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Abstract. Many software model checkers are based on predicate ab-
straction. If the verification goal depends on pointer structures, the ap-
proach does not work well, because it is difficult to find adequate pred-
icate abstractions for the heap. In contrast, shape analysis, which uses
graph-based heap abstractions, can provide a compact representation of
recursive data structures. We integrate shape analysis into the software
model checker Blast. Because shape analysis is expensive, we do not ap-
ply it globally. Instead, we ensure that, like predicates, shape graphs are
computed and stored locally, only where necessary for proving the verifi-
cation goal. To achieve this, we extend lazy abstraction refinement, which
so far has been used only for predicate abstractions, to three-valued log-
ical structures. This approach does not only increase the precision of
model checking, but it also increases the efficiency of shape analysis. We
implemented the technique by extending Blast with calls to Tvla.

Keywords. Formal verification, Program analysis, Software model
checking, Shape analysis, Counterexample-guided abstraction refine-
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1 Introduction

Counterexample-guided abstraction refinement [14,6] has dramatically increased
the performance of software model checkers in the past few years [2,4]. However,
being based on predicate abstractions, current model checkers are not capable
of dealing effectively with recursive data structures. Shape analysis [13,5,19] is
a static data-flow analysis that models the heap contents using graph-based ab-
stractions. However, shape analysis is among the most expensive static analyses.
The contribution of this paper is to show how to increase both the effectiveness
of model checking and the efficiency of shape analysis by combining both tech-
niques. By computing both predicate and shape information, we increase the
precision of model checking, and thus obtain fewer false positives. The efficiency
of shape analysis is improved, because expensive shape computations (such as
abstract postconditions) are performed only at those program locations where
the shape information is necessary to prove the verification goal. To achieve this,
we apply the ‘lazy abstraction’ paradigm [12] to shapes.

? An abbreviated version of this paper appeared in Proc. CAV, LNCS 4144, pages 532–
546, Springer, 2006.

?? Supported in part by the MICS NCCR of the SNSF.

Dagstuhl Seminar Proceedings 06081
Software Verification: Infinite-State Model Checking and Static Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/728

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D. Beyer, T.A. Henzinger, and G. Théoduloz

Fig. 1. Abstraction refinement with heap abstraction

Lazy abstraction involves both lazy (on-the-fly) abstraction construction and
lazy (only-where-necessary) abstraction refinement. Lazy abstraction construc-
tion means that an abstract reachability tree (ART) for the program is computed
on-the-fly. Each node of the ART is labeled with both predicate and shape in-
formation. The computation of a branch in the ART is terminated when the
concrete states represented by the leaf are covered by another node in the tree.
Lazy abstraction refinement means that predicate and shape information is re-
fined only along branches of the ART that represent spurious counterexamples,
in order to remove these false positives. Additional predicates can be discovered
automatically using Craig interpolation [18]. This method allows the pinpoint-
ing of relevant predicates to individual program locations. In this paper we show
how to use interpolation-based predicate discovery to refine also the granularity
of the shape analysis. Our algorithm decides, individually for each location along
a spurious counterexample, which predicates and pointers to track, and how to
refine the local heap abstraction, so that the infeasible error path is removed.

We refer to the predicates used in the predicate abstraction as ‘nullary’ pred-
icates, because that is how they can be viewed from the shape-analysis perspec-
tive. Our interpolation engine discovers not only new nullary predicates (handled
by Blast), but also new unary predicates, which are interpreted over the nodes
of a shape graph. To enable the addition of richer, derived predicates (called
‘instrumentation’ predicates in shape analysis) during refinement, we introduce
predefined shape-class generators (SCGs). Consistent with our locality principle,
there is an SCG per program location. If an SCG is insufficient for proving the
verification goal, then the system proceeds to a finer SCG, which adds additional
shape-describing predicates to the local heap abstraction.

We implemented this algorithm in the software model checker Blast [11],
using calls to Tvla [16] for shape operations. We evaluated the method by
applying it to several C programs that manipulate list data structures. In these
examples, the model checker needs to discover both nullary predicates (to refine
the predicate abstraction) and unary predicates (to refine the heap abstraction),
in order to automatically prove the program correct.
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2 Review

2.1 Software Model Checking by Predicate Abstraction

Counterexample-guided abstraction refinement (CEGAR). The classi-
cal CEGAR algorithm starts with an initial (trivial) predicate abstraction, and
refines the abstraction iteratively. During each iteration, it explores the states of
an abstract boolean program. If the boolean program is safe, then the algorithm
stops with the answer ‘safe.’ If an (abstract) counterexample is found, then the
algorithm checks if the counterexample corresponds to a (concrete) error path in
the program (which is reported as a bug), or if the counterexample is ‘spurious’
due to the abstraction being too coarse. In the latter case, the counterexample
is analyzed to discover new predicates that need to be added to the boolean pro-
gram in order to eliminate the spurious counterexample. This process is repeated
until either the program is proved safe, or a bug is found [6,2]. It is possible that
the process does not terminate, or that no suitable new predicates are discovered
even though the counterexample is spurious.

Lazy abstraction refinement. The classical version of the abstract-check-
refine loop has two drawbacks: first, it is not necessary to represent in the
boolean abstraction the part of the state space that is not reachable, and sec-
ond, it is not necessary to refine the portions of the abstract program that have
already been proved safe. Lazy abstraction refinement integrates the steps of
the abstract-check-refine loop into an on-the-fly analysis that refines the predi-
cate abstraction locally. Instead of repeatedly building and exploring an abstract
boolean program, the lazy algorithm builds an ART. At each node of the ART,
the lazy algorithm adds necessary predicates on demand, by refining the abstrac-
tion only at locations that occur on a spurious counterexample. As a result, the
final abstraction (predicate set) differs from location to location [12].

Craig interpolation. The crucial measure for the efficiency of the analysis is
the number of predicates in the abstraction. To keep the number of predicates per
location as small as possible, interpolation-based predicate discovery can be used
to produce for each program location the predicates that are needed to eliminate
an infeasible error path in the ART. Given an abstract error path, we construct
a path formula (PF) such that if the PF is unsatisfiable, then the error path is
infeasible. An unsatisfiable PF can be cut, at each location on the path, into
two formulas: a prefix formula that leads the program from the initial location
to the cut location, and a postfix formula that leads the program from the cut
location to the error location. From a Craig interpolant of the two formulas we
can extract a suitable set of predicates to be added at the cut location [11,18].

2.2 Shape Analysis by Three-Valued Logic

Shape analysis is a static analysis that represents unbounded instances of re-
cursive data structures on the heap by finite structures, called ‘shape graphs.’
Following the framework of [19,16], we represent shape graphs as three-valued
logical structures.
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1 typedef struct node {

2 int h; struct node *n;

3 } *List;

4 void foo(int flag) {

5 List a = (List) malloc(...);

6 if (a == NULL) exit(1);

7 List p = a;

8 while (random()) {

9 if (flag) p->h = 1;

10 else p->h = 2;

11 p->n = (List) malloc(...);

12 if (p->n == NULL) exit(1);

13 p = p->n; }

14 p->h = 3;

15 p = a; /* Now check it. */

16 if (flag) while (p->h == 1) p = p->n;

17 else while (p->h == 2) p = p->n;

18 assert(p->h == 3);

19 }

(a) Example C program
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(c) Shape of the concrete list

Fig. 2. Example program and two list representations

Figure 2(b) shows an instance of a list structure consisting of five elements,
four with data value 1 and one with data value 3. The pointers a and p point
to the first list element. Figure 2(c) shows a shape graph that represents all
list instances such that the pointers a and p point to the first list element, all
elements have data value 1, except the last element, which has data value 3. The
concrete list in Fig. 2(b) is an instance of this shape graph. The shape graph
is represented by predicates: the unary predicates pta , ptp , fdh=1, fdh=3, sm,
ra,n, and rp,n, and the binary predicate n. All predicates are interpreted over
nodes of the shape graph. The predicate pta(v) is true if the pointer variable a
points to node v (same for ptp); the predicate n(v, u) is true if the next pointer
of node v points to node u; the predicate fdh=1(v) is true if the field h of node v
satisfies the assertion h=1 (same for fdh=3); the predicate ra,n(v) is true if node v
is reachable from pointer a via the next-pointer relation (same for rp,n); and the
predicate sm(v) has the value 1/2 if v is a summary node, and the value false
if v represents a single list element. A summary node (drawn as double-circled)
represents one or more list elements. The next pointer of a list element that is
abstracted by the second node in Fig. 2(c) may point to itself or to the third node
(the value 1/2 of a predicate is indicated by a dotted edge). The reachability
predicates ra,n and rp,n are defined in terms of the other predicates; they are
called ‘instrumentation’ predicates. All other predicates are ‘core’ predicates.

3 Preview

Lazy CEGAR with shapes. We define a lazy CEGAR algorithm for abstrac-
tions that consist of a predicate abstraction and a heap abstraction (cf. Fig. 1).
Moreover, following the lazy abstraction paradigm, both abstractions are refined
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locally. The initial predicate abstraction is the single predicate true, and the ini-
tial heap abstraction is the trivial shape graph, which represents every heap.
With each program operation, we update both abstractions independently. Dur-
ing lazy abstraction refinement, if the PF is unsatisfiable, then the spurious
counterexample is due to the predicate abstraction, and the interpolation pro-
cedure discovers new predicates that are added to the predicate abstraction. In
this case, the heap abstraction is not changed. However, if the PF is satisfiable,
this does not necessarily mean that the error path is feasible. In this case, we
construct a more precise extended path formula (EPF), which takes into account
also information about the heap. If the EPF is unsatisfiable, then the error path
is guaranteed to be infeasible. We apply the interpolation procedure to the EPF,
and use the interpolants to decide how to refine the heap abstraction at the cut
locations. For example, from an interpolant of the form p->h=3, we extract the
new predicates ptp and fdh=3 to refine the shape graph.

Example. The function in Fig. 2(a) first builds a list that contains a sequence
of data values in {1, 2} —depending on the variable flag— and ends with data
value 3. Then the function verifies that property of the list. Pure predicate
abstraction discovers only the nullary predicate npflag , which is insufficient for
proving the program safe. The combination of predicate abstraction and heap
abstraction tracks both predicate and shape information simultaneously, and
automatically discovers the necessary nullary and unary predicates to refine
both abstractions. The first infeasible error path that our system reports skips
the first while loop, sets p->h=3, assumes flag=0, skips the while loop of the
‘else’ branch, and violates the assertion. The list consists of one list element,
〈3〉. Pure predicate abstraction would give a false positive, because the PF is
satisfiable. However, the EPF is unsatisfiable, and from the interpolant p->h=3
we extract the pointer p and the field assertion h=3. Furthermore, alias analysis
indicates that we also need to track the pointer a, which may be aliased to p.
Therefore we locally add the three unary predicates ptp , pta , and fdh=3 to the
heap abstraction, which removes the infeasible error path.

The second infeasible error path enters the first while loop, assumes flag=0,
sets p->h=2, sets p->h=3, assumes flag=0, skips the while loop of the ‘else’
branch, and violates the assertion. The list now represents the sequence 〈2, 3〉.
The abstract state associated with the program location before the assertion is
represented by the nullary predicate true and the shape graph of Fig. 4(a). The
conjuncts of the EPF that show the infeasibility of this error path are given in
Fig. 3 (the number annotated to an lvalue in a PF corresponds to the number of
the operation that has written this value). The interpolant is p->h=2, and thus
we add the field predicate fdh=2 to the heap abstraction. When Blast explores
this path again after the refinement, the shape graph in Fig. 4(b) is computed.

The third infeasible error path enters the first while loop, assumes flag=1,
sets p->h=1, sets p->h=3, assumes flag=0, skips the while loop of the ‘else’
branch, and violates the assertion. The list represents the sequence 〈1, 3〉. As
the predicate abstraction does not track the predicate flag, this leads to the
infeasible situation that in the first while loop the predicate is assumed to be true,
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Operation Constraint

1 : a=malloc() true
2 : assume(a!=0) 〈a, 1〉 6= 0
3 : p=a 〈p, 3〉 = 〈a, 1〉 ∧ 〈〈p, 3〉->h, 3〉 = 〈〈a, 1〉->h, 1〉

∧ 〈〈p, 3〉->n, 3〉 = 〈〈a, 1〉->n, 1〉
4 : assume(flag==0) 〈flag, 0〉 = 0
5 : p->h=2 〈〈p, 3〉->h, 5〉 = 2 ∧ 〈〈a, 1〉->h, 5〉 = 2
6 : p->n=malloc() omitted
7 : assume(p->n!=0) omitted
8 : p=p->n omitted
9 : p->h=3 omitted

10 : p=a 〈p, 10〉 = 〈a, 1〉 ∧ 〈〈p, 10〉->h, 10〉 = 〈〈a, 1〉->h, 5〉
∧ 〈〈p, 10〉->n, 10〉 = 〈〈a, 1〉->n, 1〉

11 : assume(flag==0) 〈flag, 0〉 = 0
12 : assume(p->h!=2) 〈〈p, 10〉->h, 10〉 6= 2
13 : assume(p->h!=3) 〈〈p, 10〉->h, 10〉 6= 3
14 : ERROR

Fig. 3. Extended path formula for the second infeasible error path
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Fig. 4. Shape graphs before and after the second refinement at program line 18

and in the second part of the program it is assumed to be false. The interpolant
for the unsatisfiable PF is flag, and we add the nullary predicate npflag to the
predicate abstraction. The resulting fourth infeasible error path enters the first
while loop, assumes flag=1, sets p->h=1, sets p->h=3, assumes flag=1, skips
the while loop of the ‘then’ branch, and violates the assertion. The list represents
the sequence 〈1, 3〉. We discover the field predicate fdh=1 from the interpolant
p->h=1 for the unsatisfiable EPF, and add it to the heap abstraction.

The last iteration unfolds the remaining states of the ART or marks them
as covered. The final ART represents a safety certificate (proof of correctness).
The example does not illustrate the ‘laziness’ of our approach: if the example
is only one function of many in a large program, then the generated predicates
and shape graphs are tracked only locally within the given function. Similarly, if
the program contained a second list that is created but never checked, then the
analysis would not track the shape of that list, because the interpolants yield
only predicates that are necessary for eliminating the infeasible error paths. Also,
the example uses only one of the two ways in which the heap abstraction can be
refined: it does not require any instrumentation predicates. To introduce derived
predicates, such as reachability, we will add shape-class generators to the heap
abstraction; these are not discovered automatically, but need to be predefined.
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4 Lazy Abstraction Refinement of Shapes

In the following three subsections, we give the details of our algorithm. First,
we explain how we build the ART with abstract states that include both nullary
predicates and shape graphs. Second, we explain how we check whether an ab-
stract error path is feasible (i.e., corresponds to a concrete error path). Third,
we explain how we refine the predicate and heap abstractions.

4.1 Combining Predicate and Heap Abstractions

Predicate abstraction. A nullary predicate is a predicate over program vari-
ables. We write npx=3 for the nullary predicate asserting that the value of the
program variable x is 3. We denote the set of nullary predicates by P. A predi-
cate abstraction for a program is a function Π : L → 2P that maps each program
location in L = {pc1, . . . , pck} to a set of nullary predicates. We follow the defi-
nitions of [11]. For a formula ϕ over program variables, the abstraction w.r.t. a
set P ⊆ P of nullary predicates is the strongest boolean combination ϕ′ of pred-
icates in P such that ϕ implies ϕ′. The semantics of a program path is defined
in terms of the strongest-postcondition operator: if the formula ϕ represents a
set of states, and op is an operation, then the formula SP.ϕ.op represents the
set of successor states. We extend SP to program paths in the natural way. A
path t is SP-infeasible if SP.true.t is unsatisfiable. To check if a given path is
feasible, we construct a path formula (PF), which is the conjunction of several
constraints, one per operation on the path, such that the path is SP-infeasible
if the PF is unsatisfiable. For a path (opm : pcm); . . . ; (opn : pcn), the abstract
semantics SPΠ is the Π-abstraction of the concrete semantics SP, that is, the
formula SPΠ .ϕ.opi is the abstraction w.r.t. Π(pci) of the formula SP.ϕ.opi.

Shape classes. The precision of heap abstractions is defined by shape classes.
Following [19], a shape class S = (Pcore , Pinstr , Pabs) consists of three sets of
predicates over node variables: (1) a set Pcore of core predicates, (2) a set Pinstr

of instrumentation predicates with Pcore ∩ Pinstr = ∅, where each instrumenta-
tion predicate p ∈ Pinstr has an associated defining formula ϕp over the core
predicates, and (3) a set Pabs ⊆ Pcore ∪ Pinstr of abstraction predicates. We de-
note the set of shape classes by S. A heap abstraction for a program is a function
Ψ : L → 2S that maps each program location to a set of shape classes (different
shape classes can be used to simultaneously track different data structures).

The set of core predicates must contain the special unary predicate sm,
which has the value false for normal nodes and 1/2 for summary nodes. More-
over, we distinguish two special subsets of core predicates: the set Ppt ⊆ Pcore

of points-to predicates, and the set Pfd ⊆ Pcore of field predicates. A points-
to predicate ptx (v) is a unary predicate that indicates if a pointer variable x
points to node v. A field predicate fdφ(v) is a unary predicate that indicates
if a field assertion φ holds for node v. Each field assertion has a boolean
value over the fields of a structure element. Therefore, field predicates repre-
sent the data content of a structure, rather than the shape of the structure.
A shape class S refines a shape class S′, written S 4 S′, if (1) P ′

core ⊆ Pcore ,
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(2) P ′
instr ⊆ Pinstr , and (3) P ′

abs ⊆ Pabs . The union of S and S′ is the shape
class (Pcore ∪P ′

core , Pinstr ∪P ′
instr , Pabs ∪P ′

abs) (assuming Pcore ∩P ′
instr = ∅ and

Pinstr ∩ P ′
core = ∅).

Shape graphs. The abstract state of the heap is defined as a set of shape re-
gions. A shape region (S, G) consists of a shape class S and a set G of shape graphs
for S. A shape graph g = (V, val) for a shape class S = (Pcore , Pinstr , Pabs) con-
sists of a set V of nodes and a valuation val in three-valued logic of the predicates
over V : for a predicate p ∈ Pcore ∪ Pinstr of arity n, val(p) : V n → {0, 1, 1/2}.
Fig. 2(c) shows an example of a shape graph. Let S and S′ be two shape classes
such that S 4 S′. A shape graph g′ for S′ can be extended to a shape graph g =
ES′.S(g′) for S such that the set of nodes is unchanged (i.e., V = V ′), and for each
predicate p ∈ (Pcore ∪ Pinstr ) \ (P ′

core ∪ P ′
instr ), the value of p is 1/2 everywhere.

We extend the operator E to sets of shape graphs in the natural way. A shape re-
gion (S, G) is covered by a shape region (S′, G′) if ES.(S∪S′)(G) ⊆ ES′.(S∪S′)(G′).
Consider a program path (opm : pcm); . . . ; (opn : pcn) and a heap abstraction Ψ .
The abstract semantics SPΨ is the Ψ -abstraction of the concrete semantics SP,
that is, the formula SPΨ .(S, G).opi is the abstraction w.r.t. Ψ(pci) of the formula
SP.ϕ.opi. The operator SPΨ is defined by SPΨ .(S, G).opi = (S, [[opi]](G)), where
[[·]] is defined as in Tvla [16]. To compute SPΨ , we use Tvla’s focus and coerce
functions to transform a set of shape graphs. We extend the notion of being
covered and the operator SPΨ to sets of shape regions in the natural way.

ART construction. The abstraction (Π,Ψ) of a program is a pair consisting of
a predicate abstraction Π and a heap abstraction Ψ . Given (Π,Ψ), we construct
an ART following [12], but with each vertex of the ART we store not only a
program location pc ∈ L, a call stack, and a subset of the (nullary) predicates in
Π(pc), but also a set of shape regions, one for each shape class in Ψ(pc). Suc-
cessor vertices in the ART are computed using the SPΠ and SPΨ operators
independently on the two parts (nullary predicates and shape regions) of the
abstract state. We stop expanding the ART at a vertex if (1) both the set of
nullary predicates, and the set of shape regions, are covered by some other ver-
tex; or (2) either the predicate set, or the shape set, represents the empty set of
concrete states. More sophisticated termination criteria are possible, of course.

4.2 Extracting Interpolants from Extended Path Formulas

Programs. Our formalization of programs is similar to [11]. A program is rep-
resented by a set of control flow automata; a path t of length n is a sequence
(op1 : pc1); . . . ; (opn : pcn) of operations, which can be either statements or as-
sume predicates. In this paper, we consider flat programs (i.e., program with a
single function); our approach can be extended to programs with several func-
tions. The program variables are either integer values or pointers to (possibly
recursive) structures with fields that are integers and pointer to structures. We
restrict the lvalues that can occur in a program to ident and ident->field, where
ident denotes a variable identifier and field denotes the name of a structure field.
The function F maps an lvalue to the set of fields of the structure pointed to by
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the lvalue if the lvalue has a pointer type, and to the empty set if the lvalue has
an integer type. The operations within a program are limited to the ones listed
in the first column of Fig. 5. The expressions that can occur in statements are
side-effect free C expressions of linear arithmetic, without pointer dereferences.

Extended path formulas. The technique for building PFs from [11] cannot be
reused directly, because it does not refer to recursive data structures. However,
since the number of memory cells possibly involved in a PF is bounded, we
can produce a finite, sound formula called extended PF (EPF). The address of
each heap cell that is accessed on a path must have been previously assigned
to a pointer variable (because we consider a restricted set of possible lvalues).
To refer to these addresses in the EPF, we use SSA-like renamed lvalues. An
lvalue constant is either 〈ident, l〉 (a variable constant), or 〈〈ident, l〉->field, l′〉
with position labels l, l′ ∈ [0..n] and l′ ≥ l. An annotated lvalue is either ident,
or 〈ident, l〉->field. The labels l and l′ identify the positions on the path where
the annotated values may have been modified. An annotated-lvalue map θ is a
function from annotated lvalues to labels. The lvalue-renaming function sub.θ.v
is defined by sub.θ.s = 〈s, θ(s)〉 and sub.θ.(s->f) = 〈(sub.θ.s)->f, θ((sub.θ.s)->f)〉,
where s is a variable and f is a field.

To simplify the EPF using alias information, the function may maps a label
and an lvalue constant to the set of variable constants that may have the same
value (i.e., 〈s, ls〉 ∈ may.l.c if, after the l-th operation of the path, the value of
c may be equal to the value of s1 after the l1-th operation of the path). The
function may is not essential: it is used only to reduce the size of the EPF by
taking into account information that two pointers are guaranteed not to be equal.

The function FineCon maps a pair (θ, Γ ) consisting of an annotated-lvalue
map θ and a constraint map Γ from position labels to first-order logic formulas
over lvalue constants, and an operation opi, to a pair (θ′, Γ ′) consisting of a new
annotated-lvalue map and a new constraint map. On the given path, we compute
recursively the result of FineCon by computing (θl, Γl) = FineCon.(θl-1, Γl-1).opl,
where l is the position label of opl on the path. The map θ0 is the constant
function 0, and Γ0 is the constant function ∅. The map θl differs from θl-1 only on
the annotated lvalues that may be modified by opl, which are mapped to l by θl.
The map Γl results from extending Γl-1 by mapping l to the constraint derived
from opl. We derive constraints from operations similarly to [11]. An extension
is necessary for assignments to pointers: we cannot ‘unroll’ a recursive data
structure and refer to all reachable memory cells, because this would yield an
infinite formula. Additionally, we need to add aliasing constraints when several
lvalue constants may point to the same memory cell. The formal definition of
the function FineCon is given in Fig. 5. The EPF of the path is obtained by
taking the conjunction of all formulas in the final constraint map. The EPF is
unsatisfiable iff the path is SP-infeasible.

The definition of FineCon uses the following two functions. The function eqvar
returns a constraint that expresses the equality of two variables by considering
their fields (if any):
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Op. opl New map θ′ and Alloc′ Constraint Γ ′(l)

s = e θ′(s) = l sub.θ′.s = sub.θ.e

s1 = s2
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉->f) = l

eqvar.(s1, θ
′).(s2, θ)

s1 = s2->f
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉->f) = l

sub.θ′.s1 = sub.θ.(s2->f)

∧
^

c∈may.(l-1)

.(sub.θ.(s2->f))

„
sub.θ.(s2->f) = c
⇒ eqvar.(s1, θ

′).(c, θ)

«

s1->f = s2

θ′(〈s1, θ(s1)〉->f) = l
∀c ∈ may.(l-1).〈〈s1, θ(s1)〉->f, l〉:
∀f ∈ F(c) : θ′(〈c, l〉->f) = l

∀c ∈ may.(l-1).〈s1, θ(s1)〉 :
θ′(c->f) = l

sub.θ′.(s1->f) = sub.θ.s2

∧
^

c∈may.(l-1)

.(sub.θ′.(s1->f))

0@ ite.(c = sub.θ′.(s1->f))
.(eqvar.(c, θ′).(s2, θ))
.(eqvar.(c, θ′).(c, θ))

1A

∧
^

c∈may.(l-1)

.(sub.θ′.s1)

0@ite.(c = sub.θ′.s1)
.(sub.θ′.(c->f) = sub.θ.s2)
.(sub.θ′.(c->f) = sub.θ.(c->f))

1A

s = alloc()
θ′(s) = l
∀f ∈ F(s) : θ′(〈s, l〉->f) = l
Alloc′ = Alloc ∪ {〈s, l〉}

^
a∈Alloc

(〈s, l〉 6= a)

assume(p) clos*.θ.true.p

Fig. 5. Definition of FineCon for each operation: (θ′, Γ ′) = FineCon.(θ, Γ ).l.opl

eqvar.(s1, θ1).(s2, θ2) = (sub.θ1.s1 = sub.θ2.s2)
∧

∧
f∈F(s1)

(sub.θ1.(s1->f) = sub.θ2.(s2->f))

The function clos*.θ.b.p returns, given an assume predicate p, the predicate that
results from replacing all equalities x1 = x2 occurring positively (or negatively,
depending on the value of the boolean value b) by eqvar.(x1, θ).(x2, θ):

clos*.θ.b.p =
(clos*.θ.b.p1) op (clos*.θ.b.p1) if p ≡ (p1 op p2)
¬(clos*.θ.¬b.p1) if p ≡ (¬p1)
eqvar.(x1, θ).(x2, θ) if p ≡ (x1 = x2) and b ≡ true
sub.θ.p otherwise

Interpolation. We compute the interpolants using the algorithm Extract
from [11]. We parametrize the algorithm either with the function Con [11] for
PFs (written Extract [Con]), or with the new function FineCon for EPFs (writ-
ten Extract [FineCon]). The algorithm Extract takes as input a program path t
and returns a function Π̂ from position labels (i.e., locations on the path) to
sets of nullary predicates. In [11] it was shown that, for a weaker programming
language (without recursive data structures), the path t is SP-infeasible iff t is
SPΠ̂ -infeasible for Π̂ = Extract [Con](t). We can prove the analogous statement
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for our richer programming language: the path t is SP-infeasible iff t is SPΠ̂ -
infeasible for Π̂ = Extract [FineCon](t) [3]. Therefore, our method is sound, that
is, we do not report safety when a bug exists.

4.3 Shape-Class Refinement Based on Interpolants

Our refinement procedure first tries to refine the predicate abstraction, by locally
adding to the predicate abstraction nullary predicates from the interpolants. If
the algorithm does not find new predicates to refine the predicate abstraction,
then it tries to refine the heap abstraction, by locally refining the shape classes.
In order to specify heap abstractions, we introduce the following data structures.

Tracking definitions and shape-class generators. A tracking definition
represents the pointers and field predicates that we track for analyzing the heap.
A tracking definition D = (T, Ts, Φ) consists of (1) a set T of tracked pointers,
which is the set of variables that may be pointing to some node in a shape graph;
(2) a set Ts ⊆ T of separating pointers, which is the set of variables for which we
want the corresponding predicates (e.g., points-to, reachability) to be abstraction
predicates; and (3) a set Φ of field assertions. A tracking definition D = (T, Ts, Φ)
refines a tracking definition D′ = (T ′, T ′

s, Φ
′), if T ′ ⊆ T , T ′

s ⊆ Ts and Φ′ ⊆ Φ.
We denote the set of all tracking definitions by D.

A shape-class generator (SCG) is a function m : D → S that takes as input a
tracking definition and returns a shape class, which consists of core predicates,
instrumentation predicates, and abstraction predicates. The tracking definition
provides information about which pointers and which field predicates need to
be tracked by the program analysis; it is the SCG that determines which pred-
icates are actually added to the shape class. Useful SCGs produce at least the
summary predicate sm, a points-to predicate ptx for each pointer x ∈ T in the
tracking definition, and a field predicate fdφ for each field assertion φ ∈ Φ in the
tracking definition. While the pointers and field assertions in the tracking defi-
nition are discovered by interpolation (see below), predicates other than sm, pt ,
and fd predicates need to be added by defining appropriate SCGs.1 An SCG m
refines an SCG m′ if m(D) 4 m′(D) for all tracking definitions D. We require
that the set of SCGs contains at least the greatest element m0, which is a con-
stant function that generates for each tracking definition the shape class (∅, ∅, ∅).
Furthermore, we require each SCG to be monotonic: given an SCG m and two
tracking definitions D and D′, if D 4 D′, then m(D) 4 m(D′).

A shape type T = (σ,m, D) consists of a C structure type σ, an SCG
m, and a tracking definition D. For example, consider the C type struct
node {int data; struct node *next;}; and the tracking definition D =
({p, q}, {p}, {data = 0}). To form a shape type for a singly-linked list, we can
choose an SCG that takes a tracking definition D = (T, Ts, Φ) and produces a
shape class S = (Pcore , Pinstr , Pabs) with the following components: the set Pcore

of core predicates contains the default unary predicate sm for distinguishing

1 Blast uses a predefined set of SCGs, to limit the space of shape classes our algorithm
considers. Technically, in Blast each SCG is given as a code module.



12 D. Beyer, T.A. Henzinger, and G. Théoduloz

summary nodes, a binary predicate next for representing links between nodes
in the list, for each variable in T a unary points-to predicate, and a unary field
predicate for each assertion in Φ. The set Pinstr of instrumentation predicates
contains for each variable in T a reachability predicate. The set Pabs of abstrac-
tion predicates contains all core and instrumentation predicates about separating
pointers from Ts. More precise shape types for singly-linked lists can be defined
by providing a generator that adds more instrumentation predicates.

A heap-abstraction specification is a function Ψ̂ that assigns to each program
location a set of shape types. The specification Ψ̂ defines a heap abstraction in
the following way: a pair (l, {T1, . . . , Tk}) ∈ Ψ̂ yields a pair (l, {S1, . . . , Sk}) ∈ Ψ
with Si = Ti.m(Ti.D) for all 1 ≤ i ≤ k. Technically we do not store the heap
abstraction Ψ in our system, but only its specification Ψ̂ . Whenever a shape
class is needed, the algorithm looks it up by applying the current shape type’s
SCG to the shape type’s tracking definition. The tracking definition contains
information about which pointers and field assertions to track on a syntactic
level. Since SCGs are monotonic, shape types can be refined in two different
ways: either we refine the shape type’s tracking definition, or we refine the shape
type’s SCG. In both cases, the produced shape class is guaranteed to be finer.

Refinement algorithm. In the abstract-check-refine loop, predicate abstrac-
tion starts with empty set of predicates, and heap abstraction starts with empty
shape classes at all program locations. The input to the refinement algorithm is a
path t to an error location, which is feasible under the current abstraction (Π,Ψ)
(i.e., t is contained in the current ART). Following [11], the algorithm first checks
the PF of t for satisfiability. If the PF is unsatisfiable, then the predicate abstrac-
tion Π is refined by adding interpolants from Extract [Con](t) to the locations
on the path t. Otherwise, we check the EPF of t for satisfiability. If the EPF
is satisfiable, then we report a program bug. Otherwise, we compute new inter-
polants using Extract [FineCon](t), and consider each location pc on the path t
separately. We either refine the tracking definition of pc in Step 1, or the SCG
of pc in Step 2. The algorithm always tries Step 1 first, and only if neither new
pointers nor new field assertions are discovered from the corresponding inter-
polant, it tries Step 2. This interpolation-based analysis identifies the program
locations that require more precision to remove the error path from the ART,
and we refine the heap abstraction only for those locations.

Step 1: [refine the tracking definition of a location] For every pointer variable
p that occurs in the interpolant (e.g., p->h=3), if it matches the C type of the
shape type, then we refine the tracking definition of the shape type as follows.
We add p to the set of tracked pointers and to the set of separating pointers, and
we close the set of tracked pointers under aliasing, by adding also all pointer vari-
ables that may be pointing to the newly tracked data structure. Thus the quality
of the refinement depends on the quality of the available may-alias information:
imprecise information may cause some pt predicates to be added unnecessarily.2

Moreover, if the pointer p is dereferenced in the interpolant, then we add the

2 Blast currently uses a flow-insensitive may-alias algorithm in which all cells allo-
cated at the same site are represented by one abstract cell.
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Algorithm 1 AbstractionRefinement(t, (Π,Ψ),M)
Input: a program path t = (op1 : pc1); . . . ; (opn : pcn), an abstraction (Π, Ψ),

a set M of shape-class generators
Output: an abstraction (Π ′, Ψ ′)
Variables: a predicate abstraction Π̂
Π ′ := Π; Ψ ′ := Ψ ;
(·, Γ ) := Con.(θ0, Γ0).t; // Non-extended constraints.
if

V
1≤i≤n Γ.i ` false then

Π ′ := Π t Extract [Con](t);
else

(·, Γ ) := FineCon.(θ0, Γ0).t; // Extended constraints.
if

V
1≤i≤n Γ.i ` false then

Π̂ := Extract [FineCon](t);
for i := 1 to n do

let Ψ.i = (σ, m, D) and Ψ ′.i = (σ′, m′, D′);
for each atom φ ∈ Π̂.i do

if pointer p occurs in φ, and type(p) matches σ′ then
D′.T := D′.T ∪ {p} ∪ alias(p);
D′.Ts := D′.Ts ∪ {p};
if pointer p is dereferenced in φ then

construct the field assertion φ′ corresponding to φ;
D′.P := D′.P ∪ {φ′};

if D = D′ then
let M̂ be the set of coarsest generators m̂ ∈ M such that m̂ 6= m, m̂ 4 m;
if M̂ = ∅ then

throw exception “No refinement found”;
else

choose m̂ ∈ M̂ ; m′ := m̂;
else

print “Bug found.”; stop;
return (Π ′, Ψ ′)

corresponding field assertion (e.g., h=3) to the set of tracked field assertions. The
same SCG now produces a finer shape class for the refined tracking definition.

Step 2: [refine the SCG of a location] The choice of a finer SCG from the
predefined set of SCGs is guided by a refinement relation over the SCGs, which
can be used to encode various heuristics that analyze the abstract error path.
The finer SCG produces for the same tracking definition a finer shape class, by
adding new core, instrumentation, and/or abstraction predicates (e.g., sharing,
reachability, cyclicity). If such a finer SCG cannot be found, due to the limitation
to a predefined set of SCGs, then the algorithm reports that refinement has not
succeeded and terminates. The predefined set of SCGs can be extended in a very
flexible way to arbitrary data structures by developers of the model checker, and
by experienced users. Given an infeasible program path t and a finite set M of
SCGs, it can be proved that the iterative application of the refinement algorithm
eventually produces an abstraction (Π ′, Ψ ′) that is able to remove t from the
ART, provided that M contains an appropriate SCG [3]. Completeness, in this
sense, hinges on the use of a sufficiently rich set of SCGs.
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5 Evaluation

Implementation. The algorithm presented in this paper is implemented in
Blast 3.0, which integrates Tvla for shape transformations and the foci li-
brary [18] of Blast 2.0 for predicate interpolation. Blast’s abstract states,
which were triples consisting of program counter, call stack, and (nullary) pred-
icate set, are extended by a set of shape regions, one for each tracked shape
class. Tvla (written in Java) is integrated into Blast (written in OCaml) as
a particular implementation of a shape-analysis module and can be replaced by
other shape-analysis tools. We use a simple home-brewed may-alias analysis, but
this module can also be changed.

Examples. We evaluated our method on six example C programs that manip-
ulate list data structures containing integers as data elements. The programs
simple and simple backw both create a list of an arbitrary number of 1s and
traverse it to check that every element is a 1. The difference between the two is
the order in which the nodes are created.

The program list creates a list that begins with an arbitrary number of 1s,
proceeds with an arbitrary number of 2s, and ends with a 3. Then, the list is
traversed to check that the numbers occur in the correct order. The program
list flag builds a list that begins either with 1s or 2s depending on a flag, and
ends with a 3, then the lists are traversed checking that the expected numbers
are found. To prove safety, this example (and the following two) requires to track
simultaneously a boolean predicate (flag = 0) and shape graphs.

The program alternating is similar to list except that the list begins with
alternating 1s and 2s, and ends with a 3. The program splice builds the same
list as alternating. Then, the list is split into two different lists: the first list
contains the nodes at odd positions and the second list contains nodes at even
positions of the original list, without the last 3. Each new list is then traversed
checking that it contains only the same number.

Table 1 reports the results of our experiments. None of the programs was
successfully verified by Blast’s predicate abstraction without shape analysis
(only nullary predicates): the system is not able to prove the program safe;
rather it reports a false positive (column four in the table). Three examples can
be proved safe by pure shape-based heap analysis (without nullary predicates for
tracking control flow, and with tracking maximal shape information everywhere),

Table 1. Time for verifying singly-linked list manipulation programs in seconds
on a 3 GHz Intel Xeon processor (CFA = control flow automaton, LOC = lines of
code, fp = false positive, the number of refinement steps is given in parenthesis)

Program CFA nodes LOC Pure pred. abstr. Pure heap analysis PA & SA

simple 26 44 fp 0.16 s (0) 0.48 s 0.51 s (1)
simple backw 19 39 fp 0.36 s (4) 0.43 s 0.58 s (5)
list 34 54 fp 0.15 s (0) 3.74 s 4.63 s (3)
list flag 35 62 fp 0.15 s (0) fp 0.26 s 1.18 s (4)
alternating 30 58 fp 0.20 s (1) fp 0.26 s 1.77 s (5)
splice 42 84 fp 0.68 s (3) fp 0.66 s 6.10 s (7)
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but for the other three it fails due to missing control-flow sensitivity (column
five). The model checker Blast with lazy shape analysis discovers automatically
all necessary predicates to prove each of the example programs safe (last column).
Our examples can also be proved by Tvla, giving as input the abstraction that
our system constructs automatically.

The experiments of the first three programs show that the overhead for the
automatic discovery of relevant points-to and field predicates in Blast with inte-
grated shape analysis does not significantly increase the run-time of the analysis,
compared to shape analysis when given the final abstraction (without taking ad-
vantage of the laziness). In contrast, for the other three programs for which the
combination of shape analysis and predicate refinement is really necessary, the
reported run-time is much higher, because the other analyses are fast in finding
a false positive. Not surprisingly, the run-times for list and splice are higher
than the others, because the shape analysis they require is more involved.

Since our system uses different abstractions at different program locations,
while Tvla performs a global analysis, there are examples on which our system
significantly outperforms Tvla. Also, Blast uses more efficient data structures
(BDDs) for updating the nullary-predicate part of the abstract state. Further
experiments are needed to precisely quantify the trade-off between the extra costs
caused by the abstraction refinement loop of Blast versus the global analysis
of Tvla.

The results of our experiments (including the C source code of our exam-
ples, the error paths, and analysis log files), as well as a pre-compiled binary of
Blast 3.0, are available on the supplementary web page for this paper (search
the web for the string “Lazy-Shape-Analysis-Supplementary-Material”).

6 Related Work

Shape analysis based on three-valued logic is a framework that supports a family
of abstractions [19,16,15], and from that standpoint, the predicate-abstraction
component of our system simply contributes a set of nullary predicates to the
shape-abstraction component. Thus our algorithm can be seen as generalizing
(1) interpolation-based predicate discovery from nullary predicates to unary
points-to and field predicates, and (2) lazy abstraction refinement from predicate
abstractions to heap abstractions. We treat field predicates as core predicates,
in contrast to [9], where abstractions of the data-structure contents are treated
as instrumentation predicates. By relying on a given, fixed set of SCGs, we are
still far from a completely automatic lazy implementation of shape analysis,
which would require also the automatic discovery of more general instrumen-
tation predicates. However, there are inherent limitations on what first-order
theorem provers can deduce about three-valued abstractions that use transitive-
closure predicates such as reachability [20]. Instead, one could use learning-based
techniques from [17], which generate new instrumentation predicates that are not
just boolean combinations of previously used predicates. These could be used in
our system to dynamically add new SCGs.
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There have also been proposals to encode shape analysis within predicate-
abstraction frameworks [1,7]. So far they apply only to restricted settings, such
as singly linked lists, or need user help for computing abstractions. Fischer et
al. implemented in Blast a combination of predicate abstraction with a para-
metric lattice-based data-flow analysis [8], but they did not consider any auto-
matic refinement of the data-flow component. Gulavani and Rajamani proposed
a CEGAR method for abstract interpretation and applied it to shape analy-
sis [10], but their refinement is done globally, not lazily.
Acknowledgement. We thank Tom Reps for many valuable comments.
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