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Preface

Today’s verification techniques are hard-pressed to scale with the ever-increasing complexity
of safety critical systems. Within the field of aeronautics alone, we find the need for verification
of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles
(UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in
formal methods have made verifying more of these problems realistic. Thus we need to continually
re-assess what we can solve now and identify the next barriers to overcome. Only through an
exchange of ideas between theoreticians and practitioners from academia to industry can we extend
formal methods for the verification of ever more challenging problem domains.

The goal of this workshop on formal methods for verification is to examine formal verification
techniques, their theory, application areas, current capabilities, and limitations. This format is
designed to introduce researchers, graduate students, and partners in industry to those topics
that are of fundamental interest and importance, to survey current research, and to discuss major
unsolved problems and directions for future research.

This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth
NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News,
Virginia, USA. The LFM Workshop series was incepted in 1990 as a local meeting centered around
NASA Langley’s formal methods projects. It was held sporadically in the years 1992, 1995, 1997,
and 2000 and gradually expanded into an international venue for the presentation of a broad
range of formal methods research topics. The topics of interest that were listed in the call for
abstracts were: advances in formal verification techniques; formal models of distributed computing;
planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid
automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.

The committee decided to accept 24 submissions to be presented at the workshop and included
in the proceedings. Each submitted abstract was reviewed and voted on by the entire programme
committee with ties broken by the vote of the PC chair. Following the programme committee
decision on each submission, one member of the PC was elected to summarize the thoughts of
the entire programme committee and send this composite review to the authors. The LFM 2008
programme also includes five absolutely stellar invited talks, spanning the range of topics addressed
by LFM. Gerard J. Holzmann, Amy R. Pritchett, John Rushby, Moshe Y. Vardi delivered the four
keynote talks. I also invited Ricky W. Butler, the leader and founder of the Langley Formal
Methods research group, to give a talk on FM research at LaRC. LFM 2008 was well-attended
by a range of participants from academia, industry, and government; there were a total of 74
registered participants.

LFM 2008 is proudly sponsored by the NASA Integrated Vehicle Health Management (IVHM)
and Airspace Systems Programs and by the National Institute of Aerospace (NIA). In particular,
I would like to thank Brian T. Baxley, Raymond S. Calloway, Eric G. Cooper, and Michael C.
Lightfoot for their advocation and financial support. I would like to thank all of the members
of the programme committee for their help in composing a strong program for LFM 2008, for
serving as session chairs, and for the other support and helpful suggestions they lent to ensure the
workshop ran smoothly. I am grateful to Deborah L. Ford and Marie W. Hamann for procurement
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services and to Charles A. “Pete” Polen for legal consultation and for helping me navigate NASA’s
legal framework to accomplish everything I wanted for this workshop. I would also like to thank
Raymond V. Meyer for designing our logo, posters, and other artwork associated with LFM, and
Lisa F. Peckham and Eric W. D. Rozier for invaluable help and advice along the way.

April 2008 Kristin Yvonne Rozier
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NASA Langley’s Formal Methods Research in Support of the

Next Generation Air Transportation System

Ricky W. Butler1, César A. Muñoz2

1 NASA Langley Research Center, Hampton, Virginia 23681, USA
2 National Institute of Aerospace, Hampton, Virginia 23666, USA

R.W.Butler@nasa.gov, munoz@nianet.org

http://www.shemesh.larc.nasa.gov/fm

Extended Abstract

This talk will provide a brief introduction to the formal methods developed at NASA Langley
and the National Institute for Aerospace (NIA) for air traffic management applications. NASA
Langley’s formal methods research supports the Interagency Joint Planning and Development Of-
fice (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System
(NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reautho-
rization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation’s air
transportation system that will enable growth to 3 times the traffic of the current system. The
transformation will require an unprecedented level of safety-critical automation used in complex
procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfigura-
tion of airspace scalable to geographic and temporal demand.

The goal of our formal methods research is to provide verification methods that can be used to
insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts
of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self-
spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application
of formal methods. Here one must establish that a system concept involving aircraft, pilots, and
ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However,
the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic
and aircraft trajectories defined over an airspace. These trajectories are described using 2D and
3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been
necessary to unload the full power of an advanced theorem prover. The verification challenge
is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to
maintain separation under all possible scenarios. Current research has assumed perfect knowledge
of the location of other aircraft in the vicinity so absolute guarantees are possible, but increasingly
we are relaxing the assumptions to allow incomplete, inaccurate, and/or faulty information from
communication sources.

The following is a list of the projects that the Langley/NIA formal methods team have been
involved with:

• Airborne Information for LateralSpacing (AILS)

• CD3D and KB3D Conflict Detection and Resolution algorithms

• Runway Incursion Prevention System (RIPS)
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• Small Aircraft Transportation System (SATS)

• Enhanced Oceanic Operations (EOO)

• Loss of Separation (LoS) Recovery Algorithms

In this talk we will look at three of these: SATS, KB3D, and LoS.
The goal of the SATS program was to significantly increase the capacity of regional airports.

One of the most revolutionary aspects of the SATS approach is the use of a software system to
sequence aircraft into the SATS airspace with no air traffic controller present. Obviously, there are
serious safety issues associated with these software systems and their underlying key algorithms.
A formal finite-state machine model of the SATS operational procedures using 24 transition rules
was developed. This enabled an exhaustive analysis of the entire state space of the concept of
operations and the proof of six safety properties. Nine issues were identified during the formal
analysis. Two issues required changes to the rules of the ConOps, five issues were due to implicit
or explicit omissions, and two were clarifications. All recommendations from formal methods team
were adopted by SATS Conops Team.

The KB3D project developed and formally verified a new algorithm for conflict detection and
resolution. The KB3D algorithm is a generalization of Karl Bilimoria’s CD&R algorithm to 3
dimensions. The algorithm (KB3D) produces multiple solutions that only require a change in
only one state parameter (i.e. heading, ground speed, or vertical speed). The algorithm has been
formally verified to produce correct solutions when either one or both aircraft use the algorithm.
KB3D is guaranteed to generate at least one valid solution for two aircraft with arbitrary trajecto-
ries. Usually the algorithm generates six different solutions. For two aircraft executing the CD&R
algorithm, a proof has been completed that shows that the algorithm is implicitly coordinated.
That is the algorithm produces solutions that send the two aircraft in opposite directions without
any explicit communication between the aircraft. For the perfectly symmetric situation, KB3D
uses a symmetry breaking mechanism. All of the proofs were accomplished using the Prototype
Verification System (PVS) developed by SRI International.

Recent work at Langley has been developing a formal framework for the mathematical analysis
of conflict resolution algorithms that recover from loss of separation. This work is motivated by
some recent TMX simulation studies of the KB3D algorithm. The TMX studies explored the ca-
pabilities of KB3D to deal with multiple aircraft in complex traffic situations. The traffic density
was approximately 3 times today’s traffic and was generated by extrapolation from existing traffic
patterns. There were almost no situations where a loss of separation occurred. But, it became
clear to us that the KB3D algorithm should be generalized to recover from those situations. In this
work we have developed a rigorous definition of correctness for vertical and horizontal maneuvers
and simple criteria for loss of separation recovery algorithms that are sufficient to guarantee cor-
rectness. We have sought to make the criteria simple so that algorithms can be checked against the
criteria in a straight-forward way. The criteria only uses information available to the local aircraft,
but are powerful enough to prove distributed system properties. In particular, we propose rigor-
ous definitions of horizontal and vertical maneuver correctness that yield horizontal and vertical
separation, respectively, in a bounded amount of time. We also provide sufficient conditions for
independent correctness, e.g., separation under the assumption that only one aircraft maneuvers,
and for implicitly coordinated correctness, e.g., separation under the assumption that both aircraft
maneuver. An important benefit of this approach is that different aircraft can execute different
algorithms and implicit coordination will still be achieved, as long as they all meet the explicit
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criteria of the framework. The mathematical framework has been formalized and mechanically
verified using the Prototype Verification System (PVS) developed by SRI International.

References

[1] SATS project publications, http://research.nianet.org/fm-at-nia/SATS/

[2] KB3D project publications, http://research.nianet.org/fm-at-nia/KB3D/

[3] FM publications, http://shemesh.larc.nasa.gov/fm/fm-main-research.html
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From Philosophical to Industrial Logics

Moshe Y. Vardi

Rice University, Houston, Texas 77005, USA

vardi@cs.rice.edu

Invited Talk

One of the surprising developments in the area of program verification is how several ideas
introduced by logicians in the first part of the 20th century ended up yielding at the start of
the 21st century industry-standard property-specification languages called PSL and SVA. This
development was enabled by the equally unlikely transformation of the mathematical machinery
of automata on infinite words, introduced in the early 1960s for second-order arithmetics, into
effective algorithms for industrial model-checking tools. This talk attempts to trace the tangled
threads of this development.
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Alessandro Cimatti, Marco Roveri, Angelo Susi, Stefano Tonetta

Fondazione Bruno Kessler - Istituto per la Ricerca Scientifica e Tecnologica, Trento, Italy

{cimatti,roveri,susi,tonettas}@fbk.eu

Extended Abstract

Most of the efforts in formal methods have historically been devoted to comparing a design
against a set of requirements. The validation of the requirements themselves, however, has often
been disregarded, and it can be considered a largely open problem, which poses several challenges.

The first challenge is given by the fact that requirements are often written in natural language,
and may thus contain a high degree of ambiguity. Despite the progresses in Natural Language Pro-
cessing techniques, the task of understanding a set of requirements cannot be automatized, and
must be carried out by domain experts, who are typically not familiar with formal languages. Fur-
thermore, in order to retain a direct connection with the informal requirements, the formalization
cannot follow standard model-based approaches.

The second challenge lies in the formal validation of requirements. On one hand, it is not
even clear which are the correctness criteria or the high-level properties that the requirements
must fulfill. On the other hand, the expressivity of the language used in the formalization may go
beyond the theoretical and/or practical capacity of state-of-the-art formal verification.

In order to solve these issues, we propose a new methodology that comprises of a chain of
steps, each supported by a specific tool. The main steps are the following. First, the informal
requirements are split into basic fragments, which are classified into categories, and dependency
and generalization relationships among them are identified. Second, the fragments are modeled
using a visual language such as UML. The UML diagrams are both syntactically restricted (in
order to guarantee a formal semantics), and enriched with a highly controlled natural language (to
allow for modeling static and temporal constraints). Third, an automatic formal analysis phase it-
erates over the modeled requirements, by combining several, complementary techniques: checking
consistency; verifying whether the requirements entail some desirable properties; verify whether
the requirements are consistent with selected scenarios; diagnosing inconsistencies by identifying
inconsistent cores; identifying vacuous requirements; constructing multiple explanations by en-
abling the fault-tree analysis related to particular fault models; verifying whether the specification
is realizable.

The methodology aims at increasing the confidence in the correctness of the requirements.
On one hand, with the adoption of a property-based approach, every requirement is associated
with a formal counterpart; on the other hand, a semi-formal language is exploited to narrow
the gap with the natural language. The verification techniques are optimized in order to deal
with large sets of requirements. The granularity of the formalization allows to focus on different
types and levels of abstraction based on the hierarchy and on the modularity of the requirements;
furthermore, it makes it possible to perform what-if analysis, based on hypothetical changes to the
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specification; finally, the diagnostic information helps in localizing the formalization mistakes and
the corresponding specification ambiguities.

This methodology has been proposed in response to the call to tender ERA/2007/ERTMS/OP/01
“Feasibility study for the formal specification of ETCS functions”. The European Train Control
System (ETCS) is a huge set of requirements that defines a control system to guarantee the inter-
operability between the European rail system and trains. Due to its complexity, ETCS presents
the mentioned issues at a high level of magnitude.
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Verification and Planning Based on Coinductive Logic

Programming

Ajay Bansal, Richard Min, Luke Simon, Ajay Mallya, Gopal Gupta

Department of Computer Science, University of Texas at Dallas, USA
Contact author: Gopal Gupta, e-mail: gupta@utdallas.edu

Extended Abstract

Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures,
infinite automata, and interactive computations [6]. Where induction corresponds to least fixed
points semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction
has been incorporated into logic programming and an elegant operational semantics developed for
it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD
resolution imparts operational semantics to least fix point based computations) and is termed co-
SLD resolution. In co-SLD resolution, a predicate goal p(t̄) succeeds if it unifies with one of its
ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite
terms are represented as solutions to unification equations and the occurs check is omitted during
the unification process: for example, X = [1 | X] represents the binding of X to an infinite list of
1’s. Thus, in co-SLD resolution, given a single clause

p([ 1 | X ]) :- p(X).

the query ?- p(A) will succeed with the (infinite) answer:
A = [1 | A]

Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform
model checking and planning. A combined SLD and Co-SLD resolution based LP system forms
the common basis for planning, scheduling, verification, model checking, and constraint solving
[9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic
programming [13] in a single logic programming system. Given that parallelism in logic programs
can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling,
model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can
result in speed-ups as well as in larger instances of the problems being solved.

In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed
under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model-
checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD
and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations
of the planning and verification applications have been developed [4].

Co-LP and Model Checking: The vast majority of properties that are to be verified can be
classified into safety properties and liveness properties. It is well known within model checking
that safety properties can be verified by reachability analysis, i.e, if a counter-example to the
property exists, it can be finitely determined by enumerating all the reachable states of the Kripke
structure. Checking for reachability amounts to finding the least fixed-point, which is relatively
straightforward to compute (for example, using tabled logic programming [2]). Verification of
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liveness properties is however problematic because counterexamples to liveness properties take the
form of infinite traces, which are semantically expressed as greatest fixed-points. Co-LP can be
directly used to verify liveness properties by constructing counterexamples using greatest fixed-
point temporal logic formulae. Intuitively, a state S is not live if there is an infinite loop (cycle)
intervening between the current state and S. In a coinductive formulation, liveness also reduces
to the reachability problem. Liveness counterexamples are elegantly found by (coinductively)
enumerating all possible states that can be “reached” via infinite loops.

Co-LP and Planning: Coinduction can also be used to develop methods for goal-directed execu-
tion of non-monotonic logics, traditionally used for developing planners. In particular, top-down,
goal-directed execution methods can be designed for answer set programs, a popular formalism
for non-monotonic reasoning [1, 5]. Developing such a goal-directed reasoner has been an open
problem for some time. It turns out that one can use co-SLD resolution to solve this problem [3].
In planning, a domain description D is given along with a set of observations about the initial state
O and a collection of fluent literals G = {g1, . . . , gl}, which is referred to as a goal. The problem
is to find a sequence of actions a1, . . . , an such that ∀i, 1 ≤ i ≤ l, D entails gi from initial state
O, after actions a1, . . . , an. The sequence of actions a1, . . . , an is called a plan for goal G w.r.t.
(D,O) [5]. Action Description Languages have been designed to encode the domain descriptions
[1]. These Action Description Languages are implemented through rules of non-monotonic logic, in
particular, answer set programming; these languages can be elegantly and efficiently implemented
using co-LP and used for solving planning problems [4].

Timed Planning and Verification: Within logic programming, continuous time and time-
deadlines can be modeled as constraints over reals [7]. Together with co-induction, this ability
can be used to perform verification of timed-systems as well as perform planning under time
constraints. Elsewhere we illustrate the verification of timed-systems by considering a formulation
of the dining philosophers problem with stop-watches and proving that it is deadlock free (safety)
and starvation free (liveness) [4]. We also illustrate the solution of time constrained planning
problems using the soccer-playing planning domain extended with real-time constraints [4]. Note
that a combination of generalized constraints and coinduction leads to a general framework for
verifying hybrid systems as well as performing hybrid planning, i.e., planning under discrete and
continous constraints.
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Extended Abstract

In model-based development, the development effort is centered around a formal description of
the proposed software system—the “model”. This model is derived from some high-level require-
ments describing the expected behavior of the software. For validation and verification purposes,
this model can then be subjected to various types of analysis, for example, completeness and con-
sistency analysis [6], model checking [3], theorem proving [1], and test-case generation [4, 7]. This
development paradigm is making rapid inroads in certain industries, e.g., automotive, avionics,
space applications, and medical technology. This shift towards model-based development naturally
leads to changes in the verification and validation (V&V) process. The model validation problem—
determining that the model accurately captures the customers’ high-level requirements—has re-
ceived little attention and the sufficiency of the validation activities has been largely determined
through ad-hoc methods. Since the model serves as the central artifact, its correctness with respect
to the users’ needs is absolutely crucial. In our investigation, we attempt to answer the following
two questions with respect to validation (1) Are the requirements sufficiently defined for the sys-
tem? and (2) How well does the model implement the behaviors specified by the requirements? The
second question can be addressed using formal verification. Nevertheless, the size and complexity
of many industrial systems make formal verification infeasible even if we have a formal model
and formalized requirements. Thus, presently, there is no objective way of answering these two
questions. To this end, we propose an approach based on testing that—when given a set of for-
mal requirements—explores the relationship between requirements-based structural test-adequacy
coverage and model-based structural test-adequacy coverage.

The proposed technique uses requirements coverage metrics defined in [9] on formal high-level
software requirements and existing model coverage metrics such as the Modified Condition and
Decision Coverage (MC/DC) used when testing highly critical software in the avionics industry [8].
Our work is related to Chockler et al. [2], but we base our work on traditional testing techniques
as opposed to verification techniques.

To objectively assess whether the high-level requirements have been sufficiently defined for the
system, we produce a set of test cases that achieve a certain level of structural coverage of the
high-level requirements, and then measure coverage achieved by the test suite over the model. If
a test suite provides high requirements coverage but yields poor coverage of a model, it may be

? This work has been partially supported by NASA Ames Research Center Cooperative Agreement
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due to one or more of the following: (a) there are missing or implicit requirements, (b) there is
behavior in the model that is not derived from the requirements, or (c) the set of tests derived
from the requirements was inadequate. On the other hand, to objectively assess how well the
model implements the behaviors specified in the requirements, we generate a set of test cases that
achieve structural coverage of the model, and then measure requirements coverage achieved. Poor
requirements coverage is an indicator of either (a) the model does not adequately implement the
behaviors specified in the requirements, or (b) the model is correct and the requirements are poorly
written.

To illustrate the technique, we use a rigorous requirements coverage metric Unique First Cause
(UFC) coverage defined in over requirements formalized as Linear Temporal Logic (LTL) prop-
erties [9]. We use the Modified Condition/Decision Coverage (MC/DC) criterion [5] to measure
structural coverage over the model. In a preliminary study, we use five industrial case examples
from the civil avionics domain. For each of these systems, we perform two kinds of assessment—(1)
generate test suites to provide UFC coverage over the requirements and measure MC/DC achieved
over the model, and (2) generate test suites to provide MC/DC over the model and measure UFC
coverage achieved over the formal requirements. We analyze the relationship between requirements
coverage and model coverage to make an assessment of the quality of the sets of requirements as
well as the models.

On three of the five case examples, test suites generated to provide UFC coverage of the re-
quirements provided reasonably good MC/DC of the models. This indicates that for these case
examples, the requirements are well defined. Nevertheless, the test suites provided 10%-20% less
than achievable MC/DC over the models. This is somewhat expected since the requirements (rep-
resenting DO-178B high-level requirements) are typically less detailed than the model (representing
DO-178B low-level requirements). Another reason may be that the UFC metric used for require-
ments coverage is not sufficiently rigorous and we thus have an inadequate set of requirements-based
tests. On the remaining two case examples, test suites providing requirements UFC coverage gave
very poor MC/DC on the model. Closer investigation revealed that on one example, there were
many missing requirements. In the final case example, the requirements were good, however, their
structure was so that the complexity of conditions in the requirements were hidden. For such
requirements, the UFC metric that we use is not effective since the structure of the formalized
requirements effectively “cheated” the UFC metric. One solution to this would be to restructure
the requirements to reveal condition complexity. Another possible solution is to use a requirements
coverage metric that is not as sensitive to the structure of the requirements. We hope to investigate
this issue further in our future work.

We found that on all but one of the industrial systems, test suites providing MC/DC over
the model achieved close to achievable requirements UFC coverage. This implies that the model
exercises almost all the behaviors specified by the requirements for these systems. Nevertheless, on
one model the MC/DC test suites did poorly, only achieving 30% of the achievable requirements
coverage. This may either be because the model does not implement all the behaviors or the
MC/DC metric is not rigorous enough. At this time we have not been able to determine the cause
more closely, but we hope to do so in our future work.

To summarize, we found that analyzing the relationship between requirements coverage and
model coverage provides a promising means of assessing requirements quality. Nevertheless, the
effectiveness of this approach is highly dependent on the rigor and effectiveness of the coverage
metrics used, and awareness of the pitfalls of structural coverage metrics is essential. For instance,
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in this experiment we found that the UFC metric was surprisingly sensitive to the structure of the
requirements, and one has to ensure that the requirements structure does not hide the complexity
of conditions for the metric to be effective.
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Abstract

We describe a runtime verification approach to increase the safety of IVHM systems by an inte-
gration of TEAMS models and MOP (Monitor-Oriented Programming). The TEAMS model is used
to automatically extract relevant runtime information from the controlled system by means of events.
This information is passed on-line to the MOP engine, allowing to verify complex temporal properties
and to discover running patterns which are of interest in detecting and preventing faulty behaviors.

1. Monitor-Oriented Programming (MOP)

MOP [2, 1] has its roots in a runtime verification system, PathExplorer (PAX) [6, 5], developed
jointly with former NASA colleagues. PAX has found mission critical errors in NASA software. In
a recent OOPSLA’07 paper [2], it was shown that the MOP framework can monitor large programs
against complex parametric temporal specifications at a typically unnoticeable runtime overhead.

Many properties can be monitored in parallel in MOP. The execution trace against which the
various properties are checked is extracted via automatic code instrumentation from the running
program as a sequence of events – state snapshots. Events produce sufficient information about
the concrete program state in order for the monitors to correctly check their properties.

In MOP, the runtime monitoring of each property consists of two orthogonal mechanisms:
observation and verification. The observation mechanism extracts property-relevant and filtered
system states at designated points, e.g., when property-specific events happen. The verification
mechanism checks the obtained abstract trace against the property and triggers desired actions
in case of violations or validations. Observation and verification are therefore independent: the
algorithm used within the monitor does not affect how the execution is observed, and vice versa.
MOP is a highly configurable and extensible runtime verification framework. Depending upon
configuration, the monitors can be separate programs reading events from a log file, from a socket
or from a buffer, or can be in-lined within the program at the event observation points.

Properties can be specified in MOP by means of logic plugins which essentially encapsulate and
standardize monitor synthesis algorithms for various formalisms of interest. Here are several logic
plugins currently provided by MOP:

— Design by Contract: A JAVA logic plugin for JASS has been implemented in MOP. JASS
supports the following types of assertions: method pre-conditions and post-conditions, loop vari-
ants and invariants, and class invariants.
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— Temporal Logics: Temporal logics proved to be indispensable expressive formalisms in the
field of formal specification and verification of systems. Many practical safety properties can be
naturally expressed in temporal logics, making them desirable specification formalisms in the MOP
framework. Login plugins for both future and past time temporal logics are available.

— Extended Regular Expressions: Software engineers and programmers understand easily
regular patterns, as shown by the interest in and the success of scripting languages like PERL.
We believe that regular expressions provide an elegant and powerful specification language also for
monitoring requirements, because an execution trace of a program is a string of states. Extended
regular expressions (ERE) add complementation to regular expressions, allowing one to specify
patterns that must not occur. An ERE logic plugin is available in MOP.

2. TEAMS Models

TEAMS [4] is a model-based diagnosis system. The TEAMS model of a system is a dependency
model capturing relationships between failure modes of the system and their observable effects.

QSI’s TEAMS Tool Set [4] consists of four software applications: TEAMS Designer, TEAMS-
RT, TEAMATE and TEAMS-RDS, using a diagnostic data knowledge base called TEAMS-KB.
The model is created in TEAMS Designer, or imported into TEAMS Designer from other data
capture environments, and then analyzed and converted into run-time versions for export to the
run-time reasoners TEAMATE and TEAMS-RT. The TEAMS Designer application provides a
user-friendly graphical environment for developing dependency models of systems while allowing
the specification of several additional practical aspects about the system that are required by the
run-time inference engines to provide efficient diagnosis. It does so by allowing the modeler to spec-
ify cause-effect dependencies using a hierarchical, multi-layered, directed graph representation of
the system. In this representation, the system’s physical elements are represented as module nodes;
the physical locations, where the measurements of the system’s performance or other attributes
are made are represented as test-point nodes; and the dependency relationships are represented as
directed links.

Once a TEAMS model specification is complete, a reachability analysis can be performed in
TEAMS to internally generate the dependency matrix model of the system subject to analysis
constraints specified by the user. When the dependency-matrix model is available, diagnosis be-
comes the process of using the dependency relationships and the observed failures or anomalies to
infer their possible causes. The TEAMS-RT inference engine processes failure events (exceedances,
built-in test failures, performance anomalies, etc.), as they become available. It uses the data to
infer the status of the root causes (the identification of one or more component faults). Thus,
TEAMS-RT is appropriate for processing on-board data that is either received in real time or
downloaded post-mission/operation. The TEAMATE diagnosis reasoner not only performs infer-
ence of component health status, but also computes an optimal sequence of tests that needs to be
performed for fault isolation, given the current inferred health status, the allowable set of tests,
and any precedence constraints on the tests. Thus, TEAMATE is appropriate for ground-based
deployment where troubleshooting is performed interactively.

3. Monitoring TEAMS Specifications using MOP

We report partial work on developing a TEAMS logic plugin for MOP, which will automatically
generate monitoring code from the TEAMS temporal specifications.
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In a system where requirements are monitored and recovery code is executed when violations
are detected, the correctness of the entire system relies only on the guarantees provided by the
monitor and the recovery code. Verification of the entire system can be decomposed into checking
the correctness of the monitor and of the recovery code, which are expected to be much simpler
and cheaper than verifying the original program. Currently, we are working on developing an
integrated framework for IVHM system monitoring, control and verification. In this framework,
the TEAMS tools will be used to capture the requirements specifications of the flight system.
The MOP framework, extended with a TEAMS logic plugin, will process the captured system
specifications and generate monitoring code automatically. The generated monitors will check the
flight system at runtime via the monitoring mechanism provided by TEAMS, steering the system
if failures are detected. This way, system models and runtime verification together are expected
to form a solid foundation for developing reliable aviation systems.
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Extended Abstract

In the early attempts to reach supersonic speeds, flight pilots experienced a strange phenomenon
that made their control surfaces useless, and their aircraft uncontrollable. The airplanes were
saved by either reducing the speed or changing the usual control procedure. Flying an airplane
in a volcano ash cloud may stop the operation of the airplane. The airplane can still be saved if
the pilots direct it out of the ash cloud, let the engines cool and then restart them. These two
examples demonstrate the type of dramatic control changes that are sometimes required to be
made on-line without prior experience, when the environment changes unexpectedly.

Today, when a programmer creates a program, he/she designs the program for a certain environ-
ment. When the program encounters unanticipated environmental behavior, program performance
may degrade drastically, it may continue to execute while producing a faulty (unexpected) output,
or it may crash. Programmers and system administrators use their accumulated knowledge of the
system and of the environment to investigate and solve problems by patching up the system each
time a new problem is detected. In many cases, the solution is post mortem and off-line. Ideally,
systems would be autonomous, i.e., the systems would be able to cope with unexpected situations
dynamically and independently, without human intervention.

In the example of the plane in the volcano ash cloud, imagine that the plane is able to release
miniature replicas of itself into the air. Each replica is set to try a different control program. The
replicas that manage to successfully get out of the ash cloud report back to the plane. The plane
uses the obtained successful control to overcome the problem. This is an example of an autonomic
system that is able to deal with unexpected changes in the environment.
Our contribution. We assume that an environment is very large, sophisticated and dynamic.
We do not make any assumptions on changes the environment may undergo. On-line learning and
modeling of the typically unbounded environment automaton for every change is impossible. We
choose to learn a control for a plant only, where the plant is part of the environment with which
the control interacts. A plant can be either a black box or an rs-box (reflection and set box). In
case of a black box plant, only the plant inputs and output are observable. Otherwise, when the
plant is a rs-box plant we are able to observe the plant state and/or set the plant to a certain state.

The environment is reentrant and history oblivious for long enough periods. A reentrant envi-
ronment allows several copies of a plant to interact with the environment independently; A history

? Partially supported by the Lynne and William Frankel Center for Computer Sciences, by a Deutsche Telecom
grant, the Israeli Ministry of Science, and the Rita Altura Trust Chair in Computer Sciences

20 Proceedings of The Sixth NASA Langley Formal Methods Workshop



Olga Brukman et al.: Self-* Programming: Run-Time Parallel Control Search for Reflection Box

oblivious environment ensures a repetition of a plant-environment interaction (in the probabilistic
case with the same probability) when the plant is set to the same beginning state.

Our settings differ from the common approach where the whole environment is considered
with no distinction between the machinery the control interacts with and the rest of the universe
[3]. When the whole environment is considered, the environment can only be modeled by a non-
deterministic infinite automaton. Making a distinction between a plant and an environment allows
us to assume that a plant can be modeled by a deterministic or probabilistic finite automaton. We
use testing techniques to obtain a control for the plant dynamically in an efficient manner.

The control search engine receives specifications as an input. No realizable specifications [1]
exist for unpredictable dynamic environments. The control specifications are unrealizable. We
assume that unrealizable specifications are potentially more abstract and short than realizable
specifications, and, therefore, less prone to human mistakes. Thus, the inherit human-specifications
interface is more robust than the human-program interface.

We search for a control that satisfies unrealizable specifications [1] by on line experimentation
on the plant replicas. During the on line experimentation, we implicitly check whether the unre-
alizable specifications define weakly realizable specifications, given the behavior restriction on the
current environment. A successful search for a control implicitly identifies the weakly realizable

specifications, and explicitly identifies the implementation that respect the specifications.
We suggest a control search engine that finds a supervisory control dynamically and automati-

cally by experimenting on plant replicas. The program search engine continuesly produces a control
which respects a set of desired specifications in the presence of dynamic changes in an environment.
In order to detect the deterioration of an executed control due to a change in the environment,
the control search engine constantly monitors the current control execution by obtaining a reliable
record of the control-plant-environment interaction from a dependable entity called an Observer

and evaluating the quality of the interaction. A search for a new control is initiated if performance
of the existing control is not satisfactory.

We design control search algorithms for various settings and capabilities of the plant state
observation and manipulation. In particular, the plant state manipulation capabilities are: (i)
plant state reflection which allows a control search algorithm to learn a connected component of
a current plant state in the plant automaton graph (ii) plant state set that generalizes the reset
capability, allows setting the plant to each of its states and exploring all connected components of
the plant automaton graph, and (iii) (static or dynamic) plant replication capability that allows
instantiation of new replicas, or use of preexisting replicas for parallelizing testing algorithms.
Figure 1 summarizes the complexity of the algorithms we have designed for different settings: the
total number of steps in all experiments and the length of the longest experiment (i.e., the longest
execution of a plant replica). Nmax is the upper bound on the number of plant automaton states
N , Σpc

in is an alphabet of values of the plant input variables in the plant-control interaction, and
P is the length (number of steps in a system execution) of a period in which the system repeats
once a certain behavior (achieves some goal).

We consider two cases. In the first case the plant and the environment (at every given moment)
are deterministic (algorithms I − IV ). In the second case probabilistic transition functions for the
environment and for the plant are considered (algorithm Probabilistic). See [2] for more details.

In our work, we concentrate on showing how parallelization and the capabilities for observing
and manipulating the plant state allow us to improve the control search complexity. The use of par-
allelization makes the search time reasonable for on line systems, trading off (possibly exponential

Proceedings of The Sixth NASA Langley Formal Methods Workshop 21



Olga Brukman et al.: Self-* Programming: Run-Time Parallel Control Search for Reflection Box

Algorithm Reflection Set Total Number Of Steps Longest

In All Experiments Experiment

I ¬Available ¬Available O((PNmax)|Σpc

in|
Nmax+P+1) O(PNmax)

II Available ¬Available O(PN) O(P )
III ¬Available Available O(N |Σpc

in |) O(N)
IV Available Available O(N |Σpc

in |) O(1)
Probabilistic Available Available O(N3|Σpc

in|) O(1)

Figure 1. Properties of the control search algorithms.

or polynomial) time with a (exponential or polynomial) number of plant replicas. The plant state
capabilities allow reduction of the number of experiments on the plant replicas from exponential
(for a black box plant) to polynomial (for rs-box plant) in the number of plant automaton states.
Acknowledgments. We thank Moshe Vardi and Doron Peled for useful inputs and discussions.
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1. Introduction

Concurrent systems present special design challenges due to their complex interactions, both
with their environment, and internally in terms of synchronization and communication among their
constituent processes. This is the case whether they are single-host systems, distributed systems, or
embedded systems with hardware and software components. Formal methods have been advocated
as a way to verify system properties at the design stage, but industry practitioners have not been
eager to adopt abstruse mathematical notations, uncommon programming languages, or additional
costly engineering process steps. Thus concurrent systems often continue to be designed and tested
on an ad hoc basis.

There is a ”spectrum of formality” in system development that ranges from (1) largely ad
hoc vs. (2) mature, repeatable development processes at the minimal end, through (3) the use of
formal specifications vs. (4) full formal development processes at the maximal end, with corre-
spondingly greater development costs moving along the spectrum. The goal of our approach is to
occupy ground between points (3) and (4): utilizing verifiable formal specifications written in CSP
(Communicating Sequential Processes) for selected portions of a system-particularly the control
backbone where interprocess synchronization and communication take place-and proceeding to an
implementation via automated software synthesis instead of via hand translation. Modules to per-
form computation and I/O may be written in ordinary C++ and linked to the control backbone
through CSP events and channels. This approach, based on the tool called CSP++, is described
in [3] as a method of bridging the typically separate worlds of formal methods and conventional
programming.

Advantages of this approach, compared to hand implementation of formal specifications, in-
clude code that embodies the specification’s verified properties; and, compared to full formal
development, reduced cost and development time due to less reliance on formal methods ”gurus,”
and a role for widely-available C++ programmers.

2. Outline of approach

The design flow will be described, starting from tools (from Formal Systems Europe, Ltd.)
used for checking CSPm specifications, exploring their state space, and formally verifying their
properties, through the automatic translation step, and execution via the CSP++ object-oriented
application framework (OOAF), to checking actual system traces for trace refinement against
the specification. CSPm is a commonly-used machine-readable form of CSP, which our tools
now support for translation [4], thus providing a ”straight through” design flow from commercial
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verification tools to executable code. Run-time execution is based on Gnu Pth (Portable Threads).
Recently, support for operators from Timed CSP-timed prefix, timeout, and interrupt-has been
added to CSP++. This approach is targeted at soft real-time systems, but not currently suitable
for hard real-time, due to the inability to guarantee maximum latencies.

2.1. Technical challenges

Making a direct translation from CSP to a conventional programming language is difficult be-
cause a language like C++ lacks all the key elements of the CSP computational model: concurrent
processes (or threads), interprocess communication, and interprocess synchronization. These ele-
ments are typically obtained from third-party packages, such as POSIX Pthreads, and introducing
them in an informal fashion is what gets programmers into trouble. Rather than attempting a
direct translation, an OO framework was constructed to be a high-level translation target with
classes providing the execution semantics of CSP processes, events, and channels, including deter-
ministic choice. (The most challenging aspect was multiprocess synchronization, which has barrier
semantics, combined with choice operators active in any or all processes.) The translator tool of
CSP++ inputs a user’s specification written in CSPm, and outputs a C++ program that is an
”instantiation” of the OOAF. When compiled with the framework’s header files and linked with
its library, the resulting program is an executable form of the CSPm specification.

At the above stage, the program is useful for simulating the CSP specification. It is intended to
form the control backbone for an application, and, by itself, is only capable of limited interaction
with a user at a console. For example, the CSP channel input operation option?x would prompt
the user to enter an integer for channel ”option” and store the result in the specification’s variable
x. To go beyond this stage, a programmer would prepare C++ functions to link with selected
channels and events in the CSP control backbone. If the programmer links a user-coded function
(UCF) to channel option, then the framework will call the function at run time. It will in turn
obtain actual input-from a console, sensor, file, etc.-and pass it back to the framework.

UCFs must be under some restrictions in order to avoid violating the verified properties of the
CSP specification: they cannot perform interprocess communication, nor maintain state between
invocations that is not provided by the framework (because a UCF may be called from multiple
threads). Furthermore, any given CSP event or channel can be used internally within the specifi-
cation, or for linking to a UCF, but not both. Currently, UCF-linked events and channels can only
participate in choice operations to a limited extent, because they do not implement the necessary
try-and-backout capability. This restriction may be lifted in the future.

UCFs are intended to perform computations that would be awkward or inefficient to express
in CSPm, to carry out I/O with the application’s environment, or, in general, to do any processing
that a designer considers not worthwhile to formally specify.

In terms of formal verification, the CSP++ tool chain is designed to leverage third-party
verification tools. CSP++ is used to make an already-verified specification executable; it does not
do verification itself, other than to help prove trace refinement.

2.2. Alternative approaches

The main alternative for combining CSP-style formal interprocess communication semantics
with conventional programming languages is the family of xCSP libraries: JCSP [6] for Java,
C++CSP for C++, CCSP for C. The programmer codes in the target language, utilizing library

24 Proceedings of The Sixth NASA Langley Formal Methods Workshop



William B. Gardner: Getting Somewhat Formal with CSP and C++

objects to construct channels, launch processes, etc. Thus concurrency is provided for C and C++,
while in Java, its native concurrency mechanisms are overlaid with primitives having formal seman-
tics. This approach can be considered more readily accessible than CSP++, in that programmers
need not know any CSP at all (though, in that case, they may misuse the components). To start
with a verified specification, it would have to be hand-translated into, say, JCSP, with the risk of
incorrect construction, or utilize some other complex steps of formal refinement [5].

3. Case studies

Several case studies created using CSP++ will be outlined: a point-of-sale register [1] developed
to run on a Xilinx Microblaze core with uClinux; an automated teller [2] containing 22 UCFs with
socket connections to a MySQL simulated bank database; and an automated vacuum cleaner
(demonstrating new timed operators).

4. Future work

CSP++ is being enhanced for hardware/software codesign with the ability to communicate
using CSP channels from the software control backbone to hardware ”IP” blocks. The objective
is to use CSP++ for system-on-programmable-chip applications.
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1. Motivation

In the past three decades, automated program verification has undoubtedly been one of the most
successful contributions of formal methods to software development. However, when verification of
a program against a logical specification discovers bugs in the program, manual manipulation of the
program is needed in order to repair it. Thus, in the face of existence of numerous unverified and un-
certified legacy software in virtually any organization, tools that enable engineers to automatically
verify and subsequently fix existing programs are highly desirable. In addition, since requirements
of software systems often evolve during the software life cycle, the issue of incomplete specification
has become a customary fact in many design and development teams. Thus, automated techniques
that revise existing programs according to new specifications are of great assistance to designers,
developers, and maintenance engineers. As a result, incorporating program synthesis techniques
where an algorithm generates a program, that is correct-by-construction, seems to be a necessity.

The notion of manual program repair described above turns out to be even more complex
when programs are integrated with large collections of sensors and actuators in hostile physical
environments in the so-called cyber-physical systems. When such systems are safety/mission-
critical (e.g., in avionics systems), it is essential that the system reacts to physical events such as
faults, delays, signals, attacks, etc, so that the system specification is not violated. In fact, since it
is impossible to anticipate all possible such physical events at design time, it is highly desirable to
have automated techniques that revise programs with respect to newly identified physical events
according to the system specification. Thus, one can observe that while formal software verification
plays an important role in ensuring the correctness of systems, it is equally important to address
the following fundamental question:

In the face of constant evolution of existing computing systems and
their physical environment, how should we revise them according to
their specification and how should we cure their vulnerabilities (e.g.,
failures, time unpredictability, insecurity, etc) in an incremental and
automated fashion?

2. Current Results

The notion of program revision (repair) was independently introduced by
Bonakdarpour, Ebnenasir, and Kulkarni [Fmics’06, Opodis’05] and Jobstmann, Griesmayer, and
Bloem [Cav’05]. In our work, we have focused on developing a theory of automated program revi-
sion from different perspectives such as time-predictability, fault-tolerance, and distribution. The
main focus of this theory is to identify instances where sound and complete automated revision
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of programs can be achieved in polynomial-time, and, where it is hard in some class of complex-
ity. Complexity analysis identifies cases where program revision is (1) likely to be successful via
developing efficient algorithms and heuristics, or (2) unlikely to have an impact. Completeness of
a revision algorithm is important in the sense that if the algorithm fails to revise a program with
respect to a property, it implies that the program in its current form is not fixable and, hence, a
more comprehensive approach (e.g., synthesis from specification) must be applied. Thus far, the
theory has been established in the following contexts:

1. We concentrated on automatic addition of untimed (respectively, real-time) Unity properties
to programs in the form of a finite state automata (respectively, timed automata) such that
revised programs continue to satisfy universally quantified properties of the original program
[Fmics’06, Opodis’05].

2. We have extended the basic theory by considering systems where programs are subject to a set
of uncontrollable faults [Sss’06]. We considered synthesizing three levels of fault-tolerance,
namely failsafe, nonmasking, and masking, based on satisfaction of safety and liveness prop-
erties in the presence of faults. For failsafe and masking fault-tolerance, we considered two
additional levels, namely soft and hard, based on satisfaction of timing constraints in the
presence of faults. In our case studies, besides the factual benefits of automated addition of
fault-tolerance, we observed that our synthesis methods can be potentially used to determine
incompleteness of specification as well. We also introduced the notion of bounded-time phased
recovery [Fm’08] where simple recovery to the program’s normal behavior is necessary, but
not sufficient. For such programs, it is necessary to accomplish recovery in a sequence of
phases, each ensuring certain constraints.

3. In order to make synthesis algorithms efficient so that they can be used in tools in prac-
tice, we have developed a set of symbolic heuristics for automatic synthesis of fault-tolerant
distributed untimed programs [Icdcs’07]. Our experimental results on synthesis of classic
fault-tolerant distributed problems showed that synthesis for these problems is feasible for
state space of size 1030 and beyond. The tool Sycraft (SYmboliC synthesizeR and Adder
of Fault-Tolerance) implements the aforementioned heuristics.

The correctness of a selection of our synthesis algorithms is verified by the theorem prover
PVS [Afm’06, Lopstr’04]. This verification essentially shows that any program synthesized by
our algorithms is indeed correct-by-construction.

3. Related Work

Other well-known paradigms that have applications in program revision include controller
synthesis, where program and fault transitions may be modeled as controllable and uncontrollable
actions, and game theory, where program and fault transitions may be modeled in terms of two
players. In controller synthesis (respectively, game theory) the objective is to restrict a plant
(respectively, an adversary) at each state through synthesizing a controller (respectively, a wining
strategy) such that the behavior of the entire system always meets some safety and/or reachability
conditions. Note, however, that there are several distinctions. First, in addition to safety and
reachability constraints, our notion of fault-tolerance is also concerned with adding new recovery
behaviors to the given program as well, which is normally not a concern in controller synthesis
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and game theory. Secondly, we model distributed systems by imposing read-write restrictions over
variables of each process in a shared-memory model. Finally, rather than addressing any arbitrary
specification, we concentrate on properties typically used in specifying systems.

4. Future Research Directions

A grand challenge in dealing with formal analysis of cyber-physical systems is to develop
abstractions, models of computation, formal frameworks, and efficient automated techniques to
specify and reason about such systems.
Formal specification of cyber-physical systems. This direction includes (1) structural spec-
ification, which models how components work and how they are interconnected, and (2) behavioral
specification, which models how each component responds to an internal or external event.
Bridging the gap between specification and implementation. Another direction is
to explore mechanisms for ensuring that implementation of cyber-physical systems refines their
specification. To this end, one may generalize our existing synthesis/revision algorithms and tools
to bridge the gap between formal specification and implementation of multi-tolerant hybrid cyber-
physical systems.
Establishing interfaces between components operating in different contexts. As rec-
ognized by the research community, cyber-physical systems must be reliable, secure, safe, efficient,
distributed, and operate in real-time. We plan to study how to express and reason about multiple
(and often conflicting) concerns by considering the state of knowledge of agents in a distributed
system using epistemic logic.
Making the developed methods scalable. The main challenge in developing verification and
synthesis algorithms is scalability. Thus, we plan to accommodate model checking techniques in the
context of program synthesis so that synthesis tools can be exploited by engineers and designers
in practice.

28 Proceedings of The Sixth NASA Langley Formal Methods Workshop



Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications,

Proceedings of The Sixth NASA Langley Formal Methods Workshop, p.29–32

Safe Upper-bounds Inference of Energy Consumption for Java

Bytecode Applications

Jorge Navas1, Mario Méndez-Lojo1, Manuel V. Hermenegildo1,2

1 Dept. of Computer Science, University of New Mexico, USA
2 Dept. of Computer Science, Tech. U. of Madrid (Spain) and IMDEA-Software

jorge@cs.unm.edu, mario@cs.unm.edu, herme@fi.upm.es

1. Introduction

Many space applications such as sensor networks, on-board satellite-based platforms, on-board
vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often
critical for the scientific mission. Transmitting such large amounts of data to the remote control
station for analysis is usually too expensive for time-critical applications. Instead, modern space
applications are increasingly relying on autonomous on-board data analysis.
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Figure 1. Energy Consumption Framework

All these applications face many resource constraints.
A key requirement is to minimize energy consumption.
Several approaches have been developed for estimating
the energy consumption of such applications (e.g. [3, 1])
based on measuring actual consumption at run-time for
large sets of random inputs. However, this approach has
the limitation that it is in general not possible to cover
all possible inputs. Using formal techniques offers the
potential for inferring safe energy consumption bounds,
thus being specially interesting for space exploration and
safety-critical systems.

We have proposed and implemented a general frame-
work for resource usage analysis of Java bytecode [2]. The
user defines a set of resource(s) of interest to be tracked
and some annotations that describe the cost of some elementary elements of the program for those
resources. These values can be constants or, more generally, functions of the input data sizes.
The analysis then statically derives an upper bound on the amount of those resources that the
program as a whole will consume or provide, also as functions of the input data sizes. This article
develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy
consumption of Java bytecode applications. We first use a resource model that describes the cost
of each bytecode instruction in terms of the joules it consumes. With this resource model, we then
generate energy consumption cost relations, which are then used to infer safe upper bounds. How
energy consumption for each bytecode instruction is measured is beyond the scope of this paper.
Instead, this paper is about how to infer safe energy consumption estimations assuming that those
energy consumption costs are provided. For concreteness, we use a simplified version of an existing
resource model [1] in which an energy consumption cost for individual Java opcodes is defined.
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import java . lang . Stream ;
public class SensorNet {
public St r i ngBu f f e r co l l e c tData (

Sensor s en s o r s [ ] ) {
int i ;
int n= sen s o r s . l ength ;
S t r i ngBu f f e r buf = new St r i ngBu f f e r ( ) ;
for ( i=n ; i > 0; i −−){

Str ing data = s en s o r s [ i ] . read ( ) ;
buf . append ( data ) ;

}
return buf ; }

interface Sensor { Str ing read ( ) ; }
class TempSensor implements Sensor {

@Cost( ”10∗ s i z e ( r e t ) ” )
public native Str ing read ( ) ; }

class Se i smicSensor implements Sensor {
@Cost( ”20∗ s i z e ( r e t ) ” )
public native Str ing read ( ) ; }

}

SeismicSensor.read(r0,r1)

Sensor.read(r0,r1)

SeismicSensor.read(r0,r1)

@Cost("20*size(ret)")

Builtin.ne(i0,0,void)

SensorNet.collectData(r0,i0,r1,ret)

Builtin.gtfa(r1,Sensor,r5)
Sensor.read(r5, r2)
Builtin.sub(i0,1,i1)
SensorNet.collectData(r0,i1,r1,r3)
Buffer.append(r3,r2,r6)
Builtin.asg(r6,ret)

SensorNet.collectData(r0,i0,r1,ret)

Builtin.eq(i0,0,void)
Builtin.new(StringBuffer,r4)
StringBuffer.init(r4,void)
Builtin.asg(r4,ret)

TemperatureSensor.read(r0,r1)

Sensor.read(r0,r1)

@Cost("10*size(ret)")

TempSensor.read(r0,r1)

Figure 2. Motivating example (Java source code and CFG)

2. Energy Consumption Analyzer

For space reasons, we will illustrate the overall energy consumption analyzer through a working
example. The Java program in Fig. 2 emulates the process of collecting data from an array of
sensors within a sensor network for further processing and sending to a remote control station. For
simplicity, we only show the collecting process of the sensor network. The source code is provided
here just for clarity, since the analyzer works directly on the corresponding bytecode. The sensor
network is implemented by class SensorNet and defines the method collectData that receives
an array of sensors (Sensor), reads from each one the data observed, and stores it in a buffer
(StringBuffer) for further processing. There are two types of sensors: TempSensor, which takes
simple temperature measurements, and SeismicSensor which records motions of the ground. The
length of the buffer which the method ultimately produces depends on the size of data measured
by the sensors.

Library methods including builtins (assignment asg, field dereference gtf, method invocations
invokevirtual, etc.) have been annotated such that our analyzer can associate energy con-
sumption costs with them using the cost model of [1]. The objective of the analysis is then to
approximate the energy consumption of the whole program. Additionally, Java programmers can
define native methods to represent methods with absence of any callee code to analyze. In the
example, the energy consumption of reading data from TempSensor and SeismicSensor sensors
is proportional (10 and 20 µJ/character, respectively) to the number of characters read. This
domain knowledge is reflected by the programmer in the native methods that are ultimately re-
sponsible for reading (TempSensor.read and SeismicSensor.read), by adding the annotations
@Cost("10*size(ret)") and @Cost("20*size(ret)"). The rest of this section describes the
different steps applied by the analyzer to approximate the energy consumption of the program
depicted in Fig. 2. The main components of the framework are shown in Fig. 1.
Step 1: Constructing the Control Flow Graph. The analysis translates the Java bytecode
into an intermediate representation building a Control Flow Graph (CFG). Edges in the CFG
connect block methods and describe the possible flows originated from conditional jumps, exception
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handling, virtual invocations, etc. A (simplified) version of the CFG corresponding to our code
example is also shown in Fig. 2. The for loop has been transformed into a recursion and the
original collectData method has been compiled into two block methods that share the same
signature: class where declared, name (SensorNet.collectData), and number and type of the
formal parameters. The bottommost box represents the base case and the sibling corresponds
to the recursive case. The virtual invocation of read has been transformed into a static call
to a block method named Sensor.read. There are two block methods which are compatible in
signature with that invocation, and which serve as proxies for the intermediate representations of
the interface implementations in TempSensor.read and SeismicSensor.read. The annotations
have been carried through the CFG and are thus available to the analysis.
Step 2: Inference of Data Dependencies and Size Relationships. The algorithm infers in
this phase size relationships between the input and the output formal parameters of every block
method. In this example, the size of (the contents of) a variable is its value. Note that for other
type of variables we have also defined different ways of measuring its size. The following equations
are inferred by the analysis for the two SensorNet.collectData block methods:

sizeret(sr0
, si0 , sr1

) ≤

{

0 if si0 = 0
1 + sizeret(sr0

, si0 − 1, sr1
) if si0 > 0

The size of the returned value ret is independent from the sizes of the input parameter this

(sr0
) but not from the length si0 of the array sensors (i0 and r1 respectively in the graph). Such

size relationships are computed based on dependency graphs, which represent data dependencies
between variables in a block, and user annotations if available. The equation system must be
approximated by a recurrence solver in order to obtain a closed form solution. In this case, our
analysis yields the solution sizeret(sr0

, si0 , sr1) ≤ si0.
Step 3: Energy Consumption Analysis. In this phase, the analysis uses the CFG, the data
dependencies, and the size relationships inferred in previous steps in order to infer energy con-
sumption equations for each block method in the CFG and further simplify the resulting obtaining
closed form solutions (in general, approximated –upper bounds). Therefore, the objective of the
analysis is to statically derive safe upper bounds on the energy that each of the block methods in
the CFG consumes. The result given by our analysis for the energy consumption of reading the
array of sensors (SensorNet.collectData) is

costcollectData(sr0
, si0 , sr1

) ≤







241 if si0 = 0
20 × sr2

+ 487 + if si0 > 0
costcollectData(sr0

, si0 − 1, sr1
)

i.e., the energy consumption is proportional to the length of the array of sensors (sensors in the
source, i0 in the CFG), and the size sr2

of observed data (r2 in the CFG). Again, this equation
system is solved by a recurrence solver, resulting in the closed formula costcollectData(sr0

, si0 , sr1
)-

≤ 20 × sr2
× si0 + 487 × si0 + 241.

References

[1] S. Lafond and J. Lilius. Energy Consumption Analysis for Two Embedded Java Virtual Machines. J.

Syst. Archit.’07.

[2] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Resource Usage Analysis for Java
Bytecode. TR-CS-2008-02, UNM.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 31



Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

[3] C. Seo, S. Malek, and N. Medvidovic. An Energy Consumption Framework for Distributed Java-based
Systems. ASE ’07.

32 Proceedings of The Sixth NASA Langley Formal Methods Workshop



John Paul et al.: Toward a Formal Evaluation of Refactorings, Proceedings of The Sixth NASA Langley Formal
Methods Workshop, p.33–35

Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina, Ruben Gamboa, James Caldwell?

University of Wyoming, Laramie, Wyoming 82071-3315, USA

{jpaul, nadya, ruben, jlc}@cs.uwyc.edu

1. Introduction

Refactoring is a software development strategy that characteristically alters the syntactic struc-
ture of a program without changing its external behavior [2]. In this talk we present a methodology
for extracting formal models from programs in order to evaluate how incremental refactorings af-
fect the verifiability of their structural specifications. We envision that this same technique may
be applicable to other types of properties such as those that concern the design and maintenance
of safety-critical systems.

2. Formal Methodology

An object-oriented design D consists of a set of classes expressed in Java or another class-based
object-oriented language. For the purposes of reasoning about D and formally comparing it to its
refactorings we model D as a first-order theory of the form 〈Σ,R〉 where Σ is a relational signature
extracted from D’s structural features, and R is a finite set of Σ-sentences expressing facts or
axioms that partially capture D’s class-level behavior [5]. R may result from the direct study of
D or its documentation. We will consider the case when R is the output of a particular program
analysis.

An additional set of Σ-sentences, S, provides an abstract specification of what it means for D
to be correct. The extent to which the set of facts R, that we hold about D, implies S, is indicative
of how verifiable the design is by us. Any refactoring, D′, of D will have the same correctness
criteria as D. To compare the verifiability of the two designs we assume that there is a signature
morphism σ : Σ → Σ′ between the original and the refactored designs1, but σ only needs to be
defined on the subset of Σ used to express S. Letting R and R′ be the two sets of facts that we
hold with respect to each design, we say that D′ is better verifiable than D under the following
conditions.

1. For every ψ ∈ S, if R implies ψ, then R′ implies the translated formula σ(ψ).

2. For some ψ ∈ S, R′ implies σ(ψ), but R does not imply ψ.

The first requirement merely states that D′ is a behavior-preserving refactoring of D with respect
to the verifiable behavior of D. While the second requirement states that we are able to verify D′

more thoroughly than we are D.

? This material is based upon work supported by the National Science Foundation under Grant No. NSF
CNS-0613919.

1More precisely the notion of a derivor[3] can be used.
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public class Employee {
stat ic f ina l int ENGINEER = 0;

stat ic f ina l int SALESMAN = 1;

stat ic f ina l int MANAGER = 2;

private int type ;

private int monthlySalary ;

private int commission ;

private int bonus ;

. . .

public int payAmount ( ) {
switch ( type ) {
case ENGINEER:

return monthlySalary ;

case SALESMAN:

return monthlySalary + commission ;

case MANAGER:

return monthlySalary + bonus ;

}
}

}

Initial Design D Refactored Design D′

Figure 1. Initial design D and refactored design D′ of the Employee class.

Alloy [4] is a relational language based on first-order logic that allows us to express theories
about designs. When combined with the Alloy Analyzer it offers a practical way to implement our
methodology and to check 1) and 2) in practice. Once 〈Σ,R〉 is presented as an Alloy theory, the
Alloy Analyzer enumerates its models up to a user specified depth and reports any counterexample
that it finds for a particular ψ ∈ S, each of which is encoded as an Alloy assertion. The same is
done for 〈Σ′

,R′〉 and each σ(ψ). While not a proof, the absence of a counterexample serves as
evidence that an assertion may be valid within a theory and hence verifiable about a particular
design.

3. Implementation

Next, we describe how we used Alloy and two different automatic constraint detectors to apply
this methodology to the Employee example of the ‘replace conditional with state’ refactoring from
Fowler’s book [2]. Figure 1 presents the initial design D as a single class, Employee, providing
a payAmount method which uses a switch-statement to compute the monthly earnings of an
employee based on his or her occupation (type). In the refactored design D

′, however, Employee
delegates the earnings computation to a polymorphic state object, type, which is no longer just
a simple int, and the computation is now distributed over three different kinds of EmployeeType
objects. The right side of Figure 1 depicts this design.

The extraction of Σ and Σ′ is based on the class structures of D and D
′ and is virtually

automatic. Each class or datatype is presented as its own disjoint set of atoms, while attributes
and methods are presented as relations on these sets. The signature morphism σ : Σ → Σ′ must be
constructed by hand. In our example, σ is the identity mapping for all sorts and relations except
for type. The assertions standing for the specification S must also be constructed by hand. For
instance, one assertion about the payAmount method is that an Engineer’s monthly earnings are
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equal to his or her salary.
Finally, R and R′ consist of the machine translated invariants output by one of the two program

analysis tools, Daikon [1] or ContExt. One fact that Daikon recovered from the design D
′ states

that the payAmount method for the Engineer class returns the monthlySalary of its Employee

attribute. After the two respective Alloy theories, 〈Σ,R〉 and 〈Σ′
,R′〉 have been created for designs

D and D
′ by either Daikon or ContExt, we use the Alloy Analyzer to check whether the set of

assertions that hold in the refactored theory is a proper superset of the assertions that hold in
the unrefactored theory. If so, then we conclude that there is evidence to suggest that D′ may be
better verifiable than D in light of the facts obtainable by either tool.

In this example the Alloy analyzer considered all possible models consisting of two Employee

entities, two EmployeeType entities and each int from -16 to 15. Our study suggests that the
verifiability of the refactored design improves with respect to the facts obtained by Daikon, while
the verifiability of either design is sufficiently good in light of the facts obtained by ConText.

4. Conclusions

Insofar as some structural properties of programs are safety-critical, the methodology presented
here already applies to them. For instance, a specification for a controller may contain a safety-
critical class invariant that states which configurations are reachable. Our methodology allows
a way to monitor the verifiability of such properties as refactorings are applied throughout the
software lifecycle. More investigation is needed to evaluate our approach on a real world example.
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Invited Talk

Aviation – both on-board systems and the National Airspace System – can be transformed by
many current and future technical capabilities. To name but a few, improved efficiency may be
achieved by integrating functions; robustness may be improved by distributing functions; and safety
may be improved by building in risk mitigation through not only redundant, independent systems
but also through operational concepts and effective interaction with human operators. This talk
will review the key aspects of verification, validation and certification for which formal methods
will provide a critical function in enabling truly revolutionary designs to enter the operational
community, illustrating successes in formal modeling to date and posing further questions for the
formal modeling community.
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Invited Talk

The great strength of formal methods is that they allow consideration of all possible behaviors,
and this could be of immense value in certification. However, automated formal analysis of large
and complex artifacts is computationally infeasible, so compromises have to be made. These
include use of interactive human guidance rather than full automation, analysis of models and
abstractions rather than the real artifact, and analysis of weak properties (e.g., by static analysis)
rather than full requirements. I will consider how these and other practical limitations affect the
potential role of formal methods in certification. I will also outline weaknesses in current standards-
based approaches to certification and sketch how multi-legged safety cases might provide a way to
incorporate formal methods into certification processes.
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Model-based design and automated code generation are being used increasingly at NASA. Many
NASA projects now use MathWorks Simulink and Real-Time Workshop for at least some of their
modeling and code development. However, there are substantial obstacles to more widespread
adoption of code generators in safety-critical domains. Since code generators are typically not
qualified, there is no guarantee that their output is correct, and consequently the generated code
still needs to be fully tested and certified. Moreover, the regeneration of code can require complete
recertification, which offsets many of the advantages of using a generator. Indeed, manual review
of autocode can be more challenging than for hand-written code. Since the direct V&V of code
generators is too laborious and complicated due to their complex (and often proprietary) nature,
we have developed a generator plug-in to support the certification of the auto-generated code.
Specifically, the AutoCert tool supports certification by formally verifying that the generated code
is free of different safety violations, by constructing an independently verifiable certificate, and
by explaining its analysis in a textual form suitable for code reviews. The generated documen-
tation also contains substantial tracing information, allowing users to trace between model, code,
documentation, and V&V artifacts. This enables missions to obtain assurance about the safety
and reliability of the code without excessive manual V&V effort and, as a consequence, eases
the acceptance of code generators in safety-critical contexts. The generation of explicit certifi-
cates and textual reports is particularly well-suited to supporting independent V&V. The primary
contribution of this approach is the combination of human-friendly documentation with formal
analysis.

The key technical idea is to exploit the idiomatic nature of auto-generated code in order to
automatically infer logical annotations. The annotation inference algorithm itself is generic, and
parametrized with respect to a library of coding patterns that depend on the safety policies and the
code generator. The patterns characterize the notions of definitions and uses that are specific to
the given safety property. For example, for initialization safety, definitions correspond to variable
initializations while uses are statements which read a variable, whereas for array bounds safety,
definitions are the array declarations, while uses are statements which access an array variable.
The inferred annotations are thus highly dependent on the actual program and the properties
being proven.

The annotations, themselves, need not be trusted, but are crucial to obtain the automatic
formal verification of the safety properties without requiring access to the internals of the code
generator.

The approach has been applied to both in-house and commercial code generators, but is in-
dependent of the particular generator used. It is currently being adapted to flight code gener-
ated using MathWorks Real-Time Workshop, an automatic code generator that translates from
Simulink/Stateflow models into embedded C code.
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Eduardo R. López Ruiz et al.: Aeronautical Regulations Should Be Rigorously Developed Too!, Proceedings of The
Sixth NASA Langley Formal Methods Workshop, p.41–43

Aeronautical Regulations Should Be Rigorously Developed Too!

Eduardo R. López Ruiz1, Yves Ledru2, Michel Lemoine1

1 ONERA, Toulouse, France
2 Laboratoire d’Informatique de Grenoble, Saint Martin d’Hères, France

eduardo.lopez-ruiz@onera.fr, yves.ledru@imag.fr, michel.lemoine@onera.fr

Abstract

We propose the use of formal techniques, complementary to semi-formal models, to improve the
contemporary rulemaking process that is used to develop aeronautical safety and security regulations.
The two main contributions of this approach are: (1) the use of rigorous methods and tools to help
improve the regulation’s validation process, and (2) the capacity to help identify the impact of proposed
amendments on enacting regulation (while helping mitigate regressions).

1. Introduction

New paradigms in civil aviation (e.g. the reduction or even the suppression of flight crew)
require the use of formal development techniques for on-board software. But these advances in
civil aviation also require evolutions of the related regulations. In this paper we argue for the use
of similar formal techniques to design these evolutions of the regulation.

Indeed, regulations are natural language documents, and hence inherently ambiguous. The
act of translating them into a semiformal model would help reduce the use of innately ambiguous
terms. On top of that, associating their trickiest parts to formal versions of them will help provide
a sound basis for their detailed understanding, analysis and implementation.

Furthermore, regulations are rarely built from scratch. New regulations are evolutions of
existing ones, and it often makes sense to study their non-regression. Formal models allow the
use of animation and proof techniques to compare successive versions of the regulation and detect
regressions.

Formal methods have already been used within the context of modeling regulations in order
to ease their validation and verification [1]. They have also been used within other domains of
aeronautics, ”to enhance the current practice of procedures development” [2] and for the analysis
and verification of aeronautical safety critical systems. What’s more, EDEMOI [3] proposed the
mixed implementation of semi-formal (UML models) and rigorous methods (formal models using
the B and Z notations [4]) to assist in the specification, design and validation of aviation security
regulations. So, building upon the positive results of the EDEMOI experience, we proposed a
twofold expansion of the methodology (See Figure 1) by (1) broadening its scope to include aviation
safety regulations and (2) by extending its usability throughout the regulation’s ”lifecycle”.

2. The Chosen Approach

As was done in our appraisal [5] of EU Directive 2320/2002, an interpretation of the regulation
is captured using (part of) the UML language (Figure 1, Step 2.a). The use of this graphical
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notation helps tackle the text’s innate ambiguity, while proposing a conceptual layout that can be
validated/invalidated by officials from the certification authority.

Figure 1. The extended EDEMOI methodology

The validation of this conceptual layout (Figure 1, Step 3) helps establish the adhesion of the
semiformal model to the convened international standard. For this, the appraisal and feedbacks
provided by aviation authority officials are integrated into the model by way of amendments. Once
validated, the semiformal model is translated (Figure 1, Step 2.b) to a rigorous formal model using
translation rules between the semiformal and formal notations (UML → Z [6]).

This ensures that our methodology benefits fully from the integration of both approaches: the
intuitive structured notation of the semiformal approach and the precise semantics of the formal
approach.

Finally, when the models have been deemed mature enough (both in their notation and their
faithfulness to the regulation) an animation or verification tool (Figure 1, Step 4) is used to
test the formal model’s consistency (through simulation) and robustness (through counterexample
checking). The results of the tests and simulation are stored to enable regression analysis after
further evolutions of the regulation and the models (Figure 1, Step 5). Currently, two formal
method targets are being considered: RoZ + Jaza Animator [4] and Alloy Analyzer [7].

3. Appraising the Methodology

The introduction of new paradigms in civil aviation entails the need to adapt the regulatory
framework dictating the behavior and the interactions of airplanes. For this reason, the stakehold-
ers to this undertaking -such as the aircraft manufacturers, service providers and safety regulators-
are concerned with determining the regulatory enhancements that will be required to ensure safe

42 Proceedings of The Sixth NASA Langley Formal Methods Workshop
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operations under new states of affairs.
Rigorous formal models of the affected aeronautical regulations will help (1) identify the scope

of impact that the flight-crew reduction would have on the regulations, and (2) determine if the
proposed regulatory evolutions will have the desired effect.
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[5] López Ruiz, E.R. Formal Specification of Security Regulations: The Modeling of European Civil Avi-
ation Security. Master Thesis. SUPAERO. Toulouse, France. 2006.

[6] Dupuy, S., Ledru, Y. and Chabre-Peccoud, M.: An overview of RoZ : A Tool for Integrating UML
and Z. In: 12th Conference on Advanced Information Systems Engineering (Stockholm, Sweden, June
05-09, 2000). CAiSE 2000. Springer Press. DOI= http://doi.acm.org/10.1007/s10515-006-0273-5

[7] Jackson, D. Dependable Software by Design. In Scientific American. (June, 2006). Volume 294, Number
6. Page 68-75.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 43



David L. Barton: Use of Intelligent Assistants in Practical Theorem Proving, Proceedings of The Sixth NASA

Langley Formal Methods Workshop, p.44–46

Use of Intelligent Assistants in Practical Theorem Proving

David L. Barton

EDAptive Computing, Inc., Dayton, Ohio 45458, USA

d.barton@edaptive.com

http://www.edaptive.com

Extended Abstract

At present, the greatest barrier to the full scale adoption of theorem proving in industrial
practice is its intractability to the average engineering user. Model checking can be taught, or
at least hidden, by fairly understandable tools. Theorem proving is another matter; intensive
and time consuming training is needed before the average user can approach the use of theorem
proving tools. Worse, what might be termed the “style of thinking” of models that are useful
for theorem proving is fundamentally different from models useful in most engineering disciplines.
This requires either extensive translation or a different approach to most engineering problems, a
different approach that has the effect of divorcing the verification engineer from the development
engineer. Such a separation is never desirable.

By far the most common tool used by engineers today is MATLAB, and its graphical interface
Simulink. Theorem provers that can work with MATLAB and Simulink would be most desirable;
however, MATLAB and Simulink are designed for simulation and mathematical execution in ways
that are fundamentally different from the kinds of manipulation required by, say, PVS. What is
needed is a means of moving problems from the engineering space into the theorem proving space,
proving properties of interest, and taking not only the fact of the proof, but information from the
proof back into the engineering space so that it can be used appropriately.

The mathematics of theorem proving and logic are such that this problem is impossible to
automate generally (or if not impossible, then beyond current technology). However, for a narrow
class of similar problems, automation can be provided by the use of proof assistants that consist
of lemmas, proof strategies, and a friendly graphical interface. The production of these lemmas,
strategies, and interfaces (hereafter grouped together and called “assistants” or “the assistant”) is
complex; the use of the assistant is simple, and brings theorem proving within that narrow range
of problems into the grasp of working engineers.

Figure 1 represents the entire process of shifting from the engineering space to the theorem
proving space, using the theorem proving, and shifting back. A MATLAB / Simulink repre-
sentation is translated into an internal representation which allows both graphical access (using
SyscapeTM, a proprietary tool to EDAptive Computing, Inc.) and theorem proving via PVS. The
automated assistance is provided via a series of PVS lemmas and proof strategies which have been
provided in the field of control law development; in fact, a subset of control laws which were of
interest to the customer in this case and the project, the Automated Aerial Refueling project.
Access to the lemmas and strategies was given via SyscapeTM, which has extensive customization
capabilities as seen in step 4. This allows the engineer to operate the theorem prover as a tool from
the SyscapeTM interface with a limited set of choices. If these choices fail, the engineer’s recourse
is to a consultant or theorem proving expert.
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Figure 1: Shifting from MATLAB to Theorem Proving and back again.

The specific lemmas generated by PVS during the proof process are turned into run time
assertions, as shown in step 6 of the figure. These are turned into executable assertions which
can be inserted into the MATLAB code, as shown in the return code loop shown in step 7 of the
figure. This can be simulated in MATLAB / Simulink and, if desired, inserted into the code for
code generation as a part of the code of the control law as part of the normal code generation
process from Simulink to C or C++.

Because the code has been proven correct, the assertions do not test for correctness during
execution. Rather, the assertions test for those conditions which the proofs assume are true in
order for the proofs to be valid. If equipment fails or the environmental conditions change, the
assertions will be violated and an error condition will be flagged before a catastrophic reaction can
take place. In the case of the AAR, an operator on board the refueling aircraft can take action to
avoid collision or loss of life.

The automated assistant in this case provides very little “artificial intelligence” compared to
some in the literature. In to Figure 2, for the AAR, the pre-prepared lemmas consisted of 589 that
were generated by the replacement, many of which were repetitive. The templates were prepared
beforehand, so that when a user “drags and drops” a gain block into his diagram, the lemmas for
that block are generated from the template and inserted into the proof script for the system. Only
certain configurations are supported for overall proof.
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Figure 2. Lemmas for the AAR example.

In summary, the translation and back translation of the MATLAB model gives the engineering
user access to the power of theorem proving in a narrow field. Moving outside this field requires a
theorem proving expert to extend the assistant, which is a complex task.
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Extended Abstract

Predicate abstraction [6] (PA) and Abstract Interpretation [4] (AI) with numeric abstract
domains, called Numeric abstraction (NA), are two mainstream techniques for automatic program
verification. Although it is sometimes assumed that the difference between the two is that of
precision versus efficiency, experience of projects based on PA (such as SLAM [1]) and those based
on NA (such as ASTRÉE [3]) indicate that both techniques can balance efficiency and precision
when applied to problems in a particular domain. However, the two techniques have complimentary
strengths and weaknesses.

Predicate abstraction reduces program verification to propositional reasoning via an automated
decision procedure, and then uses a model checker for analysis. This makes PA well-suited for veri-
fying programs and properties that are control driven and (mostly) data-independent. An example
of such a program is the code fragment in Fig. 1(a). However, in the worst case, reduction to
propositional reasoning is exponential in the number of predicates. Hence, PA is not as effective for
data-driven and (mostly) control-independent programs and properties, such as the code fragment
shown in Fig. 1(b) In summary, PA is works best for propositional reasoning, and performs poorly
for arithmetic.

On the other hand, Numeric abstraction restricts all reasoning to conjunction of linear con-
straints. For instance, NA with Intervals is limited to conjunctions of inequalities of the form
c1 ≤ x ≤ c2, where x is a variable and c1, and c2 are constants. Instead of relying on a general-
purpose decision procedure, NA leverages a special data structure – Numeric Abstract Domain.
The data structure is designed to represent and manipulate sets of numeric constraints efficiently;
and provides algorithms to encode statements as transformers of numeric constraints. Thus, in
contrast to PA, NA is appropriate for verifying properties that are (mostly) control-independent,
but require arithmetic reasoning. One example of such a program is the code fragment in Fig.
1(b). On the flip side, NA performs poorly when propositional reasoning (i.e., precisely represent-
ing disjunctions and negations) is required. For example, the code fragment in Fig. 1(a) is hard
for NA.

In practice, precise, efficient, and scalable program analysis requires the strengths of both
predicate and numeric abstraction. Consider the problem of verifying the code fragment in Fig.
1(c). In this case, propositional reasoning is needed to distinguish between different program paths,
and arithmetic reasoning is needed to efficiently compute strong enough invariant to discharge the
assertion. More importantly, the propositional and numeric reasoning must interact in non-trivial

? An article reporting on this research is currently under submission to a conference.
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assume(i==1 || i==2);

switch(i)

case 1: a1=3; break;

case 2: a2=-4; break;

switch (i)

case 1: assert(a1>0);

case 2: assert(a2<0);

default: assert(0);

if(3 <= y1 <= 4)

x1 = y1 - 2;

x2 = y2 + 2;

else if(3 <= y2 <= 4)

x1 = y2 - 2;

x2 = y2 + 2;

assert(5 <= (x1+x2) <= 10);

assume(x1==x2);

if (A[y1 + y2] == 3)

x1 = y1 - 2;

x2 = y2 + 2;

else

A[x1 + x2] = 5;

if (A [x1 + x2] == 3)

x1 = x1 + x2;

x2 = x2 + y1;

assert(x1==x2);

assume(x1 = x2);
((assume(p);

x1 := y1 − 2 ∧ q := choice(f, f);
x2 := y2 + 2 ∧ q := choice(x1 + 2 = y1 ∧ p, f)) ∨

(assume(¬p);
q := choice(f, t)));

((assume(q);
x1 := x1 + x2;
x2 := x2 + y1) ∨ assume(¬q));

assert(x1 = x2)

(a) (b)

(c) (d)

Figure 1. Example programs (a), (b), (c). Part (d) is an abstraction of (c) with VP = {p, q}, VN = {x1, x2, y1, y2},
where p , ((A[y1 + y2] = 3), and q , (A[x1 + x2] = 3).

ways. Therefore, a combination of PA and NA is more powerful and efficient than either technique
alone.

Any meaningful combination of PA and NA must have at least two features: (a) propositional
predicates are interpreted as numeric constraints where appropriate, and (b) abstract transfer
functions respect the numeric nature of predicates. The first requirement means that, unlike most
AI-based combinations, the combined abstract domain cannot treat predicates as uninterpreted
Boolean variables. The second requirement implies that the combination must support abstract
transformers that allow the numeric information to affect the update of the predicate information,
and vice versa.

Against this background we make the following contributions. We present the interface of an
abstract domain, called NumPredDom, that combines both PA and NA, and supports a rich set
of abstract transfer functions that enables the updates of numeric and predicate state information
to be influenced by each other. For example, an NumPredDom-based abstraction of the code
fragment in Fig. 1(c) is shown in Fig. 1(d). Here, two predicates are used to relate reasoning
about conditions in control-flow statements with reasoning about numeric variables. Note that the
value of the predicates depends on values of numeric constraints.

We propose four data-structures — NEXPoint, NEX, MTNDD and NDD — that implement
NumPredDom. The data structures (summarized in Table 1) differ in their expressiveness and in
the choice of representation for the numeric part of the domain. Our target is PA-based software
analysis. Thus, all of the data-structures use BDDs for efficient (symbolic) propositional reasoning.

Related work. A typical way to combine PA and NA in AI is to use a direct, or reduced [4]
product, possibly extending it with disjunctions (or unions) using a disjunctive completion [4].
The domains we develop in this paper are variants of (disjunctive completion of) reduced product
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between PA and NA. One practical approach for combining these domains is to combine results of
the analyses [7], e.g., by using light-weight data-flow analyses, such as alias analysis and constant
propagation, to simplify a program prior to applying predicate abstraction. Thus, the invariants
discovered by one analysis are assumed by the other. Another approach is to run the analyses
over different abstract domains in parallel within a single analysis framework, using the abstract
transfer functions of each domain as is [5, 2]. The analyses may influence each other, but only
through conditionals of the program.

The contribution of our work is in adapting, extending, and evaluating existing work on com-
bining propositional and arithmetic reasoning to the needs of software model-checking. We have
implemented a general framework for reachability analysis of C programs on top of our four data
structures. Our experiments on non-trivial examples show that our proposed combination of PA
and NA is more powerful and more efficient than either technique alone. Finally, by coupling PA
and NA tightly, our approach opens up new research directions toward automated abstraction
refinement techniques that are more efficient that existing solutions.

Name Value Example Num.

NEXPoint 22
P

× N (p ∨ q) ∧ (0 ≤ x ≤ 5) EXP
NEX 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨ (q ∧ 1 ≤ x ≤ 5) EXP
MTNDD 2P 7→ N (p ∧ 0 ≤ x ≤ 3) ∨ (q ∧ 1 ≤ x ≤ 5) SYM
NDD 2P 7→ 2N (p ∧ (x = 0 ∨ x = 3) ∨ (q ∧ (x = 1 ∨ x = 5))) SYM

Table 1. Summary of implementations of NumPredDom; P = predicates; N = numerical
abstract values; Value = type of an abstract element; Example = example of allowed abstract

value; Num = numeric part representation (explicit or symbolic).
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Extended Abstract

Traditional software development techniques have emphasized programming in terms of pro-
cedures and abstract data types using simple module interconnections. That paradigm supported
formal reasoning about and analysis of (sequential) programs made up of primitive constituents,
and provided the basis for tools and environments for system design, development and testing.

But system implementations increasingly are centered around building an appropriate workflow
as part of a multi-faceted orchestration, as opposed to configuring or customizing self-contained
software modules. Thus contemporary development approaches focus on automated solutions
built from more sophisticated components described using interface specifications and from con-
nectors described via protocol specifications. Researchers are seeking ways to express high-level
abstractions for and special properties of these so-called composable systems / applications (a.k.a.
composite systems / applications). Such formalisms are needed as a basis for the kinds of tools
and environments that will provide a lateral arabesque for development and testing communities in
this slightly unsettling new world, where reuse and integration take precedence over reinvention.

Composable systems represent an emergent problem domain that poses special challenges to
verification and testing practitioners. Composability is a design principle dealing with the inter-
relationships of components. A composable system provides recombinant components that can be
selected and assembled in various ways to satisfy specific requirements; it is highly desirable that
little or no change is needed to the composable components for them to interoperate. Composable
applications represent the desired end state of a full-scale service-oriented architecture implemen-
tation. They are connected, process-based sets of independent services existing inside or outside
the enterprise (e.g., service providers, outsourced functions). They are applied to a set of require-
ments much like a custom software solution would be, except without the hard-coded integration
logic.

This talk will survey current efforts to establish models and principles for supporting the
composable system lifecycle in systematic – rather than ad hoc – ways, with a particular focus on
developments in the field of testing composable systems / applications. Relevant questions to be
addressed include: How are we coping when building a whole with parts that make incompatible
assumptions about their mutual interactions? What kinds of checking and analysis can we support?
What does reliability mean for a solution that will continuously evolve vice being developed, tested,
configured and launched? Pointers will be provided to educational materials as well as proof-of-
concept notations, models and tools available for further experimentation on the World Wide
Web.
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Composable solutions is the direction in which the U.S. Department of Defense, federal stake-
holders and commercial enterprises are evolving their information sharing and processing infras-
tructures. This talk will cite areas where progress is being made, as well as gaps where additional
research is recommendable. Such insights are needed to ensure the establishment of appropriate
performance criteria and mensuration techniques for applying formal methods, particularly for
verification and testing, to composable systems / applications.
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Abstract

One of the major challenges in modern aerospace designs is the integration and assembly of

independently developed components. We have formalized this as the system assembly problem:

from a sea of available components, which should be selected and how should they be connected,

integrated, and assembled so that the overall system requirements are satisfied in a certifiable way?

We present a powerful framework for automatically solving the system assembly problem directly

from system requirements by using formal verification technology. We also present a case study

where we applied our work to large-scale industrial examples from the Boeing Dreamliner.

? This research was funded in part by NASA and Boeing.
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Extended Abstract

Modern computer systems are used in many safety-critical applications. In order to guarantee
an error-free behavior of such a system one often employs formal methods, e.g. model checking,
and theorem proving. However, most of the times formal methods are only applied to stand-alone
components or to abstract models. Thus, a pervasive correctness of computer systems, with all
their details, can not be guaranteed.

In the Verisoft project [1] we show that it is possible to build and to verify a computer system,
which consists of a hardware platform with devices, a compiler for a C-like language, a micro-
kernel, an operating system, and user applications. The goal is to verify these components and
to guarantee formally that they can be combined into one computer system stack. In this paper,
we present the verification of a complex gate-level computer system. This hardware is formally
verified against an assembly-level model, i.e. a model as seen by an assembly programmer.

The integrity of the results in the Verisoft project requires that all models are defined/verified in
one environment. Therefore, we have chosen Isabelle/HOL “work-horse”, which is an interactive
theorem prover for higher-order logic. To reduce the user work, we developed an environment
IHaVeIt [2, 3]. It couples Isabelle/HOL with external tools, such as model checkers (NuMSV [4]
and SMV [5]) and SAT solvers. It also provides several reduction and abstraction techniques which
increase the application efficiency of the external tools. Thus, we develop and verify the hardware
in Isabelle/HOL and then automatically translate it into Verilog (via IHaVeIt) and run it on an
FPGA.

The verified computer system consists of a VAMP processor [6] and a generic device model for
memory mapped devices.

The VAMP processor features the DLX instruction set, an out-of-order execution, precise
interrupts, a delayed branch, and support for virtual memory. We verified the gate-level processor
against a model as seen by an assembly programmer, i.e. a model which executes a complete
instruction with every step.

The device model on the gate level is modelled as an I/O automaton. It can contain arbitrary
devices which run in parallel and communicate with external environment, e.g. with a network.
This model is verified against a sequential device model where the devices progress one after
another.

The gate-level computer system is built by a parallel composition of the VAMP and the gate-
level device model, which communicate via a bus with a common clock. This system is verified

? The authors were supported by the German Federal Ministry of Education and Research (BMBF) in the
Verisoft project under grant 01 IS C38
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against an assembly model which executes with every transition either a device step or the processor
step, with or without device access. The correctness criterion states that every run of the gate-
level model can be simulated by a run of the assembly-level model. The criterion is proved via a
non-trivial combination of the proofs for the processor and the generic device model. The proof is
carried out interactively in Isabelle/HOL with the help of IHaVeIt.

Finally, we instantiated the verified computer system, on the gate and assembly levels, with
an automotive bus controller. Thus, we built a verified electronic control unit for a distributed
automotive system [7]. This unit has been synthesised and run on a Xilink FPGA. The size of the
unit is 5,180,002 gates.

For the first time, we report on the formal verification of a gate-level computer system, which
consists of a non-trivial processor and devices. Our results outperform the outcomes for the
hardware platform of the famous CLI stack [8], where the verification of a small computer system
stack is attempted. Our approach also covers the gap between verification of the devices [9, 10,
11, 12] and the processors [13, 14, 15, 16, 17, 18] as stand-alone components.
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Extended Abstract

This research describes a component-based approach to proving the correctness of programs
involving pointer behavior. The approach supports modular reasoning and is designed to be used
within the larger context of a verifying compiler. The approach consists of two parts. When a
system component requires the direct manipulation of pointer operations in its implementation,
we implement it using a built-in component specifically designed to capture the functional and
performance behavior of pointers. When a system component requires pointer behavior via a
linked data structure, we ensure that the complexities of the pointer operations are encapsulated
within the data structure and are hidden to the client component. In this way, programs that rely
on pointers can be verified modularly, without requiring special rules for pointers.

The ultimate objective of a verifying compiler is to prove-with as little human intervention as
possible-that proposed program code is correct with respect to a full behavioral specification. Full
verification for software is especially important for an agency like NASA that is routinely involved
in the development of mission critical systems.

There are at least two fundamental problems in developing a verifying compiler that is scalable.
One of these is modularity. There is near universal agreement that to be scalable, the verification
system must be modular. In other words, it must be possible for the verifying compiler to take
just the specifications of components used by a piece of code and to establish that the proposed
implementation is correct with respect to its specification [1].

The other problem concerns the complexity of the assertions that are involved in the verification
process. A variety of techniques have been explored in the literature to mitigate this. Most recent
work involves ”lightweight” formal methods, meaning a focus on specification-independent or easy-
to-state ad hoc properties of an implementation. Such a system may be used, for example, to
establish the absence of null dereferences [2] or to demonstrate the absence of cycles in a pointer-
based data structure [3]. Lightweight methods offer two benefits: they relieve programmers from
the need to write full behavioral specifications and internal assertions such as loop invariants, and
they show that progress toward the goal of full verification can be incremental.

While the lightweight approach is necessary and useful in the immediate term, verifiers ulti-
mately need to get beyond the point of showing merely that blatant error conditions do not exist,
and to establish that programs actually achieve a full specification of desired behavior. A verifying
compiler eventually must be able to deal with nontrivial assertions such as those needed to prove
correctness of implementations that use pointers and references. Researchers who focus their at-
tention on pointer verification problems tend to fall into two categories. Those who extend prior
research in lightweight methods, and those who focusing on more general verification. Our work
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falls into the second category.
From experience, we know that full verification is especially difficult for programs that involve

pointers or references and linked data structures [4]. In some situations, pointers are unavoidable;
in others, verification can be simplified by using suitable abstractions. Regardless, a verifying
compiler should be able to handle both cases, preferably using the same set of rules. To enable
this, we use a two-part approach to full verification of typical pointer programs.

The first part is used when pointer behavior is necessary to satisfy performance requirements.
It replaces language-supplied pointers or references with a software component-which we typically
refer to as the pointer component-whose specification abstracts pointers and pointer-manipulation
operations [5]. The specification does not require any special techniques or constructs. The
pointer component has a specification that allows programmers and, importantly, the verification
system to view it as any other component. However, to achieve the same performance benefits of
pointers, the compiler cannot implement it the same way it implements other components. For
example, the call Relocate(p, q) assigns p to q’s location, effectively resulting in p and q being
aliases. Although the programmer can reason about the statement as a method call, the compiler
will implement it by copying a single reference. By using the pointer component, we can ensure
that the complications associated with indirection arise only from the specification of the pointer
component itself. They occur only where the required behavior of the program to be verified relies
on the need for indirection, rather than permeating all proofs of correctness.

We have used the pointer component in the verification of correctness for non-trivial algorithms
such as the Schorr-Waite graph-marking algorithm [6]. In the case of the Schorr-Waite algorithm,
we wrote the specification for it, implemented it with the pointer component, and showed that
the implementation was correct with respect to the specification. This process led us to propose
additional operations for the pointer component that simplified certain verification tasks. In par-
ticular, we can define and specify pointer component operations that do not create memory leaks.
Using these operations in place of traditional ones in the implementation can ease the burden on
the verification system.

The second part of our approach uses abstract specifications to encapsulate data structures,
such as lists and trees, whose implementations typically require pointer behavior. This limits the
pointer-associated verification complexity to the verification of the data structures themselves, and
simplifies the verification of components that use these data structures. Since the data structures
used in the second part of the approach often require pointer behavior, the pointer component
described in the first part of our approach can be used to implement them. Regardless of whether
we are verifying components implemented with the pointer component or component implemented
with linked data structures, their full verification can be handled similarly. There is neither a need
to focus on selected pointer properties, such as the absence of null references or cycles, nor a need
for special rules to handle pointers.

Primarily, the language we have used in this research is Resolve, which is a combined program-
ming and specification language designed to support modular verification [7]. It also supports full
alias-avoidance at the component level. Efforts are being made to incorporate the programming
aspects of our approach to other languages. For example, the Tako language is an object-oriented
language with Java-like syntax that employs a pointer component and avoids many common sources
of aliasing [8].
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Extended Abstract

Modern, safety-critical systems are inherently complex as multiple interacting subsystems and
people (operators, maintenance crews, etc.) attempt to achieve multiple, often conflicting, goals.
While the majority of the sub-systems (including the humanmachine interfaces to control them)
are well engineered, system failures still occur: airplane crashes, air-traffic conflicts, power plant
failures, defense system false alarms, etc. [1]. Such failures are often due not to the breakdown of a
single component, but to a series of minor events that occur at separate times, ultimately leading
to dangerous outcomes. Further, more of the pre-cursor events that lead to such outcomes are the
result of human error (the error resulting from the interaction between human operators and the
system) rather than equipment or component failure [2].

Formal methods, and particularly model checking, have proven useful in detecting design errors
that produce system failure in computer hardware and software systems. A number of techniques
also exist for modeling human behavior using formal computational structure such as Goals, Op-
erators, Methods, and Selection rules (GOMS) [4], ConcurTaskTrees (CTT) [5], and the Operator
Function Model (OFM) [6]. In addition, efforts have also been made to classify human error based
on its formal characteristics. While there are a number of reasons why humans may perform an er-
roneous act (a sequence of activities that do not produce the intended result during human-system
interaction), there are very limited formal characteristics for the way that errors can manifest
themselves [2]. To address this, Hollnagel [7] classified human error based on a hierarchy of phe-
notypes, the formal characteristics of observable erroneous behavior. Hollnagel showed that all
human errors were composed of one or more of the following errors (all observable for a single act):
premature start of an action, delayed start of an action, premature finishing of an action, delayed
finishing of an action, omitting an action, skipping an action, reperforming a previously performed
action, repeating an action, and performing an unplanned action (an intrusion).

A variety of work has investigated the use of formal system and human behavior models in order
to predict and model human error (an overview can be found in [3]). However, the majority of
this work has focused on discovering mode confusion and automation surprise (preconditions for a
subset of human errors), or have relied on human factors experts to incorporate erroneous behavior
into human-behavior models. None of these methods have integrated model checking, human
behavior modeling, and human error phenotype classification to automatically model erroneous
behavior and use it to predict its contribution to system failure.

To address this, we are developing an extension of the model checking verification process [3]
(Fig. 1). This framework includes three automatic processes: human error prediction, translation,
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and model checking. The human error prediction process examines a normative human behavior
model and a human-system interface model in order to determine what erroneous human behavior
patterns are likely. It produces a modified version of the human behavior model with both the
normative and erroneous behavior. The translation process uses the system model and the modified
human behavior model and produces a single model that is readable by the model checker. The
model checking process verifies that the system properties from the specification are true in the
system model. If verification fails, the process will generate a counterexample showing how the
failure condition occurred. This framework has been instantiated using the SMART and SAL
modeling checking programs and used successfully with a simplified model of the Therac-25, a
piece of radiological medical equipment for which human error played an important role in a fatal
system failure (see [3]). The work discussed here focuses on the human error prediction process,
the erroneous human behavior model it produces, and its implication for model checking.

Figure 1. Human error and system failure prediction framework

This work discusses a systematic means of modifying a normative human behavior model
specified in the OFM paradigm (decomposing higher level activities into atomic actions) in order
to incorporate the observable erroneous behavior identified by Hollnagel (all of which can be
constructed from errors at the atomic action level). Given the hierarchal nature of the OFMs and
Hollnagel s error phenotypes, this process can be done by replacing each of an OFM s atomic
actions with a set of erroneous acts that may occur at that action. Given that the framework
being employed in this work assumes a formal model of the human-computer interface and full
normative human behavior models, both can be used to determine which of Hollnagel s phenotypes
can manifest themselves at a particular action.

Human behavior models used with the proposed framework (Fig. 1) have two important
implications for model checking. First, given the nature of model checking, any system containing
human-system interaction that is evaluated via model checking will encompass a superset of human
behavior beyond what is likely. In this context, the erroneous behavior model can be viewed as a
filter for the system model as it limits the human behavior possibilities the model checker needs to
evaluate. Thus, we may be able to reduce the system model s state space during the translation
process in Fig. 1, potentially alleviating the state explosion problem. Second, the behavior models
can be used to explain how human error may have contributed to a system failure identified in a
counterexample. This is useful as it may suggest interface or other design changes that prevent
the error from occurring.
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Abstract

In this paper, we show how to apply the Floyd-Hoare formalism to analyze C programs im-
plementing feedback control systems. In particular, we show that the well-known Lyapunov, non-
expansivity and passivity theories can not only be applied at the specification level but also carried
over to the implementation level. We demonstrate how some of those properties, such as bounded
input bounded state stability, can be embedded as pre- and post-conditions of each statement
in the source code and illustrate how to use this methodology in linear controllers, either sub-
ject to bounded input or to parametric uncertainties, and also in controllers with sector-bounded
non-linearities.

We also explain how an automatic static analyzer can propagate invariants and produce a
proof of stability at the source code level. This proof, basically in the form of a Matlab program,
could be independently validated. Therefore, proof generation and proof validation can be per-
formed independently and without the need to trust each other. Similarities and differences of our
framework with proof-carrying-code frameworks are also discussed.
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Extended Abstract

The design and engineering of reliable software systems present many technical and managerial
challenges. Software engineers come to the proverbial ’drawing board’ with a technical understand-
ing of how systems are created but often have difficulties interfacing with customers to accurately
elicit requirements and prioritize stakeholder needs. Project stakeholders are experts in the prob-
lem domain of the system under design; however, many times they cannot describe a satisfactory
software design (”I’ll know it when I see it...”) or may not be able to identify features lacking in a
preliminary design.

Scenarios bridge communication between engineers and project stakeholders. Scenarios de-
scribe the system in terms of steps its components perform to meet requirements. Scenario-based
approaches provide concrete ways for engineers and stakeholders to discuss and reason about the
system without premature commitment to a specific implementation. Scenarios are an excellent
starting point for describing intended behavior of a system being designed, and when formalized,
they can serve as the input to an automated software engineering approach, such as R2D2C,
discussed next.

The ”Requirements to Design to Code” (R2D2C) project of NASA’s Software Engineering Lab-
oratory is based on inferring a formal, provably-correct specification expressed in Communicating
Sequential Processes (CSP) from system requirements supplied in the form of CSP traces. From
such a CSP specification, software can be automatically synthesized. R2D2C is a multiinstitution,
collaborative effort, including contributors from industry, NASA’s Goddard Space Flight Center
(GSFC), Virginia Tech and the University of Guelph.

Mise en Scene contains three components. First, a scenario medium designed to be amenable to
conversion to CSP traces, to be represented using Mise en Scene’s trace medium (Mise en Scene’s
second component). The trace medium is designed for conveyance to the inference stage of R2D2C.
The third component of Mise en Scene is a process for the automatic translation from scenarios
to traces.

I present a brief overview of the R2D2C project, the Mise en Scene scenario medium and recent
work toward the automatic translation of Mise en Scene scenarios to a CSP specification.
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Invited Talk

In the last 3 decades or so, the size of systems we have been able to verify formally with
automated tools has increased dramatically. At each point in this development, we encountered
a different set of limits – many of which we were eventually able to overcome. Today, we may
have reached some limits that may be much harder to conquer. The problem I will discuss is the
following: given a hypothetical machine with infinite memory that is seamlessly shared among
infinitely many CPUs (or CPU cores), what is the largest problem size that we could solve?
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Extended Abstract

Recent breakthroughs in Boolean satisfiability solving have enabled new approaches to software
and hardware verification. Existing SAT solvers can handle problems with millions of clauses and
variables that are encountered in bounded model checking, test-case generation, and certain types
of planning problems. SAT solving has thus become a major tool in automated analysis of hardware
and other finite systems. Satisfiability modulo theories (SMT) generalizes SAT by adding equality
reasoning, arithmetic, and other useful first-order theories. An SMT solver is a tool for deciding
the satisfiability (or dually the validity) of formulas in these theories. SMT solvers enable bounded
model checking of infinite systems. They have applications in theorem proving, software verification
and other domains such as scheduling, temporal or metric planning, and test-case generation.

Yices is an SMT solver developed at SRI International. It is capable of handling large and
propositionally complex formulas in a rich combination of theories. Yices formulas can mix uninter-
preted functions, linear real and integer arithmetic, bit vectors, scalar and recursive data types, and
quantifiers. An important application of Yices is as a back-end solver for the SAL system. In this
role, Yices supports verification of finite or infinite state-transition systems using bounded-model
checking techniques. Yices is also integrated with the PVS interactive theorem prover, where is
complements the existing PVS decision procedures. Other application areas include static analysis
of software and software testing.

We give an overview of the architecture and algorithms employed by the new Yices 2 solver
planned to be released this year. We describe the logic supported by Yices 2, and the new func-
tionality Yices 2 provides through an improved API.

The core of Yices 2 is a modern Boolean satisfiability solver similar to state-of-the-art tools such
as MiniSat, with additional functionality to interact with different theory solvers. The second major
module implements a decision procedure for the theory of equality with uninterpreted symbols
with extensions for reasoning about tuples and other constructs. The other parts of Yices 2 are
specialized decision procedures for bit vectors and arithmetic, and a module that implements
quantifier instantiation. We present the major features of these different modules and describe
their interaction.

To address some limitations of the current Yices system, we have thoroughly redesigned
Yices 2’s API to facilitate its integration into other systems. We discuss several API enhance-
ments and simplifications, and we present the new features that we are currently developing.
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Extended Abstract

The rising diversity of verification tools—proof assistants, model checkers, satisfiability solvers,
predicate abstractors, to name a few—can be seen as both a testament to the health of formal
methods, and as an impediment to their widespread adoption. In particular, in such a rich ecosys-
tem, the process of making an enlightened choice about the best combination of tools for a given
verification task can, in itself, be fairly problematic. This choice bears even more weight consider-
ing that there is no guarantee that formal developments in a given system can be later ported to
other systems. Solutions to this problem often come as adhoc implementations: mainly, transla-
tors between proof assistants [9, 14, 15, 5], and integration of solvers, model-checkers, and decision
procedures into proof assistants [18, 8]. These approaches all have in common the fact that they
are at the same time fragile, because any change in the source or target implementation will break
the translation; and expensive to establish and maintain, since they require in-depth expertise of
the systems involved.

The novel concept of a formal tool bus takes a different approach towards composition and
interoperability, by relying on asynchronous message passing between standalone formal verification
tools. The tools behave as distributed agents that can either publish a formula they wish to see
proved, or answer such a request with some evidence attesting of their success. Agents register the
services they provide, as well as the syntax and semantics of their logical language, to a facilitator,
that takes care of the lower-level parts of the connection. Since 2007, work has started at SRI
International on a formal tool bus called Evidential Tool Bus (etb) [17], basing it on the industrial-
strength distributed framework Open Agent Architecture [13], and starting with the connection of
the Yices smt-solver [7], the sal model-checking suite [2], and the pvs proof assistant [16].

Initial investigations about distributed interoperation structures have turned up a number of
questions, which in turn opened new research perspectives and contributions. First is the problem
of deciding logical compatibility between the components of the system. This is tackled using
a first-order metalogical framework and a paradigm that extends Avron’s work on consequence
relations [1]. However, the strong computational capabilities of solvers such as Yices are poorly
represented in this exclusively deductive setting: this leads us to investigate systems that allow the
combination of logical inferences and term rewriting steps, such as deduction modulo [6]. Second
is the problem of managing the coordination between distributed agents, a fundamental feature in
order to be able to guide non-trivial agent interactions. For instance, scenarios such as the counter-
example guided abstraction and refinement (cegar) loop [3] rely on a precise coordination between
predicate abstractors, model-checkers, and sat-solvers. This takes us beyond current work on proof
languages [11, 12], which only provide sequencing control over proof development, and into the
realm of specialized architecture definition and coordination languages [10, 4].
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The etb currently provides basic functionality for sal-to-Yices communications, and its devel-
opment is progressing quickly. By combining formal verification tools in a distributed framework,
the formal tool bus architecture aims at facilitating the elaboration of powerful, flexible, and in-
teroperable tool chains. The logical and coordination aspects are at the heart of the design of the
tool bus, and we believe the choices that are being investigated and implemented will provide the
solid foundations required for the success of this project.
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Rushby, Vlad Rusu, Hassen Säıdi, Natarajan Shankar, Eli Singerman, and Ashish Tiwari. An overview
of SAL. In C. Michael Holloway, editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop,
pages 187–196, Hampton, VA, June 2000. NASA Langley Research Center.

[3] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement. In E. Allen Emerson and Aravinda Prasad Sistla, editors, Computer Aided
Verification, 12th International Conference, CAV 2000, volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer-Verlag, 2000.

[4] Charles Consel, Wilfried Jouve, Julien Lancia, and Nicolas Palix. Ontology-directed generation of
frameworks for pervasive service development. In Proceedings of The 4th IEEE Workshop on Middle-
ware Support for Pervasive Computing, White Plains, NY, USA, March 2007.

[5] Ewen Denney. A prototype proof translator from HOL to Coq. In Mark Aagaard and John Harrison,
editors, Proc. 13th Int. Conf. on Theorem Proving in Higher Order Logics, volume 1869 of Lecture
Notes in Computer Science, pages 108–125. Springer-Verlag, 2000.
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SRI’s Symbolic Analysis Laboratory (SAL)1 is bad news for interactive mechanical theorem
provers. SAL is so automated yet expressive that for many of the verification endeavors I might
have previously used a mechanical theorem prover, I would now use SAL. The purpose of this brief
report is to persuade you to do the same.

To convince the reader, I highlight SAL’s features that are especially useful or novel from a
practitioner’s perspective. With my coauthors, I have had the opportunity to use SAL in a number
of applied verifications [1, 2, 3, 5, 6, 7].2 These works draw from the domains of distributed systems,
fault-tolerant protocols, and asynchronous hardware protocols (the most notable omission is the
domain of software, although the techniques reported are not domain-specific).

Specifically, in this talk, I will cover using higher-order functions in model-checking, how to
use infinite-state bounded model checking (inf-bmc) to verify real-time systems, synchronous and
asynchronous composition for inf-bmc, and integrating model checking in industrial projects.
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Extended Abstract

Engineering is an interactive process that requires intelligent interaction at many levels. My
thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition
that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish,
the software prototype for the design method, implements a table-centric transformation system
for reorganizing control-dominated system expressions into high-level architectures. Based on
the digital design derivation (DDD) system—a designer-guided synthesis technique that applies
correctness preserving transformations to synchronous data flow specifications expressed as co-
recursive stream equations—Starfish enhances user interaction and extends the reachable design
space by incorporating four innovations: behavior tables, serialization tables, data refinement, and
operator retiming.

Behavior tables express systems of co-recursive stream equations as a table of guarded signal
updates. Developers and users of the DDD system used manually constructed behavior tables to
help them decide which transformations to apply and how to specify them. These design exercises
produced several formally constructed hardware implementations: the FM9001 microprocessor, an
SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for inter-
preting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD’s
developers, have subsequently commercialized the design derivation methodology at Derivation
Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-
code processor; they further executed a contract to prototype SPIDER—NASA’s ultra-reliable
communications bus.

To date, most derivations from DDD and DRS have targeted hardware due to its synchronous
design paradigm. However, Starfish expressions are independent of the synchronization mechanism;
there is no commitment to hardware or globally broadcast clocks. Though software back-ends for
design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time
software is not substantively different from targeting hardware.

The separation of concerns—e.g., architecture, behavior, data representation, and interface
coordination—is standard engineering doctrine. In particular, it is futile to expose all aspects

? Many thanks to the NASA Langley Research Center’s generous sponsorship of this work through their Graduate
Student Researcher’s Program, NGT-1-010009. This extended abstract is a revised excerpt from the author’s doctoral
dissertation accepted by the Indiana University Computer Science Department.[1]

?? The author’s affiliation with The MITRE Corporation is provided for identification purposes only, and is
not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions or viewpoints
expressed by the author.
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equally well with a single language. Behavior tables represent a compromise between behavior
and architecture: its rows roughly characterize a specification’s control oriented aspects, while the
columns represent its architectural, or structural, aspects.

The behavior table transformations—among other things—allow designers to trade between
these two axes, thereby balancing between the two aspects. It is no surprise, then, that behavior
tables are well suited for deriving architectural components from behaviorally oriented expressions.

Type Management and Data Refinement: Behavior tables operate on arbitrarily abstract
data-types, not just bit-vectors and bounded integers. In this respect, they are far more expressive
than standard hardware description languages. Starfish implements an explicit type system and a
framework for data refinement to support high-level specification with abstract data types.

Demand for explicit typing arose from several areas: the need to limit decision expressions to
finitely branching guards, the need to prevent incompatible signal merging opportunities among
unused slots in table columns, and the desire to increase feedback by disallowing unsound trans-
formations at earlier stages. The type system, which is based on multisorted structures, takes
on a second responsibility: it forms a database of term-level identities. One of the core transfor-
mations applies algebraic identities (e.g., operator commutativity) to terms. While many term
rewrites in DDD are combinator expansions, each algebraic term rewrite requires external valida-
tion. Starfish leverages the type system’s identity database to confirm algebraic rewrites—only
the identity pattern needs external verification.

Since the type system declares function symbols, signatures and identities, it provides a foun-
dation for data refinement. At the simplest level, a system of identities can express one-to-one
homomorphisms between types. While such an identity system transforms abstract terms into
representation terms, the architectural algebra preceding Starfish could not transform abstract
signals into representation signals in a general way. The first attempts to impose signal-level
refinement were ad hoc, but the current refinement process follows from retiming and recursive
identity expansion. In addition to refinement by one-to-one homomorphism, Starfish supports one-
to-many refinements, where there are multiple representations for each abstract type, and stateful
refinements, which represent multiple signals with references to a shared store.

While behavior tables are not useful for defining data refinements, they are useful for exploit-
ing and managing their consequences. Data refinements lead to more detailed specifications and
consequently a wider transformation space. System decompositions, the problem for which behav-
ior tables were developed, may “cut across” a representation that implements an abstract type
with a collection of signals. For instance, suppose a refinement simulates abstract stacks with a
pointer and array; subsequent architectural organization may separate the array from the pointer.
In another case, a stateful refinement may impose serial access on the previously unconstrained
concurrency of abstract operations. Behavior tables and their scheduling aid, serialization tables,
provide an interactive method for integrating the serial requirements into a system’s control and
architecture by scheduling access before and after stateful refinements.

Scheduling and serialization: Starfish introduces serialization tables for scheduling the
evaluation of complex action terms over several steps. Like behavior tables, columns represent
signals and rows represent simultaneous actions which update the signals. Serialization tables are
an organizational aid that helps designers solve the NP-hard problems involved in high-level syn-
thesis; e.g., how to fit an evaluation sequence within a specified number of registers and execution
units. Serialization tables help specify evaluation order and intermediate resource usage for com-
pound actions in a behavior table. As the schedule develops, the serialization tables display partial
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symbolic-evaluations of the intermediate actions. This feedback mechanism helps designers specify
actions in the subsequent steps. Starfish validates correctness before integrating the actions into
behavior table expressions.

The DDD algebra views serialization as primarily a behavioral problem. Yet, the goal of
scheduling is often architecturally dictated. One must use a limited set of resources. Register
allocation, functional allocation, and timing are not fully exposed in DDD’s behavioral represen-
tations. Serialization tables display these aspects more clearly than DDD’s co-recursive stream
equations, making them a better suited medium for the schedule specification process.

Retiming: Starfish supports retiming in two ways. One is with serialization tables and local
re-serialization, or adjustment of schedules. The other is with a transformation that converts
combinational signals to sequential signals and vice versa. In schematic terms, the transformation
pushes a functional unit from one side of a register to the other. Although retiming is the critical
step in transforming abstract signals to representation signals, the motivating example in Starfish
was a stack-calculator derivation. The original specification used a combinational top accessor
for the output signal. Any plausible implementation would store the top value in a register. The
exercise of hand-specifying a stack-calculator with a registered top signal was enough to see a
generalizable pattern. Indeed, equivalent transformations have been used in formal synthesis and
microarchitecture algebra.

This talk surveys Starfish’s incorporation of behavior tables, data refinement, serialization,
and retiming into design derivation. Please see my thesis [1] for an in-depth presentation of these
techniques; full text is freely available on the Web.
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