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ABSTRACT OF THESIS 

 

 

 

 

ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC 

ALGORITHMS  

 

 

This research proposes a method to solve the adaptive, multi-objective job shop 

scheduling problem. Adaptive scheduling is necessary to deal with internal and external 

disruptions faced in real life manufacturing environments. Minimizing the mean tardiness 

for jobs to effectively meet customer due date requirements and minimizing mean flow 

time to reduce the lead time jobs spend in the system are optimized simultaneously. An 

asexual reproduction genetic algorithm with multiple mutation strategies is developed to 

solve the multi-objective optimization problem. The model is tested for single day and 

multi-day adaptive scheduling. Results are compared with those available in the literature 

for standard problems and using priority dispatching rules. The findings indicate that the 

genetic algorithm model can find good solutions within short computational time.  

 

KEYWORDS: Genetic Algorithms, Job shop scheduling, Multi-objective optimization, 

Adaptive scheduling, Asexual reproduction.  
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1 INTRODUCTION 

1.1 Overview 

Scheduling is broadly defined as the process of assigning a set of tasks to resources over 

a period of time (Pinedo, 2001). Effective scheduling plays a very important role in 

today’s competitive manufacturing world. Performance criteria such as machine 

utilization, manufacturing lead times, inventory costs, meeting due dates, customer 

satisfaction, and quality of products are all dependent on how efficiently the jobs are 

scheduled in the system. Hence, it becomes increasingly important to develop effective 

scheduling approaches that help in achieving the desired objectives.  

 

Several types of manufacturing shop configurations exist in real world. Based on the 

method of meeting customer’s requirements they are classified as either open or closed 

shops. In an open shop the products are built to order where as in a closed shop the 

demand is met with existing inventory. Based on the complexity of the process, the shops 

are classified as single-stage, single-machine, parallel machine, multi-stage flow shop 

and multi-stage job shop. The single-stage shop configurations require only one operation 

to be performed on the machines. In multi-stage flow shops, several tasks are performed 

for each job and there exists a common route for every job. In multi-stage job shops, an 

option of selecting alternative resource sets and routes for the given jobs is provided. 

Hence the job shop allows flexibility in producing a variety of parts. The processing 

complexity increases as we move from single stage shops to job shops. Various methods 

have been developed to solve the different types of scheduling problems in these different 

shop configurations for the different objectives. These range from conventional methods 

such as mathematical programming & priority rules to meta-heuristic and artificial 

intelligence-based methods.  

 

Job shop scheduling is one of the widely studied and most complex combinatorial 

optimization problems. A vast amount of research has been performed in this particular 

area to effectively schedule jobs for various objectives. A large number of small to 

medium companies still operate as job shops. Despite the extensive research carried out it 
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appeared that many such companies continue to experience difficulties with their specific 

job shop scheduling problems. Therefore developing effective scheduling methods that 

can provide good schedules with less computational time is still a requirement. Most of 

the real world manufacturing companies aim at successfully meeting the customer needs 

while improving the performance efficiency.  

 

This objective is very challenging, particularly in a job shop, where the demand is highly 

unpredictable. Uncertainties at the planning and on on-line execution stages disturb the 

pre-planned schedule to a great extent. Deviations from pre-established schedules occur 

when the job shop experiences both external disturbances (e.g. urgent job arrivals) and 

internal disruptions (e.g. machine breakdowns) (Oats et al., 1999). One approach to deal 

with this schedule disruptions is to adjust the predictive schedule slightly without altering 

the entire schedule. However, this may not be effective in optimizing the objectives 

overall. On the other hand, changing the schedule to adapt to emerging situations can be 

difficult to perform manually. Therefore, in such situation it becomes necessary for 

companies to explore the scheduling of jobs adaptively, on a real-time basis effectively.  

 

The motivation for this research comes from a real world job shop scheduling problem 

faced by a local-furniture manufacturing company. A variety of products such as office 

furniture, home and dining furniture including tables, chairs, desks, shelves, cabinets etc. 

are manufactured for individual customers in the plant. The jobs arrive on a daily basis 

and each has a specific processing time and due date. The aim is to schedule the 

incoming jobs efficiently on the machines to reduce the time they remain in the system 

and to meet the due dates. However events such as machine breakdowns, high priority 

job arrivals often interfere with scheduling to a great extent.  Currently, the scheduling is 

performed by a simple observation analysis. The due dates of all the existing jobs (new 

and the old incomplete jobs) are first compared and based on observations the jobs are re-

organized and assigned to machines manually. This method is very time consuming and 

could be extremely inefficient in optimizing the minimization of average flow time 

(which is the interest of the company) and meeting the due dates. This type of situation 

arises in most job shop plants.  
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In this research, we are developing a method to optimize the scheduling process that 

improves the customer satisfaction through better adherence to deliver dates and 

simultaneously minimizing the resource usage.   

1.2 Scheduling Nomenclature  

Prior to describing the problem statement some general scheduling nomenclature relevant 

to the job shop problem will be described here. Job shop scheduling problem can be 

defined as the processing of n  jobs on m  machines, each with a unique processing 

sequence on the machines. The processing time of a job j  on a machine i  released at 

release time jR  with a due date jd  is denoted by ijp .  Any scheduling problem can be 

denoted by a three field representation γβα || (Gen and Cheng, 1999). Here α   

represents the machining environment, β  the processing characteristics of the job 

including the constraints and γ  the objectives to be optimized. The relevant variables for 

theα , β  and γ  fields, for this research are briefly described below. 

 

The machine environment in this research is a job shop and is denoted by mj .  

Job shops ( mj ): Each job has its own routing sequence on machines. Any operation 

ijO can be performed if and only if all the tasks preceding that particular operation are 

completed.  

 

In this research, β  represents the precedence constraints as described below: 

 

Precedence constraints ( prec ): This term implies that one or more operations have to be 

performed before a job can start its processing on a particular machine. Different types of 

precedence constraints such as chains, intrees and outtrees exist in literature. In this 

research, precedence constraints exist between the operations for each job.  
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Preemption ( prmp ): This term is used to indicate that operation ijO  of job j  can be 

interrupted anytime during its processing on machine i . This happens in a situation when 

a higher priority job must be processed. In this research no preemption is allowed.  

 

Sequence dependent set-up times ( jks ): In most of real world applications if a machine 

has to process job k  after finishing job j , a changeover time and cost must be incurred 

to prepare the machine for job k . These often vary depending on which job is processed 

after the other. In this research, the set-up times are assumed to be sequence-independent 

and as included in the processing time.  

 

The γ  field contains the objectives to be optimized in scheduling and those related to this 

research are:  

 

Completion time ( jC ): The time at which job j  is completely processed.  

 

Makespan ( maxC ): The time taken to complete all the jobs in a system. Minimizing 

makespan improves the machine utilization.  

 

Flow time ( jF = jC - jR ): The flow time for job j  is given by the time span between the 

completion time jC  and the ready time jr . In this research we assume that all jobs are 

available at the start of processing. Hence jr  is zero. Therefore jF  is equal to jC . 

Usually, a minimum flow time in a scheduling system minimizes the job lead times and 

reduces the inventory cost.  

 

Mean flow time ( )/(
1

nF
n

j

j∑
=

): The average of flow time of all jobs in a system is defined 

as the mean flow time. One of the objectives in this research is minimization of mean 

flow time.  
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Tardiness ( { }0,max jjj dCT −= ): Measure of tardiness indicates the system’s efficiency 

in meeting the due dates set by the customer/company. It is defined as the maximum 

value between 0 and the difference of completion time and due date. If a job is completed 

before its due date, then a job is not tardy. Minimizing tardiness improves delivery 

performance and enhances customer satisfaction.  

 

MeantTardiness ( nT
n

j

j /
1

∑
=

): The average tardiness of all individual jobs in the system is 

know as mean tardiness. The other objective in this research is minimizing the mean 

tardiness.  

 

The two objectives mean flow time and mean tardiness optimized in this research do not 

converge i.e. they conflict with each other and the optimization involves a trade-off.  

 

1.3 Problem Statement 

Based on the above scheduling nomenclature, the research problem in this thesis is 

defined as a job shop problem with precedence constraints and optimizing mean flow 

time and mean tardiness can be denoted as ( ))/(),/((||
11

nTnCprecJ
n

j

j

n

j

jm ∑∑
==

).  

 

The demand for high variety and low volume products poses many challenges in today’s 

real time manufacturing systems. There is a growing need to improve the scheduling 

operations to meet shorter due dates and to best utilize the machines.  Moreover, the 

scheduling approaches must improve the flexibility of scheduling operations. With 

increased flexibility disruptions could be handled with less impact on the system. 

Flexibility also helps in achieving the desired objective more effectively. The focus of the 

))/(),/((||
11

nTnCprecJ
n

j

j

n

j

jm ∑∑
==

 in this research considers the above issues.  
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However, looking at the furniture manufacturing problem there lies an additional 

challenge of having to adapt and modify the schedule on a daily basis as jobs enter the 

system.  Therefore to efficiently schedule the operations, an adaptive system that 

modifies the schedule on a daily basis based on the current situation is required. This type 

of adaptive approach is very important to perform effective rescheduling of jobs. 

However, the jobs already set up/processed on any machines ideally should not be 

unloaded, to avoid re-set-up costs. Therefore, addressing all the above requires an 

adaptive, multi-objective optimization to minimize mean flow time and mean tardiness.   

 

Job shop scheduling problem is NP-hard by nature. This complexity is further increased 

when additional constraints are added to solve the real world problem. The exact methods 

could solve only small size problems within acceptable time periods.  Although they 

produce exact solution, they often simplify the instances. Meta-heuristics are semi-

stochastic approaches that can produce near optimal solutions within less computational 

time. These approaches adapt to the problem situation. Among the meta-heuristic 

methods, genetic algorithms are techniques based on human evolution that were widely 

used to solve large optimization problems. The properties of genetic algorithms such as 

the use of a population of solutions, problem–independence enables them to be 

effectively used for job shop scheduling. 

 

Asexual reproduction genetic algorithm involves the formation of offspring’s from a 

single parent. These methods always produce feasible solutions and consume very less 

computational time as compared to sexual reproduction methods. Therefore these 

properties of asexual reproduction methods enabled them to be effectively used for the 

complex job shop problem involved in this research.  
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1.4 Research Objective 

The objective of the research described here is, 

• To determine best job schedule for the ( ))/(),/((||
11

nTnCprecJ
n

j

j

n

j

jm ∑∑
==

 

problem using an asexual reproduction genetic algorithm.  

• To efficiently solve the adaptive job shop scheduling problem above.   

  

1.5 Organization of Thesis  

This thesis is organized as follows: Chapter 2 gives a detailed overview of job shop 

scheduling literature. Chapter 3 presents the problem description and the methodology 

followed to develop the genetic algorithm-based adaptive job shop scheduling model for 

minimizing mean flow time and mean tardiness. Chapter 4 explains the problems tested 

and experimentation to evaluate the effectiveness of the GA model. Chapter 5 provides 

the results for the experimentations followed by the discussion of trends observed. 

Finally, chapter 6 provides the conclusions and future research directions.  
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2 LITERATURE REVIEW 

 

This chapter discusses the state of art literature in areas related to the current research 

problem. Section 2.1 provides an overview of job shop scheduling problem and defines 

the performance measures related to this research. Section 2.2 provides a comprehensive 

review of literature dealing with various solution methodologies including Exact 

Procedures (Mathematical Modeling, Branch and Bound algorithms), Approximate 

Algorithms, Meta-heuristic Methods and Genetic Algorithms. Section 2.3 discusses 

literature related to multi-objective job shop scheduling and relevant works. A description 

of the working of multi-objective Genetic Algorithms is also provided. Sections 2.4 

provide a brief review of reactive schedule literature related to job shops.  

  

2.1 The Job Shop Scheduling Problem 

Scheduling is defined as the allocation of shared resources to tasks over a given period of 

time (Pinedo, 2001). The general job shop scheduling problem can be described by a set 

of n jobs niiJ ≤≤1}{ which is to be processed on a set of m machines mjjM ≤≤1}{ . The 

problem can be characterized as follows:  

 

1. Each Job must be processed on each machine in an order given by a predefined 

sequence of operations 

2. Each machine can process only one job at a time 

3. Each job iJ  is processed on machine jM  which is defined by the operation ijO  

4. Each operation ijO  requires an uninterrupted processing on machine jM  and 

preemption is not allowed 

5. The processing times for each operation are known in advance 

6. Two operations, { 1,, +jiij OO } of the same job cannot be processed at the same 

time. 
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The job shop scheduling problem is one of the well-known and widely studied problems 

in the scheduling literature. Job shop scheduling is an NP hard problem (Sadeh, 1991), 

(Lorenco, 1995). The complexity characteristic and the close resemblance of the problem 

to the general domain of problems captured the interest of a significant number of 

researchers. Based on the optimizing criteria, the scheduling problem can be classified as 

the completion times related and due date related problem.  

 

The nature of the scheduling environment plays a vital role in determining the job 

schedules. Typically, in a static environment the number of jobs and the arrival times are 

known in advance. If the arrival times of jobs are unknown the scheduling system is 

considered as dynamic. A dynamic scheduling system encounters the difficulties of 

randomness such as machine breakdowns, unexpected job orders etc. which are 

experienced in real world problems (Madureira et al., 2001). Most of the research during 

the last three decades has concentrated on the deterministic job shop problem making it 

one of the well developed models in the scheduling theory (Moon and Lee, 2000). In 

dynamic scheduling, the goal is not to find a single optimum but to continuously change 

the solution that adapts to the varying environment. Therefore these constraints increase 

the complexity and the computational time of these problems, even for a small problem 

(Vlazewicz et al., 2001).  

 

Mean Flow Time and Mean Tardiness 

 

The solution of any optimization problem is evaluated by an objective function. 

Objectives that are associated with cost, resources and time such as the makespan (the 

time at which the last job leaves the system), flow time, tardiness are minimized while 

the objectives related to production rate, machine utilization are maximized. Considerable 

amount of research is done in this area (Satake et al., 1999 ; Calavrese et al., 2001).  

 

Most of the literature in the job shop problem considered makespan as the scheduling 

criteria (Moon and Lee, 2000). Among the completion time objectives, makespan is 
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frequently used in job shop scheduling problem as it is directly associated with machine 

utilization (Kubiak et al., 1996). Flow time minimization has recently gained a lot of 

importance in recent research work due to its effect on resources and inventory (Suresh 

and Mohanasundaram, 2005). Also know as lead-time, flow time is given by the length of 

time a job remains in its system. On the other hand, mean flow time is the average of the 

flow times of individual jobs. In scheduling, the mean flow time seems to be a more 

important objective than makespan, as makespan aims at minimizing the schedule 

duration, but in real time industry this duration is frequently defined by the time period of 

the process (Aldakhilallah and Ramesh, 2001).  

 

In industrial production, jobs are released with subject to capacity constraints, material 

constrains, etc. Due date indicates a time when a job must be completed, to adhere to the 

projected delivery date. It is generally used to improve the customer service levels (Kuluc 

and Khraman, 2006; Cicirello and Smith, 2001). This is an important factor in the 

competitive world as customer satisfaction becomes one of the major priorities. Due date 

criterion can also be used in situations where priorities are assigned to complete a job on 

time with respect to a certain customer. In these situations, makespan is no longer 

economical in achieving the desired objective (Baykasoglu et al., 2008). Mean tardiness 

is a measure of the average of individual job tardiness. Minimizing tardiness is used as 

the objective when due dates are tight and to minimize late deliveries in a system 

(Gordon et al., 2002).  

2.2 Solution Methodologies and Related Work  

Over the past few decades several optimization techniques have been proposed for the 

job shop problem ranging from simple and fast dispatching rules to sophisticated branch-

and-bound algorithms. However, with the rapid increase in the speed of computing and 

the growing need for efficiency in scheduling, it becomes increasingly important to 

explore ways of obtaining better schedules at some extra computational costs (Blazewicz 

et al., 1996).  
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2.2.1 Exact Procedures 

Various solution techniques broadly classified under exact and approximate methods 

were developed for the Job shop problem (Dimopoulos and Zalzala, 2000). While 

considering the mathematical formulation methods, the mixed integer programming 

format developed by Manne (1960) was one of the most common forms of mathematical 

formulations. Later, Greenberg (Greenberg, 1968) developed a method based on Manne's 

integer programming formulation. However, the integer programming methods were 

practically infeasible (Giffler and Thompson, 1960) and computationally difficult 

(French, 1982). The reason is high problem simplification and numerous constraints 

associated with these problems. The success with mathematical programming was often 

possible with Lagrange Relaxation approaches (Manne, 1960; Fisher, 1973a; Fisher, 

1973b) and decomposition methods (Chu et al., 1992; Kruger et al., 1995).  

 

Research on exact solution techniques for job shop scheduling has also formed heavily on 

Branch and Bound techniques. Some of the early work in this area was performed by 

Brooks and White (1965) and Ignall and Schrage (Iima, 1999). The popular one machine 

decomposition problem was first successfully solved by McMahon and Florian (1975) 

which was considered as the best exact solution method for a long time. This was 

followed by several research papers such as Carlier and Pinson (1989), Brucker, et al. 

(1994), Boyd and Burlingame (1996). Although literature provides information about 

considerable improvements made by branch and bound algorithms, large size problems 

still can not be solved by these exact methods (Lourenco, 1995).  

 

2.2.2 Approximate Procedures  

The high computational time and the complexity involved with the exact procedures led 

several researchers’ attention to the development of approximate methods for solving 

large sized problems (Franklin, 1969).  Approximate procedures are adapted to large size 

problems to obtain near optimal solution within reasonable computational time. Glover 

and Greenberg (1989) in their paper discussed the importance and necessity of 

approximate procedures. The approximate procedures include the local search methods, 
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meta-heuristics, priority dispatching rules (pdr’s), artificial intelligence and bottleneck - 

based heuristics. Literature shows a vast amount of work performed in this area on job 

shop scheduling.  

 

Nasr and Elsayed (1990) presented two efficient heuristic to minimize the mean flow 

time in a general job shop type machining system with alternative machine tool routings. 

Their methods were based on decomposing a big problem into multiple sub-problems and 

solving them individually. They also developed a greedy procedure for the case of adding 

alternative machines by including a penalty cost. Kubiak et al. (1996) proved that there is 

an optimal job schedule with the shortest processing time (SPT) job order, for a reentrant 

job shop with one hub machine, where job enters a certain number of times. They derived 

a dynamic programming algorithm to find the optimal schedule under the bottleneck 

assumption and the hereditary order assumption. Their objective was to minimize total 

flow time.  

 

Moon and Lee (2000) developed a heuristic to solve the job shop scheduling problem 

with alternate routings by dividing the problem into two problems; allocation and 

sequencing problem. They presented two different approaches to solve the two problems. 

The performance measures considered were mean flow time, makespan, maximum 

lateness and total absolute deviation from due dates. Aldakhilallah and Ramesh (2001) 

developed cyclic scheduling heuristics for the reentrant job shop scheduling 

environments. Their approach considered a repetitive production re-entrant job shop with 

a predetermined operations sequence on a particular single product.  Their objective was 

to minimize both cycle time and flow time simultaneously.  

 

Minimizing tardiness in job shop scheduling has been considered only in few papers. 

Vepsalainen and Morton (1987) studied and tested several dispatching rules, and 

presented the apparent tardiness cost (ATC) as the one that achieved the best results 

among them. Anderson and Nyirenda (1990) developed two rules combining two 

different dispatching rules. He, et al., (1993) developed an effective heuristic that 

minimizes the total tardiness of jobs. They used a heuristic exchange neighborhood of 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V27-451DM1M-3&_user=16764&_coverDate=04%2F11%2F2002&_alid=675072460&_rdoc=1&_fmt=full&_orig=search&_cdi=5695&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=aae6bba66645bac3947ec7b996f3ac0d#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V27-451DM1M-3&_user=16764&_coverDate=04%2F11%2F2002&_alid=675072460&_rdoc=1&_fmt=full&_orig=search&_cdi=5695&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=aae6bba66645bac3947ec7b996f3ac0d#bib2
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asymptotic time complexity in this problem. Although this heuristic was effective the 

search process was time consuming. Pinedo and Singer (1999) presented a heuristic 

based on the shifting bottleneck procedure. This heuristic produced close to optimal 

solutions on 10 x 10 problems.  

 

Some of the recent papers in this area include the works by Asano and Ohta (2002) that 

developed a heuristic-based algorithm having the tree search procedure to solve the 

minimum total weighted tardiness problem. Their work produced a sub-optimal solution 

within a shorter computational time. Bontridder (2005) proposed a neighborhood local 

search method to minimize the total weighed tardiness in a generalized job shop problem.  

2.2.3 Meta-heuristic Methods 

Meta-heuristics are semi-stochastic methods used for solving hard optimization problems 

(Kuluc and Kahraman, 2006). These techniques are the most recent developments in 

approximate methods to solve complex optimization problems. The neighborhood 

strategies developed in some of the works of Matsuo, et al. (1988) and Van Laarhooven, 

et al. (1987) form the basis for the formation of meta-heuristic methods (Blum and Roli, 

2003). Meta-heuristic approaches unlike traditional approaches have the capability to 

adapt to the problem environment (Yamada, 2003).  This provides an opportunity to 

apply these methods for real world problems. For complex real world problems, meta-

heuristics are often applied with some other approach to enhance the problem solution. 

Meta-heuristics techniques can also be used to solve dynamic scheduling problems 

through combining with fuzzy sets theory techniques. While several methods are being 

addressed in literature, Tabu Search, Simulated Annealing (Laarhoven and Aarts, 1987) 

and Genetic algorithms (Davis, 1985) are the most successful meta-heuristic methods. 

The success of these methods is defined by their capability in producing good solutions 

(near optimal) in less computational time.  

 

Tabu search (Baykasoglu et al., 2002) is a Meta-heuristic that guides the search direction 

to explore the solution space beyond local optimality. Glover (1986) derived the Tabu 

search heuristic. He defined Tabu search as a “as a meta-heuristic that is superimposed on 
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another heuristic”. In this procedure, the Tabu search algorithm stores the previous search 

history (list of obtained solutions) in its memory. When the search process is carried out 

in a new neighborhood the algorithm tries to find the best solution by excluding earlier 

solutions stored in the memory. Therefore this procedure forbids (makes tabu) moves in 

new neighborhoods, by guiding the search process away from solutions that resemble 

previous ones.  

 

Several heuristics based on Tabu search were developed for the job shop scheduling 

problem (Della et al., 1995). Laguna, et al. (1994) provided some of the earliest Tabu 

search approaches by creating three search strategies with simple move definitions. 

Following this work, literature provides several research papers and advancements in 

Tabu search heuristics. Sun and Batta (1996) proposed divide and a conquer scheme for 

the large scale job shop scheduling problems. Their approach was to decompose each job 

into cells and further applying iterative procedures to solve the individual cell scheduling 

problems. Armentano and Schrich (2000) presented a tabu search approach to minimize 

total tardiness in a job shop problem. Their method uses a set of dispatching rules to find 

the initial solution followed by the neighborhood search method based on critical paths of 

jobs. The advantage of this method is that it avoids local minima but a proper termination 

condition has to be set, which otherwise may end in the method not providing a good 

result (Peres and Paulli, 1997).   

 

Simulated Annealing (SA) is a random search technique that originates from the analogy 

between annealing process and the search for the minimum in a general process. It was 

first developed by Kirkpatrick, et al. (1983) who adapted the work of Metropolis, et al. 

(1953) to constraint optimization problems. The SA algorithm starts with a randomly 

generated set of initial solutions and at a high starting temperature ‘T’. The algorithm 

replaces the present solution with a solution from its neighborhood if that solution is 

“better” than the current one. A “better” solution in this algorithm could be the one whose 

objective function value is less / greater (minimization problem/maximization problem) 

than the current value, or some times even a value that is greater / lesser than the current 

one. The latter solutions are accepted with a probability. The probability is a function of 
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difference in objective function values and the temperature T. The value of temperature 

gradually decreases during the search process, thereby the solutions are replaced more 

number of times at the beginning and less replacements occur towards the end of the 

process. The above steps are repeated until a termination criterion is reached. This 

heuristic has a good ability to avoid the solutions being trapped in local minima because 

of the inclusion of the probability function. But the major shortcoming of this algorithm 

lies in the high computational cost for obtaining an exact solution (Wu and Wang, 1998). 

Research on literature provides papers on the modification of this algorithm to improve 

the solution accuracy and convergence.  

 

Considerable research has been done on scheduling using SA. Ponnambalam et al. (2001) 

developed a SA approach for the job shop scheduling algorithm to minimize makespan. 

Sadeh (1996) developed a focused SA approach to solve the job shop scheduling problem 

to minimize tardiness and inventory costs. In this paper, a meta-heuristic procedure is 

developed that dynamically inflates the costs associated with the inefficiencies, there by 

improving the effectiveness of the SA procedure. Wu and Wang (1998) used the SA to 

obtain the minimum total tardiness. Their method could search for all of the feasible 

solutions and also has the capability of exploring cost non-decreasing configurations. 

Another work of Wu and Wang (1998) proposed a revised SA algorithm to minimize the 

total tardiness.   

 

One among the meta-heuristic methods, Genetic Algorithms (GA’s) is a well known 

evolutionary approach used to solve various optimization problems. In this research we 

use a GA-based approach to find best solutions to the job shop scheduling problem. 

Therefore brief descriptions of the GA operations relevant to the research are presented 

separately in the next section. 
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2.2.4 Genetic Algorithms 

Inspired by principles of natural evolution, GA’s are one of the well known types of 

evolutionary algorithms (Holland, 1985). GA’s are iterative procedures where each 

iteration is termed as generation. The process begins with an initial population (NPOP) of 

chromosomes each of which is a solution to the problem. Similar to the biological 

process, reproduction in GA’s can be of two types; sexual and asexual. In sexual 

reproduction, two parents combine and exchange genes to form offsprings, whereas in 

asexual reproduction, a single parent creates one or more offsprings. Operators analogous 

to the evolutionary process such as crossover and mutation are used to obtain genetic 

diversity among the population. Most of the times the selection of these operators is 

based on the type of reproduction involved. In the next few paragraphs, the working of 

sexual and asexual reproduction processes in GA is presented.  

 

In sexual reproduction the GA’s work similar to that of human genetics. From the initial 

population, the fitness values for each of the chromosomes are computed.  Based on these 

values, chromosomes are selected to perform crossover and mutation operations. 

Crossover is performed on two individual chromosomes by using a crossover operator to 

form two new off-springs. This operator forms the basis for the sexual reproduction. 

Mutation is the process of altering the genes of a single chromosome to obtain a new 

chromosome. Different rates are used to determine the percentage of the population 

undergoing these operations.  Once crossover and mutation operations are performed, 

chromosomes to transition to the next generation are chosen. This loop is continued until 

the termination criterion is reached. The best chromosomes are retained to asses the 

quality of the solutions to the problem being addressed. 

 

In asexual reproduction, the operation of the GA is similar to that what occurs in plants 

and some single-cell species such as bacteria (Mitchell, 1998). The fitness value for every 

chromosome of the initial population is computed. Genes in the chromosome are 

rearranged, i.e. only mutation and offspring are formed by a single parent. Various 

strategies of chromosome rearrangement have been presented in the literature to perform 
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asexual reproduction. Once rearrangement and mutation operations are performed, the 

chromosomes are sorted to find the best individual. This loop is continued until the 

termination criterion is reached.  In the research of this thesis, asexual reproduction with 

two mutation operations was applied to find best solutions.  

 

The following pseudo code describes the general working of a GA with asexual 

reproduction, (crossover is not performed): 

 

t = 0; 

initialize (K(t=0)); 

evaluate (k(t =0)); 

While notTerminated() do 

Kp(t) = k(t).selectparents(); 

Kc(t) = Mating(Kp); 

Mutate1(Kc(t) ); 

Mutate2(Kc(t) ); 

evaluate(Kc(t)); 

K(t+1) = buildnextgenerationfrom(Kc(t), k(t)); 

t=t+1; 

end 

 

A number of approaches have been utilized in the application of GA to scheduling 

problems (Willis et al., 1997). The combination of selection, rearrangement, crossover 

and mutation methods greatly affect the performance of a GA. During past years, several 

methods were developed from chromosome representation to crossover and mutation 

methods.  

 

Encoding is the process of transforming information from one format to other (Cheng et 

al., 1999) and representing the solution to a problem in the form of a chromosome. In 

GA’s, encoding a solution into chromosome is a major issue. Several encoding 

techniques were created in literature, to which classical GA was difficult to apply directly 
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(Yamada and Nakano, 1997). During recent years the following nine representations for 

the job shop scheduling problem have been proposed: 

 

Table 2-1 Chromosome Representations in Job Shop 

Direct Representation Indirect Representation 

1) Operation based  1) Preference list based  

2) Job based  2) Priority rule based 

3) Job pair relation based       

3) Disjunctive graph 

based 

4) Completion time based  4) Machine based 

5) Random keys   

 

These representations can be grouped into two categories, direct and indirect. If a 

schedule is encoded into a chromosome and GA’s are used to evolve the chromosome to 

find a better schedule the approach is defined as direct (see Davis, 1985; Falkenauer and 

Bouffouix, 1991; Della et al., 1995). On the other hand, if a sequence of dispatching rules 

are encoded and if GA’s are used to evolve those chromosomes to find a better sequence 

of dispatching rules then the approach is termed indirect (See Nakano and Yamada, 1991; 

Giffler and Thompson, 1960). In this research, job based representation was applied due 

to its simplicity and suitability to the problem (as the desired output was individual job 

schedules based on their priorities). Also this method avoids confusion in decoding the 

chromosome.  

 

Selection method plays an important role in working of GA. A good selection method 

ideally identifies better chromosomes from a given population to advance to the next 

generation.  Crossover operation (Gen and Cheng, 1999) is performed in sexual 

reproduction to generate off-springs from two parent chromosomes. They include single 

cut point crossover (Gen and Cheng, 1999), Heuristic crossover (Blazewicz et al., 1996), 

partially mapped crossover, order-based crossover etc. In this research, asexual 

reproduction is performed therefore no crossover is used.  
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The offsprings in asexual reproduction are created by chromosome rearrangement 

methods performed on a single parent. These methods include inversion, transduction, 

transformation, conjugation, transposition, translocation etc (Holland, 1975). This 

operation as mentioned earlier can be called as a mutation operation. However, these 

rearrangement operations are much efficient that the simple mutation operations 

(performed when a crossover is used) (Mitchell et al., 1994). Hence they can produce 

efficient solutions even by not having the crossover operators. In this research we are 

using the inversion method for the chromosome rearrangement (mutation 1 operation). 

The reasons are to develop a simple, effective GA that can produce good results for large 

combinatorial optimization problems. Another reason is to enhance the efficiency of the 

adaptive GA by inversing a string of genes there by producing an entire new offspring 

(creating diversity in search space).  

 

Several mutation operators exist in literature. These include insertion, displacement, 

reciprocal exchange mutation etc. In this thesis reciprocal exchange mutation is used as 

the mutation 2 operation. The reason for using this method is to reduce the great variation 

in chromosome properties, and still trying to avoid the local minima.  

 

Literature provides few works performed in GA using asexual reproduction. The earliest 

works of Mitchell et al. (1994) and Banzhaf et al. (1998) stressed the importance of 

analyzing the effectiveness of the chromosome rearrangement methods as when 

implemented and used with a GA, improve its performance (Mitchell, 1996; Mitchell et 

al., 1994). Inspired by these works, several authors have used chromosome 

rearrangement mechanisms besides crossover and mutation for GA’s. The methods such 

as inversion (Holland, 1992), conjugation (Harvey, 1992) transduction (Furuhashi et al., 

1994; Nawa et al. 1997; Nawa and Furuhashi, 1998; Nawa et al. 1999) translocation 

(Oates, 1999) and transposition (Siomes and Costa, 1999) were previously used as the 

main genetic operators in the GA. All of these works proved the effectiveness of the 

asexual reproduction methods.  
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The application of asexual methods for hard combinatorial optimization problems was 

performed by few researches. Braun (1993) developed a genetic algorithm based 

traveling salesman problem with purely two mutation strategies. Their results produced 

good solutions for the traveling salesman problem. Following this work, Chatterjee et al. 

(1995) developed a GA with asexual mutation for the traveling salesman problem 

through a generalized mutation strategy. The algorithm was applied to natural and 

artificial problems. Their results produced good solutions. Chakroborthy and Mandal 

(2005) developed an asexual GA for the general single vehicle routing problem. Their 

algorithm was mutation based and could handle various types of vehicle routing 

problems. The results produced optimal and near-optimal solutions for forty six related 

problems from literature with less computational effort.  

 

All the above works show that asexual reproduction methods could be used to solve 

combinatorial optimization problems with certain additional benefits of low 

computational time. However in Job shops, very few works have been performed using 

asexual reproduction. The work of Tay and Kwoh (2005) applied the Clonal Selection 

principle of the human immune system to solve the Flexible Job-Shop Problem with 

recirculation. While focusing on various practical issues, their method was based on an 

antibody representation that creates only feasible solutions and a bootstrapping antibody 

initialization method. They also developed a novel way of using elite pools to prevent 

premature convergence.  The results of their study were obtained against benchmark 

FJSP instances. Cornforth (2007) developed an approach that combines a multi-agent 

system in dynamic environment to obtain best solutions with respect to completion time 

and cost.  He used two methods; sexual and asexual reproduction.  The results confirm 

the advantage of evolutionary optimization agent rules in a static or dynamic 

environment. His work focused on all types of dynamic system including job shops. 

Arthur et al., (1994) solved a multi-processor scheduling problem, a variation of job shop 

problem using a GA. They developed a serial and a parallel model GA to solve the 

multiprocessor scheduling problem. They used the asexual reproduction for their parallel 

GA and their results proved a better performance of parallel GA as compared to serial 

GA in finding optimal solutions.  
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In asexual reproduction feasible schedules are produced all the time. Therefore the vast 

amount of computational time involved in repairing infeasible solutions is reduced. Also 

this method simplifies the complexity of the developed adaptive job shop problem to a 

greater extent. Literature during recent times provided information on application of 2 

mutation rates for GA’s to solve for optimization. However, the efficiency of the 

crossover and mutation operators was always a discussed area in GA’s. But for the type 

of situation dealt in this research which needs efficient results within less computational 

time the asexual methods was found to be efficient to solve small size problems with 

global convergence efficiency in less computational time.  

 

The tree diagram in Figure 2-1 provides several solution approaches for solving the job 

shop scheduling problem (complied from Jain, 1998). 

 

 

Figure 2-1 Solution Approaches for Job Shop Problems 
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2.3 Multi-Objective Job Shop Scheduling with Genetic Algorithms 

In real-world production environments scheduling must be done often to achieve several 

objectives simultaneously. Multi-objective optimization aims at optimizing several 

performance criterion of an objective function vector (Belton and Elder, 1996). These 

functions form a mathematical description of performance criteria which are usually in 

conflict with each other. Hence, the term” optimize” means finding such a solution which 

would give the values of all the objective functions acceptable to the designer” (Osyczka 

and Andrzej, 1985). These types of problems differ from the single-objective problem, in 

a sense that the multi-objective problem does not have a single best solution. One of the 

approaches to deal with these solutions is the Pareto method. In this approach, a set of 

solutions known as the Pareto-optimal solutions are usually formed. Any solution of this 

set is optimal with respect to certain condition that is no improvement can be made on 

one objective without degrading the other objective of the vector (Suresh and 

Mohanasundaram, 2005). Pareto Front is the line joining the minima of each of the Pareto 

points.  

 

In this research mean flow time and mean tardiness are considered as the two objectives 

to be optimized. While these both are conflicting objectives, there is a need for human 

judgment to find a balance between them. Flow time is a critical indicator of 

manufacturing lead time (Aldakhilallah and Ramesh, 2001). Also the work in process 

(WIP) levels is proportional to the flow time. On the other hand, mean tardiness is related 

to customer-delivery performance. Enhancing this measure retains the customers as well 

as maintains the goodwill (Asano and Ohta, 2002). Therefore minimizing the above two 

performance measures enhances the profitability in a direction which most of the today’s 

manufacturing companies aim at.  

 

Several techniques have been developed over the past years in operations research 

literature to solve the multi objective optimization problem. Rosenberg (1967) suggested, 

but not performed, a genetic search for the simulation of genetics and the chemistry of 

population of a single–celled organism with multiple properties or objectives. The early 

work of GA application was performed by Schaffer (1984) who applied VEGA approach 
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in his algorithm. Since then many techniques were developed (Coello, 2000) to deal with 

multi-objective fitness functions ranging from naïve combination methods to game theory 

strategies. Some of the well known approach applied to multi-objective problems are 

weighed sum approach, e - constrain methods and goal programming (Srinivas and Deb, 

1994). In this research, weighted sum approach is applied to formulate the multi-

objective fitness function value as it is based on adapting to priorities which could be 

expressed through weights easily. Computationally, this approach is very easy, effective 

and can generate a strong set of non-dominated solutions. 

 

Itoh et al. (1993) developed a two fold lookahead search method to solve the classical job 

shop problem. The objective of his research was to minimize mean tardiness and mean 

flow time in the scheduling system. Iima et al. (1999) proposed an autonomous 

decentralized scheduling algorithm for a complex job shop problem having sequencing 

dependent set up times and a parallel station having a single and a multi-function 

machine. The objective is to minimize the total tardiness and to maximize the working 

time of the multi-function machine. Esquivel et al. (2002) studied on the generation of 

Pareto optimal schedules in classical and flexible job shops. Balas, et al. (1998) worked 

on solving the job shop scheduling problem with due dates. His work was on optimizing 

a bicriteria problem involving minimax objectives based on the terminology of T’Kindt 

and Billaut (2002). Some of the recent papers include the work of Vilcot, Esswein and 

Billaut (2006) who presented the multi-objective optimization problem for the flexible 

job shop in printing and boarding industries. Tagour and Saad (2002) developed a GA 

approach for multi-objective optimization in Agro–alimentary workshop. They 

considered the cost of the outdated products, the cost of the distribution discount, 

makespan and the initial cost of production as their performance measures.  

 

Among several search methods, GA’s are particularly suited for multi-objective 

optimization, as they can explore the solution space in multiple directions. They not only 

have the ability to find global optima but can also be worked with complex fitness 

functions including discontinuous and noisy functions. Most of the optimization 

techniques need prior information about the problem. Since GA’s use a class of points 
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they may be able to find multiple pareto points easily. This encourages researchers to 

apply GA’s to solve these types of problems.  

 

While the limitations of the GA’s are due to stochastic errors associated with genetic 

operators the GA’s tend to converge to a single solution with finite population. Also 

sometimes the chromosome representation might be difficult in certain applications. As 

described earlier, the performance of GA greatly depends on the choice of fitness 

function, the other parameters of a GA – population size, crossover and mutation rates, 

the type and strength of selection process. These parameters must be chosen properly to 

obtain best outcome of the method (Cohon and Marks, 1975). Premature convergence 

problems occur in small populations, and hence care must be taken in considering these 

types of populations.  

2.4 Reactive Scheduling 

Most of the work published in scheduling literature is predictive or of pre-assumed 

nature. During recent times a great deal of effort has been made in generating job shops 

schedules that can overcome both stochastic and dynamic disruptions of the production 

floor (Raheja and Subramaniam, 2002). These disruptions can vary from small to large 

magnitude. However, majority of the uncertainties such as urgent jobs, machine 

breakdowns, unavailable resources etc. are prevalent in most of the production floors. In 

such situations, an adaptive scheduling procedure that can adjust itself to the urgent 

situations is necessary to efficiently deliver jobs in the production environment (Biskup 

and Piewitt, 2000). Recovery or repairing methods that adjust the predictive schedules to 

accommodate these minor uncertainties are necessary for successful scheduling 

(Subramaniam and Raheja, 2003). These procedures aim at reducing the time and 

resource consumption that takes place whenever a minor disruption occurs.  In this 

section a brief review of the relevant work is presented.  

 

One of the earlier works in this area is that of Holloway and Nelson (1974). They applied 

a multi-pass procedure to generate schedules in a timely manner. They presented the 

effectiveness of periodic scheduling/rescheduling in dynamic environment. Several 



 

 25

approaches based on Heuristic Methods, Artificial Intelligence (AI), Fuzzy Logic, 

Genetic Algorithms (GA), Neural Networks (ANN) were developed over past years 

(Raheja and Subramaniyam, 2003) to successfully repair the predictive schedules during 

disruptions. Among the heuristic based approaches the Right–Shift Rescheduling (RSR) 

and Affected Operation Rescheduling (AOR) (Szelke and Kerr, 1994) heuristic were 

most prevalent. The RSR heuristic essentially shifts the job operations forward in time 

scale to accommodate to the disruptions, whereas the AOR heuristic reschedules only the 

affected job operations. The underlying concept in AOR is to move the start times of the 

affected jobs forward in time scale while adhering to the constraints. This is performed to 

maintain the initial job sequence.  

  

While discussing about fuzzy logic and AI methods literature shows a considerable 

amount of work being performed in this area on reactive scheduling. Multi-agents were 

used in most of AI related approaches where the intelligent system has the knowledge 

about schedule repairs. Among the ANN approaches procedures involving the training of 

neural networks in a single pass were most prevalent. Case Based Reasoning approaches 

were frequently used in Fuzzy Logic methods to identify the case that best suits the 

disturbed schedule (Shafaei and Brunn, 1999). Constraint based scheduling concepts 

were also widely used (Reeja and Rajendran, 2000).  

 

Most of the GA based repair approaches used the crossover and mutation operators to 

accommodate the schedule disruptions there by generating better schedules. GA proved 

to be efficient in repairing the predictive schedules, but the high computational effort 

associated with these natural processes became an issue.  
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3 METHODOLOGY 

 

This chapter focuses on the methodology used for adaptive scheduling of jobs in a job 

shop environment. A detailed explanation of the GA model developed to schedule jobs 

for multiple days is provided in this chapter. A brief description of the operation of the 

job shop system is also provided in this chapter.  

3.1 Description Job Shop Scheduling Problem 

This section provides a detailed description of the job shop scheduling problem dealt in 

this research. To formally define the problem using scheduling terminology, we have a 

set of n jobs to be processed on m different machines, where in each job has its own 

machining sequence. The objective of this research is to generate best job schedules that 

minimize mean flow time and mean tardiness. The problem is denoted by                                                        
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 where;  

      mJ  denotes a job shop with m machines,     

prec denotes precedence constrains on jobs  

jC  denotes the completion time of job j  

jd  denotes the due date of job j  

jT  denotes the tardiness of job j  

3.2 Operation of the Job Shop Scheduling System  

In this section the operation of the job shop system is explained. The production plant 

operates for 8 hours everyday; five days a week. All jobs enter the system on a daily 

basis. For each day, a best schedule is to be established. If multiple copies of a job are 

available they are scheduled as a single batch. On the very first day of scheduling, it is 

assumed that all jobs enter the system fresh and are free to be scheduled on any machine. 

However, for any subsequent days, there will be jobs carried forward from the previous 
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day, some of which could be setup on machines and partially processing an operation and 

new jobs entering the system.  

 

Once a schedule is performed for the first day, the incomplete job operations for that day 

are stored and retrieved back to be scheduled on the following day. For any following day 

the partially completed operations for jobs from the previous day are unchanged from 

their machines and given first preference. This implies that irrespective of any situation, 

all the jobs with partially completed operations are placed first in the scheduled. The 

remaining operations are scheduled along with the new jobs entering on that day. This 

explains that all the incomplete operations on a particular job are carried over and remain 

on the same machine the next day, i.e. no preemptions of operations for a job. Restricting 

jobs with partially completed operations from being reassigned reduces the set-up 

changeovers on machines. 

 

The schematic below provides a brief description of the system operation.  
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Figure 3-1 Job Shop System Operation 

 

3.3 Multi-objective Genetic Algorithm for Job Shop Scheduling Problem  

A detailed description of the multi-objective genetic algorithm developed in this research 

is provided below. The following assumptions are considered while formulating the 

solution approach for the job shop scheduling problem: 

 

• All jobs are ready at the time of processing 

• Preemption of jobs is not allowed 

• Setup times are sequence-independent 

• Setup times are added to processing times 
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• Shift Break times are not considered in processing times  

 

The working of the MOGA for both the situations (First and Subsequent days onwards) is 

described through the following flowchart.  
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Figure 3-2 Flow Chart Representation of Working of GA 
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3.3.1 Chromosome Representation  

The chromosomes representation for this problem is job based representation. In job 

based representation, a list of n jobs is formed. A schedule is constructed according to the 

sequence of jobs. For a given sequence of jobs, all the operations of the first job in the list 

are scheduled first, followed by operations of the second job which is followed by 

operations of the third job and so on. This process continues until all operations of job n 

are scheduled. The first operation of the job under treatment is allocated to the best 

available position in the schedule on the corresponding machine subject to the 

constraints. The process is repeated with all jobs in the sequence.  

 

Each gene in a chromosome is divided into three parts for ease of job identification. The 

left most part represents the sequence index for jobs on a particular day. The second part 

of the string represents the job number, which is the unique source of job identification. 

The third part denotes the current day number. All the three parts can be represented only 

through numerical values. This type of representation aids in proper identification of jobs 

during multiple day scheduling. The chromosome representation for first day jobs and for 

the subsequent days differs slightly. Hence, both the representations are separately 

explained below.  

 

 

Figure 3-3 Gene Representation of a Chromosome 

 

3.3.1.1 First Day Representation 

Any permutation of jobs corresponds to a feasible schedule. The figure below describes 

the chromosome representation for jobs scheduled on day 1.  
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Figure 3-4 Chromosome Representation for First Day 

 

3.3.1.2 Representation for following days 

As this research involves dealing with adapting job schedules over multiple days the 

length of the chromosome is not fixed from one day to other. The job-based 

representation is applied with a slight modification for all following days. As the jobs 

with partially completed operations are prioritized each chromosome will have them 

assigned first to the sequence.  The remaining part of the chromosome contains the 

previous day’s jobs and incoming jobs for that particular day the sequence of which is 

determined randomly.  

 

 

Figure 3-5 Chromosome Representation for Following Days  

3.3.2 Fitness Function  

The objective of this research is to obtain the best job schedule that minimizes the mean 

flow time and mean tardiness, the reasons for which were explained previously.  Since 

this is a multi-objective problem the fitness function must incorporate both the 

performance measures. The mean flow time is the average of the times of all jobs 

spending in the system. Mean flow time is expressed as;   
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Where;  

 

• S is a schedule           

• F(S) – mean Flow time of the schedule S; 

 

This research focuses on problem which involves changing jobs everyday; that is 

everyday we get different number of jobs and minimizing mean flow time would allow us 

to look at minimizing average flow time jobs in the system at any particular time. As 

makespan is related to completion time of last job, it world not be an appropriate criteria 

in this situation.  

 

The second performance criterion in this research is mean tardiness. Tardiness is a 

performance measure related to the jobs due date. Mean Tardiness is given by the 

following equation where jd  denotes due date of job j . )(ST  is the mean tardiness for 

the schedule S . 

 

 

  

 

Weighed sum approach is used to formulate the fitness function. Weighed sum approach 

assigns a weight jw  to each normalized objective function value to convert the multi-

objective problem to a single objective problem with a scalar objective. The fitness 

function for the current problem is denoted as shown below. 

 

Weighed Average Fitness Value = α F(S) + β T(S) 

Weighed Average Fitness Value = nC
n

j

j /
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∑
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                                         where,  1,0 ≤≤ βα  and 1=+ βα  

 

Based on the priority of the two objectives values of α and β  could be chosen to obtain 

different schedules to solve the job shop scheduling problem.  
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3.3.3 Computations for Following/Subsequent Days  

Any day other than the first includes jobs with partially completed operations and new 

jobs. Jobs with already setup/partially complete operations remain on their respective 

machines. The sequence to process the new jobs and other operations for jobs carried 

forward from the previous day are established using the chromosome. The start and end 

times for all operations on all machines is completed accordingly to determine fitness 

value.   

3.3.4 Reproduction Probability 

The multi-genetic optimization in this research involves a minimization problem. 

Therefore we cannot use the weighted fitness function value to directly select 

chromosomes. Therefore a reproduction probability is computed for each chromosome.  

 

if  = weighed fitness value for chromosome i  

iAf  = ii ff /∑  = adjusted fitness value 

iP  = iAf / ∑ iAf  = reproduction probability  

 

An example is illustrated in Table 3-1 below.  
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Table 3-1 Reproduction Probability Calculation 

 

From Table 3 -1, it is clearly observed that the probability of the best chromosome is 

higher as compared to others converting the original minimization problem to an 

equivalent of a maximization problem.  

 

 

 

 

Chromosome 

Weighted 

Average Fitness 

Value ( if )        

Individual Adjusted 

Fitness iAf = ii ff /∑  

Reproduction 

Probability 

( ∑ ii AfAf / )                       

Ch 1 8.45 5.00 0.134 

Ch 2 8.11 5.21 0.140 

Ch 3 6.22 6.79 0.183 

Ch 4 7.62 5.85 0.158 

Ch 5 6.00 7.04 0.190 

Ch 6 5.87 7.19 0.194 

Cumulative  ∑ if = 42.28 ∑ iA   = 37.09 
Cumulative 

Probability = 1 
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3.3.5 Mating  

Mating procedure is applied to randomly select pairs of chromosome to perform the 

genetic operations. In this research no crossover is performed, therefore mating is not 

really necessary. However, we want to explore an alternative of an elitist strategy in 

selection. To facilitate that chromosomes are considered in pairs for the genetic 

operation.  

If we have N chromosomes, the number of parent pairs formed is N (N-1)/2. Each parent 

pair is given an equal probability to be chosen for crossover operation.   

3.3.6 Mutation Operation  

Two types of mutations are performed in this research to explore the solution space 

globally and locally which are briefly discussed here:  

 

a. Chromosome Inversion (Mutation 1)  

In this method a string of chromosome from a single parent is randomly selected at a cut-

point. The offspring is formed by reversing all the genes from that cut-point and added to 

the original parent’s before cut-point. Based on the rate of mutation 1 this operation 

continues on every chromosome. Figure 3-6 illustrates an example of this process.  

 

 

Figure 3-6 Mutation 1 Operation 
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For any following day the mutation 1 operator is applied as above, except that the 

operations already setup on machines for carried forward jobs are kept fixed.  

 

b. Reciprocal Exchange Mutation (Mutation 2) 

The second mutation operation in this research is the reciprocal exchange mutation. . In 

this method two genes of a chromosome are randomly selected and their positions are 

swapped. Based on the rate of mutation this operation continues on every chromosome.   

Figure 3-7 explains the mutation procedure on chromosome 1.  

 

111 221 341 431 

           Before  

 

 

                                         

After 

Figure 3-7 Mutation Operator 

 

For any following day the mutation 2 operator is applied as above, except that the 

operations already setup on machines for carried forward jobs are kept fixed.  

 

The application of two mutation strategies is very beneficial to obtain genetic diversity 

and to avoid local optimum. The normal mutation in a genetic algorithm only exchanges 

very few gene properties and is not very efficient in finding globally diverse solutions. 

However, a second mutation like inversion helps in generating more diverse/different 

chromosomes and hence enhances the efficiency.  

3.3.7 Selection  

The population size remains constant among the generations. The initial population is 

selected randomly for the first generation. From second generation onwards, the 

341 221 111 431 
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population for a generation is selected at the end of previous generation. In this research, 

three methods were used to select the population for subsequent generations.   

 

Strategy 1 

In this strategy, the chromosomes after mutation are sorted and the N (Initial population) 

best chromosomes from all the parents and offspring are selected as initial population for 

the next generation. The number of chromosomes selected is equal to the population size.  

 

Strategy 2 

In this strategy, the chromosomes after mutation are passed on to the selection procedure. 

This procedure selects the best chromosome from the two parents and the two offspring’s 

to be passed onto the next generation. Thus, an elitist strategy is applied to select the best 

from each pair and discard the weaker ones. Figure 3-8 shows an example. 

 

 

 

Figure 3-8 Strategy 2 Description  

 

Strategy 3: 

Strategy 3 is a combination of strategy 1 and 2. With this method, the part of the 

chromosomes is chosen by strategy 1 and the reminder by strategy 2, based on a user 

defined percentage.   
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3.3.8 Job Shop Scheduler Software 

The MOGA with the features explained above was developed using the Visual C++ 

software. The input data acquisition is performed through a user interface in visual 

C++.Net 2003. This section explains the operation of MOGA software program for the 

job shop scheduling problem. The operational procedure for the first day is different to 

that of following days. Hence a step by step description of the operations of the software 

for both the situations is provided below.  

3.3.8.1 Procedure for First Day 

The following information in Table 3-2 is gathered through the data acquisition initially: 

 

Table 3-2 Input Data Acquisition 

GA Parameters Job Information 

1) Initial Population 1) Number of New Jobs 

2) Number of Jobs 2) Number of Machines 

3) Mutation 1 Rate 3) Processing Times for each job 

4) Mutation 2 Rate 4) Due Dates for job 

5) Selection Strategy (S1, S2 or S3) 5) Number of days job is in the system 

6) Number of Trials 

7) Weight for Mean Flow Time   

8) Weight for Mean Tardiness   

 

 

The user interface to collect GA information (column 1 in Table 3-2) is shown in 

Figure 3-9.  
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Figure 3-9 Screenshots of Graphical Interface; Input Data Entered 

 

 

 

The second interface collects job related information (column 2, Table 3-2) as shown in 

Figure 3-10.  
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Figure 3-10 Processing Times Information 

 

When the interface for job information is accessed, the user is prompted to add 

information on jobs with partially complete operations and other job related data. . As the 

first day contains no jobs with partially completed operations a value of zero is entered. 

Once these details are entered the button “PROCEED TO ENTER PROCESSING 

TIMES” creates a data grid for the given values. This button also guides the user to enter 

the job identity, processing times and corresponding due dates. The job identities are 

entered according to the gene representation described in section 3.3.1. Also the due dates 

are given in days. Processing time and machine sequence for jobs is entered using the 

OPERATION i ( i  = 1, 2, 3…. #of machines) columns. The machines and processing 

times on each machine for every job are entered in the following format machine # 

(Processing time). For example in Figure 3-10 job 111 is first processed on machine 2 for 

100 minutes, machine 3 for 80 minutes and so on.  
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The total number of days a job has been in the system is also captured using the “DAYS 

IN SYSTEM” field.  

 

Once the data is entered, the MOGA is run for required number of generations. The 

output is generated in the form of the job sequence and an array for start and end times 

and idle times on each machine. The start and end time array sequentially records the job 

number, followed by a listing of all operations listing the machine number, start time on 

that machine and end time as shown in Figure 3-11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11 Screenshot of Start and End Time Matrix for First Day  

 

Similarly, the idle times on each machine are stored in a separate matrix. The idle time 

matrix lists the machines in sequence, the start and end of idle time on that machine when 

a job is not being processed, as shown in figure 3-12.  This idle time matrix is to be used 

to update the job operations and to create Gantt charts. The idle time matrix also assists in 

identifying the validation of operations and helps in further modifications.  
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Figure 3-12 Screenshot of Idle Time Matrix for Subsequent Days  

 

Both the start-end time and idle time matrices are created for every chromosome of the 

initial population and are updated after every operation. The mean flow time and mean 

tardiness for every chromosome is calculated from the start and end time matrix. The 

computed individual values are normalized and used for fitness value computation. 

Reproduction probability, mutation 1, mutation 2 and selection process for the next 

generation are performed as described in sections 3.3.3, 3.3.4, 3.3.5 and 3.3.6.  

 

The best chromosome and corresponding fitness value for each generation is saved and 

retrieved when needed. This procedure continues for given number of generations. An 

option of running the process for a given set of trial is also provided to ensure repetitive 

experimentation with same parameters.  

 

3.3.8.2 Operation Procedure for Subsequent Days  

To process the jobs for subsequent days, the computations are slightly more complicated 

and additional information is required. All the input information listed above along with 

the following data is required at this stage: 

 

• Number of jobs with partially complete operations  

• Number of Jobs incomplete  

• Identity of jobs with partially complete operations and machine details 

• Due dates for jobs with partially complete operations 
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• Number of days the job with partially complete operations is in system 

• Number of Jobs Carried Forward to next day 

• Carried forward job identity, processing times and due dates 

 

The same interface shown in Figure 3-13 is used for data entry. However, when a value 

greater than given is entered for number of jobs with partial operation, a new data 

acquisition box is opened to collect data on those jobs with partially completed 

operations as shown in Figure 3-13.  

 

Figure 3-13 Screenshots of Interface; Jobs from day 2 onwards 

 

The “Number of Partial Operations” field acquires the information of the job with 

partially complete operation and the days the job is in the system. The “New Jobs” field 

takes information about incoming jobs on a particular day. The “Carried Forward Jobs” 
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field takes remaining operations information for jobs from earlier days. The last two 

digits of each string are used for matching job identity. This is used in acquiring 

information to calculate the fitness values. The rest of the fields are filled in a similar 

manner as explained for the first day.  

 

After acquiring the required information the initial population is formed from data given 

by user. All the computations remain similar to the operational procedure for the first 

day.  
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4 EXPERIMENTATION  

 

This chapter presents the details of the experimentations conducted on the Adaptive, 

multi-objective genetic algorithm (AMOGA). Experimentation was conducted in two 

stages. In the first stage, single day (first day) experimentation is conducted. In the 

second stage, the multiple day experimentation is performed. The details of the problems 

tested are given below. 

4.1 First Day Experimentations  

Testing is performed on three different problems including the well known Fisher and 

Thomson FT06 problem. The purpose of this single day testing was to validate the 

effectiveness of the AMOGA in finding effective solutions to optimize the selected 

objectives.   

4.1.1 Initial Testing Parameters 

Several test cases were generated to test the performance of AMOGA. Table 4-1 shows 

the input parameters considered for the testing all the problems.  

 

Table 4-1 Input Parameters 

Index Parameters Values 

1 Population Size 

(i) 10 

(ii) 20 

(iii) 30 

2 Number of Generations 

(i) 50 

(ii) 100 

(iii) 200 

3 Mutation 1 Rate 

(i) 20 

(ii) 40 

(iii) 60 

(iv) 80 

4 Mutation  2 Rate 

(i) 2 

(ii) 5 

(iii) 10 
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Three different strategies were considered for selection as described earlier. Table 4-2 

explains the three selection strategies.  

 

Table 4-2 Selection Strategy 

 

 

 

 

 

 

 

 

 

The objective of AMOGA is to minimize the mean flow time and mean tardiness. Since 

this is a multi-objective problem, several weight combinations for the individual 

objectives are tested. Table 4-3 explains the weights used for testing.  

 

Table 4-3 Weights for Objectives 

 

 

 

 

 

 

 

4.1.2 Priority Rules  

Priority rules are probably the most frequently applied heuristics for solving (job shop) 

scheduling problems in practice. This is because of their ease of implementation and low 

computational time. Several priority rules were developed to solve the job shop 

  Mean Flow Time Mean Tardiness 

1 0 1 

2 0.2 0.8 

3 0.4 0.6 

4 0.6 0.4 

5 0.8 0.2 

6 1 0 

Strategy Description

Selects the best among all the 

parents and off-spring pairs

Selects best among (parent+off-

spring pair)

A combination of S1 and S2

1 S1

2 S2

3 S3
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scheduling problem. Among these the most commonly applied are Shortest Processing 

Time rule (SPT), Earliest Due Date rule (EDD) and Longest Processing Time rule (LPT). 

The SPT rule is most frequently applied to obtain the best job schedule with respect to 

flow time whereas the EDD rule is applied for tardiness objectives.  

 

Since SPT and EDD rules are used for single objective optimization, they both are 

individually applied to the test problems. The individual results from the above priority 

rules are then compared to those from AMOGA by considering the extreme solutions, i.e. 

the best mean flow time, and the best mean tardiness of the Pareto optimal or near 

optimal solution set as the reference.  

4.1.3 Test Problems 

The three problems are presented in the following section. Details for each problem are 

provided separately.   

 

Test Problems 1 – FT06 Benchmark  

The FT06 benchmark problem was developed by Fisher and Thomson (1963). The 

problem involves a set of 6 jobs (1 through 6) to be processed on 6 different machines 

(M1 through M6), where every job has its own machining sequence. The due dates for this 

problem are adapted from the work of Ponnambalam, et al. (2001). Table 4-4 shows the 

processing times (min) and due dates (min) for the FT06 problem.  

 

Table 4-4 FT06 Benchmark problem 

  *
Note: 3(001) → First operation is on machine # 3, processing time 1 min 

Jobs 
Processing time (min)

*
 

Due dates 

(min) 

1 3(001) 1(003) 2(006) 4(007) 6(003) 5(006) 52 

2 2(008) 3(005) 5(010) 6(010) 1(010) 4(004) 94 

3 3(005) 4(004) 6(008) 1(009) 2(001) 5(007) 68 

4 2(005) 1(005) 3(005) 4(003) 5(008) 6(009) 70 

5 3(009) 2(003) 5(005) 6(004) 1(003) 4(001) 25 

6 2(003) 4(003) 6(009) 1(010) 5(004) 3(001) 45 
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The FT06 benchmark problem is extensively tested in this section. The initial parameters 

are already provided in Table 4-1, Table 4-2 and Table 4-3. All possible combinations of 

the parameters from Tables 4-1, 4-2 and 4-3 were tested on this problem. Each parameter 

set is run for 100 trials for a specified weight set 2 (0.2, 0.8). The objective of this 

extensive experimentation is to identify the best parameter set which produces minimum 

weighed fitness value. Those parameters can then be used for the subsequent 

experimentations. The parameters in Tables 4-1 through 4-3 generate 1458 different 

combinations. Therefore initial experimentations were performed on 27 parameter 

combinations as shown in Table 4-5.  

 

Table 4-5 Initial Parameter Combinations 

Number of generations = 50, Mutation 1 Rate = 20% 

Population 

Size 

Mutation 

2 Rate 

(%) 

Strategy  

S1 S2 

S3 

(S1=65%,  

S2=35%) 

10 

2 

5 

10 

20 

2 

5 

10 

30 

2 

5 

10 

 

 

Based on the experimental results for this problem, the best parameters were formed. 

They were applied to another two problems to generate the best solutions.  
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Test Problem 2 

The second test problem is a 4 job, 3 machine problem adapted from Johnson et al, 

(1974). The due dates were formed based on the total processing time of the individual 

jobs. Table 4-6 shows the jobs with the corresponding processing times, machining 

sequences and due dates in minutes.  

 

Table 4-6 Test Problem 2 

Jobs 
Processing time (min)

*
 

Due dates 

(min) 

1 2(004) 1(006) 3(002) 21 

2 1(005) 2(004) 3(002) 10 

3 1(002) 3(003) 2(007) 2 

4 2(004) 3(003) 1(005) 11 

 

 

The experimentation on the test problem 2 was conducted by applying the best 

parameters generated from FT06 problem. For initial evaluation of AMOGA’s 

performance the experimental results were compared with those from priority rules. In 

this phase, separate experiments were run by assigning highest priority to the desired 

objective and correspondingly evaluating the results. However to generate the Pareto 

solutions, the problem is tested for all the weight ratios listed in Table 4-3.   

 

Test Problem 3 

A third test problem with 3 jobs to be processed on 3 machines is considered. This 

problem is adapted from Pinedo (1995). The due dates for this problem are assigned in a 

similar fashion as shown for the second test problem. Table 4-7 shows the problem 

considered with processing times and due dates in minutes.  
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Table 4-7 Test Problem 3 

Jobs 

Processing time (min)
*
 

Due 

dates 

(min) 

1 1(005) 2(010) 3(004) 18 

2 3(004) 1(005) 2(006) 24 

3 3(005) 2(003) 1(007) 16 

 

The experimentation procedure for test problem 3 is similar to that of test problem 2. 

Evaluation of AMOGA is performed by initially performing the experiments for single 

objective optimization. Also runs were conducted for each of the weights to generate the 

Pareto solutions.  

4.2 Experimentation for Adaptive Scheduling 

The experimentation for adaptive scheduling is conducted with the best parameter set 

identified after experimentation with the benchmark problems. The experiments are run 

for three successive days and certain specific characteristics and trends in AMOGA were 

gathered. The job details for each day and due dates are provided at the beginning of the 

scheduling process. The due dates for the jobs are assigned based on the total processing 

time of the jobs. Few of the shorter jobs were assigned to longer due dates and some of 

the longer jobs were given shorter due dates. This type of situation is considered to 

evaluate the effectiveness and flexibility of the AMOGA to the manufacturing 

environment. The experimentation in this section are continuous, that is the jobs that are 

left over on any day are carried forward to the next day along with the new jobs. 

Therefore we observe the scheduling process for a set of days and not for a single day.  

4.2.1 Test Problem 

A three day test problem was developed for experimenting on the adaptive job shop 

scheduling process with AMOGA as explained below.  

 

The FT06 benchmark problem is slightly modified to generate data for the first day. 

Processing times were increased by a factor of 20 and due dates modified accordingly. 

Table 4-8 (a) shows the modified FT06 problem formed for experimental analysis.  
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Table 4-8 Test Problem for Mutiple day scheduling  

 

(a) First day Job Information 

 

 

(b) Day 2 Job Information 

 

 

 

 

 

Jobs Processing time (min)
*
 

Due date 

(Days) 

7 1(020) 3(050) 4(050) 2(040) 5(030) 6(060) 2 

8 4(090) 3(070) 1(120) 5(250) 2(025) 6(080) 4 

9 5(090) 6(015) 3(030) 2(150) 4(025) 1(120) 3 

 

(c) Day 3 Job Information 

 

 

 

Jobs Processing time (min)
*
 

Due date 

(Days) 

10 3(000) 2(030) 6(040) 1(070) 4(060) 5(050) 1 

11 2(100) 1(080) 5(000) 3(040) 4(050) 6(190) 2 

 

 

 

 

 

 

 

 

Jobs 

 

Processing times (min)  

Due date 

(Days) 

1 3(020) 1(060) 2(120) 4(140) 6(060) 5(080) 2 

2 2(160) 3(100) 5(200) 6(200) 1(200) 4(080) 4 

3 3(100) 4(080) 6(160) 1(180) 2(020) 5(140) 3 

4 2(100) 1(100) 3(100) 4(060) 5(160) 6(180) 3 

5 3(180) 2(060) 5(100) 6(080) 1(060) 4(020) 1 

6 2(060) 4(060) 6(180) 1(200) 5(080) 3(020) 2 
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4.2.2 Experimentation  

On the second day of continuous job shop scheduling process by AMOGA, a set of 3 new 

jobs (7,8 and 9) that are to be processed on 6 machines (1 through 6) are considered 

entering the system. The due dates and processing times for these jobs were generated. 

Table 4-8(b) describes the new jobs entering the system on day 2.  

On day three 2 new jobs (10 and 11) enter the system as shown in Table 4-8(c).  

 

The multi-day adaptive schedule was tested for the GA parameters identified as best 

through the single day experimentation for all weight contributions in Table 4-3. For each 

weight combination a set of 100 trials are run to identify the pattern of AMOGA 

performance and to generate the set of non-dominant solutions. However for comparison 

of performance for multiple days it is necessary to choose a particular set of weights for 

comparison. Therefore  8.0,2.0 == βα  is chosen.  

 

At the end of the first day (480 minutes) for the schedule obtained from AMOGA will 

have jobs belonging to following categories.  

 

• Category  1: Jobs whose last operation is partially completed   

All these jobs unaltered are and scheduled first in the AMOGA. Hence they are 

fed in a specified manner to the AMOGA during the experimentation process. 

The feeding procedure to the AMOGA is described earlier in chapter 3.  

 

• Category 2: Jobs with a partially completed operation that also has other 

operations to be processed on one or more other machines.  

All the partial completed operations are unaltered and scheduled first on the 

following day similar to category 1. However, since these jobs have further 

processing requirements and those operations are scheduled along with new jobs 

using the GA.  

  

• Category 3: Jobs with no partially completed operations  
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All the jobs under this category are scheduled along with new jobs using the GA. 

Therefore, at the end of the day all the remaining operations jobs in the system on 

that day are recorded and carried forward to the following day.  

 

 

4.2.2.1 Day 2  

The experimentation of all subsequent days is performed after identifying all the carried 

forward jobs and entering their data into AMOGA. Once the new jobs and carried 

forward jobs are fed into the system, experimentation is conducted with the same 

parameters and weights for objective function values for all subsequent days.  

4.2.2.2 Day 3  

The AMOGA was to determine the sequence to process jobs on the job shop as 

explained.  
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5 RESULTS AND DISCUSSIONS 

 

This chapter presents the results obtained from the experimentations conducted on the 

developed AMOGA. The results are also compared with results published in the 

literature.  

5.1 Single Day performance  

In this section, the results for the problems tested for a single day are presented. The 

trends observed for each of the test problem are explained separately under the respective 

sections. The test problems were also solved by applying priority rules and results 

compared with those from AMOGA.       

FT06 Benchmark Problem 

Priority Rules 

This problem is first solved by applying priority rules. We first apply SPT rule to identify 

mean flow time for the given jobs. From literature the minimum mean flow time obtained 

using SPT rule is 52.7 minutes (Kaschel et al., 1999) 

Similarly, lowest rule is applied to the FT06 problem to obtain best job sequence with 

respect to mean tardiness. Since there is no result in literature on the application of EDD 

to the FT06 problem, the schedule was calculated by applying the EDD concept to the 

problem.  Figure 5-1 shows the best schedule obtained by applying the EDD rule. The 

minimum mean tardiness obtained for EDD sequence is 2.5 minutes.  
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Figure 5-1 Gantt chart for the FT06 schedule using EDD rule 

 

Results from Literature  

Very few work from literature used mean flow time minimization (Ponnambalam et al., 

2001) in their studies of single objective optimization. The work of Suresh and 

Mohanasundaram (2005) was based on multi-objective optimization using SA. In their 

work they considered makespan and mean flow time as the optimization criterion. The 

best mean flow time they obtained is 44.17 minutes. There is no prior evidence on due 

date values on this problem.  

Results from AMOGA 

The AMOGA was then used to solve the FT06 problem. The experimentation is 

performed by taking a combination of 27 parameter sets from Table 4-1, Table 4-2 and 

Table 4-3 and running the AMOGA for 10 trials of 10 runs each. The objective of this 

extensive experimentation is to identify the schedule that produces minimum weighed 

fitness value and repeatability of solutions.  

 

 

Job 1 Job 4

Job 2 Job 5

Job 3 Job 6

Legend

M1

M2

M3

M4

M5

M6

68 8215 26 43
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Table 5-1 shows the results obtained from the initial experimentations with 27 parameter 

sets with objective weights of mean flow time = 0.2 and mean tardiness = 0.8. The best 

selection obtained with this weight combination was mean flow time = 44.17 minutes and 

mean tardiness = 0.67 minutes. The values in the table are frequency at with AMOGA 

formed this solution after 100 trials. It must always be noted that there are different job 

sequences that gave the same result.  

 

Table 5-1 Frequencies of Best Solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To analyze these initial results further, several scatter plots were developed for different 

population sizes, mutation 2 rates, and strategies to identify the most effective parameter 

combination that generates best solution most frequently. Figure 5-2(a) shows the 

variation of results based on population size and Figure 5-2 (b) based on mutation rate 2 

for the different selection strategies.  

Population Size 
Mutation 2 Rate 

(%) 

Frequency  

S1 S2 S3 

10 

2 12 25 24 

5 18 26 15 

10 16 25 20 

20 

2 19 24 17 

5 11 26 28 

10 27 26 28 

30 

2 17 20 21 

5 13 36 29 

10 23 30 33 
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5-2(a): With respect to population size 

 

 

 

 

 

 

 

 

 

 

 

 

5-2 (b): With respect to mutation rates  

Figure 5-2 Variations of Frequency of Best Solution 

 

From Figure 5-2(a), it can be observed that strategy 2 is performing well for all the 

population sizes. From Figure 5-2  it can be observed that on an average all the strategies 

are performing better with 10% mutation rate while strategy 2 is generating better results 
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over all it always gives the highest frequency. Therefore strategy 2 with 10% mutation 

rate is expected to produce good solutions.   

 

Based on the initial results the combination of strategy 2 a population size of 20 and 10% 

mutation rate is likely to produce good solutions. This experimentation was however 

conducted to mutation rate of 20% with 50 generations. To identify the performance of 

several mutation 1 rates and numbers of generation’s further experimentation was 

conducted. Figure 5-3 shows the performance of strategies with respect to mutation 1 

rates. From the figure it is clearly seen that the number of best solutions increase with 

increase in mutation 1 rate. Overall, a rate of 80% for mutation 1, for strategy 2 is 

performing the best.  
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Figure 5-3 Variation of number of best solutions with respect to mutation 1 rate 
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Convergence diagrams were also used to further evaluate the performance of the 

AMOGA. For the above parameter set, the GA is run individually for 50, 100 and 200 

generations. Figure 5-4 shows a comparison of convergence trends for each of the three 

generations considered. All testing was done with =α  0.2 and =β  0.8 objective weight.  

 

 

Figure 5-4 Convergence diagram for AMOGA problem  

 

 

From the above convergence diagram, it can be observed that, in all three cases, the 

AMOGA is converging before 100 generations are completed. There is no improvement 

in the results after 100 generations. Therefore it appears that running the AMOGA for 

more than 100 generations, most likely does not have any significant benefit.  

 

Based on the above results and analyses it can be deduced that Strategy 2 gives better 

results when compared to the other ones. This strategy combined with 100 generations, 

80% mutation 1 rate, population size of 20, and mutation 2 rate
 
= 0.1 is likely to present 

schedules that minimizes the mean flow time and mean tardiness for the developed 
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AMOGA problem. Therefore, these parameters will be used for all subsequent 

experimentation.  

 

As the current research problem involves multi-objective optimization of mean flow time 

and mean tardiness, the best parameter set is run for 100 trials for each of the objective 

weights mentioned in Table 4-3. Table 5-2 shows the best mean flow time and mean 

tardiness value obtained from each weight combination. As mentioned earlier, a weight 

value of 0 makes the problem a single objective optimization.  

 

Table 5-2 Pareto results for FT06 problem  

Objective weight*  Best result 

Mean 

Flow time 

Mean 

Tardiness 

Mean Flow 

time (min) 

Mean 

Tardiness 

(min) 

0 1 53.50 0.00 

0.2 0.8 44.17 0.67 

0.4 0.6 44.17 0.67 

0.6 0.4 44.17 0.67 

0.8 0.2 44.17 0.67 

1 0 44.17 0.67 

 

Figure 5-5 shows the Pareto Front plot for the multi-objective optimization of the FT06 

problem.  

 

 

 

 

 

 

 

 

 

Figure 5-5 Pareto Front for FT06 problem (Weights indicated in parentheses) 
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From the above graph, it is clearly observed that as the weight for a given objective 

function increases the corresponding importance of that value increases. Thereby, greater 

emphasis is given to minimize that functional value. For example, as we vary the weights 

from (0, 1) minimization of mean tardiness to (1, 0) minimization of mean flow time 

problem the values for both flow time and tardiness vary accordingly.  

 

From the Pareto results, the best job schedule from GA that minimizes the mean flow 

time is recorded. This is given by the job sequence 1 –6 – 4 – 2 – 5 – 3. A Gantt chart is 

created to indicate the position of jobs on a time scale. The minimum mean flow time 

obtained by AMOGA is 44.17 minutes.  

 

Visual representation of results is very useful in actual implementations. The assignments 

of jobs to machines, their start and completion times as well as idle times on machines 

are readily apparent with Gantt Charts. The following figures present ant Charts for three 

different situations: 

a) Minimizing mean flow time only (weights =α  1 and =β  0)  

The job sequence for this case is 1-6-4-2-5-3 and the mean flow time is 44.17 minutes.  

b) Minimizing mean flow time and mean tardiness (weights =α  0.2 and =β  0.8)  

The job sequence for this case is 1-6-5-4-3-2 and the mean flow time is 44.17 minutes 

and mean tardiness is 0.67 minutes 

c) Minimizing mean tardiness only  

The job sequence for this case is 5-6-1-4-3-2 and the mean tardiness is 0 minutes.  
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Figure 5-6 Gantt chart for minimum flow time schedule from AMOGA 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7 Gantt chart diagram for minimum tardiness schedule from AMOGA 
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Legend
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Comparison of Results 

Since there are no prior results to compare multi-objective performance, we are therefore 

comparing them with respect to individual objectives. From the results, AMOGA is 

performing well for single-objective case. Therefore we assume that it is performing well 

with multi-objective case. Although the environments are varied not much variation in 

results is obtained due to the smaller problem size.  

 

Table 5-3 Comparision of Results 

Optimization 

Criteria  
AMOGA Priority rules 

 Benchmark 

Results 

Multi-

objective 

Literature 

Mean Flow 

time 
44.17 SPT - 52.7 44.17 44.17 

Mean 

Tardiness 
0 EDD- 2.5 NA NA 

 

Test Problem 2 

 

This 3 x 4 problem was described in the previous chapter. All the results after 

experimentation for this problem are explained below.   

Results from Priority Rules  

The test problem 2 is first solved by applying SPT rule to find minimum mean flow time 

schedule. The best job schedule is represented through the Gantt chart shown in Figure 5-

8. The minimum mean flow time obtained through SPT is 16.75 minutes.  

 

M1 J3 J2   J4 J1 

  

M2 J4 J1 J2 J3 

M3   J3 J4   J2   J1 

0             7         13        20 

 Figure 5-8 Gantt diagram for best job schedule from SPT rule 
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Similarly, the EDD rule is applied on the test problem 2 to find the best sequence that 

minimizes mean tardiness. The best job sequence obtained through EDD rule gives a 

value of 5.5 minutes. Figure 5-9 shows the Gantt chart schedule for minimum tardiness.  

 

M1 J2 J3 J4 J1   

M2 J4 J1 J2 J3 
  

M3   J4 J3 
  

J2   J1   

0     6    11     17  

Figure 5-9 Gantt diagram for best job schedule from EDD rule 

 

Results from AMOGA 

AMOGA is used to solve the test problem 2. The test problem in AMOGA is solved for 

the weight combinations listed in Table 4-3. Table 5-4 shows the results obtained for 

each combination for 100 trials.  

 

Table 5-4 Pareto results for Test Problem 2  

Objective weight*  Best result 

Mean Flow 

time 

Mean 

Tardiness 

Mean 

Flow time 

(min) 

Mean 

Tardiness(min) 

0 1 16.25 5.25 

0.2 0.8 16.25 5.25 

0.4 0.6 16.25 5.25 

0.6 0.4 16.25 5.25 

0.8 0.2 16.25 5.25 

1 0 16.25 5.5 
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As we observe, the best fitness values for weighs 1, 0 and 0, 1 is similar for mean flow 

time. The best job sequence for minimum mean flow time and mean tardiness is however 

different. As this is a very small problem the GA is able converge to the best solution 

very quickly. Also it is noticed that the best job sequence that minimizes mean flow time 

is different from best job sequence that minimizes mean tardiness. This shows that the 

objectives considered are diverging objectives, that is increasing one objective decreases 

the value of other objective.  

The minimum mean flow time obtained by AMOGA from (1, 0) weight combination is 

16.25 minutes. The best job sequence is given by 4 – 1 – 2 – 3.  Figure 5-10 shows the 

Gantt chart for the best schedule.  

 

M1 J2 J3 J4 J1   
  

M2 J4 J1 J2 J3 
  

M3   
      

J4 J3 
    

J2   
      

J1 

0        4          9              13      19 

Figure 5-10 Gantt diagram for minimum mean flow time schedule from AMOGA 

 

Similarly, the minimum mean tardiness obtained by AMOGA from (0, 1) weight 

combination is 5.25 minutes. The best job sequence is given by jobs 2 – 4 – 1 – 3.  Figure 

5-11 shows the Gantt chart for the best schedule. 

 

M1 J2 J3 J4 J1   

M2 J4   J2 J1   J3 

M3   J4   J2 J3   J1   

0        4   8   13     19 

Figure 5-11 Gantt diagram for minimum mean tardiness from AMOGA 
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Comparison of results 

Since there are no prior results to compare multi-objective performance, we are therefore 

comparing them with respect to individual objectives. The performance of AMOGA is 

better than obtained best both SPT and EDD rule. This indicates that AMOGA is being 

able to converge to better solutions even for small sized problems. Table 5-5 summarizes 

the results from both the methods.  

 

Table 5-5 Comparison of Test Problem 2 results 

 

 

 

 

 

Test Problem 3 

The 3 x 3 test problem was described in the previous chapter. All the results of this test 

problem are explained below.  

Results from Priority Rules 

The test problem 3 is first solved by applying SPT rule. The best job schedule is 

represented through the Gantt chart shown in Figure 5-12. The minimum mean flow time 

obtained through SPT is 22.66 minutes.  

 

M1 J1 J2   J3 

M2   J1 J3 J2 

M3 J2 J3   J1   

      0         8     14   18       

24 

Figure 5-12 Gantt diagram for schedule from SPT rule 

 

Optimization 

Criteria  
AMOGA Priority rules 

Mean Flow 

time 
16.25 SPT - 16.75 

Mean 

Tardiness 
5.25 EDD - 5.5 
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Similarly, the EDD rule is applied on the test problem 3 to find the best sequence that 

minimizes mean tardiness. The best job sequence obtained through EDD rule gives a 

value of 2 minutes. Figure 5-13 shows the Gantt chart schedule for minimum tardiness.  

Figure 5-13 Gantt diagram for schedule from EDD rule 

Results from AMOGA 

AMOGA is used to solve the test problem 3. The test problem is solved in AMOGA for 

the weight combinations listed in Table 4-3. Table 5-6 shows the results obtained for 

each combination for 100 trials.  

 

Table 5-6 Pareto results for Test Problem 3 

Objective weight*  Best result 

Mean Flow 

time 

Mean 

Tardiness 

Mean Flow 

time (min) 

Mean 

Tardiness 

(min) 

0 1 21 2 

0.2 0.8 21 2 

0.4 0.6 21 2 

0.6 0.4 21 2 

0.8 0.2 21 2 

1 0 21 2 

 

The results for all the weight combinations remained the same for this problem. As we 

observe this is a small 3 by 3 problem where the best job sequence to minimize mean 

flow time and the sequence to minimize mean tardiness are the same. This is because of 

the smaller size of the problem.   

M1 J1   J3 J2   

M2   J3 J1   J2 

M3 J3 J2   J1   

 0        8      14          21    25 
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The minimum mean flow time obtained by AMOGA from (1, 0) weight combination is 

21 minutes. The best job sequence is given by jobs 3 – 1 – 2.  Figure 5-14 shows the 

Gantt chart for the best schedule.  

 

M1 J1 
  

J3 J2 
  

M2   J3 J1 
  

J2 

M3 J3 J2 
  

J1 
  

0    4         14    19      25 

 

Figure 5-14 Gantt diagram for best mean flow time from AMOGA 

 

Similarly, the minimum mean tardiness obtained by AMOGA from (0, 1) weight 

combination is 2 minutes. The best job sequence is given by jobs 3 – 1 – 2.  In this 

problem the best schedule for both mean flow time and mean tardiness is same. The 

Gantt chart for the best schedule is similar to Gantt chart for best mean flow time 

schedule as shown in Figure 5-14.  

 

Comparison of results 

Since there are no prior results to compare multi-objective performance, we are therefore 

comparing them with respect to individual objectives. The performance of AMOGA is 

much better than SPT rule. However, the results are identical with EDD rule. Table 5-7 

summarizes the results from both the methods.  
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Table 5-7 Comparison of Test problem 3 results 

 

 

 

 

 

Therefore for all the three test problems of varying sizes the performance of AMOGA is 

much better than priority rules and at least as good as some formed through other multi-

objective problems earlier. Hence, it can be reasonably considered that the AMOGA is 

effective in finding good solutions to the multi-objective optimization of minimizing flow 

time and tardiness in the job shop.   

5.2 Experimentation for Adaptive Scheduling for Subsequent Days 

The objective in this section is to perform adaptive scheduling. In the previous section the 

GA was validated. This section explains experimentations for adaptive multi-objective 

optimization. This section presents the results for all the experimentations conducted for 

the adaptive job shop problem. We tested on a single test problem for 3 successive days. 

The adaptability of the developed GA to the assigned priority was observed during these 

experimentations. All the results are summarized separately under each section.  

 

5.2.1 First Day Results  

The results for first day of the multiple day problem is provided in this section. The 

experiments are conducted using the best parameter set derived from previous 

experimentation.  

 

Similar to the previous experimentation, each combination of weights with best 

parameter set is run for 100 trials and the best result is recorded. Tables 5-8 shows the 

best mean flow time and mean tardiness values obtained from each weight combination. 

Figure 5-15 shows the Pareto Front plot for the above results.  

Optimization 

Criteria  
AMOGA Priority rules 

Mean Flow 

time 
21 SPT – 22.66 

Mean 

Tardiness 
2 EDD - 2 
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Table 5-8 Pareto Results for Modified FT06 day 1 Problem  

Objective weight*  Best result 

Mean Flow 

time 

Mean 

Tardiness 

Mean Flow 

time 

Mean 

Tardiness 

0 1 973.33 3.33 

0.2 0.8 866.67 16.67 

0.4 0.6 866.67 16.67 

0.6 0.4 866.67 16.67 

0.8 0.2 866.67 16.67 

1 0 866.67 16.67 
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Figure 5-15 Pareto Results for Modified FT06 Problem – Adaptive Job Schedule  

 

In order to obtain the best job schedule the weigh combination of =α  0.2 and =β  0.8 

was chosen for further experimentations.  

 

The best sequence that minimizes both mean flow time and mean tardiness was selected. 

It was found that two job sequences slightly different from each other delivered the same 

values for the performance criteria. The first being 11 – 61 – 51 – 21 - 41 -31, while the 
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other was 61 -11 - 51 -21 - 41 -31. The Gantt chart for the first sequence is shown in 

Figure 5-16. The jobs are identified based on the job number and the day on which they 

enter the production plant. All the jobs of a particular day will have the day’s index as 

suffix for proper identification. 

 

 

Time (mins)  

 

 

 

 

Figure 5-16 Gantt Chart for the Best Job Schedule- Modified FT06 Problem 

 

 

End of Day 1 

From the Figure 5-16 it can be clearly observed that only job 1 is finished at the end of 

the first day (8 hour run). The rest of the jobs 2, 3, 4, 5 and 6 still have some operations to 

be performed on the machines. All these jobs have to be carried forward to the next day 

for processing. Some simple rules are followed when carrying forward the jobs to the 

next day, as described earlier. Jobs carried forward and corresponding processing times at 

the end of the first day are shown in Table 5 – 9. Since these jobs have already been in 

Legend 
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  Job 2   Job 5 

  Job 3   Job 6 
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the system for a day, their due date is effectively reduced by one day in Table 5- 9. The 

text in bold indicates operations that are partially completed.  

 

Table 5-9 Remaining Operations at end of first day 

 

 

The partially completed operations for 21J , 41J  and 61J  are kept unchanged when moving 

to the following days and are processed first on the corresponding machines. The 

remaining operations for these jobs are included in the AMOGA for scheduling.  

 

5.2.2 Day 2 Results  

For day 2 scheduling all the first day jobs with remaining (not yet started) operations are 

considered along with new jobs. The AMOGA determines the best schedule for all these 

jobs. Table 5-10 shows the data for jobs carried forward from the first day (only those 

operations that have not begin yet) and new jobs arriving the second day.   

 

 

 

 

 

 

Jobs Processing times (min)  
Due date 

(Days) 

11 0 0 0 0 0 0 1 

21 0 3(040) 5(200) 6(200) 1(200) 4(080) 3 

31 0 0 6(160) 1(180) 2(020) 5(140) 2 

41 2(040) 1(100) 3(100) 4(060) 5(160) 6(180) 2 

51 0 0 0 0 1(060) 4(020) 0 

61 0 0 0 1(020) 5(080) 3(020) 1 
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Table 5-10 Remaining Day 1 + New Day 2 Operations Scheduled by GA 

 

Jobs Processing time (min)
*
 

Due 

dates 

(Days) 

Days 

In 

System 

(Days) 

C
ar

ri
ed

 F
o
rw

ar
d

 21 0 0 5(200) 6(200) 1(200) 4(080) 3 1 

31 0 0 6(160) 1(180) 2(020) 5(140) 2 1 

41 0 1(100) 3(100) 4(060) 5(160) 6(180) 2 1 

51 0 0 0 0 1(060) 4(020) 0 1 

61 0 0 0 0 5(080) 3(020) 1 1 

N
ew

 72 1(020) 3(050) 4(050) 2(040) 5(030) 6(060) 1 0 

82 4(090) 3(070) 1(120) 5(250) 2(025) 6(080) 2 0 

92 5(090) 6(015) 3(030) 2(150) 4(025) 1(120) 3 0 

 

The experimentation on day 2 is performed in a manner similar to that of day 1. The same 

parameter set is used with all sets of weights listed in Table 4-3. The results for the 

minimum mean flow time and mean tardiness for 100 trials is shown in Table 5-11 and 

Figure 5-17. When calculating the mean flow times for the continuous day operations all 

the jobs that entered the system on the first day and were carried forward, 480 minutes 

added to their flow time.   

Table 5-11 Pareto results for Day 2 

 

 

 

Objective weight*  Best result 

 Flow time  Tardiness Mean Flow Time (min) Mean Tardiness (min) 

0 1 973.75 166.875 

0.2 0.8 970 166.875 

0.4 0.6 890.625 193.125 

0.6 0.4 890.625 193.125 

0.8 0.2 890.625 193.125 

1 0 890.625 193.125 
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Figure 5-17 Pareto Chart for the Day 2 problem 

 

From the Pareto chart it is noticed the best values for individual objectives and 

intermediate weights vary considerably. To proceed scheduling operations on the third 

day the best sequence obtained for objective weights of α  = 0.2 and β  = 0.8 were 

considered.  

 

Figure 5-18 shows the Gantt chart for best sequence obtained through AMOGA. The job 

sequence obtained for this schedule is 61 – 21 – 72 – 41 – 51 - 31 - 82 – 92. The 

minimum mean flow time obtained for this best schedule is 970 minutes while the mean 

tardiness was 166.875 minutes.  
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Figure 5-18 Gantt chart for Day 2 problem generated from AMOGA result 

 

 

 

 

 

End of Day 2 

From the Figure 5-18 it can be observed that at the end of day 2 jobs 82, 41, 21, 72, 31 

and 92 have partially completed operations. All these jobs must be carried forward to day 

3 for processing. Table 5-12 shows the left over jobs and corresponding processing times 

at the end of day 2. Text in bold indicates the partially completed operations and 

remaining processing times.  

 

 

 

 

 

 

Legend 
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Table 5-12 Remaining Operations at the end of Day 2 

Jobs Processing time (min)
*
 

Due 

dates 

(Days) 

82 0 0 1(020) 5(250) 2(025) 6(080) 2 

41 0 0 0 0 5(010) 6(180) 2 

21 0 0 0 6(020) 1(200) 4(080) 3 

72 0 0 0 0 0 6(060) 1 

31 0 0 0 0 0 5(140) 2 

92 5(090) 6(015) 3(030) 2(150) 4(025) 1(120) 3 

 

5.2.3 Day 3 Results  

For the third day of scheduling all the data for carried forward jobs and new jobs are 

considered. Therefore, the AMOGA determines the best schedule for all these jobs.  

Table 5-13 shows data for carried forward jobs with remaining operations (not partially 

completed) and entering on day 3.  

 

Table 5-13 Remaining Day 2 + New Day 3 Operations Scheduled by GA 

 

 

 

Jobs Processing time (min)
*
 

Due 

dates 

(Days) 

Days 

In 

System 

(Days) 

82 0 0 0 5(250) 2(025) 6(080) 1 1 

41 0 0 0 0 0 6(180) 1 2 

21 0 0 0 0 1(200) 4(080) 2 2 

72 0 0 0 0 0 6(060) 0 1 

31 0 0 0 0 0 5(140) 1 2 

92 5(090) 6(015) 3(030) 2(150) 4(025) 1(120) 2 1 

13 3(010) 2(030) 6(040) 1(070) 4(060) 5(050) 1 0 

53 2(100) 1(080) 5(020) 3(040) 4(050) 6(190) 2 0 
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Partially completed operations are left on the machine unchanged and the sequence for 

job shown in Table 5-13 are determined through the AMOGA. The GA parameters used 

previously are kept the same. The results for the minimum values of mean flow time and 

mean tardiness after 100 trials are shown in Table 5-14 and Figure 5-19.  

 

Table 5-14 Pareto results for Day 3 Problem 

Objective Weight*  Best result 

 Flow time  Tardiness Mean Flow Time (min) Mean Tardiness (min) 

0 1 960.625 375.625 

0.2 0.8 960.625 375.625 

0.4 0.6 960.625 375.625 

0.6 0.4 960.625 375.625 

0.8 0.2 951.25 396.25 

1 0 948.125 397.5 

 

 

Figure 5-19 Pareto chart for Day 3 Problem 
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Figure 5-20 shows the Gantt chart for best sequence obtained through AMOGA 

for 8.0,2.0 == βα . The job sequence obtained for this schedule is 72 – 31 – 21 – 41 – 92 

– 82 – 13 – 53. The minimum mean flow time obtained for this schedule is 960.625 

minutes and the mean tardiness is 375.625 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5-20 Gantt Chart for day 3 problem generated from AMOGA schedule 

 

5.2.4 Summary of Results – Adaptive Job Shop Scheduling 

From the above Gantt schedules we can observe the results generated by the AMOGA. 

To describe the adaptive scheduling the three days best schedule are considered into a 

single chart. All the jobs that are not completed on day 1 are carried forward to day 2 and 

similarly to day 3. Figure 5-22 shows the Gantt chart for the continuous job shop 

scheduling problem which is based on the integration of Gantt charts for the individual 

days. The adaptive scheduling over the three days super-imposed over the physical layout 

is shown in Figure 5-21.  
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Figure 5-21 Gantt Chart for Adaptive Job Shop Problem - 3 days continuous 

schedule 
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Figure 5-22 A Summary of the Adaptive Job Shop problem  

 

As we observe at the end of first day job 11 is finished. As a higher priority is given to 

minimizing the mean tardiness, jobs with shorter due dates must be completed first. If 

only tardiness is prioritized job 51 must be processed first. But, the total processing time 

for this job is greater than 480. Hence among the shorter due date jobs, only job 11 can be 

completed on day 1. Therefore the AMOGA is following priorities while scheduling. At 

the end of day 2, we observe that although jobs 21, 31 and 41 are in the system from day 

1, jobs with shorter due dates (such as jobs 51 and 61) are finished first. Also since the 

job 71 coming on day 2 have a shorter due date, the AMOGA finished most of the 

operations for that job. Hence the AMOGA is delaying jobs with later due dates to finish 
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jobs coming in on following days with shorter due dates. This adaptation is effectively 

happening in the AMOGA. However, if mean flow time minimization was given a higher 

priority, the AMOGA should be releasing jobs to minimize the time spent in system. The 

figure compares the problem framework described in the methodology to the AMOGA’s 

best job schedule obtained in this research.  

 

 



 

 83

6 CONCLUSIONS AND FUTURE RESEARCH  

 

The experimentations, results and discussions for the tested problems are presented in the 

chapter 4 and 5. This chapter provides the conclusions and future research options of this 

research.  

 

In this research, adaptive scheduling problem in a real time job shop environment was 

solved, for the multi-objective optimization of minimizing mean flow time and mean 

tardiness. The objectives were chosen because minimizing mean flow time minimizes the 

manufacturing lead time. On the other hand minimizing mean tardiness helps to meet the 

delivery dates effectively. An asexual reproduction genetic algorithm with two mutation 

strategies was used to solve the adaptive scheduling problem. Adaptive scheduling was 

considered because in real life manufacturing environments scheduling based on given 

priorities is very important to achieve desired objectives.  

 

In order to evaluate the effectiveness of the AMOGA developed to solve the adaptive job 

shop scheduling problem the effectiveness of the model was first tested using a single day 

dates. For the single day, extensive analyses were conducted on the FT06 benchmark 

problem and several other problems. The experimentations with these problems 

confirmed that the AMOGA is able to find good solutions to the problem addressed. 

Though previous results were not available to evaluate the weighed objectives, the results 

found were better or comparable to those formed in literature and by applying 

dispatching rules. The GA parameters were varied to determine the best set that produced 

good solutions more frequently.   

 

The multiple-day continuous job shop problem was tested in a similar manner. However, 

to schedule the previous day’s remaining jobs on the following day we followed certain 

scheduling rules. All the jobs whose last operation is partially completed were scheduled 

first. For the jobs with partially completed operation that also have other operations to be 

processed on one or more other machines, the partially completed were unaltered and 
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scheduled first on the following day, the remaining operations were scheduled along with 

new jobs using GA. All the jobs with no partially completed operations were scheduled 

along with new jobs.  

 

Overall the results indicate that the AMOGA developed for performance of the adaptive 

scheduling of jobs in a job shop environment is able to generate comparable or better 

results to that formed in literature. The results show considerable adaptability to the Mean 

tardiness objective that was considered in this research. Currently AMOGA generated 

best schedule for each day. But scheduling could also be performed for desired time 

period (say weekly basis) by expanding the time horizon. Also the Figure 5-22 showing 

the job schedules for individual days considers a real time situation where jobs are 

already being processed on a system and scheduling starts from a certain day not 

necessary from day 1.  

6.1 Unique Features  

Adaptive job scheduling 

In this research the adaptive scheduling problem, where incomplete jobs from one day are 

passed on to the following day to be scheduled along with new jobs was considered. 

Adaptive job scheduling enables minimizing the disruption in the production floor, but 

meets the desired objectives.  

 

Ability to display machine idle times 

The current job shop scheduler has the capability to generate the machine idle times for 

each schedule. This information can help the scheduler in managing a variety of 

operations. A display of machine idle times can help in managing the dynamic, 

unpredictable environments such as 

 

• Predictive maintenance scheduling  

• Scheduling unexpected, immediate delivery new jobs  

• Manage worker idle times and break times  
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Asexual reproduction and multiple mutation strategies 

Asexual reproduction is not as widely used, but in this case combining two mutation 

strategies have been effective in finding good solutions. Moreover, the solutions are 

always legal, thereby producing a significant reduction in computational time.  

 

6.2 Future Work 

The software program developed in this research has the ability to accommodate minor 

schedule disruptions. However, for greater extent of accommodation further details are to 

be incorporated in the problem with special features. 

 

The jobs and processing times are manually input to the scheduler. This is time 

consuming and likely to cause errors particularly when scheduling larger problems. This 

can be upgraded by modifying the software to capture data from any data files available 

on the computer. This can considerably reduce the time consumed in entering the job 

details.  

 

The results generated are currently in a text format. To improve this display interface the 

results can be delivered through a Gantt chart, which could help in visual interpretation of 

data.  

 

The AMOGA was not tested with very large size problems. However, the scheduler can 

be upgraded to solve large sized problems and further trends in results could be observed 

by extending the GA parameters to include including new strategies, Niching and seeding 

concepts.  

 

A comparison of results for same problem with sexual reproduction in terms of quality of 

solutions and computational time could be performed.  
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APPENDIX Ι 

AMOGA Software Interface  

 

Day 2 Test Problem 

 

Modified FT06 Day 1 Test Problem:  

 

The following Figure shows the processing times and due dates interface for the modified 

FT06 test problem for the first day.  
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The following Figure shows the processing times and due dates interface for the modified 

FT06 test problem on day 2.  
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Day 3 Continued Operations:  

 

The following Figure shows the processing times and due dates interface for the modified 

FT06 test problem on day 3.  
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