddenly change his driving style. If new
sensor data are available after each time interval ∆t, the update of the
collision probabilities according to the new sensor information has to be
performed for the whole prediction horizon th in that time as well. First
own results for the determination of conditional crash probabilities have
already been presented at scientific conferences [209,210]. The crash prob-
ability is a conditional probability in the sense of assuming that no pre-
vious collisions took place. The variables of the ego vehicle are indexed
with �e for a better distinction between the variables of the ego vehicle
and other road users �ru. The collision probability with one road user is
considered as a partial probability. The sum of the partial probabilities of
all detected road users builds the total conditional collision probability.

Let f (ξ, tk) be the probability distribution of a road user at time point
tk, where ξru denotes a two-dimensional position vector of the road user
center. As in [71], let ind(ξru, ξe) be the indicator function that is 1 if
the body of the ego vehicle and the body of another road user intersect
and 0 otherwise. Then, then conditional crash probability p̃crash

k can be
formulated by

p̃crash
k =

ˆ
Rη

ˆ
Rη

f (ξru, tk) · f (ξe, tk) · ind(ξru, ξe)dξrudξe. (5.29)

The computational realization for the computation is described in the fol-
lowing. The probability distributions of the road user f (ξru, tk) and the
ego vehicle f (ξe, tk) at time point tk are piecewise constant probability
distributions in R2, since the path and the deviation from the path have
been segmented and the distributions are uniform within one segment.
Each path is simplified by connected straight lines sg based on the ex-
traction of points in appropriate path segment distances, where g is the
path segment index. The deviation from the path is also subdivided into
segments dh with deviation index h. Cgh denotes the trapezoidal region
that is spanned when the path coordinate s of the road user’s center is
within sg and the corresponding deviation coordinate δ is within dh. The
region that is occupied by the road users’s body then is represented by
Bgh. The probability ppos

gh that the center of a road user is within Cgh de-
pends on the product

ppos
gh = ppath

g · pdev
h , (5.30)
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due to the independence assumption. Here, pdev
h = P(δ ∈ dh) represents

the probability of the deviation segment and ppath
g = P(s ∈ sg) the prob-

ability of the path segment. The probabilities of the path segments ppath
g

are retrieved from the joint probability distributions pα
i of the state and

the input resulting from the Markov chain computations. Summing up
over all inputs provides the probability pi =

∑
α pα

i of state space cell i,
where each state space cell i represents a position interval sg and speed
interval vl (xi = sg × vl).

However, one is only interested in the probability of the path seg-
ments sg for the computation of the collision risk. Therefore, one inte-
grates over all speeds to obtain the probability of a certain position on
the path ppath

g =
∑

l P(s ∈ sg, v ∈ vl). Now, the probability that the cen-
ter of a road user is within Cru,gh is provided. However, the probability
pint

e f gh that the bodies of the ego vehicle and another road user intersect
is required as well. Therefore, the uncertain sets of the ego vehicle Ce,e f
and the other road user Cru,gh are gridded uniformly. The gridding points
represent potential centers of the road users where the bodies are located
symmetrically around. The probability pint

e f gh is computed by counting the
relative number for which the bodies of the road users would intersect.
Finally, the partial, conditional collision probability can be computed by

p̃crash =
∑

e, f ,g,h

pint
e f gh · p

pos
ru,gh · p

pos
e,e f . (5.31)

The sum is taken over all possible combinations of e, f , g, h resulting in
a giant number of possible combinations. The computation can be accel-
erated if the two-step approach proposed by [71] is applied, since only
a subset of index combinations has to be considered then. First, the ap-
proach checks for the intersection of road user bodies

⋃
h Bru,gh belonging

to a path segment sg and bodies of the ego vehicle
⋃

f Be,e f belonging to
path segment se by checking for the intersection of circles that enclose the
corresponding set of vehicle bodies. Then, paired sets of vehicle bodies
Bru,gh and Be,e f that passed the first test are checked for intersection again
by using enclosing circles. Look-up tables for the intersection probabili-
ties pint

ghe f that depend on the road user class, the relative orientation and
the translation of uncertain centers C can accelerate the computation of
the crash probability.

Now, the conditional collision probability of the ego vehicle with a
pedestrian that will follow path j when the ego vehicle will follow path
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q can be calculated under consideration of the pedestrian’s PoE pexist
ped =

p(∃x):
pcrash

ped,j,q = pexist
ped · p

traj
ped,j · p

traj
e,q · p̃crash, (5.32)

where ptraj
ped,j represents the probability that the pedestrian will follow

path j and ptraj
e,q denotes the probability that the ego vehicle will follow

path q, e.g., a straight path.
Thus, the total conditional crash probability for one pedestrian in the

considered time interval is given by numerical integration over all poten-
tial pedestrian paths and ego vehicle paths:

pcrash
ped =

∑
q

∑
j

pcrash
ped,j,q . (5.33)

Here, the total conditional crash probability has been described exem-
plary for a pedestrian, but it works analogously for other road users.
Clearly, the computation of a crash probability is only possible if the
surrounding objects are not occluded and are perceived early enough.
The objects have to be located within the FOV of the perceiving sensors.
On the one hand, computing the partial conditional collision probabil-
ity based on the probability distributions of the road users within con-
secutive time intervals implicates the advantage that no point of time is
missed. On the other hand, the uncertainties are higher than for time
point solutions, what may induce wrong collision probabilities. The pre-
sented approach is applicable to time step and time interval solutions.

The discretization of the state space and the input space for the pre-
sented Markov chain approach introduces a systematic error leading to
an over-estimation of the stochastic reachable sets. Thereby the values
of the crash probabilities can be under-estimated, since the relative in-
tersection of the ego vehicle’s reachable set and the one of another road
user decreases, especially, in crossing scenarios (see Section 6.3). This
impact can be reduced by choosing very small discretization intervals,
which increases the computational effort. However, digital signal pro-
cessors can accelerate the computations significantly, since the Markov
chain approach is based on many matrix multiplications. The error in the
transition probabilities can be chosen arbitrarily small, as the transition
probabilities are computed beforehand and offline when computational
time and resources are almost unlimited.
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This chapter is dedicated to the presentation of quantitative and qualita-
tive results of the developed filters EKF-JIPDA and EKF-GNN for sensor
data fusion and pedestrian tracking. Furthermore, the novel approaches
for trajectory prediction and risk assessment are evaluated using exem-
plary scenarios and are compared to established approaches, such as tra-
jectory prediction based on the assumption of a constant yaw rate and the
computation of the TTC as risk measure.

6.1 Object Tracking and Object Classification

The perception performance of the proposed fusion approaches and im-
plementations is evaluated to compare their strengths and weaknesses.
The accuracy of the state estimation and the detection performance deter-
mine the perception quality.

The ideal evaluation of the object tracking procedure would require the
exact state vector of each object, which is not available for real-world sce-
narios. A reference system has to be perfectly calibrated to the system
that should be evaluated. Each sensor system that provides reference in-
formation for the state vector is subject to uncertainty as well.

Therefore, simulated sensor data is commonly applied to evaluate dif-
ferent filter approaches where the real state vector is exactly known.
However, the evaluation results are not always comparable to the per-
formance of the evaluated filters in real world scenarios with real sensor
data. Simulation data can only model the simulated effects but not the
real world effects that might sporadically appear. Noise parameters of
the sensors and the total process cannot be represented in sufficient ac-
curacy. False alarm rates and detection rates of sensors as well as their
dependencies are not reproduced by simulation in a realistic way.

Therefore, an evaluation approach using real data has been chosen
in this work. Various complex scenarios with pedestrians have been
recorded in an urban environment and on a test ground. Tests at differ-
ent vehicle speeds with pedestrians following or crossing the lane have
been run. Variations of pedestrian speed and orientation have been eval-
uated as well as occlusion of pedestrians by other objects. Furthermore,
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the tracking performance has been evaluated in situations with multi-
ple pedestrians and pedestrian groups in a scene. Locations with an in-
creased probability for false alarms of the radar (e.g., ground with gravel)
have been chosen as well as different illumination conditions influenc-
ing the detection performance of the camera. Different surface types and
varying acceleration behavior of the ego vehicle induce various dynamic
pitch angles that have an impact on the accuracy of the state estimation,
especially, on the accuracy of the camera’s position estimation.

Image data (>12000 samples) of these situations has been labeled man-
ually to evaluate the detection performance of the two presented filter
approaches — the EKF-GNN and the EKF-JIPDA. For the evaluation of
the state accuracy of the pedestrians, a differential GPS system would
have been beneficial. However, since no such system was available, the
laser scanner was used as reference sensor for the positions. Measure-
ments with pedestrians of known size enable the evaluation of the height
estimation. A reliable reference for the pedestrians’ speed was not avail-
able. Therefore, a qualitative evaluation of the corresponding state com-
ponents will be presented here. The pedestrian speeds shall lie within
a reasonable range — stationary pedestrians should be provided as sta-
tionary, slowly moving pedestrians shall have speeds around 1 m/s and
below. A speed of about 1.5 m/s is considered as normal walking speed,
while fast walking or running pedestrians should move with 2 m/s and
above. For instance, pedestrian speeds should not exceed 4 m/s in these
scenarios. Furthermore, the resulting motion directions should be plausi-
ble.

Since this work is not focused on the development of algorithms for
the detection of pedestrians by camera or radar, the sensors’ perception
performance is taken as given, although there is still lots of room for im-
provement.

Both tracking approaches use the same state and measurement mod-
els and assume the same covariances for the sensors’ measurements.
However, evaluations showed that different parametrization is required
for the EKF-JIPDA and the EKF-GNN regarding the threshold value of
the HOG inference probability and the assumed uncertainty of the state
model to obtain the best performance of each approach. The best perfor-
mance means that the false alarm rate is kept below an admissible value.
Therefore, the data has been filtered using the EKF-GNN with two pa-
rameter sets. The confidence values of the HOG detections may take on
values between −1 and 1. For consideration of a HOG detection in the
filter, the detection’s confidence value had to exceed a certain threshold.
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This threshold was set to 0.1 in the first parametrization of the EKF-GNN
and to 0.7 in the second. The resulting filter variants are referred to as
EKF01 and EKF07 in the following. HOG detections were included in in-
novation steps of the EKF-JIPDA if their confidence value exceeded 0.1.
The abbreviation of this filter variant is referred to as JIPDA in the follow-
ing.

Moreover, the JIPDA is parametrized with a larger uncertainty of the
state model than the EKF01 or EKF07, which enables tracking in highly
dynamic scenarios. However, the uncertainty of the state model has to
be kept low for the EKF01 and the EKF07. Otherwise, tracks get assigned
measurements from sources that are located at relatively large Euclidean
distances if there was no association for some cycles, since the values of
the state covariance matrix increase and thereby lower the Mahalanobis
distance. These measurements are usually false alarms provided by the
radar.1 Consequently, the false alarm rate increases if the uncertainty in
the state model is chosen too high. On the other hand, the uncertainty
in the state model has to be kept at least as high that tracking across the
sensory blind region is possible when objects change the direction of mo-
tion around this region. Furthermore, more missing detections have to be
allowed around the sensory blind region than in the sensors’ FOVs.

The perceptional power of the different filter approaches is presented
and compared. The following subsection describes the procedure for
evaluation of the state estimation. Subsequently, the parameters that
provide evidence for the detection performance of the implemented ap-
proaches are introduced, while exemplary tracking scenarios are pre-
sented in Subsection 6.1.3 to compare the filter approaches in a qualitative
way. Quantitative results of the evaluation of the state estimation and the
detection performance are presented in Subsection 6.1.4 and in Subsec-
tion 6.1.5, respectively. The subsection concludes with the discussion of
the results.

6.1.1 Methods for the Evaluation of the State Estimation

A common mean to evaluate the quality of a state estimation is the test
for consistency. Consistency requires that the outcome of the procedure
identifies the underlying truth [198]. Heuristically spoken, an estimator

1The JIPDA takes into account the detection probability of an object and the Mahalanobis
distance in the PoE. Thereby objects are pulled to a smaller extent by distant measure-
ments and are deleted earlier when only distant measurements are available than in the
EKF01 or the EKF07.
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is called consistent if an enlarged sample size brings the estimator closer
to the real value of the estimated parameters. A state estimator of a dy-
namic system is consistent if the mean error of all points in time is 0 and
the covariance of the state estimation equals the covariance of the esti-
mation error. Mählisch [60] and Munz [65] tested their implementations
of the JIPDA approach for consistency using an NCPS test (Normalized
Projected Correction Squared) and an NEES test (Normalized Estimation
Error Squared), respectively. The first is an adaption of the NIS test (Nor-
malized Innovation Squared) to filters with weighted innovations. In con-
trast to the NEES test, the NIS and NCPS test do not require any reference
data, but they require independent test samples, which is not given when
using real measurement data. However, the statistics of the NIS or NCPS
values can be tested by accumulation of sample values of different time
points (histograms).

The NEES test assumes that the actual state vector xref,ik of object xi
at time point k (ground truth) is known. The NEES test checks whether
or not the squared estimation error normalized to the state covariance
matrix Pik follows a χ2 distribution with dim (x) degrees of freedom. The
NEES values εNEES,ik of object xi at time point k can be computed using

εNEES,ik = (x̂ik − xref,ik)
T · P−1

ik · (x̂ik − xref,ik) (6.1)

= (γref,ik)
T · P−1

ik · (γref,ik), (6.2)

where
E{εNEES,ik} = dim (xik) (6.3)

should be fulfilled. Note that the estimation errors γref,ik may be tem-
porally correlated. A temporal computation of the NEES values gives
evidence for filter consistency in sense of the NEES. The mean over all
objects and all time points (Nref samples)

ε̄NEES =
1

Nref

Nref∑
n=1

εNEES,n (6.4)

approximates the expectation value for a large number Nref and is there-
fore another indicator for filter consistency.

Here, an NEES test is applied to evaluate the filters’ consistency. NEES
values are computed using the state components with available reference
data — longitudinal position, lateral position and pedestrian height. An
NEES histogram results for each filter. The histograms are then compared
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to the density of a χ2 distribution with three degrees of freedom. The
comparison indicates whether the filter tends to be too pessimistic or too
optimistic (tends to over-estimate its capabilities).

The consistency of a filter is influenced by several factors, such as
imperfections of the process model or of the measurement model.
Furthermore, numerical problems or mistakes in the implementation can
induce filter inconsistency. The real measurement errors and process
noise might not be normally distributed, or the model linearization
can evoke a deformation of the distribution. If the parameters for the
uncertainty of the state model (process noise) or the measurement noise
do not exactly fit the theoretical values, filter consistency cannot be
shown. Usually, the process noise has to be chosen pessimistically
(over-estimated process noise) to enable tracking in highly dynamic
scenarios. Thus, the distribution of the NEES values that can be obtained
from the relative frequencies will have smaller values than the expected
χ2 distribution.2 The obtained state uncertainty must not be estimated
too small in a consistent filter.

The filter’s underlying estimation error is an important statistical pa-
rameter for analysis of the filter’s accuracy. The root mean square errors
(RMSE) of the single state components l are computed to evaluate the
dimensional estimation accuracy of the implemented filter approaches

RMSEl =

√√√√ 1
Nref

Nref∑
n=1

γref,n(l)2, (6.5)

whereas the multi-dimensional estimation error provides a scalar quality
measure of the state estimation

RMSE =

√√√√ 1
Nref

Nref∑
n=1

∥∥γref,n
∥∥2. (6.6)

6.1.2 Methods for the Evaluation of the Detection Performance

The detection performance is evaluated by using manually labeled refer-
ence data from different scenarios. Thus, the real existence of each object

2 Multi-model filters can reduce the effect and their development could be content of future
work.
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is known. All pedestrians in the image are labeled with boxes taking
image area Alabel, so that the position of the box in the image, its width
and its height are known. Attributes are added to the labels such as for
pedestrian occlusion by other obstacles, partial visibility at the edge of
the FOV, or for pedestrians in a group. Each object hypothesis xi is trans-
formed from vehicle coordinates to image coordinates, where a constant
pedestrian width of 0.4 m is assumed for each pedestrian. Each object
projection can be represented by a box taking area Atrack of the image.
The overlap fraction orel of a labeled box and a box Atrack resulting from
an object hypothesis of the same time point is computed to determine if
a pedestrian has been detected or if the object hypothesis is a false alarm.
The overlap criteria is adopted from [65]:

orel =
A∩

Atrack + Alabel − A∩
. (6.7)

An object hypothesis is considered as valid detection if orel exceeds the
threshold value of 0.39 in this work. If a pedestrian object has been de-
tected, it is a true positive detection (TP), whereas a non-detected object
is classified as false negative (FN). If there has been an object hypothesis
but no matching pedestrian, the object hypothesis is labeled as false pos-
itive (FP). Non-detected objects without object hypothesis would be true
negatives (TN) but cannot be evaluated, since these situations are not ex-
plicitly detectable. All other obtainable numbers enable the computation
of the true positive rate fracTP and the false negative rate fracFN:

fracTP =
NTP

NTP + NFN
, (6.8)

fracFN =
NFN

NTP + NFN
. (6.9)

Partially visible objects or partially occluded pedestrian objects are la-
beled as optional detections meaning that they may be detected (MB) but
do not necessarily have to be detected. These are only counted in NMB

TP if
there is a detection. Consequently, the true positive rate under consider-
ation of all maybe-objects is given by

fracMB
TP =

NTP + NMB
TP

NTP + NMB
TP + NFN

. (6.10)

An analogous computation of the false positive rate would require the
availability of the number of true negative detections. Therefore, an al-
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ternative measure is used that normalizes the number of false positive
detections to the number of iterations Nit.

fracFP =
NFP

Nit
. (6.11)

The false positive rates of the tracking procedure should not be mis-
taken for the false alarm rate of an application. The object data is further
pre-filtered before it can cause a system intervention. For instance, only
pedestrians located around and within the driving corridor and fulfilling
a certain speed criterion should be considered.

The computation of ROC curves enables the evaluation and interpreta-
tion of the filters’ detection performance. If the PoE of a track has to reach
a certain threshold ξPoE to be confirmed and only confirmed tracks are
included in the number of true positive detections (NTP + NMB

TP ), this has
an impact on the true positive and false negative rates, see equations 6.10
and 6.11. If one varies the threshold ξPoE and plots the resulting detection
rates of real pedestrians over the corresponding false positive rates, one
obtains an ROC curve. Values for quantitative interpretation of the de-
tection performance can be obtained by computing the AUC (area under
curve), where higher values indicate a better detection performance than
lower ones. Another measure would be the equal error rate. The value
corresponds to the rate where the false positive rate and the detection rate
are identical, so that the same unit or reference parameter is required for
both rates.

Here, the AUC measure is utilized, since the true positive rates and
the false positive rates relate to different reference parameters. The AUC
corresponds to the area below the ROC curve up to a defined maximum
false alarm rate, for instance 2 per iteration. Thus, the AUC of an opti-
mal filter with a perfect ROC curve takes on the value 2 in this example.
The AUC values of the filter variants JIPDA, EKF01, and EKF07 enable a
quantitative comparison of the detection performance of the filters.

In the last two subsections, quantitative measures for the comparison
of the EKF variants and the JIPDA have been presented. The following
subsection introduces some example scenarios for a qualitative impres-
sion of the filters’ performance. Quantitative results will follow in Sub-
section 6.1.4.
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6.1.3 Examples for pedestrian tracking with EKF-JIPDA and
EKF-GNN

The examples are presented as a combination of an image with projected
JIPDA tracks (gray boxes) and the plots of the state components and the
PoE in the Figures 6.1 to 6.6. The color of the box in an image repre-
sents the object’s PoE. The lighter the box is, the higher is the PoE. Green
boxes in the image represent HOG detections. Yellow circles around the
foot points of the pedestrians illustrate the position covariances. The
green horizontal line is the estimated horizon taking into account the
low-frequent part of the dynamic pitch angle. In the plots, the thick
solid blue lines represent object data of the JIPDA, while dashed gray
and black lines show the tracking results of the EKF07 and the EKF01,
respectively. Red circles indicate HOG detections. The sensory inference
probability pTP(zj) of the HOG detections is plotted together with the PoE
of the tracks. Stars represent measurements from the radars, while ma-
genta diamonds illustrate pedestrian detections of the laser scanner. Note
that only detections of pedestrians on the right of the ego vehicle can be
detected by the laser scanner if it is mounted on the right step tread.

The first exemplary scenario that is presented in Figure 6.1 has been
recorded on a large tarred test ground, so that there were no other objects
in the environment and only a very low number of false detections has
been provided by the radars. The laser scanner has been mounted on the
right upper step tread. Two pedestrians approach from the front on the
left and on the right side of the truck. Then, they start to cross the driving
corridor. The ego vehicle is running at about 15 km/h. The state esti-
mation and detection performance of the JIPDA and the EKF01 is almost
identical, since there are only a few radar reflections on the ground that
could disturb the state estimation. The EKF07 deviates in the state esti-
mation because it takes into account less HOG detections than the EKF01
and the JIPDA due to the HOG threshold. The longitudinal distance es-
timation is dominated by the radar, while the lateral distance follows the
camera’s HOG detections. The longitudinal speed of the objects takes
longer to stabilize than the lateral speed but both appear plausible. The
height estimation is acceptable, since the real pedestrians had heights of
about 1.8 m and 1.9 m. The plot on the right bottom illustrates that the
PoE’s of the EKF07 and the EKF01 are pure heuristics, as described in
Subsection 4.6.2. The PoEs of the JIPDA objects initially grow and stay at
constantly high values in this scenario, which is plausible since there is
no disturbance that could lead to ambiguities in this situation.
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Figure 6.1 Scenario where two oncoming pedestrians follow the lane before
they start cross it in front of the ego vehicle. The ego vehicle is run-
ning at about 15 km/h. The state estimation of the filter variants
is similar, since there is no disturbance that could lead to ambigui-
ties. (The legend is provided in the text at the beginning of Subsec-
tion 6.1.3.)
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The second scenario includes three pedestrians. It is illustrated in Fig-
ure 6.2 where the plot on the right top shows the positions of two pedes-
trians in a world-fixed coordinate system. One pedestrian walks around
the cottage in the background at the beginning of the scene. Two other
pedestrians cross the lane in front of the ego vehicle on a ground with
gravel. Radar reflections from the gravel and inaccurate distance infor-
mation of the camera result in a lowered PoE of the closer pedestrian, so
that the object is deleted and a new object is initialized. A false HOG de-
tection on the vehicle in the background leads to a track with a low PoE
that does not survive for a long time. This track has also been created by
the EKF01, but no distinction between trustworthy and non-trustworthy
is possible for the EKF01 due to the heuristic nature of the PoE.

The next scenario (Figure 6.3) has been recorded in a more crowded
environment. Cars and elevated infrastructural elements on the street
edge induce several radar detections and some HOG detections of non-
pedestrian objects. The ego vehicle approaches a zebra crosswalk and de-
celerates to standstill. Two pedestrians cross the lane in front. There are
two other pedestrians walking on the left pavement at a distance initially
larger than 50 m. The EKF01 and the EKF07 induce more false positive
objects or several objects that result from the same real pedestrian. This
can happen when a HOG detection could not be associated with an ex-
isting track and a new track is set up for the pedestrian detection. If the
spatial uncertainty of the first track is sufficiently large and there are other
detections around — usually radar reflections — both tracks are assigned
to measurements and survive. The plots do not show the radar detec-
tions. False positive objects of the JIPDA do not exceed a PoE value of 0.5,
while true positive tracks showed PoEs above 0.5. Thus, the JIPDA is able
to distinguish between false and true positives by using the PoE. This is
not the case for the EKF-GNN filter variants, where all track types show
more or less the same heuristic PoEs.

Figure 6.4 shows a group of three pedestrians that approaches on the
left pavement. Initially all three have been tracked. Then, the height of
the HOG detections deviates too much from the initial estimate of one
object. Consequently, the object is deleted. The EKF-GNN tracks with the
highest lateral speed represent false positive objects.

The scenario that is shown in Figure 6.5 and in Figure 6.6 illustrates
the filter behavior for tracking across the sensory blind region and in the
blind spot of the ego vehicle. One pedestrian approaches from the front
and another crosses the lane from the left in front of the ego vehicle before
he turns and enters the blind region. Sporadic false HOG detections on
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Figure 6.2 Scenario with two pedestrians crossing the lane and one pedestrian
walking around the cottage in the background: The plots visualize
the state components and the PoE over time of the JIPDA tracks
(solid blue). The laser scanner has been mounted on the right step
tread of the stationary ego vehicle. Cyan stars represent radar detec-
tions. Inaccurate HOG detections (red circles) lower the PoE of the
closer pedestrian so that one object is deleted and another is initial-
ized. The camera-based false alarm on the vehicle only induces an
object with a low PoE.
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Figure 6.3 Scenario with four pedestrians, where two pedestrians cross the lane
in front of the decelerating ego vehicle and two pedestrians walk
on the left pavement at a relatively large distance (50-60 m). False
positives of the JIPDA can be distinguished from true positives based
on the PoE, which is not the case for EKF01 and EKF07 tracks. (The
legend is provided in the text at the beginning of Subsection 6.1.3.)
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Figure 6.4 Scenario with a group of three pedestrians approaching on the left
pavement. Two pedestrians could be tracked quite stable, while the
track of the left pedestrian is lost after some time, since the height
estimation of the camera strongly deviates from the initial height es-
timation. (The legend is provided in the text at the beginning of Sub-
section 6.1.3.)
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the traffic sign induce the creation of tracks by all filter variants, but the
corresponding JIPDA tracks never reach high PoEs and die after a few cy-
cles, whereas radar reflections from that sign keep the EKF01 and EKF07
tracks alive.

When the pedestrians leave the field of detection of the camera there
is no update for the height estimation of the pedestrians anymore. Thus,
the value is kept constant. The decrease in the PoE of the JIPDA around
second 20 results from several radar reflections from the rough ground
with gravel around the pedestrian, which can be observed in Figure 6.6.
These radar reflections also induce the effect that the tracks slightly de-
viate from the real object position, which can be seen in Figure 6.6 at
the right edge of the SRR’s FOV. The plot on the left shows the tracks
of the JIPDA in world-fixed coordinates, while the plot on the right vi-
sualizes the corresponding tracks of the EKF07. Both filters are able to
track the pedestrians across the sensory blind region. The tracks can be
kept alive, so that the classification information of the frontal camera can
be exploited in the blind spot of the vehicle and an increased confidence
about the object class and the object height can be provided by the filters
in the blind spot region.

Figure A.3 of Appendix A.8 shows images of additional scenarios us-
ing the JIPDA for tracking of multiple pedestrians and another exemplary
scenario for the filter comparison where two pedestrians follow the lane
on the right pavement. Figure 6.7 visualizes some challenging scenarios
for object tracking. Only some pedestrians are detected by the camera
and can be tracked if there are too many pedestrians in a scene. If pedes-
trians walk laterally in a group and the pedestrians partially occlude each
other, only the closest pedestrian is detected by the camera. Pedestrians
that are as close that the foot point is not anymore in the image are usu-
ally not detected. A pedestrian’s height and distance cannot be estimated
correctly by the camera if the lower part of a pedestrian is occluded or the
pedestrian is located on a ground that is located higher than the ground
plane of the ego vehicle.

The presented situations gave a qualitative impression of the filters’
performance and indicated which challenges have to be handled. Quan-
titative results are presented in the following subsections.

6.1.4 Results of the Evaluation of the State Estimation

Scenarios with pedestrians of known height have been recorded, where
the laser scanner has been mounted at the front for one set of scenarios
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Figure 6.5 Scenario with one pedestrian approaching the blind spot from the
front and one approaching from the left. The EKF variants stably
track the traffic sign, whereas the JIPDA deletes the corresponding
initialized tracks after a few cycles due to a low PoE. (The legend is
provided in the text at the beginning of Subsection 6.1.3.)
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A B

Figure 6.6 Pedestrian positions in a world-fixed coordinate system in a sce-
nario, where one pedestrian approaches the vehicle’s blind spot from
the front and another from the left: Positions from JIPDA (A, solid
blue line) and EKF07 (B, black line). The laser scanner detections are
represented by magenta diamonds. The situation is the same as in
Figure 6.5.

Figure 6.7 Examples for challenging tracking scenarios: Only some pedestrians
are detected by the camera in crowded scenes. Pedestrian groups
are tracked as one pedestrian if the single pedestrians occlude each
other. The foot point of a pedestrian has to be within the image to
enable a detection by the camera. Partial occlusion of pedestrians
often hinders stable detection and tracking.
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and on the upper right step tread in another set. The scenarios have been
mainly recorded in an environment with few non-pedestrian objects to
avoid false detections by the laser scanner, which could lead to an am-
biguous association of detections with real pedestrians and other objects.
Therefore, it has to be expected that the state estimation, especially of the
EKF01 and the EKF07, is evaluated to be more accurate than it would
be in more structured and crowded scenarios. All tracks that had a PoE
> 0.01 have been considered for the evaluation. The pitch angle of the
cabin has a recognizably negative impact on the perception performance
of the laser scanner at large distances. Therefore, the evaluation is only
performed for a limited distance range of 7 m to 38 m when the laser scan-
ner is mounted at the front of the driver’s cabin, although the filters track
objects up to a range of 70 m.

Figure 6.8 shows the histograms of the reference positions used for the
evaluation of the state estimation. The positions have been obtained from
the pedestrian detections of the laser scanner mounted at the front. The
real pedestrians used for data recording are 1.8 m and 1.9 m tall.

A B

Figure 6.8 Histograms of the reference values for the positions (x, y) that have
been obtained from the laser scanner.

The multi-dimensional RMSE has been computed for the different filter
variants. Table 6.1 shows the results together with the RMSE computa-
tions of the single state components. The radars usually detect pedestrian
legs, and the position of a pedestrian’s foot point in the image depends
on her step size. The laser scanner takes the center of mass of the com-
puted cluster for the position, so that the reference data may deviate from
the body center. Thus, the reference position of a pedestrian can depend
on her current shape due to the current position of the arms and the legs.
The obtained RMSE values appear as a good result for the utilized sen-
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sors, since the value for the longitudinal distance RMSEx is around 0.5 m,
which is less than a normal step size. The lateral value RMSEy is even
lower.

Filter JIPDA EKF07 EKF01
RMSE 0.54 0.59 0.52
RMSEx in m 0.51 0.55 0.48
RMSEy in m 0.14 0.18 0.15
RMSEh in m 0.11 0.13 0.12

Table 6.1 Root mean square error analysis for the filter variants JIPDA, EKF07,
and EKF01.

Figure 6.9 shows box-whisker plots3 obtained from the deviations
γref,ik = x̂ik − xref,ik between the estimated mean state and the corre-
sponding reference data (laser scanner, known pedestrian height). The

A B

C

Figure 6.9 Box-whisker plots of the deviation γref,� of the estimated mean state
from the reference data.

3Box-whisker plots visualize different statistic measures. The tops and bottoms of each box
correspond to the 25th and 75th percentiles of the samples, respectively. The distances
between the tops and bottoms are the inter-quartile ranges (IQR). The line in the middle
of each box is the sample median. The whisker lines extend above and below each box.
Observations beyond the whisker length are marked as outliers. An outlier is a value
that is more than 1.5 · IQR away from the top or bottom of the box.
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corresponding values of the median as well as of the 25th and 75th per-
centile are summarized in Table 6.2. Notches of the box-whisker plots
display the variability of the median between samples. The width of a
notch is computed so that box plots whose notches do not overlap have
different medians at the 5 % significance level. If one compares the medi-
ans of different box-whisker plots, one performs a visual hypothesis test.
The deviations from the reference data stay in a closer range for the JIPDA

Filter JIPDA EKF07 EKF01
25th percentile −0.24 −0.35 −0.27

x in m Median −0.03 −0.08 −0.02
75th percentile 0.21 0.24 0.30
25th percentile −0.08 −0.15 −0.11

y in m Median −0.01 −0.05 0.03
75th percentile 0.07 0.05 0.07
25th percentile −0.09 −0.10 −0.12

h in m Median −0.02 −0.01 −0.04
75th percentile 0.04 0.08 0.04

Table 6.2 Statistic parameters of the deviation of the estimated mean states from
the reference data (laser scanner, ground truth).

than for the EKF01 and the EKF07. The EKF01 under-estimates the pedes-
trians’ height significantly more than the JIPDA (p-value 7.0 · 10−5)4 or
the EKF07 (p-value 3.3 · 10−11), which is reasonable, since HOG detections
that under-estimate a pedestrian’s height usually have a smaller inference
probability (pTP(zi) < 0.85) than other HOG detections. The JIPDA ex-
plicitly considers this inference probability and the EKF07 only includes
HOG detections above that value. On the other hand, since fewer de-
tections are used by the EKF07 and the lateral distance accuracy is dom-
inated by the camera, the lateral accuracy of the EKF07 is significantly
lower than for the EKF01 (p-value 1.3 · 10−7) and the JIPDA (p-value
4.8 · 10−10), whereas the lateral accuracies of the JIPDA and the EKF01
do not differ significantly. The accuracy of the longitudinal distance es-
timation is comparable for the JIPDA and the EKF variants. However,

4 Refers to Student’s t test: The p-value is the probability of observing a value as extreme

or more extreme of the test statistic t =
√

(ma −mb)/(
sa
N + sb

M ), assuming that the null
hypothesis is true, where ma and mb are the sample means, sa and sb are the sample
standard deviations, and N and M are the sample sizes.
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Student’s t test showed a significant difference between the EKF01 and
the EKF07 (p-value 0.045).

As mentioned above, only a qualitative evaluation of the speed accu-
racy is possible due to missing reference data. Figure 6.10 illustrates the
histogram of the speed values that have been obtained by the JIPDA. All
speed values lie in a plausible range. Each histogram shows a maximum
at 0 m/s, which can be explained by the fact that detected pedestrians
were either standing or moved into the normal direction of the corre-
sponding speed component. Local maximums can also be observed be-
tween 1 m/s and 2 m/s, which corresponds to the normal walking speed
of a pedestrian. Single recordings included pedestrians jogging laterally
or longitudinally. These pedestrians’ speeds have been estimated to be
about 3 m/s.

A B

Figure 6.10 Histograms of speed values estimated by the JIPDA: longitudinal
speed vx (A) and lateral speed vy (B).

The histogram of the computed NEES values is exemplarily shown for
the JIPDA in Figure 6.11 together with the χ2 density distribution with
three degrees of freedom. The distribution indicates that the filter under-
estimates its accuracy and provides rather pessimistic values for the un-
certainty of the state estimation. However, the limitations of the process
model require the assumption of a high process noise to enable pedestrian
tracking in highly dynamic scenarios. The filter never over-estimates its
accuracy, so that the filter can be considered consistent. The EKF01 and
the EKF07 show slightly higher NEES values but can be taken as con-
sistent as well. Large deviations of the estimated mean state from the
reference data come along with a high state uncertainty.

Summarizing, one can state that the accuracy of the state estimation
of all filter variants is satisfying. All filters provide rather pessimistic
estimations of the state uncertainty, but this is a required feature to enable
pedestrian tracking in highly dynamic scenarios.
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Figure 6.11 Histograms of the NEES values for the JIPDA and the χ2 density

distribution with three degrees of freedom (dashed line).

Another important aspect of the perceptional power of the filters is the
detection performance, which is evaluated in the following subsection.

6.1.5 Results of the Evaluation of the Filter’s Detection Performance

The manually labeled data described at the beginning of this section has
been used for the evaluation of the detection performance. The object
data from the filters has been interpolated to the timestamps of the label
data (camera timestamps) to enable an association of the labels with the
filter data as unambiguous as possible. Then, the ROC curve of each filter
variant is computed as described in Subsection 6.1.2. Figure 6.12 shows
the obtained ROC curves together with the corresponding evolution of
the PoE. The PoE curves of the EKF01 and the EKF07 show that the cho-
sen mean for the estimation of an object’s confidence is only a heuristic,
since both curves increase rather linearly. The detection performance of
the EKF07 is superior to the detection performance of the EKF01, since
it takes into account more reliable HOG detections. The plots indicate
that only objects with PoEs > 0.5 should be provided to subsequent sit-
uation evaluation modules to keep the false alarm rate within an accept-
able range. However, the detection rate is not very high then. A signifi-
cantly better detection performance is obtained by the JIPDA, that shows
a higher detection rate at a lower false positive rate.

Table 6.3 summarizes the scalar AUC values normalized to two false
positives per iteration for the comparison of the detection performance
of the different filter variants. The HOG detections show a better detec-
tion performance than the EKF01 and the EKF07, which can be explained
by the high false positive rates of these filters. The high false positive
rates result from object associations with radar targets resulting from non-
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BA

Figure 6.12 ROC curves of the JIPDA (A, blue solid line), the EKF07 (B, gray
solid line), and the EKF01 (B, black solid line). The dashed lines
show the corresponding evolution of the PoE.

pedestrian objects. This is less likely to happen in JIPDA filtering and
therefore, this filter shows the best detection performance.

Filter Variant JIPDA EKF07 EKF01 HOG Optimum
AUC 1.90 1.40 0.80 1.72 2.0

Table 6.3 Areas under curve normalized to 2 false alarms per iteration.

After a quantitative comparison of the filter approaches, the next sub-
section summarizes the results, discusses the challenges that have to be
faced, and provides ideas for improvements.

6.1.6 Conclusions from the Filter Comparison

All presented filter variants base their state estimation on the extended
Kalman filter. The JIPDA, the EKF01 and the EKF07 are causal filters con-
sidering current data and data from the history. Initially, it takes some
cycles to reach a sufficient confidence level (PoE) for track confirmation.
During that time, a higher false negative rate is to be expected than for
higher PoEs. After an object’s disappearance it takes some cycles to de-
crease the PoE and to delete objects which can lead to an increased false
positive rate. Therefore, the filters can be considered as smoothing fil-
ters.5

The accuracy of the state estimation is comparable for all presented fil-
ter variants, however, the JIPDA estimates are more accurate. The JIPDA

5 The impact of different parameter sets for the probability of detection pD(xi) and the
sensory inference probability pTP(zj) on the transfer behavior of the JIPDA filter has
been analyzed in [60]. Therefore, it is not discussed in more detail here.
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filter’s detection performance is superior to that of the two other filter
variants, which is an argument for probabilistic data association in multi-
object tracking. The PoEs provided by the JIPDA filter appeared reason-
able and decreased in situations where measurements from several clutter
sources close to the object have been received. Objects that have been ini-
tialized by false detections only obtained low PoEs in JIPDA filtering. In
contrast, the EKF01 and the EKF07 could only provide heuristic PoEs, so
that one can only barely infer from it if the tracked object really exists. All
filter approaches succeeded in tracking across the sensory blind region,
although the position estimations of the JIPDA filter were located closer
to the real pedestrian position than of the EKF01 and the EKF07. Thereby,
information about an object’s class and height could be provided for ob-
jects in the blind spot of the vehicle, information that would not be avail-
able if only one separate radar was used for this region. If the vehicle
moved faster than 25 km/h and the pedestrians changed their direction
significantly around the sensory blind region, the filters could not follow
this behavior. However, since the vehicle will not turn or stop at this
speed, the pedestrian objects in the vehicle’s blind spot are not relevant
anymore and thus, do not represent a risk.

So far, only the outcome of the filter approaches has been compared,
but the preliminaries of the approaches and the effort should be discussed
as well. The EKF-GNN variants are easy to implement and do not require
a high number of parameters. The complexity of these algorithms is much
lower than for the JIPDA.

Adding an additional sensor with another distinct FOV is possible in
a generic way in JIPDA filtering and in the EKF-GNN approaches, but
the utilization of the detection probability makes it more comfortable in
JIPDA filtering. The detection probability that is 0 in the sensory blind
region reduces the effect that tracks are pulled by measurements from
sources that are located around but do not result from the object.

The JIPDA is much more sensitive to an incorrect calibration, as the de-
tection rates have to fit to the FOVs. The Mahalanobis distance as well
as the probability of detection have an impact on the PoE and thereby on
the track management in JIPDA filtering. Furthermore, the local detec-
tion performance of a camera may depend on lens effects that cannot be
compensated by intrinsic calibration and these effects may differ between
different camera samples.

The calibration procedure of the sensors has to be kept simple to en-
able a calibration at the end of a production line and in workshops, for
instance, if a windshield has to be changed. Usually, the rotation pa-
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rameters should be computed only during online calibration then. The
EKF-GNN approaches are more likely expected to be able to handle the
demand for simplicity.

Camera and radar performance is taken as given. However, there is
still room for improvement, for instance, in the radar sensors’ design for
pedestrian detection. The detection performance of the sensors strongly
influences the total performance of the tracking approaches. The sensors
have been measured under laboratory conditions at clear sight but the
detection performance strongly variates with illumination conditions and
in a crowded urban environment. For example, although the camera has
an integrated intelligent shutter control algorithm, the detection perfor-
mance for pedestrians strongly decreases during low altitude of the sun,
since the prolonged shutter time increases the motion blur. Furthermore,
the detection algorithm does not detect all pedestrians in scenes with a
large number of pedestrians at once due to computational deficits. When
several pedestrians are located close to each other, only one pedestrian of
the group might be detected in one cycle and only one other pedestrian
of the group in the next cycle, so that the initialization of stable tracks
is unlikely. If the detection probability is lowered too much, detections
in less crowded scenes are categorized more likely as false alarms. One
has to find a compromise to obtain acceptable results for both environ-
ments. If there are multiple strongly reflecting objects at the roadside,
such as parked cars or little walls, all available 64 radar detections might
be used for representation of these objects and no target is set for a lowly
reflecting pedestrian. Thus, the probability of detection would have to be
modeled dependent on several other conditions that might even not be
determinable with available sensors.

The image-based detection performance can be enhanced by extending
the training data set of the HOG classifier by images from more different
environments and illumination conditions. Moreover, a more sensitive
camera with a shortened illumination time would decrease motion blur.
Radar sensors with a higher sensitivity and an increased angular resolu-
tion (higher bandwidth) as well as extended computational capacities are
under current supplier development. The expectations assume that the
detection performance will be highly increased and that the application
of micro-Doppler6 approaches will even enable radar-based pedestrian

6 Relative motion or deformations of parts of illuminated objects induce additional features
in the Doppler frequency spectrum. These features are called micro-Doppler effect and
appear as sidebands around the central Doppler frequency [199].
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classification. However, no such highly developed sensors have been
available during the course of this work.

Summarizing one can state that the presented EKF-JIPDA is a promis-
ing generic fusion approach. It is predestined for fusion approaches
that provide information for several applications with different safety
requirements. Furthermore, a reliable PoE is valuable for tracking across
the sensory blind region and in the blind spot region of the truck to de-
cide if the track from the front shall be trusted and can be used to set up a
warning. However, there are some possible improvements. An adequate
electronic architecture in the vehicle (e.g., Ethernet-based) and sufficient
computational power are basic requirements for the fusion approach,
but the main challenge that has to be won is a simple parametrization of
the fusion algorithm and the utilized sensors, so that it can be applied in
series production.

However, reliable PoEs represent a valuable benefit for situation evalua-
tion modules. New approaches for risk assessment can now be developed
based on a novel approach for prediction of the ego vehicle’s path. There-
fore, the results of this approach will be presented in the following section
before the developed risk assessment approach is evaluated.

6.2 Evaluation of the Maneuver Classification and
Trajectory Prediction Approach

The development and the evaluation of the novel approach for maneuver
classification and trajectory prediction is based on video and CAN record-
ings. Six different drivers drove the test truck with and without trailer
during data recording (about four hours). Defensive and sporty driv-
ing styles were tried to be captured. The work of Klanner [200] showed
that a single driver exhibits a much higher variance in his maneuver ap-
proaches than can be found between the average behavior of different
drivers. Thus, the number of different drivers guiding the truck for data
acquisition is of little relevance. The data has been labeled manually in
Matlab, where a comparison with recorded video data supported the la-
beling process. The labeling process added points for the beginning and
the end of a maneuver. Moreover, temporal reference points have been
defined for lane change and turn maneuvers. The reference points have
been set to the apexes of the yaw rate signals in case of turn maneuvers
and to the inflection points of the yaw rate signals in case of lane changes.
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While these two maneuver classes are limited in duration, lane follow-
ing does not necessarily have a temporal limit and no reference point has
been defined for this maneuver class.

About 72 % of all maneuver samples in the recorded data belong to
the maneuver class lane following, while about 16 % represent the ma-
neuver class turn. Accordingly, about 12 % of the recorded data samples
correspond to the maneuver class lane change. These fractions must not
be mistaken for the maneuver distribution on representative routes. As
described in Subsection 5.2.2, representative routes have been driven to
obtain prior probabilities for the maneuver classes. The fractions for turn
maneuvers and lane change maneuvers on these routes have only been
9 % and 4 %, respectively. However, the data analysis and classifier train-
ing required a higher number of these two maneuver classes, so that driv-
ing of these maneuvers has been forced to increase their fractions. The
mean durations and standard deviations of the maneuver classes turn
and lane change have been 9.1 s± 3 s and 7.4 s± 1.6 s. Lane following is
not limited in duration and can last several minutes until a new maneuver
class comes up. However, the mean duration of this maneuver class was
20 s± 35 s in the collected data. Figure 6.13 A illustrates the evolution of

A B C

Figure 6.13 Acceleration signals of different maneuver classes without outliers:
turn maneuvers (A), lane following maneuvers (B), lane change ma-
neuvers (C).

acceleration signals for the three maneuver classes, where outliers have
been excluded for an enhanced visibility. The acceleration signals show
the highest variability and the steepest slopes in case of turn maneuvers.
The reference points of turn maneuvers are passed at speeds of 15 km/h
to 25 km/h, see Figure 6.14 A. Lane change maneuvers are usually driven
at higher, constant speeds (see Figure 6.14 C) which is supported by the
low acceleration values in Figure 6.13 C. Lane following covers the whole
urban speed range (refer to Figure 6.14 B), but the acceleration values take
on smaller values than for the maneuver class turn and higher values than
lane change maneuvers. The yaw rate signals show the behavior that has
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A B C

Figure 6.14 Speed signals of different maneuver classes without outliers: turn
maneuvers (A), lane following maneuvers (B), lane change maneu-
vers (C).

A B C

Figure 6.15 Yaw rate signals of different maneuver classes without outliers:
turn maneuvers (A), lane following maneuvers (B), lane change ma-
neuvers (D).

already been described in Section 5.2. The yaw rate of a turn maneuver
follows a Gaussian curve and reaches the largest values (Figure 6.15 A).
Lane following maneuvers show approximately constant and low yaw
rate values, see Figure 6.15 B. However, they were within the same value
range as the yaw rate signals of lane change maneuvers, although these
show a sinusoidal evolution. These signal plots illustrate that the distinc-
tion between lane change and lane following is the biggest challenge.

Section 5.2 describes the chosen features for the naive Bayesian classifier.
Figure 6.16 shows some of the resulting kernel distributions, where no
outliers were removed. The best discrimination is given between turn
maneuvers and the other two maneuver classes. Turn maneuvers show
the lowest mean speed values but the highest variability in the steering
wheel angle and in the acceleration over a duration of 3 s. The speed dis-
tributions of the maneuver classes lane change and lane following show
local maximums. These are located slightly above the typical speed limits
of a truck 30 km/h, 50 km/h and 60 km/h, which appears reasonable.
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A B

C D

Figure 6.16 Kernel distributions of classifier features obtained from lane fol-
lowing maneuvers (solid black), turn maneuvers (dashed blue) and
lane change maneuvers (dash-dotted gray): Speed (A), acceleration
(B), standard deviation of the steering angle over the last three sec-
onds (C) and standard deviation of the acceleration over the last
three seconds (C).

The features with their corresponding distributions and the computed
prior probabilities enable the estimation of the maneuver class. Cross-
validation as described in Section 3.3.1 serves the evaluation of the classi-
fier results.

Ten trajectory sequences have been excluded from the data for training
in each validation cycle (leave-ten-out). The primarily excluded maneu-
ver sequences are taken as new samples for classification then. A tra-
jectory sequence is represented by a sequence of samples with identical
class labels, where one lane following, one lane change or one turning
maneuver is included.

For the application in a driver assistance system, it is important to
know which maneuver will be driven before it is finished. Therefore,
the evaluation relates to the labeled, temporal reference points (turn: yaw
rate apex, lane change: yaw rate inflection point). It is checked which
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XXXXXXXXXXClassified
Truth Lane Following Turn Lane Change

Lane Following 82% 11% 69%
Turn 9% 89% 3%
Lane Change 9% 0% 28%

Table 6.4 Classifier results one second before the reference point.

fraction of maneuvers the algorithm can classify correctly one second be-
fore the apex is reached. Table 6.4 shows the obtained results.

Lane following and turn could be classified correctly most of the time.
However, 9 % of the lane following maneuvers have been mistaken for
turn maneuvers and 11 % of the turn maneuvers for lane following ma-
neuvers. This can be justified by the labeling procedure. Turn labels have
been assigned when the vehicle changed its orientation for more than 45◦.
Thereby, the passage between lane following on a curved path and a turn
is blurred. However, since the prediction result is similar then, this con-
fusion is acceptable.

The confusion of lane changes and lane following is considerably
higher. The speed ranges and the yaw rate ranges are similar, which
makes the distinction without availability of lane data extremely chal-
lenging. More lane changes have been mistaken for lane following (69 %)
than vice versa (only 9 %). This behavior can be explained by the applied
prior probabilities that favor lane following maneuvers. It is preferred
that a maneuver is classified more likely as lane following than being
falsely classified as another maneuver. The standard approach for path
prediction assumes a constant acceleration and a constant yaw rate. The
new predictor assumes this for lane following as well. Thus, lane follow-
ing is the neutral maneuver that should be chosen if the feature values
do not enable an adequate classification. The new approach will then not
perform worse than the standard approach, but it does not provide better
results.

Figure 6.17 shows an example for the classification process of a turn
maneuver. The blue crosses indicate a correct classification of a turn ma-
neuver in the mid of the sequence. The label turn has been assigned to the
samples that are represented by blue circles. The rest of the sequence has
been correctly classified as lane following. The dashed gray line in the
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Figure 6.17 Classification result for a turn maneuver and the underlying sig-
nals: Circles represent labels and crosses denote the classification
result. Blue color is related to turn maneuvers, while black repre-
sents lane following.

subgraph at the upper right shows that the probability for a lane change
was very low until the end of the sequence.

Figure 6.18 illustrates the classifier’s decisions in case of a lane change
maneuver. The sequence is classified correctly around the reference point.
However, a few samples that have already been labeled as lane following
after the end of lane change maneuver are still classified as lane change.

The deviation of the predicted path from the one that is actually driven
should be as small as possible in a real application. The standard ap-
proach and the new approach are evaluated regarding this aspect. There-
fore, each approach projects the path three seconds into the future. This
path is compared to the recorded path sequence of this time interval,
which is referred to as ground truth. Figure 6.19 and Figure 6.20 visualize
the ground truth together with the predicted paths for a turn maneuver
and a lane change maneuver, respectively. The maneuvers have been clas-
sified correctly. Thereby, the new prediction approach adapts the values
of the future yaw rate according to the prediction approach of the maneu-
ver class. The new approach outperforms the standard approach in both
cases. The normal distances between the ground truth and the predicted
path in certain traveled distances along the path have been computed to
obtain a quantitative measure for the prediction accuracy of the newly
developed approach and the standard approach.
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Figure 6.18 Classification result of a lane change maneuver: Gray circles in
the left image indicate the classification of a lane change while the
dashed gray line represents the section that has been labeled as
lane change. The black line in the right image indicates the labeled
maneuver class whereas gray circles show the classifier-based deci-
sions.

The box-whisker plots in Figure 6.21 show the 25th and the 75th per-
centiles of the obtained errors for the new and the standard approach.
Figures A (new) and B (standard) represent prediction errors of lane
change maneuvers. Visual comparison indicates only little difference be-
tween the two approaches. However, a clear difference can be observed
for turn maneuvers (see figures C and D).

A Kolmorgorov-Smirnov test has been used to compare the obtained
error distributions and to identify if there is a significant difference in
the prediction accuracy of the two approaches. Table 6.5 summarizes the
obtained p-values for the different maneuver classes. Since the same pre-
diction approach is used in case of a lane following maneuver and most
maneuvers are classified correctly as lane following, there is no signifi-
cant difference for this maneuver class. In case of turn maneuvers, the
prediction accuracy of the new approach exceeds the prediction accuracy
of the standard approach significantly up to distances of 20 m. The ac-
curacies do not differ significantly at larger distances. Lane change ma-
neuvers could be predicted more accurately using the new approach at
distances between 25 m and 30 m, since the new approach takes into ac-
count the change in the yaw rate after the reference point. The prediction
is the same until the reference point is passed. In total, lane following
maneuvers represent the biggest fraction of all maneuvers. Therefore, the
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Figure 6.19 Prediction result for a turn maneuver for a prediction horizon of
three seconds: The new approach (solid gray line) clearly outper-
forms the standard approach (dashed blue line) in this situation
since it is closer to the actually driven path (red line). The solid
black line visualizes the used path history.

Figure 6.20 Prediction result for a turn maneuver for a prediction horizon of
three seconds: The new approach (solid gray line) clearly outper-
forms the standard approach (dashed blue line) in this situation
since it is closer to the actually driven path (red line). The solid
black line visualizes the used path history.

prediction accuracy of lane following maneuvers dominates the total re-
sult. However, the newly-developed approach outperforms the standard
approach in the range up to 15 m.

Moreover, the RMSE values of the path deviations have been deter-
mined dependent on the maneuver class and are summarized in Table 6.6.
The RMSE values of the two approaches show the biggest difference for
turn maneuvers at a distance of 20 m, where the RMSE value is 1.30 m
for the standard approach and only 0.79 m for the newly-developed ap-
proach. In case of lane change maneuvers, the largest RMSE difference of
0.13 m was computed at a distance of 30 m, where the RMSE value was
0.77 m in case of the standard approach and 0.64 m in case of the new
approach.
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A B

C D

Figure 6.21 Box plots of the normal deviations of the predicted paths from the
real paths for lane change maneuvers using the new approach (A)
and the standard approach (B) and for turn maneuvers using the
new approach (C) and the standard approach (D).

In summary, the new approach outperforms the standard approach. Con-
tent of future work could be the improvement of the path prediction.
More prior knowledge could be included and the knowledge of the speed
range of a turn could be exploited to enable a more accurate prediction.
Moreover, other classifiers could be tested for a better distinction be-
tween lane change and lane following maneuvers, e.g., SVM or HMM
approaches. If additional information from a map and GPS or lane mark-
ings were available, this information could be exploited.
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Distance 5 m 10 m 15 m
Total 1.6 · 10−5 3.9 · 10−7 3.1 · 10−5

Lane Following 1 1 1
Turn 7.7 · 10−44 1.5 · 10−63 3.1 · 10−54

Lane Change 0.19 0.48 0.40
Distance 20 m 25 m 30 m
Total 0.39 0.86 0.99
Lane Following 1 1 1
Turn 4.6 · 10−10 1 −
Lane Change 0.28 4.9 · 10−4 0.0198

Table 6.5 P-values of the Kolmogorov-Smirnov test for comparison of the pre-
diction accuracy of the newly developed approach and the standard
approach: Values with which the null hypothesis has to be rejected
or not. The null hypothesis assumes that the lateral deviations of the
predicted paths from the true paths follow the same distribution for
the standard approach and the new approach. The evaluation has
been performed for different prediction distances along the path.

6.3 Risk Assessment of Vulnerable Road Users

The algorithm for maneuver and path prediction builds an important ba-
sis for the presented risk assessment approach that predicts the ego vehi-
cle’s behavior along this path. This section discusses the possibilities to
evaluate the developed approach for risk assessment and presents the ap-
proach’s behavior in exemplary situations. In this context, the developed
approach is compared to a TTC-based standard approach.

The evaluation of the risk assessment approach is somewhat challeng-
ing when real data should be used since there is no ground truth for the
quantity situation risk. However, one can perform a comparative study be-
tween two algorithms, comparing the issuance time of warnings in dan-
gerous situations and the frequency of false alarms in non-dangerous sit-
uations.7 The decision whether or not a road scenario is dangerous could
be based on a visual inspection of recorded videos. However, experi-
ments conducted in the course of this work showed that most scenarios
were considered much more dangerous when study participants sat in

7Of course, one does not want to crash naturally moving pedestrians, so that human test
persons have to judge situations that never lead to a collision.
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Distance 5 m 10 m 15 m
RMSEtotal new 0.0382 0.1439 0.2567

standard 0.0386 0.1613 0.3094
RMSElf new 0.0245 0.0765 0.1778

standard 0.0245 0.0765 0.1778
RMSEturn new 0.0859 0.3668 0.7647

standard 0.0878 0.4196 0.9872
RMSElc new 0.0297 0.1436 0.2791

standard 0.0307 0.1535 0.3212
Distance 20 m 25 m 30 m
RMSEtotal new 0.3360 0.4364 0.5328

standard 0.3820 0.4468 0.5390
RMSElf new 0.2989 0.4153 0.5222

standard 0.2989 0.4153 0.5222
RMSEturn new 0.7910 1.2259 −

standard 1.3007 1.2049 −
RMSElc new 0.4589 0.5509 0.6482

standard 0.4684 0.6641 0.7717

Table 6.6 RMSE values of normal distances in meters between the predicted tra-
jectories and the really driven trajectories at a certain distance along
the path, where the newly-developed approach and the standard ap-
proach have been used for prediction.

the truck than when they watched the video of the situation later. Hence,
there seems to be a difference between feeling the acceleration and speed
of the vehicle or just seeing the object coming closer in a video. The ad-
vantage of video inspection is that several different persons can judge the
criticality of the same situation.

Simulated data always contains model assumptions and a determin-
istic pedestrian behavior, but the advantage of the presented approach
is that it is able to model present uncertainty in the road users’ behav-
ior. Therefore, simulations might not be able to show the benefit of the
presented approach. Simulated data with added noise might already in-
clude model assumptions which have an impact on the simulation re-
sults. Therefore, real data is used for evaluation in this work and the
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results of the proposed approach are compared to an established TTC-
based standard approach. The following subsection describes this TTC-
based approach for risk assessment.

The aim of this work is to show that the assumptions that have been
made for the approach are reasonable. The congruence of the system’s
and human’s criticality estimation has to be evaluated in further studies
under the guidance of psychologists.

6.3.1 Computation of the Time-to-Collision

The TTC-based algorithm is adapted from the approach in [201] for col-
lision avoidance with vehicles. The approach determines if an object is
within the driving corridor8 (lateral conflict) when the ego vehicle reaches
the longitudinal position of the object (longitudinal conflict). The system
computes how much time is left to avoid a collision by an intervention,
such as braking, acceleration or evasion by steering, if a collision risk is
predicted. The corresponding time reserve is referred to as time-to-react.
One assumes that the ego vehicle drives along a path with constant curva-
ture and keeps its acceleration ae constant. No uncertainty is considered
for the states and the behavior of the objects. The curved path of the ego
vehicle builds the x-axis of the coordinate system in which objects and
the ego vehicle are represented by rectangles. Thus, all detected object
positions have to be transformed to the path-aligned coordinate system
first. Hillenbrand [201] assumes a constant acceleration for objects since
only cars are considered. Here, a constant speed is assumed when the
detected object is a pedestrian. Finally, one can formulate time reserves
for the computation of a binary collision risk. These time reserves and
required parameters are visualized in Figure 6.22. The time-to-appear
(TTA) is the time when an object appears in the driving corridor of the
ego vehicle:

TTA =


− yobj−0.5·wobj−0.5·we

vy,obj
, if (yobj −

wobj
2 > we

2 ) ∧ (vy,obj 6= 0),
yobj+0.5·wobj+0.5·we

vy,obj
, if (yobj +

wobj
2 < −we

2 ) ∧ (vy,obj 6= 0),

0, if |yobj|+
wobj

2 < we
2 ,

∞, else,
(6.12)

8 The driving corridor is defined as tube of defined width (e.g., half vehicle width) around
the predicted path of the ego vehicle.
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Figure 6.22 Illustration of different time reserves for the TTC computation.

where wobj represents the width of the object. The width we of the ego ve-
hicle defines the width of the driving corridor. The positions xobj and yobj
correspond to the object position in the curve-aligned coordinate system.
The time-to-disappear (TTD) is the time until an object will have left the
driving corridor:

TTD =


TTA +

we+wobj
|vy,obj|

, if (0 < TTA < ∞) ∧ (vy,obj 6= 0),
0.5·we+0.5·wobj−yobj

|vy,obj|
, if (TTA = 0) ∧ (vy,obj 6= 0),

∞, if (TTA = 0) ∧ (vy,obj = 0),
0, else.

(6.13)

The time-to-collision (TTC) checks when the longitudinal positions of the
object and the ego vehicle intersect for the first time. Therefor, the two
auxiliary times t1 and t2 are computed

t1 =



−∆v+
√

∆v2−2ae(le,front−xobj)

ae
, if (∆v > 0) ∧ (ae 6= 0),

xobj−le,front
∆v , if ae = 0,

0, if (xobj + lobj + le,back ≥ 0)
∧(xobj − le,front ≤ 0),

(6.14)

where the assumption ∆v = (ve − vx,obj) > 0 is reasonable since the ego
vehicle is driving in forward direction and the vehicle speed exceeds the
speed of a pedestrian in the speed range of the system. The parameter lobj
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represents the object length, while le,front is the distance from the origin of
the coordinate system to the front of the ego vehicle.

t2 =


−∆v+

√
∆v2+2ae(xobj+lobj+le,back)

ae
, if (∆v > 0) ∧ (ae 6= 0),

xobj+lobj+le,back
∆v , if ae = 0,

(6.15)

where le,back is the distance from the origin to the rear-end of the ego
vehicle. The TTC is then given by

TTC =

{
∞, if (TTD ≤ t1) ∨ (TTA > t2),
max(t1, TTA), else.

(6.16)

If TTC→ ∞, no collision is expected. If the TTC is less than 3 s, the system
would consider to issue a warning to the driver.

The TTC approach is compared to the newly developed approach.
Therefore, some exemplary situations and the approaches’ outcomes are
presented in the following subsection.

6.3.2 Collision Risk between the Ego Vehicle and Pedestrians in
Exemplary Situations

Section 5.3 described observations for pedestrian behavior. Values for
maximum acceleration and speed have been measured and have been
compared to the literature. The basic assumptions for pedestrian behav-
ior and motion parameters have been retrieved from these studies. For
the discretization of the state space and the input space, one has to find a
compromise between model accuracy and computational complexity. Al-
though theoretical pedestrian speeds higher than 6 m/s can be reached,
these speeds are very rare in traffic. If these speeds really occur, it is
unlikely that the corresponding pedestrians are tracked. Therefore, the
speed range of pedestrians is limited to 6 m/s for the simulations.

The state space has been discretized to 124 valid position intervals for
motorized road users, 97 for bicyclists and to 88 valid position intervals
for pedestrians, as can be derived from Table 5.1. The positions and the
speed along the path build the two-dimensional state space. The speed
range is split into 20 intervals for vulnerable road users and into 22 in-
tervals for motorized vehicles. Six intervals model the input space for
Markov chain abstraction that represents acceleration and deceleration.
The Markov chain has been abstracted for six time intervals in the range
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between [0 s, 3 s], where each interval is divided into ten intermediate
time steps for abstraction.

The performance of the approach is visualized for situations that are re-
lated to the accident situations in Subsection 2.3.1. Figure 6.23 illustrates
the reachable sets of the ego vehicle and of a pedestrian for prediction
intervals of 0.5 seconds up to a prediction horizon of three seconds. The

Figure 6.23 Illustration of reachable sets of the ego vehicle and a pedestrian for
three prediction intervals.

pedestrian is detected at the left side of the lane in 30 m longitudinal dis-
tance with a lateral offset of 4 m. The measured absolute speed mean
of the pedestrian is 1.3 m/s. The PoE of the pedestrian is estimated to
be 0.97. The pedestrian is expected to cross the lane in normal direction,
which has been retrieved from the motion orientation of the last mea-
surement cycles. This path obtains a probability of 0.6. The state variance
of the lateral position from the environment perception provides the ini-
tial position uncertainty along the path. The speed uncertainty is com-
puted analogously. Two additional paths are assumed for the pedestrian
to account for the possibility that the estimated direction was not cor-
rect. These two paths differ from the first path in orientation by about
9◦ and get assigned probabilities of 0.2 each. The initial state intervals
along the paths represent the uncertainty of the initial state. The first four
elements of the principal diagonal of the state covariance matrix of the
detected pedestrian are used to compute a 3σ-ellipse of the position and
a 3σ-ellipse of the speed.9 The values for x, y, vx and vy in the example
are summarized in the principal diagonal diag(Σobj) = (0.4 0.15 0.3 0.15).

9 The computation of the ellipsoid points is based on
xEllipse = σx cos(arctan(σx tan(φ)/σy)) and yEllipse = σy sin(arctan(σx tan(φ)/σy)).
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Thus, the interval sets representing the initial states can be computed.
The deviation from the path is obtained from the position rectangles as
well where the deviation is oriented orthogonal to the path. The ego ve-
hicle is expected to certainly follow the lane (100%). Its current speed is
36 km/h, where the maximum inaccuracy must not exceed 1 km/h. The
algorithm expects that the ego vehicle moves on at an approximately con-
stant speed in this situation, so that its initial input distribution is set to
(0 0 0.5 0.5 0 0)T.

The lateral offset of 4 m is quite large, so that it is expected that the
pedestrian is still outside the predicted driving corridor of the ego vehi-
cle. The probability that the pedestrian will decelerate and stop at the
street’s edge to watch out is relatively high. It is estimated as high as the
probability that the pedestrian will continue walking at the same speed.
Therefore, the initial probability vector for the initial distribution of in-
puts is set to (0.5 0 0.25 0.25 0 0)T. When the pedestrian approaches the
ego lane and the lateral offset decreases, e.g., to 3 m, the probability that
the pedestrian will keep on walking increases compared to the probabil-
ity that he will stop, as he has probably stepped onto the street. Based
on the initial setting, the algorithm determines the probability of a col-
lision with the pedestrian for the time interval [2.5 s, 3 s] to 8 %. The
standard approach would compute a TTC of 2.97 s if the mean values of
the estimated object state are used. However, the measurement data may
not be accurate and the real lateral position of the pedestrian could be
4.45 m and his real speed could be 0.85 m/s based on the spatial uncer-
tainty. No collision would be expected for these values. If the detected
object has just been initialized, so that the estimated speed is still very
uncertain and the mean speed value is still rising, the speed value that is
provided as estimated mean could be 0.85 m/s, although the real pedes-
trian speed is 1.30 m/s. Furthermore, the mean lateral position could
be over-estimated to 4.45 m. Thus, the TTC-based system would not ex-
pect a collision even though the situation might be critical. In contrast,
the developed approach based on reachable sets still computes a collision
probability of 7 % for the time interval [2.5 s, 3 s] with these mean val-
ues and the covariance matrix Σobj from above. The comparison has been
performed for exemplary values, but situations with other values demon-
strate as well that the TTC approach over-estimates or under-estimates
the collision risk. It cannot accurately determine the time point of a colli-
sion because it does not take into account the known uncertainties.

The second situation in Figure 6.24 shows a T-crossing. A pedestrian
with an PoE of 99 % follows the lane, whereas the ego vehicle is ex-
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pected to turn into the street on the right with a probability of 90 % and
to follow the lane only with 10 %. The pedestrian is detected within
the longitudinal position interval [15 m, 16.2 m] with a speed range of
[0.7 m/s, 1.6 m/s]. The model assumes that he will keep his speed. The
ego vehicle is initially running at 5.6 m/s and it is expected to decel-
erate in case of the turn, so that the initial input distribution is set to
(0.1 0.5 0.35 0.05 0 0)T. If the vehicle follows the lane, the input proba-
bility is equally distributed. The maximum collision probability is pre-
dicted to be 7 % in the time interval [1.5 s, 2 s]. The TTC-based approach

Figure 6.24 Illustration of reachable sets of the ego vehicle and a pedestrian dur-
ing a turning maneuver of the ego vehicle. The maximum collision
probability is predicted to be 7 % in the time interval [1.5 s, 2 s].

does not expect a collision in this situation. The turning maneuver cannot
be modeled by a path with constant curvature. If the constant curvature
assumption is applied with the initial curvature, one obtains the lane fol-
lowing path for which no collision risk is predicted by both approaches.
Therefore, the standard approach should be extended in such way that
it uses several path predictions to handle these situation. However, the
extension of a TTC-based approach is not content of this work.

Finally, both approaches shall be compared using a measurement se-
quence of a situation where two pedestrians cross the lane. The ego ve-
hicle approaches the pedestrians from a left curve, so that the pedestri-
ans are detected for the first time at a short distance. Consequently, the
state uncertainty is still relatively high. Moreover, the sequence has been
recorded when the sun was in low altitude, so that the camera’s detec-
tion performance decreases and available HOG detections have relatively
low confidence values. The ego vehicle approaches the pedestrians at an
initial speed of 28 km/h with a mean acceleration of −0.25 m/s2. No
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collision took place and the pedestrians did not have to start running to
avoid a collision. Figure 6.25 shows the evolution of the computed crash
probabilities where a lane following maneuver is predicted for the ego
vehicle. The approach based on reachable sets predicts a maximum crash
risk of 20 %. The vertical lines represent the points of time for which the
TTC-based approach predicts a collision.

The computation of the collision risk with one pedestrian took 30 ms on
average but never longer than 100 ms.10 Thus, under the assumption that
an update rate of 100 ms is sufficient, the approach would be applicable
in real-time if the approach was implemented in C++, the number of con-
sidered pedestrians was limited, or the computation of the conditional
crash probabilities with single pedestrians was parallelized.

The TTC-based crash prediction would sporadically set alarms at dif-
ferent time points and there is no collision in the end, while the newly-
developed approach predicts the maximum collision risk around one
time point and a maximum of 20 %. If the TTC-based system includes
a heuristic that checks the stability of the prediction, valuable time for
reaction would be lost in case of a serious collision risk. The shape of
the crash probabilities evolution approximates the density of a normal
distribution around 9.5 s. Which threshold values of the crash probabil-
ity suffice to initiate an alarm or an active intervention into the vehicle
dynamics would have to be analyzed in extensive studies with several
drivers in real traffic.

Summarizing, the newly-developed approach is able to handle uncer-
tainty in the state and in the existence of a tracked object. Moreover, it
is able to handle uncertainty in the prediction of the ego motion and in-
cludes different maneuver classes that cannot be modeled by path pre-
dictions based on the assumption of a constant curvature. However, the
computational complexity of the standard approach is significantly lower
than for the new approach that is based on the intersection of reach-
able sets for time intervals. On the other hand, the new approach pro-
vides more stable temporal predictions for a collision than the TTC-based
standard approach and the application of time intervals avoids that time
points of a potential collision are missed (tunnel effect). However, if the
TTC was computed for different configurations of object position and ob-
ject speed based on the estimated uncertainty, one would obtain more
stable values as well. The availability of a non-binary collision risk could

10The computations were performed with a 32-bit version of Matlab on an Intel processor
(Intel(R) Core (TM) 2Duo CPU T9400 @2.53GHz).

190



6.3 Risk Assessment of Vulnerable Road Users

enable graded system interventions based on the collision risk. For exam-
ple, the system could cut off the engine and pre-condition the brakes in
case of low crash probabilities to gain time without disturbing the driver,
while high crash probabilities could induce an emergency braking after a
warning phase. Finally, a discrete value has to be computed to enable the
start of the system reaction.
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Figure 6.25 Evolution of the predicted crash probabilities, the pedestrians’ posi-
tions and speeds as well as of the corresponding PoEs in a situation
with two pedestrians crossing the lane: The initial speed of the ego
vehicle is 28 km/h. The sensory uncertainty is relatively high, so
that the risk of a crash is estimated to be 20 % at maximum.
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7.1 Conclusion

New solutions to problems regarding environment perception and situa-
tion evaluation in ADAS of commercial vehicles have been presented.

An EKF-JIPDA filter has been developed, implemented in a C++-based
framework and was parametrized to track pedestrians from a truck in
real-time using a monocular camera and two radars at the front and one
radar at the right side of the truck. The tracking results of the newly-
developed approach have been compared to the results of an EKF-GNN
filter. Two parameter sets of the EKF-GNN have been used for the evalu-
ation with measurement data of various urban scenarios showing several
pedestrians. The EKF-JIPDA outperforms the EKF-GNN significantly re-
garding the detection performance in crowded scenes, whereas only little
difference was observed in the state estimation of both filter approaches.

The EKF-JIPDA and the EKF-GNN have been used to track pedestrians
across a sensory blind region and in distinct FOVs where the state esti-
mation of the EKF-JIPDA is more accurate. Tracking across the sensory
blind region makes camera-specific information — such as the height or
the type classification of an object — from the vehicle’s front available
in the sensory blind region and in the second FOV, where only a radar
tracks the objects. Multiple objects can be tracked reliably over durations
of several seconds with one ID per physical object and the integrated exis-
tence estimation provides valuable information for subsequent situation
evaluation modules of the ADAS.

Pedestrian detections have been filtered from point sets provided by
a laser scanner using linear regression lines and a DBSCAN algorithm.
These detections have been used as reference detections to measure
sensor-characteristic properties of the radar sensors and the camera such
as the spatial accuracy of the measurements, the spatial detection rate and
measurement-dependent inference probabilities that provide evidence if
a measurement results from a relevant object class (pedestrian) or not.
The results have been used to parametrize the filter approaches. More-
over, the filtered detections from the laser scanner served as reference for
the evaluation of the spatial filter accuracy. Manually labeled images en-
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abled the evaluation of the detection performance of the developed and
implemented filter approaches.

For situation evaluation, a new approach for the early classification of
a driving maneuver of the ego vehicle using the LCS method and a
Bayesian classifier has been developed. Furthermore, a possibility has
been shown to utilize the classification result for long-term trajectory pre-
diction based on the current speed and the typical yaw rate evolution of
the corresponding maneuver class. The performance of the developed
classifier has been trained and cross-validated using manually labeled
trajectories obtained from recorded CAN signals. Several drivers drove
a truck with and without trailer through the urban environment in the
south-west of Germany for several hours to record the signals. The prior
probabilities of the classifier have been set in such way that a maneu-
ver is classified as lane following maneuver in case of uncertainty, since
this is the maneuver with the lowest risk compared to a standard ap-
proach based on the assumption of constant speed and constant yaw rate.
The developed approach for maneuver prediction was compared to the
named standard approach. The prediction accuracy of the new approach
outperforms the standard approach.

An important contribution of this work is the development of a new
approach to assess the collision risk of the ego vehicle with other road
users, especially pedestrians. Therefor, the motion behavior of pedes-
trians in traffic has been analyzed using information from the literature
and by performing own exploratory studies. The paths of the ego vehicle
and of pedestrians have been predicted in different situations. Stochastic
reachable sets of the road users along their paths have been computed
for time points and time intervals. Monte-Carlo simulation and subse-
quent Markov chain abstraction enable an efficient online computation
of the stochastic reachable sets of the different road users. The intersec-
tion of the stochastic reachable set of the ego vehicle with the stochastic
reachable set of a detected road user provides the crash probability. This
crash probability is then taken as the newly-developed risk measure and
is compared to a TTC-based standard approach for risk assessment. In
contrast to the existing approach, the new approach can handle sensory
uncertainty as well as uncertainty in the future motion of the road users
and performs more stably in such scenarios.
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7.2 Outlook

The generic sensor fusion framework for pedestrian tracking still pro-
vides a number of false alarms in dense environments, since the radar
can only barely distinguish between relevant objects like pedestrians and
other weakly reflecting objects. The developed approach could be ex-
tended by the ideas of Munz [65]. He utilizes Dempster’s and Shafer’s
theory of evidence to discern between non-objects, objects and relevant
object classes. Thereby, sensors that cannot provide a sensory inference
probability for the object class can be modeled as such. Moreover, future
radars with higher resolutions and additional computational power will
classify pedestrians based on the motion of their extremities, so-called
micro-Doppler classification. Thus, future radars might provide sensory
inference probabilities.

Discrimination between different objects with little distance is not al-
ways possible due to a limited sensor resolution. Only one detection is
obtained for two objects then. This fact could be explicitly modeled by
considering the merging and the separation probability of measurements
from low-resolution sensors as in [96, 202] for radars. This is especially
interesting for scenarios where several pedestrians cross the street from
different sides and temporarily occlude each other or pedestrians have
been located close to objects like parked cars at the road edge.

A constant-speed model has been chosen to model the motion of pedes-
trians. An pessimistic assumption for the model uncertainty had to be
made to model highly dynamic scenarios. The motion models that fit
best for the present situation could be used if multi-instance filters were
integrated. Furthermore, future work should investigate the filter perfor-
mance if an unscented Kalman filter (UKF) was implemented instead of
an EKF for state estimation. Especially, in case of strong non-linearities
the UKF enhances the state estimation compared to the EKF without re-
quiring the determination of a Jacobian matrix.

The dynamic pitch angle of the driver’s cabin impacts the accuracy of
the camera’s state estimation. Computation of power flow could enable
the estimation of the vehicle’s pitch angle and could thereby improve the
state estimation. Additional heuristics could filter the obtained pedes-
trian tracks to obtain more reliable pedestrian detections. Moreover, the
tracking of the EKF-GNN could be improved by integrating some compo-
nents of the EKF-JIPDA into the existence estimation and the track man-
agement, such as the likelihood probability or the availability of HOG
detections with a high sensory inference probability. One has to find a
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simple and robust way to set the sensor parameters in different trucks to
enable an application of the EKF-JIPDA approach in series production.
Additional evaluations of the estimators’ state accuracy should be per-
formed with a differential GPS platform for pedestrians. The EKF-JIPDA
approach could also be valuable to track objects across sensory blind re-
gions in surveillance or for object tracking from multiple moving sensor
platforms as in car-to-car communication, where the FOVs do not neces-
sarily overlap.

Several thousand labeled measurement samples have been used to
evaluate the EKF-JIPDA in comparison to the EKF-GNN in this work.
However, this is a very small number in comparison to data from
1000000 km that have to be driven with a low number of false alarms
before a tracking approach will be finally integrated into a truck for se-
ries production. Therefore, the database with labeled samples should
be enlarged for further developments. Each system level has to limit its
false alarms to a minimum number. The number of false detections from
the sensors, the number of false positives of the fusion approach and the
number of false alarms from an application have to be kept at a suffi-
ciently low level.

The presented maneuver classification approach performed well for
the distinction between lane following maneuvers and turn maneuvers.
However, additional approaches should be evaluated, especially, to im-
prove the classification of lane change maneuvers. For instance, HMM or
SVM algorithms could be used. The prediction performance strongly de-
pends on the estimation of the correct section in the maneuver sequence.
Further developments could include Gaussian mixture models [148] for
each maneuver class to improve the prediction performance and to make
the prediction more independent of speed and road geometry.

The approach for risk assessment has been developed based on as-
sumptions obtained from studies on the motion behavior of pedestrians
and the ego vehicle. So far, no pedestrian interaction has been consid-
ered, but future developments could adapt pedestrian behavior based on
the environment. Although measurement data was used to compare the
novel approach to an established approach, a study in real traffic with
real pedestrians and several drivers should be performed to obtain an
ROC curve for the false alarm rate based on the crash probabilities and to
compare the computed crash probabilities to human risk estimates. The
distributions of the crash probabilities could be used to build a hazard
map to guide the driver’s attention to ’hot spots’. Moreover, the results
could be applied to the development of emergency braking systems.
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A.1 Selected Proprioceptive Sensors

A MEMS accelerometer consists of movable proof mass with plates at the
outside creating two combs connected at the closed side. A mechanical
suspension system with known stiffness attaches this movable plate to a
reference frame. The springs should have a significantly lower stiffness
in the measurement axis compared to the other axes. There are two fixed
plates around each inner plate where one is connected to the negative
supply voltage and one to the positive. Thereby, one obtains two capaci-
tor constructions around each inner plate. Acceleration induces a deflec-
tion of the proof mass (inner plates) which can be measured as capacitive
difference.

Gyroscopes measure the orientation based on the principles of angular
momentum. Many yaw rate sensors are based on the following principle.
An electromagnetic comb drive induces oscillation of a pair of masses
with equal amplitude but in opposite directions. Vehicle rotation around
one of the sensors’ in-plane axes (e.g., the vertical axis) leads to a Cori-
olis force that creates an orthogonal vibration. The moving masses lift
and induce a capacitive change that can be detected with capacitive elec-
trodes under the mass. The measurable Coriolis force is proportional to
the turn rate. More details about gyroscopes and accelerometers can be
found in [203].

Wheel speed encoders are used to determine the rotational wheel
speed and enable the computation of the vehicle speed in combination
with the wheel circumference. A rotating wheel creates a magnetic field
at the sensor, so that it is based on the magneto-resistive principle or Hall
principle. Either one uses a magnetic multi-pole wheel to create a peri-
odically varying magnetic field or a gear wheel made of ferromagnetic
material and an external magnet.

The steering wheel angle is measured around the steering column. The
principle is based on two gear wheels that differ in the gear transmis-
sion ratio to the hub of the steering column by two. Magnets at the gear
wheels induce a resistance change in the GMR (Giant Magneto Resistive)
elements located at the opposite side that is proportional to the angle. The
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phase-shifted voltage curves and the Vernier principle enable an unam-
biguous determination of the initial position [204].

A.2 Parameters of Pedestrian Motion

Speed Mean astart tstart
Range Speed
in m/s in m/s in m/s2 in s

Walking [48] 1.19 – 1.68 1.42 1.34 – 4.86 1.72
[46] 1.25 – 1.5 1.38

-Young Pers. [47] 2 – 3
[45] 1.48

-Old Pers. [47] 0.9 2.5 – 3.75
[45] 1.32

-Groups [46] 1 – 1.5 0.25 – 0.5
Fast Walking [48] 1.62 – 2.34 1.98
Jogging [48] 2.31 – 3.96
-Men [48] 3.20
-Women [48] 3.03
Running [48] 3.40 – 6.36
-Men [48] 4.99
-Women [48] 4.51
Red Traffic 1.6
Light [47]
Zebra 1.75 – 2.5 2
Crosswalk [46]

Table A.1 Results from studies regarding pedestrian speed analysis. Study par-
ticipants have been instructed to perform a specific walking behavior
in [48], while the motion of naturally moving pedestrians has been
recorded in [45–47]. astart represents a pedestrian’s acceleration from
standstill to constant end-speed. tstart refers to the corresponding
time that the pedestrian needs to reach his constant end-speed. It
is measured from the time point when the traffic light signal turns
green in [46, 47] and thus, it includes the reaction time of the pedes-
trians. In [48], the time does not include the reaction time. Older
persons are considered as persons that appeared to be older than 65
years.
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A.3 Cross-Validation

Hold-out cross-validation (simple cross-validation) and Ns-fold cross-
validation are popular methods to select the model with the best perfor-
mance from a finite set of models M = {M1, ..., MNp}. Moreover, the
algorithms can help to evaluate of a single model or algorithm. The prin-
ciple is taken from [69].

In the first case, a training set S is randomly split into the subset Strain
(usually 70 % of S) and the hold-out cross-validation subset Scv. Then,
each model Ml is trained on Strain to get a hypothesis hΘ,l . Finally, the
hypothesis function hΘ,l with the smallest number of misclassifications on
the examples of the cross-validation set Scv is selected. Testing hypothesis
function hΘ,l on the cross-validation set provides a better estimate of the
true generalization error. The disadvantage of this method is the waste of
30 % of the labeled data.

The Ns-fold cross-validation method holds out less data each time, but
is computationally more expensive. The training set S of size Nt is ran-
domly split into Ns disjoint subsets S1, . . . ,SNs with Nt/Ns training sam-
ples each. Then, each model Ml is trained on the subsets S\Sm with
m = 1, . . . , Ns to get some hypothesis function hΘ,lm. Next, the test of the
hypothesis function hΘ,lm on the remaining subset Sm provides the cor-
responding cross-validation error ε̂Sm(hΘ,lm). The mean of these errors

1
Ns

∑Ns
m=1 ε̂Sm(hΘ,lm) reveals the estimated generalization error of model

Ml . Finally, one picks the model Ml with the lowest estimated general-
ization error and retrains the model on the entire training set S leading
to the final hypothesis output hΘ. A special type of this method is called
leave-one-out cross-validation where the number of training subsets Ns
corresponds to the number of training examples Nt.

A.4 Interval Computations

Operations on two intervals a = [a, a] ∈ I and b = [b, b] ∈ I are denoted
by

a ◦ b = {a ◦ b|a ∈ a, b ∈ b}, (A.1)

where ◦ represents the operator. Addition and multiplication of intervals
are operations that should be briefly presented, since they are utilized in
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this work to represent state sets of road users:

a + b = [a + b, a + b], (A.2)
a · b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)]. (A.3)

If one applies the enumerated formulas for the range computation of a
function, one has to ascertain that each variable occurs only once in in-
terval computations to obtain the exact solution. Otherwise, the exact
solution is included, but cannot be guaranteed. For example, the func-
tion c = a · b + a can be reformulated according to c = a · (b + 1). Let
be a = [−5,−2] and b = [−1, 5], then one gets c = [−30, 3] in the first
case and c = [−30, 0] in the latter. This results from the fact that the
values of the operands may take any value within the specified interval
regardless of previous occurrences for each evaluation of an interval op-
eration. Thus, different values of the same operand lead to the minimum
and maximum values of the corresponding interval operations, although
the same operand is not allowed to have different values at the same
time. Expressions with single use of variables are referred to as single-use
expressions (SUE) [205]. The problem of over-approximative results for
non-single-use expressions is also referred to as the dependency problem
in the literature [206].

Interval arithmetic will also be applied to interval matrices
A = [A, A] ∈ In where A ∈ R and A ∈ R are the left and right
limit of the interval matrix, so that A = [A, A]. They are required
to consider uncertain system matrices A. The power of an interval
matrix cannot be formulated as a SUE in general. The simplest case of
computing an interval matrix product C = A · B where A ∈ Im×n and
B ∈ In×m, is done based on single matrix elements resulting in the SUE:
Cij =

∑n
k=1 AikBkj. Thus, one obtains the exact results when applying

interval arithmetic.
Correspondingly, the square of a matrix C = A2 can be written as SUE

as well:

Cij =

{
Aij(Aii + Ajj) +

∑
k:k 6=i,k 6=j AikAkj, if i 6= j,

A2
ij +

∑
k:k 6=i,k 6=j AikAkj, if i = j.

(A.4)

There is no SUE for the multiplication of three interval matrices. Further-
more, matrix multiplication is not associative when using interval arith-
metic: (AB)C 6= A(BC).
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A.5 Least Squares Method for Partial Regression Lines

The least squares method tries to find the parameters of a given function
class by minimizing the sum of residua between the function curve and
the scan data. The weight of large residua should be chosen large in com-
parison to small residua. The relation between the function points and
the Nscan data pairs

〈
x(i), z(i)

〉
can be expressed by the polynomial

z = f (x) =
m∑

r=1

arxr−1, (A.5)

where a1, . . . , am are the coefficients of the function (here: m = 2). Usually,
there are more equations than unknown parameters (Nscan � m), so that
the linear equation system 1 x1 · · · xm−1

1
...

. . .
...

1 xNscan · · · xm−1
Nscan


︸ ︷︷ ︸

M∈RNscan×m

·

 a1
...

am


︸ ︷︷ ︸

a∈Rm

=

 z1
...

zNscan


︸ ︷︷ ︸

z∈RNscan

(A.6)

is inconsistent and the equation Ma = z can usually not be solved exactly.
Therefore, one computes the solution for a by minimizing the squared
error:

min (‖Ma− z‖2) = min ((
m∑

r=1

arxr−1
1 − z1)

2 + . . . + (
m∑

r=1

arxr−1
Nscan
− zNscan)

2),

(A.7)
which can be rewritten as

min (aTMTMa− 2aTMTz + zTz). (A.8)

If one differentiates Equation A.8 with respect to a and sets the result to
zero, one obtains:

0 = MTMa + aTMTM− 2MTz, (A.9)
0 = MTMa + MTz. (A.10)

Consequently, if MTM is invertible, the optimal solution a∗ for a is

a∗ = (MTM)−1MTz. (A.11)

These parameters provide the coefficients of the partial regression line.
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A Appendix

A.6 Flow Chart of the DBSCAN Algorithm

Start
id=:1; i=:0;

i< Size(Set)?

q=:Set(i);

q unclassified?

SeedSet=:N(q,Eps);

Size(SeedSet)
< N_min?

Cl(q) =: noise;

Cl(SeedSet) =: id;
Remove q from SeedSet;

SeedSet empty?

new_q=:SeedSet(1);
ResultSet=:N(new_q,Eps);

Size(ResultSet)
< N_min?

j<Size(ResultSet)

j=: 0;

ResultSet(j) 
unclassified?

ResultSet(j) noise?

Add ResultSet(j) to SeedSet;

Cl(ResultSet(j))=id;

Endi=:i+1;

Yes

No

Yes

No

No

No

Yes

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Remove new_q from SeedSet;

id=:id+1;

j=:j+1;

Figure A.1 Flow chart of DBSCAN algorithm: cluster (Cl), ε-neighborhood of
scan point q (N(q,Eps)), Sseed (SeedSet).
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A.7 Measurement Results of Short Range Radar

A B

C D

Figure A.2 Determined angular and radial variance and detection rate (C) of
the SRR for standing pedestrians: The sensor detects only legs, es-
pecially in the near range. Additional variance in the pedestrian
position due to walking is not included here, but added later. Sub-
graph D shows the Radar Cross Section (RCS) values of pedestrians
depending on the range.
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A Appendix

A.8 Additional Tracking Scenarios

Figure A.3 Examples for different tracking scenarios: Boxes mark tracked ob-
jects. The darkness of the box represents the PoE. The lighter the
box is, the higher is the PoE. Yellow ellipses represent the 3σ ranges
of the track positions. (The legend is provided in the text at the be-
ginning of Subsection 6.1.3.)

Figure A.4 illustrates a scene where two pedestrians follow the lane on the
right pavement. There are some uncertain double HOG detections for the
pedestrian at the larger distance. The JIPDA sets up tracks that die after a
few cycles. In contrast, the EKF01 keeps the track and sets up a new track
for the closer detections that follow. This track is then associated with
radar detections resulting from the column of the traffic light. A stable
EKF01-track is kept on this column which is not a relevant object.
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A.8 Additional Tracking Scenarios

Figure A.4 Scenario with two pedestrians following the lane on the right pave-
ment in different longitudinal distances. One track of the EKF01 is
pulled to the column of the traffic light by radar detections.
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Abbreviations and Symbols

General Abbreviations

Abbreviation Meaning

3D Three-dimensional
ABS Anti-lock Braking System
ACC Adaptive Cruise Control
A/D Analogue to Digital
ADAS Advanced Driver Assistance System
ANN Artificial Neural Network
ASIL Automotive Safety Integrity Level
AUC Area Under Curve
BBA Basic Belief Assignment
bps Bits per Second
BSR Blind Spot Radar
CAN Controller Area Network
CDF Cumulative Distribution Function
cJPDA Cheap Joint Probabilistic Data Association
CMOS Complementary Metal Oxide Semi-Conductor
CPHD Cardinalized Probability Hypothesis Density
CSMA/CA Carrier Sense Multiple Access / Collision Avoid-

ance
CTRV Constant Turn Rate and (Constant) Velocity
CVCO Constant Velocity and Constant Orientation
CW Continuous Wave (Radar)
DAC Digital Analogue Converter
DBSCAN Density-Based Spatial Clustering of Applications

with Noise
DMMR Differential Maximum Minimum Range
DPHD Dimensional Probabilistic Hypothesis Density
DIN German Industry Norm (German: Deutsche In-

dustrienorm)
DTW Dynamic Time Warping
ECU Electronic Control Unit
EKF Extended Kalman Filter
ERM Empirical Risk Minimization
ESC Electronic Stability Control
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Abbreviations and Symbols

Abbreviation Meaning

DAS Driver Assistance System
FCW Forward Collision Warning
FFT Fast Fourier Transform
FISST Finite Set Statistics
FMCW Frequency Modulated Continuous Wave (radar)
FN False Negative
FOV Field of View
FP False Positive
FPS Frames Per Second
GIDAS German In-Depth Accident Study
GLM Generalized Linear Model
GMR Giant Magneto Resistive
GNN Global Nearest Neighbor (data association)
GNP Gross National Product
GPS Global Positioning System
HDRI High Dynamic Range Imaging
HMM Hidden Markov Model
HOG Histograms of Oriented Gradients
IAR Insurers Accident Research
ID Identification Number
IMM Interacting Multiple Model
IQR Inter-Quartile Range
IPDA Probabilistic Data Association with Integrated ex-

istence estimation
ISO International Organization for Standardization
JIPDA Joint Integrated Probabilistic Data Association
JPDA Joint Probabilistic Data Association
JPDAM JPDA with Unresolved Measurements
LASER Light Amplification by Stimulated Emission of Ra-

diation
LCS Longest Common Subsequence
LDW Lane Departure Warning
LIDAR Light Detection and Ranging
LNN Local Nearest Neighbor (data association)
LOS Line of Sight
LRR Long Range Radar
LVDS Low Voltage Differential Signaling
MAP Maximum A-Posteriori
MEMS Micro-Electro-Mechanical Systems
MHI Multi-Hypothesis Initialization
MHT Multi-Hypothesis Tracker
ML Maximum Likelihood
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Abbreviation Meaning

MLP Multi-Layer Perceptron
MUX Multiplexer
MV Maneuver
NCPS Normalized Projected Correction Squared
NEES Normalized Estimation Error Squared
NIR Near Infrared
NIS Normalized Innovation Error Squared
NMS Non-Maximum Suppression
NNSF Nearest Neighbor Standard Filter
OOSM Out of Sequence Measurement
PD Phase Distortion
PDA Probabilistic Data Association
PDF Probability Density Function
PHD Probabilistic Hypothesis Density
PMD Photonic Mixer Device
px Pixel
PoE Probability of Existence
RCS Radar Cross Section
RF Radio Frequency
RMS Root Mean Squared (Error)
ROC Receiver Operating Characteristic
ROI Region of Interest
RRT Rapidly-exploring Random Tree algorithm
SLA Speed Limit Assist
SMC-MTB Sequential Monte-Carlo Multi-Target Bayes Filter
SMO Sequential Minimal Optimization
SNN Shared Near Neighbor (algorithm)
SNR Signal-to-Noise Ratio
SRR Short Range Radar
SUE Single Use Expression
SVM Support Vector Machine
TCP/IP Transmission Control Protocol / Internet Protocol
TN True Negative
ToF Time of Flight
TP True Positive
TTA Time-To-Appear
TTC Time-To-Collision
TTD Time-To-Disappear
UDP User Datagram Protocol
UKF Unscented Kalman Filter
USB Universal Serial Bus
UTC Universal Time Coordinated
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Abbreviations and Symbols

Abbreviation Meaning

VCO Voltage Controlled Oscillator
vFSS Forward Looking Safeguard Systems (German:

vorausschauende Frontschutzsysteme)
WLAN Wireless Local Area Network

General Functions and Operators

Symbol Meaning

dim(x) Dimension of vector x
dist(·, ·) Returns a distance measure
exp(·) Exponential function
f (·) Process function
fkernel(·) Kernel density function
fflow(·) Flow function for a specific mode
f (δ) Probability distribution of lateral dynamics
f (s) Probability distribution of longitudinal dynamics
f (ξ, tk) Road user’s probability distribution at time point

tk
g(·) Controller function
gguard(·) Mapping function for resulting in a guard set
h(·) Measurement function
hjump(·) Jump function to the next continuous state after

transition
hΘ(·) Hypothesis function dependent on parameters Θ
ind(·) Indicator function
inv(·) Invariant function of a hybrid automaton
min(·) Returns the smallest value of its content
square(·, ·) Evaluates if arguments (·, ·) are within a particular

square
E(·) Expectation value
K(·) Kernel distribution function
Nε(·) ε-neighborhood
O(·) Complexity
P(·) Operator determining the probability of an event
δKD(·) Kronecker delta function
δ(·) Probability density function of the Dirac distribu-

tion
δX (·) Set-valued Dirac-Delta function
Ξ(·) Returns the coverage of two areas
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Variables and Constants

Symbol Meaning

a Acceleration
alc Coefficient describing the yaw rate of a lane

change prototype
amax Maximum reachable acceleration by a particular

class of road users
an Normal acceleration
ar Coefficient of a polynomial describing a regression

line
astart Acceleration of pedestrian who starts walking
at Tangential acceleration
aturn Coefficient to describe yaw rate of turn prototype
b Kernel bandwidth
blc Coefficient describing the yaw rate of a lane

change prototype
bturn Coefficient describing the yaw rate of a turn proto-

type
c Speed of light
clc Coefficient describing the yaw rate of a lane

change prototype
cturn Coefficient describing the yaw rate of a turn proto-

type
const Arbitrary constant value
d Path deviation segment
dgate Gating parameter (threshold) for given gating

probability
dlc Coefficient describing the yaw rate of a lane

change prototype
dmh Mahalanobis distance
dtree Level of depth in a hypothesis tree
dturn Coefficient describing the yaw rate of a turn proto-

type
e Single association
eL(d) Leave node
fopt Focal length
fracFN Fraction of false negative detections
fracTP Fraction of true positive detections
fracMB

TP Fraction of true positive and maybe-detections
g Gravity constant
kg Gating distance parameter
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Abbreviations and Symbols

Symbol Meaning

l Length in meters
lk Arc element (trajectory classification)
ltr Length of a trajectory in meters
mv Maneuver class
nlcs Normalized longest common subsequence value
orel Overlap fraction of Alabel and Atrack
pB Probability of an object birth
pcrash Crash probability the system vehicle with another

road user
pdev Deviation segment probability of a road user
pD Probability of object detection
pfasso Probability of a false association between an object

and a measurement
pFP Probability of a false positive detection
pg Gating probability
pint Intersection probability of two position trapezoids
pI Overlap probability of an object and a hypothesis
pocc Occlusion probability of an object
ppath Path segment probability of a road user
ppos Probability of a road user to be located within a

certain position trapezoid
pS Survival probability
ptraj Probability of a trajectory
pTP Probability of a true positive detection
pHΛ Likelihood probability of a hypothesis
p(∃xi) Existence probability of object xi
posbrake Brake pedal position
q Mode / discrete state (hybrid automaton)
q Laser scanner point
qcenter Center point
qcore Core point of a cluster
qseed Seed point
r Range
ṙ Range rate
rlm Elements of the rotation matrix Rrot
sj Seed point (clustering)
s Longitudinal position on a path
s Size of an object in the real world
sI Size of an object in the image
s Path segment
sdetect Maximum detection range of a road user
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Symbol Meaning

t Continuous time
th Temporal prediction horizon
tinv Point of time when reachable sets leaves the invari-

ant
tk Time step k
tstart Acceleration duration of a pedestrian until he

reaches his final speed
u Input / acceleration input (hybrid automaton)
u Horizontal image coordinate
v (Tangential) velocity / speed
v Vertical image coordinate
vsw Threshold speed for switching the acceleration

model
vmax Maximum allowed speed for a corresponding class

of road users
vx Longitudinal speed
vy Lateral speed
w Width of a road user
x Longitudinal position in Cartesian coordinates or

in a curve-aligned coordinate system (front posi-
tive)

y Lateral position in Cartesian coordinates or in a
curve-aligned coordinate system (left positive)

z Vertical position in Cartesian coordinates (up pos-
itive)

x Object in tracking
y Target variable in classification
z Measurement in tracking
z Discrete state of a Markov chain
zI System detection in image
Alabel Area of a labeled box representing the existence of

a pedestrian
Atrack Area of a box representing the projection of a

tracked pedestrian object
A∩ Intersection area of Alabel and Atrack
Mu Horizontal value of optical center
Mv Vertical value of optical center
V Volume
α Yaw angle of a sensor
αincl Body inclination angle
β Pitch angle of a sensor
βbj Association weight for object birth
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Abbreviations and Symbols

Symbol Meaning

γ Roll angle of a sensor
δ Path deviation
ε Threshold distance for the neighborhood of a point

(clustering)
εNa Minimum number of measurement-object associa-

tions in a row for initialization
εNEES Normalized estimation error squared
ε̄NEES Mean of the normalized estimation error squared

based on all objects and time points
εp Threshold probability for a predicted state distri-

bution (cancellation)
ε̂Sj (hΘ,ij) Cross validation error
εφ̇e

Threshold value for an evanescent yaw rate
λtf Wavelength of a transmitted signal
η Normalization constant
σ Standard deviation
τd Dispersion parameter
τt Travel time or time of flight
τwc

r Worst case runtime
τ Time interval of prediction in reachability analysis
θk Angle between two line segments
φ Yaw angle of the system vehicle
φ̇ Yaw rate of the system vehicle
φsteer Steering wheel angle
ξdel Threshold value for object deletion
ξPoE Threshold value for object confirmation
ζB Threshold value for object instantiation
∆t Time interval
∆td Duration of a trajectory
Λ Likelihood
Θ Parameters of the world (hypothesis functions)

Matrices and Vectors

Symbol Meaning

lk Line segment between two successive measure-
ment points (k and k + 1)

p Probability vector
p̃ Combined probability vector of state and input
t Translation vector
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Symbol Meaning

u Input vector
x State vector and feature vector in classification
xH State vector of an object hypothesis
xref Reference state vector
z Measurement vector
zdev Measurement deviation vector
zref Reference measurement vector
zS Measurement vector of measured sensor
A Association matrix
Aglobal Globally optimal, binary association matrix
C Cost matrix in classification
C Matrix for longest common subsequence computa-

tion
D Distance matrix
E Matrix with classification fractions
F System matrix
G Gating matrix
H Measurement matrix
K Kalman gain
M Matrix containing laser scanner data of one dimen-

sion
P State covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
Rrot Rotation matrix with elements rlm
S Innovation covariance matrix
T Transformation matrix
T(·,·) Trajectory
β Weighting matrix for probabilistic data association
γ Measurement residuum
γref Deviation vector of the estimated state and the ref-

erence state (ground truth)
ε Hypothesis error in state covariance matrix (PDA)
εT Sequence of maximum differences between tra-

jectory symbols for longest common subsequence
computation

ρ Parameter vector
Γ Noise gain
Γ Input transition matrix
Γ̃ Input transition matrix in rearranged form to con-

sider uncertain input
Ψ State transition matrix
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Abbreviations and Symbols

Symbol Meaning

Ψ̃ State transition matrix in rearranged form to con-
sider uncertain input

Sets

Symbol Meaning

N Set of natural numbers
N+ Set of positive natural numbers
R Set of real valued numbers
R+ Set of positive real-valued numbers
A Set of two-dimensional positions
B Set of positions occupied by road user’s body
C Set of positions occupied by road user’s center
Ccl Cluster of objects or of laser scanner points
Dpoints Dataset of laser scanner points
D Probabilistic hypothesis density function
Dd Dimensional probabilistic hypothesis density

function
D̃d Discrete DPHD function
Ed Single association hypothesis (set of single assign-

ments)
ETP

ij Set of hypotheses stating a true positive association
of object xi

E∃i Set of hypotheses stating existence of object xi
G Guard set
H Class of hypothesis functions
I Set of real valued intervals
M Set of models for classification
N (µ, σ) Normal distribution with mean µ and standard de-

viation σ
P Set of parameters
R Reachable set
R+ Reachable set after transition to a new mode
Rint Intersection of reachable set with a hit guard set
S Set of training examples in classification
Strain Training data set for cross-validation
Scv Cross validation set for cross-validation
Snoise Set of points representing noise
Sq Laser scanner point set
Sseed Set of seed points
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Symbol Meaning

T Set of discrete transitions of a hybrid automaton
U Set of inputs
X Set of states
Xa Set of objects assigned to a measurement
Xenv Set of object in the environment model
Xna Set of objects that could not be assigned to a mea-

surement
X ∗ Set of object indexes and corresponding special

symbols
Z∗ Set of measurement indexes and corresponding

special symbols
ν Stochastic process noise distribution
η Stochastic measurement noise distribution
Ω Set of elementary events

Quantities

Symbol Meaning

ñ Number of intermediate points of time for Markov
chain abstraction

n Number of state dimensions
nε Number of points within radius ε around a point
m Degree of a polynomial
M Number of measurements per time step
Mc Number of measurements in a cluster
Mg Number of measurements within a gating region

of an object
M̂fa Expectation value for the number of false alarms
Mlc Number of symbols in a prototype trajectory for a

lane change
Mlf Number of symbols in a prototype trajectory for

lane following
Mp Number of symbols in a prototype trajectory
Mturn Number of symbols in a prototype trajectory for

turn
N Number of objects in the environment model
N∗ Cardinality
Na Number of measurement associations since object

birth
Nasso Number of detections associated with references
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Abbreviations and Symbols

Symbol Meaning

Nc Number of objects in a cluster
Ncell Number of measurement associations in a grid cell
Ncomb Number of possible combinations
Ncl Number of clusters
Nclass Number of classes in a dataset
Ncont Number of continuous states
Ndet Number of detections
Ndis Number of discrete states
Nε Number of points in the neighborhood of center

point qcenter within radius ε
Nf Number of features in classification
Nfree Degree of freedom
Nit Number of iterations
Nl Number of lines
Nmin Minimum number of points in the neighborhood

of a point (clustering)
Nmode Number of modes (discrete states)
Nna Number of missing measurement associations

since object birth
Nnode Number of nodes
Np Number of parameters
Npoints Number of considered points
Nref Number of references
Ns Number of subsets in cross-validation
Nsample Number of available samples for kernel density es-

timation
Nscan Number of scan points per cycle
Nsen Number of sensor models
Nsim Number of simulation runs for Markov chain ab-

straction
Nt Number of training examples in classification
Ntol Maximum number of symbols that may be be-

tween similar symbols
Ntr Number of samples building a trajectory
Nu Number of input cells for Markov chain abstrac-

tion
Nx Number of state cells for Markov chain abstraction
NE Number of association hypotheses
NFN Number of false negative detections
NTP Number of true positive detections
NMB

TP Number of true positive and true positive maybe-
detections
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Subscripts and Superscripts

Symbol Meaning

�d Association hypothesis index
�dev Relates to the deviation of a road user from the

path
�e Path segment index of the system vehicle
�e Relates to the system vehicle
� f Deviation segment index of the system vehicle
�g Path segment index of a road user
�h Deviation segment index of a road user
�i (Object or cell) index
�j (Measurement or cell) index
�k Time step / time point index
�l Velocity segment index or dimension index
�lc Refers to maneuver class lane change
�lf Refers to maneuver class lane following
�m Input dimension
�n State dimension
�p Parameter vector dimension
�p Refers to a prototype trajectory
�path Relates to a position on the path of a road user
�ped Relates to a pedestrian
�pos Relates to the two-dimensional position of a road

user
�ref Relates to reference measurements (ground truth)
�ru Relates to another road user
�s Scan point index
�t Scan point index
�turn Refers to the maneuver class turn
�x Longitudinal component of �
�y Lateral component of �
�z Vertical component of �
�C Relates to a camera
�CC2VC Camera to vehicle coordinates
�H Homogeneous coordinates
�R Relates to a radar
�RC2VC Radar to vehicle coordinates
�S Relates to any sensor
�SC2VC Sensor to vehicle coordinates
�VC Relates to vehicle coordinates
�α Input index
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Abbreviations and Symbols

Symbol Meaning

�β Input index

General Spellings

Symbol Meaning〈
x(i), y(i)

〉
Training example in classification〈

x(i), z(i)
〉

Laser scanner data pair〈
qi, qj

〉
Laser scanner point pair

� Interval set
� Upper interval limit of �
� Lower interval limit of �
�̂ Estimated mean of variable �
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In order to develop a driver assistance system for pedestrian protection, pedes­
trians in the environment of a truck are detected by radars and a camera and are 
tracked across distributed fields of view using a Joint Integrated Probabilistic Data 
Association filter. A robust approach for prediction of the system vehicles trajec­
tory is presented. It serves the computation of a probabilistic collision risk based 
on reachable sets where different sources of uncertainty are taken into account.
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