1,059 research outputs found

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    The Level-0 Muon Trigger for the LHCb Experiment

    Get PDF
    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    Design and implementation of the Front End Board for the readout of the ATLAS liquid argon calorimeters

    Get PDF
    The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. The electronics for amplifying, shaping, sampling, pipelining, and digitizing the calorimeter signals is implemented on the Front End Boards (FEBs). This paper describes the design, implementation and production of the FEBs and presents measurement results from testing performed at several stages during the production process

    Unified Synchronized Data Acquisition Networks

    Full text link
    The permanently evolving technical area of communication technology and the presence of more and more precise sensors and detectors, enable options and solutions to challenges in science and industry. In high-energy physics, for example, it becomes possible with accurate measurements to observe particles almost at the speed of light in small-sized dimensions. Thereby, the enormous amounts of gathered data require modern high performance communication networks. Potential and efficient implementation of future readout chains will depend on new concepts and mechanisms. The main goals of this dissertation are to create new efficient synchronization mechanisms and to evolve readout systems for optimization of future sensor and detector systems. This happens in the context of the Compressed Baryonic Matter experiment, which is a part of the Facility for Antiproton and Ion Research, an international accelerator facility. It extends an accelerator complex in Darmstadt at the GSI Helmholtzzentrum fĂĽr Schwerionenforschung GmbH. Initially, the challenges are specified and an analysis of the state of the art is presented. The resulting constraints and requirements influenced the design and development described within this dissertation. Subsequently, the different design and implementation tasks are discussed. Starting with the basic detector read system requirements and the definition of an efficient communication protocol. This protocol delivers all features needed for building of compact and efficient readout systems. Therefore, it is advantageous to use a single unified connection for processing all communication traffic. This means not only data, control, and synchronization messages, but also clock distribution is handled. Furthermore, all links in this system have a deterministic latency. The deterministic behavior enables establishing a synchronous network. Emerging problems were solved and the concept was successfully implemented and tested during several test beam times. In addition, the implementation and integration of this communication methodology into different network devices is described. Therefore, a generic modular approach was created. This enhances ASIC development by supporting them with proven hardware IPs, reducing design time, and risk of failure. Furthermore, this approach delivers flexibility concerning data rate and structure for the network system. Additionally, the design and prototyping for a data aggregation and concentrator ASIC is described. In conjunction with a dense electrical to optical conversion, this ASIC enables communication with flexible readout structures for the experiment and delivers the planned capacities and bandwidth. In the last part of the work, analysis and transfer of the created innovative synchronization mechanism into the area of high performance computing is discussed. Finally, a conclusion of all reached results and an outlook of possible future activities and research tasks within the Compressed Baryonic Matter experiment are presented
    • …
    corecore