35 research outputs found

    Parallel cryptanalysis

    Get PDF
    Most of today’s cryptographic primitives are based on computations that are hard to perform for a potential attacker but easy to perform for somebody who is in possession of some secret information, the key, that opens a back door in these hard computations and allows them to be solved in a small amount of time. To estimate the strength of a cryptographic primitive it is important to know how hard it is to perform the computation without knowledge of the secret back door and to get an understanding of how much money or time the attacker has to spend. Usually a cryptographic primitive allows the cryptographer to choose parameters that make an attack harder at the cost of making the computations using the secret key harder as well. Therefore designing a cryptographic primitive imposes the dilemma of choosing the parameters strong enough to resist an attack up to a certain cost while choosing them small enough to allow usage of the primitive in the real world, e.g. on small computing devices like smart phones. This thesis investigates three different attacks on particular cryptographic systems: Wagner’s generalized birthday attack is applied to the compression function of the hash function FSB. Pollard’s rho algorithm is used for attacking Certicom’s ECC Challenge ECC2K-130. The implementation of the XL algorithm has not been specialized for an attack on a specific cryptographic primitive but can be used for attacking some cryptographic primitives by solving multivariate quadratic systems. All three attacks are general attacks, i.e. they apply to various cryptographic systems; the implementations of Wagner’s generalized birthday attack and Pollard’s rho algorithm can be adapted for attacking other primitives than those given in this thesis. The three attacks have been implemented on different parallel architectures. XL has been parallelized using the Block Wiedemann algorithm on a NUMA system using OpenMP and on an Infiniband cluster using MPI. Wagner’s attack was performed on a distributed system of 8 multi-core nodes connected by an Ethernet network. The work on Pollard’s Rho algorithm is part of a large research collaboration with several research groups; the computations are embarrassingly parallel and are executed in a distributed fashion in several facilities with almost negligible communication cost. This dissertation presents implementations of the iteration function of Pollard’s Rho algorithm on Graphics Processing Units and on the Cell Broadband Engine

    Algorithms for Solving Linear and Polynomial Systems of Equations over Finite Fields with Applications to Cryptanalysis

    Get PDF
    This dissertation contains algorithms for solving linear and polynomial systems of equations over GF(2). The objective is to provide fast and exact tools for algebraic cryptanalysis and other applications. Accordingly, it is divided into two parts. The first part deals with polynomial systems. Chapter 2 contains a successful cryptanalysis of Keeloq, the block cipher used in nearly all luxury automobiles. The attack is more than 16,000 times faster than brute force, but queries 0.62 Ă— 2^32 plaintexts. The polynomial systems of equations arising from that cryptanalysis were solved via SAT-solvers. Therefore, Chapter 3 introduces a new method of solving polynomial systems of equations by converting them into CNF-SAT problems and using a SAT-solver. Finally, Chapter 4 contains a discussion on how SAT-solvers work internally. The second part deals with linear systems over GF(2), and other small fields (and rings). These occur in cryptanalysis when using the XL algorithm, which converts polynomial systems into larger linear systems. We introduce a new complexity model and data structures for GF(2)-matrix operations. This is discussed in Appendix B but applies to all of Part II. Chapter 5 contains an analysis of "the Method of Four Russians" for multiplication and a variant for matrix inversion, which is log n faster than Gaussian Elimination, and can be combined with Strassen-like algorithms. Chapter 6 contains an algorithm for accelerating matrix multiplication over small finite fields. It is feasible but the memory cost is so high that it is mostly of theoretical interest. Appendix A contains some discussion of GF(2)-linear algebra and how it differs from linear algebra in R and C. Appendix C discusses algorithms faster than Strassen's algorithm, and contains proofs that matrix multiplication, matrix squaring, triangular matrix inversion, LUP-factorization, general matrix in- version and the taking of determinants, are equicomplex. These proofs are already known, but are here gathered into one place in the same notation

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    On the Analysis of Public-Key Cryptologic Algorithms

    Get PDF
    The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasingly popular alternative to RSA offering competitive performance due the use of smaller key sizes. Most recently hyperelliptic curve cryptography (HECC) has been demonstrated to have comparable and in some cases better performance than ECC. The security of RSA relies on the integer factorization problem whereas the security of (H)ECC is based on the (hyper)elliptic curve discrete logarithm problem ((H)ECDLP). In this thesis the practical performance of the best methods to solve these problems is analyzed and a method to generate secure ephemeral ECC parameters is presented. The best publicly known algorithm to solve the integer factorization problem is the number field sieve (NFS). Its most time consuming step is the relation collection step. We investigate the use of graphics processing units (GPUs) as accelerators for this step. In this context, methods to efficiently implement modular arithmetic and several factoring algorithms on GPUs are presented and their performance is analyzed in practice. In conclusion, it is shown that integrating state-of-the-art NFS software packages with our GPU software can lead to a speed-up of 50%. In the case of elliptic and hyperelliptic curves for cryptographic use, the best published method to solve the (H)ECDLP is the Pollard rho algorithm. This method can be made faster using classes of equivalence induced by curve automorphisms like the negation map. We present a practical analysis of their use to speed up Pollard rho for elliptic curves and genus 2 hyperelliptic curves defined over prime fields. As a case study, 4 curves at the 128-bit theoretical security level are analyzed in our software framework for Pollard rho to estimate their practical security level. In addition, we present a novel many-core architecture to solve the ECDLP using the Pollard rho algorithm with the negation map on FPGAs. This architecture is used to estimate the cost of solving the Certicom ECCp-131 challenge with a cluster of FPGAs. Our design achieves a speed-up factor of about 4 compared to the state-of-the-art. Finally, we present an efficient method to generate unique, secure and unpredictable ephemeral ECC parameters to be shared by a pair of authenticated users for a single communication. It provides an alternative to the customary use of fixed ECC parameters obtained from publicly available standards designed by untrusted third parties. The effectiveness of our method is demonstrated with a portable implementation for regular PCs and Android smartphones. On a Samsung Galaxy S4 smartphone our implementation generates unique 128-bit secure ECC parameters in 50 milliseconds on average

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    Research Reports: 1984 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faulty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1984. Topics covered include: (1) data base management; (2) computational fluid dynamics; (3) space debris; (4) X-ray gratings; (5) atomic oxygen exposure; (6) protective coatings for SSME; (7) cryogenics; (8) thermal analysis measurements; (9) solar wind modelling; and (10) binary systems
    corecore