13 research outputs found

    Lazy Shape Analysis

    Get PDF
    Many software model checkers are based on predicate abstraction. If the verification goal depends on pointer structures, the approach does not work well, because it is difficult to find adequate predicate abstractions for the heap. In contrast, shape analysis, which uses graph-based heap abstractions, can provide a compact representation of recursive data structures. We integrate shape analysis into the software model checker BLAST. Because shape analysis is expensive, we do not apply it globally. Instead, we ensure that, like predicates, shape graphs are computed and stored locally, only where necessary for proving the verification goal. To achieve this, we extend lazy abstraction refinement, which so far has been used only for predicate abstractions, to three-valued logical structures. This approach does not only increase the precision of model checking, but it also increases the efficiency of shape analysis. We implemented the technique by extending BLAST with calls to TVLA

    Mining preconditions of APIs in large-scale code corpus

    Get PDF
    Modern software relies on existing application programming interfaces (APIs) from libraries. Formal specifications for the APIs enable many software engineering tasks as well as help developers correctly use them. In this work, we mine large-scale repositories of existing open-source software to derive potential preconditions for API methods. Our key idea is that APIs’ preconditions would appear frequently in an ultra-large code corpus with a large number of API usages, while project-specific conditions will occur less frequently. First, we find all client methods invoking APIs. We then compute a control dependence relation from each call site and mine the potential conditions used to reach those call sites. We use these guard conditions as a starting point to automatically infer the preconditions for each API. We analyzed almost 120 million lines of code from SourceForge and Apache projects to infer preconditions for the standard Java Development Kit (JDK) library. The results show that our technique can achieve high accuracy with recall from 75–80% and precision from 82–84%. We also found 5 preconditions missing from human written specifications. They were all confirmed by a specification expert. In a user study, participants found 82% of the mined preconditions as a good starting point for writing specifications. Using our mining result, we also built a benchmark of more than 4,000 precondition-related bugs

    Flow- and context-sensitive points-to analysis using generalized points-to graphs

    Get PDF
    © Springer-Verlag GmbH Germany 2016. Bottom-up interprocedural methods of program analysis construct summary flow functions for procedures to capture the effect of their calls and have been used effectively for many analyses. However, these methods seem computationally expensive for flow- and context- sensitive points-to analysis (FCPA) which requires modelling unknown locations accessed indirectly through pointers. Such accesses are com- monly handled by using placeholders to explicate unknown locations or by using multiple call-specific summary flow functions. We generalize the concept of points-to relations by using the counts of indirection levels leaving the unknown locations implicit. This allows us to create sum- mary flow functions in the form of generalized points-to graphs (GPGs) without the need of placeholders. By design, GPGs represent both mem- ory (in terms of classical points-to facts) and memory transformers (in terms of generalized points-to facts). We perform FCPA by progressively reducing generalized points-to facts to classical points-to facts. GPGs distinguish between may and must pointer updates thereby facilitating strong updates within calling contexts. The size of GPGs is linearly bounded by the number of variables and is independent of the number of statements. Empirical measurements on SPEC benchmarks show that GPGs are indeed compact in spite of large procedure sizes. This allows us to scale FCPA to 158 kLoC using GPGs (compared to 35 kLoC reported by liveness-based FCPA). Thus GPGs hold a promise of efficiency and scalability for FCPA without compro- mising precision

    Improving static analyses of C programs with conditional predicates

    Get PDF
    Extended version of the FMICS 2014 paperInternational audienceStatic code analysis is increasingly used to guarantee the absence of undesirable behaviors in industrial programs. Designing sound analyses is a continuing trade-off between precision and complexity. Notably, dataflow analyses often perform overly wide approximations when two control-flow paths meet, by merging states from each path.This paper presents a generic abstract interpretation based framework to enhance the precision of such analyses on join points. It relies on predicated domains, that preserve and reuse information valid only inside some branches of the code. Our predicates are derived from conditional statements, and postpone the loss of information.The work has been integrated into Frama-C, a C source code analysis platform. Experiments on real generated code show that our approach scales, and improves significantly the precision of the existing analyses of Frama-C

    Improving static analyses of C programs with conditional predicates

    Get PDF
    Best paper awardInternational audienceStatic code analysis is increasingly used to guarantee the absence of undesirable behaviors in industrial programs. Designing sound analyses is a continuing trade-off between precision and complexity. Notably, dataflow analyses often perform overly wide approximations when two control-flow paths meet, by merging states from each path. This paper presents a generic abstract interpretation based framework to enhance the precision of such analyses on join points. It relies on predicated domains, that preserve and reuse information valid only inside some branches of the code. Our predicates are derived from conditionals statements, and postpone the loss of information. The work has been integrated into Frama-C, a C source code analysis platform. Experiments on real code show that our approach scales, and improves significantly the precision of the existing analyses of Frama-C

    Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop

    Get PDF
    Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis

    Analyzing repetitiveness in big code to support software maintenance and evolution

    Get PDF
    Software systems inevitably contain a large amount of repeated artifacts at different level of abstraction---from ideas, requirements, designs, algorithms to implementation. This dissertation focuses on analyzing software repetitiveness at implementation code level and leveraging the derived knowledge for easing tasks in software maintenance and evolution such as program comprehension, API use, change understanding, API adaptation and bug fixing. The guiding philosophy of this work is that, in a large corpus, code that conforms to specifications appears more frequently than code that does not, and similar code is changed similarly and similar code could have similar bugs that can be fixed similarly. We have developed different representations for software artifacts at source code level, and the corresponding algorithms for measuring code similarity and mining repeated code. Our mining techniques bases on the key insight that code that conforms to programming patterns and specifications appears more frequently than code that does not. Thus, correct patterns and specifications can be mined from large code corpus. We also have built program differencing techniques for analyzing changes in software evolution. Our key insight is that similar code is likely changed in similar ways and similar code likely has similar bug(s) which can be fixed similarly. Therefore, learning changes and fixes from the past can help automatically detect and suggest changes/fixes to the repeated code in software development. Our empirical evaluation shows that our techniques can accurately and efficiently detect repeated code, mine useful programming patterns and API specifications, and recommend changes. It can also detect bugs and suggest fixes, and provide actionable insights to ease maintenance tasks. Specifically, our code clone detection tool detects more meaningful clones than other tools. Our mining tools recover high quality programming patterns and API preconditions. The mined results have been used to successfully detect many bugs violating patterns and specifications in mature open-source systems. The mined API preconditions are shown to help API specification writer identify missing preconditions in already-specified APIs and start building preconditions for the not-yet-specified ones. The tools are scalable which analyze large systems in reasonable times. Our study on repeated changes give useful insights for program auto-repair tools. Our automated change suggestion approach achieves top-1 accuracy of 45%-51% which relatively improves more than 200% over the base approach. For a special type of change suggestion, API adaptation, our tool is highly correct and useful
    corecore