522 research outputs found

    Scheduling of Flexible Manufacturing Systems using Intelligent heuristic search algorithm (IHSA*)

    Get PDF
    The complete scheduling of FMS includes two independent processes: sequencing of jobs and scheduling those prioritized jobs. In a flow shop or a Progressive type FMS, scheduling problem involves sequencing of ‘n’ jobs on ‘m’ machines with minimum makespan. Intelligent heuristic search algorithm (IHSA*) is used in this paper, which ensure to find an optimal solution for flow-shop problem involving arbitrary number of machines and jobs provided the job sequence is same on each machine. The initial version of IHSA* is based on the A* algorithm. The final version of IHSA* is the modification of the initial IHSA*. There are three modifications: first modification concerned with the selection of an admissible heuristic function, second modification concerned with the procedure which determine heuristic estimate as the search progresses and the third modification concerned with the searching of multiple optimal solution, if they exist. Both version of the IHSA* are presented in this paper with an example which illustrates the use of both

    Job Shop Scheduling Problem: an Overview

    Get PDF
    The Job-shop scheduling is one of the most important industrial activities, especially in manufacturing planning. The problem complexity has increased along with the increase in the complexity of operations and product-mix. To solve this problem, numerous approaches have been developed incorporating discrete event simulation methodology. The scope and the purpose of this paper is to present a survey which covers most of the solving techniques of Job Shop Scheduling (JSS) problem. A classification of these techniques has been proposed: Traditional Techniques and Advanced Techniques. The traditional techniques to solve JSS could not fully satisfy the global competition and rapidly changing in customer requirements. Simulation and Artificial Intelligence (AI) have proven to be excellent strategic tool for scheduling problems in general and JSS in particular. The paper defined some AI techniques used by manufacturing systems. Finally, the future trends are proposed briefly

    Study on application possibilities of Case-Based Reasoning on the domain of scheduling problems

    Get PDF
    Ces travaux concernent la mise en place d'un système d'aide à la décision, s'appuyant sur le raisonnement à partir de cas, pour la modélisation et la résolution des problèmes d'ordonnancement en génie des procédés. Une analyse de co-citation a été exécutée afin d'extraire de la littérature la connaissance nécessaire à la construction de la stratégie d'aide à la décision et d'obtenir une image de la situation, de l'évolution et de l'intensité de la recherche du domaine des problèmes d'ordonnancement. Un système de classification a été proposée, et la nomenclature proposée par Blazewicz et al. (2007) a été étendue de manière à pouvoir caractériser de manière complète les problèmes d'ordonnancement et leur mode de résolution. Les difficultés d'adaptation du modèle ont été discutées, et l'efficacité des quatre modèles de littérature a été comparée sur trois exemples de flow-shop. Une stratégie de résolution est proposée en fonction des caractéristiques du problème mathématique. ABSTRACT : The purpose of this study is to work out the foundations of a decision-support system in order to advise efficient resolution strategies for scheduling problems in process engineering. This decision-support system is based on Case-Based Reasoning. A bibliographic study based on co-citation analysis has been performed in order to extract knowledge from the literature and obtain a landscape about scheduling research, its intensity and evolution. An open classification scheme has been proposed to scheduling problems, mathematical models and solving methods. A notation scheme corresponding to the classification has been elaborated based on the nomenclature proposed by Blazewicz et al. (2007). The difficulties arising during the adaptation of a mathematical model to different problems is discussed, and the performances of four literature mathematical models have been compared on three flow-shop examples. A resolution strategy is proposed based on the characteristics of the scheduling problem

    Swarm intelligence for scheduling: a review

    Get PDF
    Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization

    A new innovative cooling law for simulated annealing algorithms

    Get PDF
    The present paper proposes an original and innovative cooling law in the field of Simulated Annealing (SA) algorithms. Particularly, such a law is based on the evolution of different initial seeds on which the algorithm works in parallel. The efficiency control of the new proposal, executed on problems of different kind, shows that the convergence quickness by using such a new cooling law is considerably greater than that obtained by traditional laws. Furthermore, it is shown that the effectiveness of the SA algorithm arising from the proposed cooling law is independent of the problem type. This last feature reduces the number of parameters to be initially fixed, so simplifying the preliminary calibration process necessary to optimize the algorithm efficiency

    Robust multiobjective optimisation for fuzzy job shop problems

    Get PDF
    Abstract In this paper we tackle a variant of the job shop scheduling problem with uncertain task durations modelled as fuzzy numbers. Our goal is to simultaneously minimise the schedule's fuzzy makespan and maximise its robustness. To this end, we consider two measures of solution robustness: a predictive one, prior to the schedule execution, and an empirical one, measured at execution. To optimise both the expected makespan and the predictive robustness of the fuzzy schedule we propose a multiobjective evolutionary algorithm combined with a novel dominance-based tabu search method. The resulting hybrid algorithm is then evaluated on existing benchmark instances, showing its good behaviour and the synergy between its components. The experimental results also serve to analyse the goodness of the predictive robustness measure, in terms of its correlation with simulations of the empirical measure.This research has been supported by the Spanish Government under Grants FEDER TIN2013-46511-C2-2-P and MTM2014-55262-P

    Benchmarks for fuzzy job shop problems

    Get PDF
    The fuzzy job shop scheduling problem with makespan minimisation is a problem with a significant presence in the scientific literature. However, a common meaningful comparison base is missing for such problem. This work intends to fill the gap in this domain by reviewing existing benchmarks as well as proposing new benchmark problems. First, we shall survey the existing test beds for the fuzzy job shop, analysing whether they are sufficiently varied and, most importantly, whether there is room for improvement on these instances - an essential requirement if the instances are to be useful for the scientific community in order to compare and develop new solving strategies. In the light of this analysis, we shall propose a new family of more challenging benchmark problems and provide lower bounds for the expected makespan of each instance as well as reference makespan values obtained with a memetic algorithm from the literature. The resulting benchmark will be made available so as to facilitate experiment reproducibility and encourage research competition

    Production Systems and Information Engineering 5.

    Get PDF

    ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC ALGORITHMS

    Get PDF
    This research proposes a method to solve the adaptive, multi-objective job shop scheduling problem. Adaptive scheduling is necessary to deal with internal and external disruptions faced in real life manufacturing environments. Minimizing the mean tardiness for jobs to effectively meet customer due date requirements and minimizing mean flow time to reduce the lead time jobs spend in the system are optimized simultaneously. An asexual reproduction genetic algorithm with multiple mutation strategies is developed to solve the multi-objective optimization problem. The model is tested for single day and multi-day adaptive scheduling. Results are compared with those available in the literature for standard problems and using priority dispatching rules. The findings indicate that the genetic algorithm model can find good solutions within short computational time
    corecore