953 research outputs found

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel

    Enabling error-resilient internet broadcasting using motion compensated spatial partitioning and packet FEC for the dirac video codec

    Get PDF
    Video transmission over the wireless or wired network require protection from channel errors since compressed video bitstreams are very sensitive to transmission errors because of the use of predictive coding and variable length coding. In this paper, a simple, low complexity and patent free error-resilient coding is proposed. It is based upon the idea of using spatial partitioning on the motion compensated residual frame without employing the transform coefficient coding. The proposed scheme is intended for open source Dirac video codec in order to enable the codec to be used for Internet broadcasting. By partitioning the wavelet transform coefficients of the motion compensated residual frame into groups and independently processing each group using arithmetic coding and Forward Error Correction (FEC), robustness to transmission errors over the packet erasure wired network could be achieved. Using the Rate Compatibles Punctured Code (RCPC) and Turbo Code (TC) as the FEC, the proposed technique provides gracefully decreasing perceptual quality over packet loss rates up to 30%. The PSNR performance is much better when compared with the conventional data partitioning only methods. Simulation results show that the use of multiple partitioning of wavelet coefficient in Dirac can achieve up to 8 dB PSNR gain over its existing un-partitioned method

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel

    Iterative source and channel decoding relying on correlation modelling for wireless video transmission

    No full text
    Since joint source-channel decoding (JSCD) is capable of exploiting the residual redundancy in the source signals for improving the attainable error resilience, it has attracted substantial attention. Motivated by the principle of exploiting the source redundancy at the receiver, in this treatise we study the application of iterative source channel decoding (ISCD) aided video communications, where the video signal is modelled by a first-order Markov process. Firstly, we derive reduced-complexity formulas for the first-order Markov modelling (FOMM) aided source decoding. Then we propose a bit-based iterative horizontal vertical scanline model (IHVSM) aided source decoding algorithm, where a horizontal and a vertical source decoder are employed for exchanging their extrinsic information using the iterative decoding philosophy. The iterative IHVSM aided decoder is then employed in a forward error correction (FEC) encoded uncompressed video transmission scenario, where the IHVSM and the FEC decoder exchange softbit-information for performing turbo-like ISCD for the sake of improving the reconstructed video quality. Finally, we benchmark the attainable system performance against a near-lossless H.264/AVC video communication system and the existing FOMM based softbit source decoding scheme, where The financial support of the RC-UK under the auspices of the India-UK Advanced Technology Centre (IU-ATC) and that of the EU under the CONCERTO project as well as that of the European Research Council’s Advanced Fellow Grant is gratefully acknowledged. The softbit decoding is performed by a one-dimensional Markov model aided decoder. Our simulation results show that Eb=N0 improvements in excess of 2.8 dB are attainable by the proposed technique in uncompressed video applications

    User-Oriented QoS in Packet Video Delivery

    Get PDF
    We focus on packet video delivery, with an emphasis on the quality of service perceived by the end-user. A video signal passes through several subsystems, such as the source coder, the network and the decoder. Each of these can impair the information, either by data loss or by introducing delay. We describe how each of the subsystems can be tuned to optimize the quality of the delivered signal, for a given available bit rate in the network. The assessment of end-user quality is not trivial. We present recent research results, which rely on a model of the human visual system

    A support vector machine approach for detection and localization of transmission errors within standard H.263++ decoders

    Get PDF
    Wireless multimedia services are increasingly becoming popular boosting the need for better quality-of-experience (QoE) with minimal costs. The standard codecs employed by these systems remove spatio-temporal redundancies to minimize the bandwidth required. However, this increases the exposure of the system to transmission errors, thus presenting a significant degradation in perceptual quality of the reconstructed video sequences. A number of mechanisms were investigated in the past to make these codecs more robust against transmission errors. Nevertheless, these techniques achieved little success, forcing the transmission to be held at lower bit-error rates (BERs) to guarantee acceptable quality. This paper presents a novel solution to this problem based on the error detection capabilities of the transport protocols to identify potentially corrupted group-of-blocks (GOBs). The algorithm uses a support vector machine (SVM) at its core to localize visually impaired macroblocks (MBs) that require concealment within these GOBs. Hence, this method drastically reduces the region to be concealed compared to state-of-the-art error resilient strategies which assume a packet loss scenario. Testing on a standard H.263++ codec confirms that a significant gain in quality is achieved with error detection rates of 97.8% and peak signal-to-noise ratio (PSNR) gains of up to 5.33 dB. Moreover, most of the undetected errors provide minimal visual artifacts and are thus of little influence to the perceived quality of the reconstructed sequences.peer-reviewe

    Enhancement of Adaptive Forward Error Correction Mechanism for Video Transmission Over Wireless Local Area Network

    Get PDF
    Video transmission over the wireless network faces many challenges. The most critical challenge is related to packet loss. To overcome the problem of packet loss, Forward Error Correction is used by adding extra packets known as redundant packet or parity packet. Currently, FEC mechanisms have been adopted together with Automatic Repeat reQuest (ARQ) mechanism to overcome packet losses and avoid network congestion in various wireless network conditions. The number of FEC packets need to be generated effectively because wireless network usually has varying network conditions. In the current Adaptive FEC mechanism, the FEC packets are decided by the average queue length and average packet retransmission times. The Adaptive FEC mechanisms have been proposed to suit the network condition by generating FEC packets adaptively in the wireless network. However, the current Adaptive FEC mechanism has some major drawbacks such as the reduction of recovery performance which injects too many excessive FEC packets into the network. This is not flexible enough to adapt with varying wireless network condition. Therefore, the enhancement of Adaptive FEC mechanism (AFEC) known as Enhanced Adaptive FEC (EnAFEC) has been proposed. The aim is to improve recovery performance on the current Adaptive FEC mechanism by injecting FEC packets dynamically based on varying wireless network conditions. The EnAFEC mechanism is implemented in the simulation environment using Network Simulator 2 (NS-2). Performance evaluations are also carried out. The EnAFEC was tested with the random uniform error model. The results from experiments and performance analyses showed that EnAFEC mechanism outperformed the other Adaptive FEC mechanism in terms of recovery efficiency. Based on the findings, the optimal amount of FEC generated by EnAFEC mechanism can recover high packet loss and produce good video quality

    High Quality of Service on Video Streaming in P2P Networks using FST-MDC

    Full text link
    Video streaming applications have newly attracted a large number of participants in a distribution network. Traditional client-server based video streaming solutions sustain precious bandwidth provision rate on the server. Recently, several P2P streaming systems have been organized to provide on-demand and live video streaming services on the wireless network at reduced server cost. Peer-to-Peer (P2P) computing is a new pattern to construct disseminated network applications. Typical error control techniques are not very well matched and on the other hand error prone channels has increased greatly for video transmission e.g., over wireless networks and IP. These two facts united together provided the essential motivation for the development of a new set of techniques (error concealment) capable of dealing with transmission errors in video systems. In this paper, we propose an flexible multiple description coding method named as Flexible Spatial-Temporal (FST) which improves error resilience in the sense of frame loss possibilities over independent paths. It introduces combination of both spatial and temporal concealment technique at the receiver and to conceal the lost frames more effectively. Experimental results show that, proposed approach attains reasonable quality of video performance over P2P wireless network.Comment: 11 pages, 8 figures, journa
    corecore