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1
Introduction

Most of today’s cryptographic primitives are based on computations that are hard
to perform for a potential attacker but easy to perform for somebody who is in
possession of some secret information, the key, that opens a back door in these
hard computations and allows them to be solved in a small amount of time. Each
cryptographic primitive should be designed such that the cost of an attack grows
exponentially with the problem size, while the computations using the secret key
only grow polynomially. To estimate the strength of a cryptographic primitive it is
important to know how hard it is to perform the computation without knowledge
of the secret back door and to get an understanding of how much money or
time the attacker has to spend. Usually a cryptographic primitive allows the
cryptographer to choose parameters that make an attack harder at the cost of
making the computations using the secret key harder as well. Therefore designing
a cryptographic primitive imposes the dilemma of choosing the parameters strong
enough to resist an attack up to a certain cost while choosing them small enough
to allow usage of the primitive in the real world, e.g. on small computing devices
like smart phones.

Typically a cryptographic attack requires a tremendous amount of compu-
tation—otherwise the cryptographic primitive under attack can be considered
broken. Given this tremendous amount of computation, it is likely that there are
computations that can be performed in parallel. Therefore, parallel computing
systems are a powerful tool for the attacker of a cryptographic system. In contrast
to a legitimate user who typically exploits only a small or moderate amount of
parallelism, an attacker is often able to launch an attack on a massively parallel
system. In practice the amount of parallel computation power available to an
attacker is limited only by the amount of money he is able to spend; however the
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2 CHAPTER 1. INTRODUCTION

amount of parallelism he can exploit depends on the particular attack which he is
going to mount against a particular cryptographic primitive. The main challenge
of implementing a cryptographic attack for a parallel computing system is to
explore which parts of the computation can be computed in parallel and how this
parallelism can be exploited most efficiently.

This thesis investigates three different attacks on particular cryptographic sys-
tems: Wagner’s generalized birthday attack is applied to the compression function
of the hash function FSB. Pollard’s rho algorithm is used for attacking Certicom’s
ECC Challenge ECC2K-130. The implementation of the XL algorithm has not
been specialized for an attack on a specific cryptographic primitive but can be used
for attacking certain cryptographic primitives by solving multivariate quadratic
systems. All three attacks are general attacks, i.e. they apply to various crypto-
graphic systems; therefore the implementations of Wagner’s generalized birthday
attack and Pollard’s rho algorithm can be adapted for attacking other primitives
than those given in this thesis. The three attacks have been implemented on
parallel architectures, each attack on a different architecture. The results give an
estimate of the scalability and cost of these attacks on parallel systems.

Overview
Chapter 2 gives an introduction to parallel computing. The work on Pollard’s
rho algorithm described in Chapter 3 is part of a large research collaboration
with several research groups; the computations are embarrassingly parallel and
are executed in a distributed fashion in several facilities on a variety of parallel
system architectures with almost negligible communication cost. This disserta-
tion presents implementations of the iteration function of Pollard’s rho algorithm
on Graphics Processing Units and on the Cell Broadband Engine. Chapter 4 de-
scribes how XL has been parallelized using the block Wiedemann algorithm on a
NUMA system using OpenMP and on an InfiniBand cluster using MPI. Wagner’s
generalized birthday attack is described in Chapter 5; the attack has been per-
formed on a distributed system of 8 multi-core nodes connected by an Ethernet
network.



2
Overview of parallel computing

Parallelism is an essential feature of the universe itself; as soon as there exists
more than one entity and there is interaction between these entities, some kind
of parallel process is taking place. This is the case for quantum mechanics as
well as astrophysics, in chemistry and biology, in botanics and zoology, and hu-
man interaction and society. Therefore, exploiting parallelism also in information
technology is natural and has started already at the beginning of modern com-
puting.

The main condition for parallel computing is that there are parts of the com-
putation which can be executed in parallel. This is the case if there are at least
two parts of the computation which have no data dependencies, i.e., the input
data of each part is not depending on the result of the computation of the other
part. In [LS08], Lin and Snyder classify parallelism into two types as follows:

• In case the same sequence of instructions (e.g., the same mathematical func-
tion) is applied to a set of independent data items, the computation on these
data items can be performed in any order and therefore, in particular, in
parallel. This kind of parallelism is called data parallelism. The amount of
parallelism scales with the number of independent data items.

• Some computations can be split in several tasks, i.e., independent instruc-
tion sequences which compute on independent data items. Since the tasks
are independent from each other, they can be computed in parallel. This
is called task parallelism. The number of independent tasks for a given
computation is fixed and does not scale for a larger input.

Given that a program exhibits some parallelism, this parallelism can be ex-
ploited on a parallel computer architecture. In [Fly66] Flynn classifies computer
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4 CHAPTER 2. OVERVIEW OF PARALLEL COMPUTING

architectures with respect to their ability to exploit parallelism by looking at the
instruction stream, the sequence of instructions that are executed by a computer,
and the data stream, the sequence of data that is processed by the instruction
stream. Using these two terms, Flynn defines the following categories of parallel
computer architectures:

• Single Instruction Stream – Single Data Stream (SISD): The computer fol-
lows only one instruction stream that operates on data from one single data
stream.

• Single Instruction Stream – Multiple Data Streams (SIMD): Each instruc-
tion of the instruction stream is executed on several data streams.

• Multiple Instruction Streams – Single Data Stream (MISD): Several instruc-
tions from different instruction streams are executed on the same single data
stream.

• Multiple Instruction Streams – Multiple Data Streams (MIMD): Instructions
from different instruction streams are applied to independent data streams.

Data parallelism can naturally be exploited on SIMD architectures. By du-
plicating the instruction stream it also fits to MIMD architectures. Task parallel
applications are usually suitable for MIMD architectures.

MISD architectures are merely stated for theoretical completeness. Neverthe-
less, one may argue that MISD architectures are used, e.g., for fault detection
(although in this case the same instruction stream would be executed multiple
times on the same data stream) or in pipelining systems (although one may argue
that the data changes after each instruction).

Many applications exhibit data parallelism as well as task parallelism. There-
fore, many computer systems incorporate SIMD and MIMD techniques and are
able to perform mixed data and task parallel workloads efficiently.

The reason for spending effort in exploiting parallelism is to gain some speedup
in the execution. For a given task, the speedup S is defined as the ratio between
the time ts of execution for the sequential, non-parallelized implementation and
the time tp of execution in parallel:

S =
ts
tp
.

The optimal speedup on n execution units therefore is

Soptimal =
ts
ts
n

= n.

However, when running a program on a computer, not all instructions may be
able to be executed in parallel due to dependencies. The improvement one can
gain from parallelism in terms of speedup is restricted according to Amdahl’s law
(as proposed by Amdahl in [Amd67]): let p be the part of the program that can
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be executed in parallel and s the part that must be executed sequentially, i.e.,
p+ s = 1; the best speedup possible when using n execution units is

S =
1

s+ p
n

.

Consequently, a high gain in speedup can only be reached if the sequential
part of a program is sufficiently small. In case s is equal or extremely close to
zero the program is called embarrassingly parallel. If s is too large, adding more
and more execution units does not give noticeable benefit.

Amdahl’s law seems to suggest that it is not worth to split workload over hun-
dreds or even thousands of execution units if the sequential part is not negligible.
However, that is not necessarily the case. Amdahl assumes the problem size to
be fixed. In [Gus88] Gustafson points out that for many scientific applications a
higher number of execution units gives the opportunity to increase the problem
size and thus to get more accurate results. When scaling the problem size, for
many applications the sequential part remains almost the same while the parallel
part increases. In case the workload scales linearly with the number of execution
units, an estimate of the speedup can be obtained from Gustafson’s law [Gus88] as

S =
s+ np

s+ p
= s+ np = n+ s(1− n).

In cryptanalytic applications the problem size is usually fixed, for example
an attack on an encryption using a certain encryption standard with a certain
parameter set. Nevertheless, the problem size and therefore the workload nat-
urally is very large. Thus, cryptanalytic applications are good candidates for
parallelization—given that they exhibit a sufficient amount of parallelism.

2.1 Parallel architectures
There are many types of parallel architectures, which mainly differ in the physical
distance between the execution units. The distance gives a lower bound on the
time that is required to deliver information from one unit to another. Therefore it
has a big impact on how data is exchanged between the execution units and how
communication is accomplished. This section introduces parallel architectures on
the level of the microarchitecture, the instruction set, and the system architecture.

2.1.1 Microarchitecture
The microarchitecture of a processor is the lowest level on which computations
can be executed in parallel. The microarchitecture focuses on the computation
of a single instruction stream. If a sequential instruction stream contains one or
more instructions that operate on different data items, i.e., if each input does not
depend on the output of another one, these instructions can be executed in any
order and therefore in parallel. This kind of parallelism is called instruction level
parallelism.
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Instruction pipelining

The execution of any instruction can be split into several stages [HP07, Ap-
pendix A]: for example it is split into instruction fetch, instruction decode, ex-
ecution, memory access, and write back of results to the output register. For
different instructions the execution stage might take a different amount of time
depending on the complexity of the instruction: for example an XOR-instruction
typically takes less time than a double-precision floating-point multiplication.

If all these stages were executed in one single clock cycle of a fixed length,
much time would be wasted on the faster instructions since the processor would
need to wait as long as the slowest instruction needs to finish. Furthermore, while
an instruction is processed, e.g., by the execution unit all other stages would be
idle.

Instead, the processor frequency and instruction throughput can be increased
by pipelining the different stages of the instruction execution and by splitting
the execution stage in several clock cycles depending on instruction complexity.
After the first instruction has been loaded, it is forwarded to the decoder which can
decode the instruction in the next cycle. At the same time, the second instruction
is loaded. In the third cycle the first instruction starts to be executed while the
second one is decoded and a third one is loaded in parallel.

This requires all instructions which are in the pipeline at the same time to
be independent from each other; in case the instructions lack instruction level
parallelism, parts of the pipeline have to stall until all dependencies have been
resolved.

There are two ways to achieve a high throughput of instructions: Either the
instructions are scheduled by a compiler or by the programmer in a way that min-
imizes instruction dependencies on consecutive instructions in a radius depending
on the pipeline length. Or the fetch unit looks ahead in the instruction stream and
chooses an instruction for execution which is independent from the instructions
that are currently in the pipeline; this is called out-of-order execution. Details on
out-of-order execution can be found in [HP07, Section 2.4].

The physical distance between the pipeline stages is very small and the com-
munication time between the stages can almost be neglected. From the outside
a pipelined processor appears to be a SISD architecture; internally the pipeline
stages actually resemble a MIMD architecture.

Superscalar processors

Another way to exploit instruction level parallelism is to use several arithmetic
logic units (ALUs) to compute an instruction stream. An instruction scheduler
forwards several independent instructions to several ALUs in the same clock cy-
cle. The ALUs may share one common instruction set or they may have different
instruction sets, e.g., a processor may have two integer units and one floating
point unit. As in the case of pipelining, the instruction scheduler of a super-
scalar processor may examine several upcoming instructions out of order to find
independent instructions.
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The ALUs communicate directly through registers without communication
costs; after the output of one instruction has been computed it is usually available
for all ALUs in the following cycle. Similar to pipelining architectures, superscalar
processors appear to be SISD architectures but internally they operate in an
MIMD fashion.

Instruction pipelining as well as superscalar execution is very common and used
in most of today’s microarchitectures like the x86 and AMD64 processors from
Intel and AMD, IBM’s PowerPC processors and so on. Both approaches are often
combined: several stages of the instruction pipeline can be duplicated to allow
parallel execution of independent instructions.

The drawback of these architectures is that they lose performance if there
is not enough instruction level parallelism available or found during compilation
or execution. In particular programs that have many conditions or branches
suffer from these techniques. Furthermore, the logic for instruction scheduling and
dependency detection consumes resources which are not available for execution
units any more.

Another type of parallelism that can be exploited by a microarchitecture is bit
level parallelism: Processors handle data in units of a certain number of bits, the
word size. By increasing the word size a processor is able to compute on more
data in parallel: a processor of a word size of 64 bits can compute an addition of
two 64-bit numbers using one instruction, a 32-bit processor would need at least
two instructions plus possibly more instructions to handle overflows. For example
the x86 processor architecture started with a word size of 16 bits in 1978, was
extended to 32 bits in the mid eighties, and eventually supported a word size of
64 bits with the introduction of the Pentium 4F processor in 2004.

2.1.2 Instruction set

Microarchitectures mainly aim at the exploitation of instruction level parallelism.
However, the instruction set of a single processor may also offer parallelism which
can be exploited either by the programmer or by a compiler.

Vector processors

Vector processors implement the SIMD architecture: the same instruction is exe-
cuted on independent data elements (vector elements) from several data streams
in parallel. The elements are loaded into vector registers which consist of several
slots, one for each data element. Vector instructions, often called SIMD instruc-
tions, operate on the vector registers.

The number of execution units does not necessarily need to be equal to the
number of vector elements. The processor may operate only on parts of the
vector registers in each clock cycle. Usually vector processors only have 4 (e.g.,
NEC SX/8) to 8 (e.g., Cray SV1) ALUs (see [HP07, Appendix F]). Nevertheless,
operating on a large vector in several steps on groups of the vector register slots
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allows the processor to hide instruction and memory latencies: since it takes
several cycles before the execution on the last group of register slots has started,
the operation on the first group is likely to be finished so that all dependencies
that might exist for the next instruction are resolved.

Initially, a very high number of vector elements was envisioned, for example as
much as 256 elements for the early prototype architecture Illiac IV (which eventu-
ally was built with only 64 vector elements) [BDM+72]. The Cray-1 had 8 vector
registers of 64 vector elements each as well. Today, many specialized scientific
computers also offer wide vector registers of 64 to 256 vector elements [HP07,
Figure F.2].

Apart from these cases also short-vector architectures are very common. Most
of today’s x86-processors have 128-bit vector registers, which can be used for 8-,
16-, 32-, or 64-bit vector operations on sixteen, eight, four, or two vector elements.
The Synergistic Processing Units of the Cell processor have a similar design and
the PowerPC processors also provide 128-bit vector registers. Note that 128-bit
vector registers can also be used for 1-bit operations, i.e. logical operations, on 128
vector elements. This is exploited by a technique called bitslicing; see Chapter 3
for an application of this technique.

Very Long Instruction Word processors

Superscalar processors exploit instruction level parallelism by choosing several
data-independent instructions from the instruction stream for execution. The
logic for this run-time instruction scheduling is relatively complex and consumes
extra resources. But the scheduling of instructions can also be done off-line: the
compiler or the programmer schedules independent instructions into instruction
groups that can be forwarded by the fetch unit at once to several ALUs. Therefore,
the ALUs can be kept busy without the need for dedicated scheduling hardware.
This architecture is called Very Long Instruction Word (VLIW).

VLIW processors are not easily classified by Flynn’s taxonomy. On a large
scale, a single instruction stream operates on a single data stream. However,
due to the fact that VLIW processors contain several ALUs they may also be
categorized as MIMD or even MISD architectures. VLIW processors were first
mentioned by Fisher in 1983 [Fis83] but have not been widely deployed before
the IA-64 architecture by HP and Intel and its implementation as Intel Itanium
processor starting in 2001 (see [HP07, Appendix G]). The most recent, widespread
VLIW processors are the graphics processing units of AMD.

2.1.3 System architecture

On a large scale, a parallel architecture can be designed by connecting several
execution units by a variety of network interconnects and/or system buses. The
following paragraphs give a short introduction to several parallel system architec-
tures.
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Symmetric Multiprocessing

Several execution units can be connected by a system bus. If all execution units
have the same architecture, this system architecture is called Symmetric Multipro-
cessing (SMP). All execution units of an SMP architecture share a joint memory
space.

Multi-core processors: A multi-core processor consists of several execution
units called cores which compute in an MIMD fashion. Several resources might
be shared, such as (parts of) the cache hierarchy as well as IO and memory ports.
The operating system has access to all cores and schedules processes and threads
onto the cores. Communication between the cores can be accomplished via shared
cache or via main memory.

Almost all of today’s high-end CPUs are multi-core CPUs. Multi-core proces-
sors are used in a large range of devices: servers, desktop PCs, even embedded
systems and mobile phones are powered by multi-core processors. Common con-
figurations range from dual-core CPUs to ten- and even twelve-core CPUs (in May
2011). Core count of mainstream processors is envisioned to raise even higher,
even though up to now only a small fraction of desktop applications benefit from
multi-core architectures.

Non-Uniform Memory Access: If several conventional processors are placed
on one mainboard and are connected by a system bus, each processor has a mem-
ory controller of its own even though all processors have full access to all memory.
Since latency as well as throughput may vary depending on which physical mem-
ory is accessed, this architecture is called Non-Uniform Memory Access (NUMA)
architecture as opposed to Uniform Memory Access (UMA) architectures (for ex-
ample multi-core processors) where accessing any physical memory address has
the same performance. Several multi-core processors may be used to set up a
NUMA system.

Since the mainboards for NUMA systems are more expensive than off-the-shelf
boards, NUMA systems are usually used for commercial or scientific workloads.
The communication distance between the execution units is higher than in the
case of multi-core processors since caches are not shared and all communication
must be accomplished via main memory.

Simultaneous multithreading: In general a lack of instruction level paral-
lelism on pipelined or superscalar processors as well as high-latency instructions
(like memory access or IO) may lead to stalls of one or several ALUs. This can
be compensated for by a technique called simultaneous multithreading (SMT): A
processor with an SMT architecture concurrently computes two or more instruc-
tion streams, in this case called processes or threads. Therefore the instruction
scheduler has more options to choose an instruction from one of the independent
instruction streams. For concurrent execution, each instruction stream requires
his own instance of resources like the register file. In contrast to multi-core proces-
sors, simultaneous multithreading is not really a parallel architecture even though
it appears to be a MIMD architecture from the outside. Actually, it just allows a
higher exploitation of the computation resources of a single processor.
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Since each thread has its own register file, communication between the instruc-
tion streams is accomplished via memory access. In the best case, shared data
can be found in on-chip caches but communication might need to be channeled
via main memory.

SMT is state of the art in many of today’s processors. Usually, two concurrent
threads are offered. Intel calls its SMT implementation Hyper-Threading Tech-
nology (HTT) and uses it in most of its products. AMD, IBM and others use
SMT as well.

Accelerators

Using accelerators in contrast to SMP architectures leads to a heterogeneous
system design. Accelerators can be any kind of computing device in addition to a
classical processor. Either the accelerators are connected to the processor via the
system bus as for example in the case of Field-Programmable Gate Array (FPGA)
cards and graphics cards or they can be integrated onto the die of the processor
like the Synergistic Processing Elements of the Cell processor, Intel’s E600C Atom
chips with integrated FPGAs, or the Fusion processors of AMD, which include
Graphics Processing Units (GPUs); there is a strong trend for moving accelerators
from the system bus into the processor chip.

Parallel computing on FPGAs is not part of this thesis and therefore will
not be further examined; GPUs will be described in more detail in Sections 2.3
and 3.4.1, the Cell processor in Section 3.3.1.

Supercomputers

The term supercomputer traditionally describes a parallel architecture of tightly
coupled processors where the term tight depends on the current state of the art.
Many features of past supercomputers appear in present desktop computers, for
example multi-core and vector processors. Today’s state of the art supercomput-
ers contain a large number of proprietary technologies that have been developed
exclusively for this application. Even though supercomputers are seen as a single
system, they fill several cabinets or even floors due to their tremendous number
of execution units.

Since supercomputers are highly specialized and optimized, they have a higher
performance compared to mainstream systems. On the TOP500 list of the most
powerful computer systems from November 2011 only 17.8% of the machines are
supercomputers but they contribute 32.16% of the computing power. The ma-
chines of rank one and two are supercomputers. Even though the number of
supercomputers in the TOP500 list has been declining of the past decade, they
still are the most powerful architectures for suitable applications. The TOP500
list is published at [MDS+11].

Supercomputers are MIMD architectures even though they commonly are
treated as Single Program Multiple Data (SPMD) machines (imitating Flynn’s
taxonomy): the same program is executed on all processors, each processor handles
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a different fraction of the data, and communication is accomplished via a high-
speed interconnect. In general, supercomputers provide a large number of execu-
tion units and fast communication networks, which make them suitable for big
problem instances of scientific computations.

Cluster computing

Off-the-shelf desktop computers or high-end workstations can be connected by
a high-speed interconnect to form a computer cluster . Classical high-speed in-
terconnects are InfiniBand and Myrinet; Gigabit-Ethernet is becoming more and
more widespread as well. Several clusters can be coupled by a wide area network
to form a meta-cluster. The connected computers of a cluster are called nodes.

Clusters differ from supercomputers by providing lower communication band-
width and higher latencies. Similar to supercomputers they provide a homoge-
neous computing environment in terms of processor architecture, memory amount
per node, and operating system.

On the TOP500 list from November 2011 mentioned above, 82% of the ma-
chines are cluster systems. They contribute 67.76% of the total computing power
on the list. Ten years earlier, these numbers were both below 10%. This shows
that cluster systems are more and more widespread. Reasons for their popular-
ity are that cluster systems are relatively cheap and easy to maintain compared
to supercomputers while they are nonetheless suitable for scientific computing
demands.

Clusters are MIMD architectures. Nevertheless, they are usually programmed
in a SPMD fashion in the same way as supercomputers. Clusters are used for data-
parallel applications that have a suitable demand for performance in computation
and communication.

Distributed computing

If the communication distance is very high, usually the term distributed com-
puting is used. This term applies if no guarantee for communication latency or
throughput is given. This architecture consists of a number of nodes which are
connected by a network. The nodes can be desktop computers or conventional
server machines. The Internet or classical Ethernet networks may be used as
interconnecting network.

In general, the physical location of the nodes is entirely arbitrary; the nodes
may be distributed all over the world. SETI@home [KWA+01] was one of the
first scientific projects for distributed computing. Its grid computing middleware
“BOINC” [And04] is used for many different scientific workloads today.

If the location of the nodes is more restricted, e.g., if the desktop computers of
a company are used for parallel computing in the background of daily workload
or exclusively at night, the term office grid is used. Some companies like Amazon
offer distributed computing as cloud services.
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Distributed computing is a MIMD architecture. It is suitable if the demand
for communication is small or if high network latency and low throughput can be
compensated or tolerated. This is the case for many data parallel applications.
Usually computing resources are used which otherwise would remain unexploited;
in case of cloud computing resources can be acquired on demand.

2.2 Parallel programming

The previous section introduced parallel architectures on three different levels of
abstraction: the microarchitecture, the instruction set, and the system architec-
ture.

On the level of the microarchitecture, the only way to influence how instruc-
tions are executed in parallel is the order in which the instructions are placed in
the machine code of the program. For programming languages like C, C++, or
Fortran, the order is defined by the compiler; nowadays all optimizing compilers
have some heuristics that try to produce a reasonable scheduling of instructions
for the requested microarchitecture. If more control over instruction scheduling
is needed, e.g. in case the compiler fails to produce efficient machine code, the
program (or parts of the program) can be written in assembly language.

Programming in assembly language also gives full control over program exe-
cution on the level of the instruction set. In general compilers do not give direct
access to the instruction set; however, some compilers allow the programmer to
embed assembly code into the program code for this purpose. Compilers for VLIW
architectures handle data flow and instruction scheduling internally without di-
rect control of the programmer. Vectorizing compilers can parallelize sequential
source code for vector processors in certain cases in an automated fashion. Some
programming languages offer SIMD vector operations as part of the language.

On the level of the system architecture, the program is executed by several
computing units. The workload of the computation is distributed over these units.
Cooperation between the computing units is achieved by communicating interme-
diate results. The following paragraphs discuss two concepts for communication
between the computing units of a parallel system: Either the data is exchanged
between computing units implicitly via shared memory or explicitly via message
passing.

2.2.1 Shared memory

Shared memory works like a bulletin board in the lobby of a student dorm: The
students place messages on the board. Messages can be read, modified or removed
by all students. The location of the board is well known to all students. Students
can access the board at any time in any order. Communication over a bulletin
board is most efficient if the students have some agreement about what informa-
tion is placed on what position on the board and who is allowed to remove or
modify the information.
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From a programming perspective, communication is accomplished by making a
certain memory region available to all instances of a program which are executed
in parallel. All instances of the program write data to or read data from this
memory region. Shared memory programming is available on most parallel system
architectures listed in the previous section. However, it fits most naturally to SMP
architectures with a joint memory space.

A popular standard for shared-memory programming on SMP architectures is
OpenMP (Open Multi-Processing, see [OMP]). OpenMP defines a set of compiler
directives for C, C++, and Fortran compilers. These directives instruct the com-
piler to distribute the workload of the specified code regions over several threads.
Since all threads are executed in the same address space, they have full access to
all data of the parent process. The compiler automatically inserts code for start-
ing, managing, and stopping of threads. Using OpenMP, sequential code can be
parallelized relatively easily by inserting compiler directives into sequential source
code.

If OpenMP is not available or does not fit the programming model, the pro-
grammer can control the parallel execution on an SMP architecture directly by
using, e.g., POSIX (Portable Operating System Interface) threads instead of
OpenMP. POSIX threads are in particular useful for implementing task-parallel
applications. Shared-memory communication between separate processes is car-
ried out by mapping a joint shared memory segment into the address space of each
process. An emerging programming standard for general-purpose computing on
GPUs is the C-language derivative OpenCL (Open Computing Language) which
also can be used for programming of hybrid SMP and GPU computing systems.
See Section 2.3 for details on general-purpose GPU programming and OpenCL.

Shared-memory programming brings the risk of race conditions: Consider a
segment of program code where a value in shared memory is incremented by two
threads A and B. Each thread first reads the value from the memory location to
a register, increments the value, and writes it back to the old memory location.
Everything is fine if A and B pass this entire code section one at a time. If these
three instructions are processed by both threads at the same time, the resulting
value in the shared memory location is undefined: Assume thread A is the first
one to read the value, but thread B reads the same value before it is modified
and stored by A. After both threads have passed the code segment, the value in
shared memory has been incremented by only one instead of two.

To make the code segment work, one must ensure that it is processed atom-
ically, i.e. the code segment must only be entered by a thread while no other
thread is currently executing it. The most efficient way to implement this par-
ticular example is to use processor instructions that perform the incrementation
as an atomic operation—if such an instruction is provided by the instruction set
and is accessible through the programming language. Many instruction sets offer
several flavors of atomic operations. Access to large critical code sections can be
controlled with semaphores, locks, mutexes, or any other control mechanism that
is offered by the programming environment or the operating system. For shared-
memory programming, the programmer is obliged to provide access control to
critical code sections and to guarantee deterministic program behaviour.
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2.2.2 Message passing

Message passing is similar to sending a letter by mail: When the sender finished
writing the letter, it is picked up by a postman and delivered to the receiver.
After the letter has been handed over to the postman, the sender has no access to
the letter anymore. The receiver checks his mailbox for incoming mail. At least
the address of the receiver needs to be known for successful delivery of the letter.

The message-passing programming paradigm is usually implemented as a li-
brary that offers an interface of function calls which can be invoked by the com-
municating processes. Typically pairs of functions are offered: one for sending,
one for receiving a message. Sending and receiving can either be blocking (the
sender waits until the postman picks up the letter, the receiver waits until the
postman delivers the letter) or non-blocking (the postman picks up and drops off
the letter at the mail boxes of sender and receiver while those two are free to
continue with their work).

Message passing is available for tightly coupled SMP architectures and for
more loosely coupled architectures like clusters; message passing fits most natu-
rally to the latter one. Message passing can compensate for the disadvantages
of remote memory access on NUMA architectures for some applications: One
process is executed on each NUMA node and message passing is used for the
communication between the NUMA nodes.

The most common message-passing interface for high-performance computing
is the MPI (Message Passing Interface) standard. This standard defines syntax
and semantics of a message-passing interface for the programming languages C
and Fortran. Popular implementations of the MPI standard are Open MPI avail-
able at [OMPI] and MPICH2 available at [ANL]. Most MPI implementations pro-
vide command-line tools and service programs that facilitate starting and control-
ling MPI processes on large clusters. The performance of communication-intensive
applications depends heavily on the capability of the MPI implementation to offer
efficient communication on the targeted parallel system.

Communication channels such as pipes or sockets provided by the operating
system are more general approaches than MPI. They are commonly used for
communication on distributed systems but less commonly on more tightly coupled
systems such as clusters or SMP architectures. The operation mode of sockets is
particularly useful for applications with a varying number of computing nodes.
MPI requires the number of nodes to be fixed over the whole execution time of
the application; failing nodes cause the whole computation to be aborted.

2.2.3 Summary

Neither of the two approaches is more expressive than the other: An implemen-
tation of the MPI standard might use shared-memory programming for message
delivery on an SMP architecture; a distributed shared-memory programming lan-
guage like Unified Parallel C (UPC, see [LBL]) might use message-passing primi-
tives to keep shared-memory segments coherent on cluster architectures.
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The choice between these paradigms depends on the application and its tar-
geted system architecture. The paradigms are not mutually exclusive; hybrid
solutions are possible and common on, for example, clusters of SMP architec-
tures. In this case one process (or several processes on NUMA architectures) with
several threads is executed on each cluster node. Local communication between
the threads is accomplished via shared memory, remote communication between
the cluster nodes (and NUMA nodes) via message passing.

2.3 General-purpose GPU programming

Graphics Processing Units (GPUs) are computing devices which are specialized
and highly optimized for rendering 3D graphic scenes at high frame rates. Since
the 1990s graphics cards have become a mass-market gaming device. Market com-
petition led to a rapid development of computational power alongside a tremen-
dous drop of prices. State-of-the-art GPUs have a single-precision floating-point
peak performance in the range of teraflops at relatively small power consump-
tion and moderate prices. Therefore, graphics cards have become more and more
attractive for High Performance Computing.

Already in the early ’90s the computational power of GPUs has been used
for other applications than computer graphics (e.g. [LRD+90]). In 2003, Mark
Harris established the acronym GPGPU for the general-purpose use of graphics
cards [Har03]. In the beginning, it was very tedious to program GPUs. The algo-
rithm had to be expressed with the shader instructions of the rendering pipeline.
General-purpose programmability was greatly increased when NVIDIA intro-
duced a unified shader hardware architecture with the GeForce 8 Series graphics
cards in November 2006. NVIDIA made an essential change in the hardware ar-
chitecture: Instead of implementing several different types of graphic shaders in
hardware, they developed a massively parallel multi-core architecture and imple-
mented all shaders in software. NVIDIA’s architecture is called Compute Unified
Device Architecture (CUDA). In 2007, AMD also released a GPU with a unified
shader architecture, the Radeon R600 series.

AMD and NVIDIA both offer software development kits (SDKs) that give ac-
cess to the GPUs from a host program running on the CPU. The host program
controls the execution of a shader program, the so called kernel. NVIDIA’s SDK
is called “CUDA SDK”; the SDK of AMD was first named “ATI Stream SDK”.
Nowadays it is promoted as “AMD Accelerated Parallel Processing (APP) SDK”.
Initially, both vendors used different C-like programming languages, NVIDIA of-
fered a language called CUDA-C, AMD used Brook+, an enhanced version of
BrookGPU (see [BFH+04]). Today both vendors support the execution of pro-
grams written in OpenCL. OpenCL is a specification of a programming frame-
work consisting of a programming language and an API. It facilitates writing and
executing parallel programs in heterogeneous computing environments consist-
ing of e.g. multi-core CPUs and GPUs. The OpenCL specification can be found
at [Mun11].
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Even though GPUs have been used successfully to accelerate scientific algo-
rithms and workloads (e.g. [BGB10; RRB+08]), their performance can only be
fully exploited if the program is carefully optimized for the target hardware. There
are also reports of cases where GPUs do not deliver the expected performance (e.g.
[BBR10]). Apart from the fact that not all applications are suitable for an efficient
implementation on GPUs, there may be several reasons for an underutilization
of these computing devices, e.g. poor exploitation of data locality, bad register
allocation, or insufficient hit rates in the instruction cache. In particular the latter
two cases cannot easily, maybe not at all, be prevented when using a high-level
programming language: If the compiler does not deliver a suitable solution there
is no chance to improve the performance without circumventing the compiler.

To solve this issue, Bernstein, Schwabe, and I constructed a toolbox for im-
plementing GPU programs in a directly translated assembly language (see Sec-
tion 2.3.2). The current solution works only with NVIDIA’s first generation
CUDA hardware. Due to NVIDIA’s and AMD’s lack of public documentation
the support for state-of-the-art GPUs still is work in progress.

Since 2006 NVIDIA released several versions of CUDA. Furthermore, the
processor architecture has been modified several times. The architectures are
classified by their respective compute capability. The first generation of CUDA
GPUs has the compute capabilities 1.0 to 1.3 and was distributed until 2010.
In 2010, NVIDIA introduced the second generation of CUDA called Fermi. Up
to now Fermi cards have the compute capabilities 2.0 and 2.1. Release steps
within each generation introduce minor additions to the instruction set and minor
extensions to the hardware architecture. The step from 1.3 to 2.0 introduced a
completely redesigned hardware architecture and instruction set.

Because CUDA allows major changes of the hardware implementation, CUDA
software is usually not distributed in binary form. Instead, the device driver
receives the CUDA-C or OpenCL source code or an instruction-set-independent
intermediate assembly code called Parallel Thread Execution (PTX). In either
case the source code is compiled for the actual hardware and then transferred to
the GPU for execution.

NVIDIA does not offer an assembler for CUDA; PTX-code is compiled like a
high level language and therefore does not give direct access to instruction schedul-
ing, register allocation, register spills, or even the instruction set. Nevertheless,
Wladimir J. van der Laan reverse-engineered the byte code of the first genera-
tion CUDA 1.x instruction set and implemented an assembler and disassembler in
Python. These tools are available online at [Laa07] as part of the Cubin Utilities,
also known as decuda.

In April 2011, Yun-Qing Hou started a similar project called asfermi in order
to provide an assembler and disassembler for the instruction set of CUDA 2.x
Fermi. Hou’s code is available at [Hou11]. Since this tool set does not yet fully
support all opcodes of the Fermi architecture, the remainder of this section will
focus on decuda and therefore compute capability 1.x and CUDA SDK version
2.3. Support for OpenCL has been introduced with CUDA SDK version 4.0 and
will not be described in this section.
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2.3.1 Programming NVIDIA GPUs

Today’s NVIDIA GPUs are SIMD architectures. They have been designed for
data parallel applications—e.g. graphics processing. Each independent item of a
data stream is assigned to a thread; many threads are executed in parallel on the
execution units of the GPU. A certain number of threads (compute capability
1.x: 32 threads; compute capability 2.x: 64 threads) are executed in lock-step,
i.e. a single instruction is fetched and executed by all of these threads. Such a
group of threads is called a thread warp. Threads in a warp are allowed to take
different branches but this results in a sequential execution of the branches that
are taken by subsets of threads and therefore in a loss of efficiency. Several warps
can be organized in a thread block. All threads in a thread block can exchange
data via a fast data storage called shared memory. Several thread blocks can be
executed concurrently on one GPU core and in parallel on different cores.

Each core has a large number of registers and a relatively small amount of
shared memory, e.g. on compute capability 1.3 devices each core has 16384 regis-
ters and 16 KB shared memory. A set of registers is assigned to each thread and
a fraction of shared memory to each thread block for the whole execution of the
thread block. Therefore, the maximum number of threads that can be executed
concurrently on one core depends on the number of registers each thread demands
and the amount of shared memory each thread block requests.

Since each core of compute capability 1.x GPUs has 8 ALUs, one warp of 32
threads seems to be more than enough to keep all ALUs busy. Nevertheless, ex-
periments showed that one single warp is scheduled only every second instruction
issue cycle (which is four times longer than one ALU clock cycle), leaving the
ALUs idle during one issue cycle in between. Consequently at least two warps
should be executed per core. Furthermore, the instruction set can only address
128 registers, so to fully utilize all registers at least 128 threads (four warps) must
be executed concurrently. In addition, instruction latencies and memory latencies
lead to the recommendation of running at least 192 threads concurrently to get a
high ALU utilization [NVI09a].

The threads have access to off-chip device memory, also called global memory ;
this memory is not cached close to the cores. Furthermore, there is a constant
memory cache for read-only data access. The cores also have access to a tex-
ture memory which is not further investigated in this thesis. Communication
between thread blocks is only possible via global memory. Compute capabili-
ties 1.1 and above offer atomic operations on global memory for synchronization
between thread blocks.

As stated above, NVIDIA graphics cards can be programmed with the help
of the CUDA-SDK. The goal of CUDA is that programmers do not need to
rewrite their whole application to profit from the computational power of GPUs.
Instead, computationally intensive parts from an existing program are identified
and delegated to the GPU. It is possible to mix host code and device code in
the source code. To distinguish between the two different execution domains,
NVIDIA introduced a small set of additional keywords to the C programming
language [NVI09b].
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Three Function Type Qualifiers specify in which context a function should be
executed: A __host__ function can only be called from and executed on the host.
This is the standard qualifier, therefore it can be omitted. A __global__ function
is executed on the device and can be called from the host. Functions which are
executed on the device and can only be called from the device are specified as
__device__ functions.

The memory location of data is defined by three Variable Type Qualifiers.
Variables which are defined with the keyword __device__ are located on the
device. The additional keyword __constant__ specifies data items that are not
changed during kernel execution and can be cached in the constant data cache
of the GPU cores. Variables that should reside in shared memory are defined as
__shared__. Similar specifiers are available for PTX code to qualify global or
shared memory accesses. The CUDA API offers functions to move data between
host and device memory.

The CUDA-C compiler is called nvcc. It slightly modifies the host code to be
compliant to standard C and passes this code to the default C compiler, e.g. gcc.
The kernel code is extracted and compiled to PTX-code and machine-code if
requested.

When the kernel is invoked through the CUDA API during program execution,
the CUDA runtime tries to locate a kernel binary that fits to the actual GPU
hardware. If no binary is available, either CUDA-C or PTX source code is used
to compile the kernel. The binary can afterwards be stored in a code repository
for future usage to avoid recompilation at each invocation.

Experiments showed that NVIDIA’s compiler nvcc is not suitable for scientific
workloads. In particular the register allocator of nvcc produced inefficient binary
code for cryptanalytic kernels. The allocator seems to be optimized for small
kernels (since most shader kernels are relatively small) and does not perform well
on kernels that have several thousand lines of code. In some cases the compiler ran
for several hours, eventually crashing when the system ran out of memory. When
the compiler succeeded to produce assembly code, the program required a high
number of registers; register spills occurred frequently. Since spilled registers
are not cached close to the core but written to and read from global memory,
this causes high instruction latencies and therefore often results in performance
penalties.

These issues can be solved by writing cryptographic computing kernels by
hand in assembly language using van der Laans assembler cudasm. The following
section describes the toolkit qashm-cudasm that helps to implement and maintain
kernels of several thousand lines of assembly code.

2.3.2 Assembly for NVIDIA GPUs

The key to programming kernels for NVIDIA GPUs in assembly language is the
assembler cudasm available at [Laa07]. It translates a kernel written in assembler
into a text file containing the byte code in a hexadecimal representation. The
assembly language was defined by van der Laan to use the same mnemonics and
a similar syntax as the PTX code of NVIDIA whenever possible.
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The output file of cudasm can be put into the code repository of the CUDA
application. The CUDA runtime transfers it to the graphics card for execution
the same way as a kernel that was compiled from CUDA-C or PTX. The following
tweaks and compiler flags are necessary to make the CUDA runtime digest the
cudasm-kernel:

First a host application is written in CUDA-C. This application allocates de-
vice memory, prepares and transfers data to the graphics card and finally invokes
the kernel as defined by the CUDA API. The device kernel can be implemented
in CUDA-C for testing purposes; if this is omitted a function stub for the ker-
nel must be provided. Eventually, the program is compiled using the following
command:

nvcc -arch=architecture -ext=all -dir=repository sourcefiles -o outfile
The desired target architecture can be chosen by the flag arch; e.g. compute
capability 1.0 is requested by arch=sm_10, compute capability 1.3 by arch=sm_13.
The flag ext=all instructs the compiler to create a code repository for both PTX
and assembly code in the directory repository. For each run nvcc will create
a separate subdirectory in the directory of the code repository; the name of the
subdirectory seems to be a random string or a time based hash value. The runtime
will choose the most recent kernel that fits to the actual hardware. Deleting all
previous subdirectories when recompiling the host code facilitates to keep track
of the most recent kernel version.

The PTX kernel will be placed inside the newly created subdirectory in the
file compute_architecture. The binary code resides in the file sm_architecture. The
latter one can simply be replaced by the binary that was created by cudasm. The
runtime library will load this binary at the next kernel launch.

Assembly programming

Commercial software development requires a fast, programmer friendly, efficient,
and cheap work flow. Source code is expected to be modular, reusable, and
platform independent. These demands are usually achieved by using high-level
programming languages like C, C++, Java, C#, or Objective-C. There are only a
few reasons for programming in assembly language:

• high demands on performance: In many cases hand-optimizing critical code
sections gives better performance than compiler-optimized code. This has
several reasons; details can be found in [Sch11a, Section 2.7].

• the need for direct access to the instruction set: Some instructions like
the AES instruction set [Gue10] might not be accessible from high level
programming languages. Operating systems need access to special control
instructions.

• the requirement for full control over instruction order: For example the
program flow of cryptographic applications can leak secret information to
an attacker [Koc96]. This can be avoided by carefully scheduling instructions
by hand.
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• a questionable understanding of “having fun”: Some people claim that it is
fun to program in assembly language.

Only the latter one might allow the programmer to actually enjoy programming
in assembly language. Assembly programming is a complex and error prone task.
To reduce the complexity of manually writing GPU assembly code, this section
introduces several tools that tackle key issues of assembly code generation.

The major pitfall of writing assembly code is to keep track of what regis-
ters contain which data items during program execution. On the x86 architecture
which provides only 8 general purpose registers, this is already troublesome. Keep-
ing track of up to 128 registers on NVIDIA GPUs pushes this effort to another
level. However, the advantage to choose what register contains which data at a
certain time when running the program is not necessary to write highly efficient
assembly code and therefore is usually not the reason for writing assembly code
in the first place. As long as the programmer can be sure that a register allocator
finds a perfect register allocation provided that it exists and otherwise reports
to the programmer, register allocation can be delegated to a programming tool.
However, this tool should not be NVIDIA’s compiler nvcc—since it neither finds
a perfect register allocation nor reports on its failure.

Furthermore, there is no common syntax for different assembly languages; even
for the same instruction set the syntax may be different for assemblers of differ-
ent vendors: e.g. “addl %eax, -4(%rbp)” and “add DWORD PTR [rbp-4], eax”
are the same x86 instruction in gcc assembler and Intel assembler, respectively.
The instructions vary in mnemonic, register and addressing syntax, and even in
operand order. Therefore switching between architectures or compilers is error
prone and complicated. Furthermore, most assembly languages have not been
designed for human interaction and are not easily readable. This again is not an
inherent problem of assembly programming itself but a shortcoming of commonly
used assembly programming tools.

Both of these pitfalls, register allocation and syntax issues, are addressed by
Daniel J. Bernstein’s tool qhasm.

qhasm

The tool qhasm is available at [Ber07b]. It is neither an assembler itself nor has
it been designed for writing a complete program; qhasm is intended to be used
for replacing critical functions of a program with handwritten assembly language.
The job of qhasm is to translate an assembly-like source code, so called qhasm
code, into assembly code. Each line in qhasm code is translated to exactly one
assembly instruction. The syntax of the qhasm code is user-defined. Furthermore,
qhasm allows using an arbitrary number of named register variables instead of the
fixed number of architecture registers in the qhasm code. These register variables
are mapped to register names by the register allocator of qhasm. If qhasm does not
find a mapping, it returns with an error message; the programmer is in charge of
spilling registers to memory. The order of instructions is not modified by qhasm.
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Therefore, qhasm gives as much control to the programmer as writing assembly
directly while eliminating the major pitfalls.

The input for qhasm is the qhasm code consisting of variable declarations
and operations and a machine description file. This file defines the syntax of the
qhasm code by providing a mapping of legitimate qhasm operations to assembly
instructions. Furthermore, it contains information about the calling convention
and the register set of the target environment.

This design allows the programmer to easily adapt qhasm to new machine
architectures by providing an appropriate machine description file. Furthermore,
qhasm code for different architectures can follow a unified, user defined syntax. In
theory qhasm source code can be reused on other architectures if the instruction
sets offer instructions of identical semantics and if a consistent machine description
file is provided; nevertheless, it is likely that parts of the qhasm code need to be
rewritten or reordered to take architectural differences into account and to achieve
full performance.

qhasm-cudasm

Van der Laan’s assembler cudasm combined with Bernstein’s register allocator
qhasm (together with a machine description file that was written for cudasm)
gives a powerful tool for programming NVIDIA graphics cards on assembly level
and can be easily used for small kernels. Nevertheless, for large kernels of several
hundred or even thousand lines of code additional tools are necessary to gain a
reasonable level of usability for the following reasons:

NVIDIAs compiler nvcc does not support linking of binary code; usually all
functions that are qualified with the keyword __device__ in CUDA-C are in-
lined before compiling to binary code. Therefore it is not possible to replace only
parts of a CUDA-C kernel with qhasm code—the whole GPU kernel must be
implemented in qhasm code. But qhasm was designed to replace small computa-
tionally intensive functions. There is no scope for register variables: the names
of register variables are available in the whole qhasm code. This makes it com-
plicated to keep track of the data flow. Furthermore, qhasm does not support
the programmer in maintaining a large code base e.g. by splitting the code into
several files.

Therefore, a modified version of the m5 macro processor is used on top of
qhasm to simplify the handling of large kernels. The original version of m5 by
William A. Ward, Jr. can be found at [War01]. The following list gives an overview
of some native m5 features:

• includes: An m5 source file can include other m5 files; the content of the
files is inlined in the line where the include occurs.

• functions: Functions can be defined and called in m5; “call” in this case
means that the content of the called function is inlined at the position
where the call occurs.
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• expressions: Macro variables can be defined in m5 and expressions on macro
variables and constant values can be evaluated.

• loops: Loops over macro variables result in an “unrolled” m5 output.

The m5 macro processor was extended to support scoping of register variables.
Register variables which are defined in a local scope are automatically prefixed
by m5 with a scope-specific string. This guarantees locality on the qhasm level.

The m5 macro processor completes the qhasm-cudasm development toolkit.
Each kernel is processed on three levels: The programmer provides a set of source
files with the file extension “.mq”. Each mq-file contains qhasm code enriched
with m5 macro instructions. These files are flattened by m5 to a single qhasm
file with the file extension “.q”. The qhasm code is fed to qhasm together with
the machine description file. The output of qhasm is an assembly file with the
file extension “.s”. Eventually the assembly file is processed by cudasm, giving the
final binary file with the file extension “.o”. This file is used to replace the kernel
stub that was created by nvcc in the code repository directory.

The solution of using m5 for preprocessing is not perfect; in particular the
syntax for declaring and using local register variables is error-prone. Therefore in
the future several functionalities of m5 will be integrated into qhasm, in particular
function inlining and the declaration of local register variables.

Furthermore, future versions of qhasm-cudasm will support up-to-date graph-
ics hardware of NVIDIA and AMD, using either the upcoming assembler im-
plementations of the open-source community or by contributing assemblers our-
selves. As mentioned before the open-source project asfermi aims at providing an
assembler for NVIDIA’s Fermi architecture. Ádám Rák started to implement an
assembler for AMD graphics cards as open-source software (available at [Rák11]).
Furthermore, an initial version of an assembler for AMD graphics cards is pro-
vided on my website at [Nie11]. Since AMD uses a VLIW architecture, additional
tools or extensions to qhasm are necessary for programming AMD graphics cards
in assembly language.

The combination of qhasm and cudasm together with m5 was used for pro-
gramming a large cryptographic kernel of over 5000 lines of code. This project is
described in Chapter 3. Furthermore, various kernels for benchmarking NVIDIAs
GeForce 200 Series GPUs were implemented using these tools.



3
Parallel implementation of

Pollard’s rho method

The elliptic-curve discrete-logarithm problem (ECDLP) is the number-theoretic
problem behind elliptic-curve cryptography (ECC): the problem of computing
a user’s ECC secret key from his public key. Pollard’s rho method solves this
problem in O(

√
`) iterations, where ` is the largest prime divisor of the order

of the base point. A parallel version of the algorithm due to van Oorschot and
Wiener [OW99] provides a speedup by a factor of Θ(N) when running on N
computers, if ` is larger than a suitable power of N . In several situations a group
automorphism of small order m provides a further speedup by a factor of Θ(

√
m).

No further speedups are known for any elliptic curve chosen according to standard
security criteria.

However, these asymptotic iteration counts ignore many factors that have
an important influence on the cost of an attack. Understanding the hardness
of a specific ECDLP requires a more thorough investigation. The publications
summarized on [Gir11], giving recommendations for concrete cryptographic key
sizes, all extrapolate from such investigations. To reduce extrapolation errors it is
important to use as many data points as possible, and to push these investigations
beyond the ECDLP computations that have been carried out before.

Certicom published a list of ECDLP challenges in 1997 at [Cer97] in order
to “increase the cryptographic community’s understanding and appreciation of
the difficulty of the ECDLP”. These challenges range from very easy exercises,
solved in 1997 and 1998, to serious cryptanalytic challenges. The last Certicom
challenge that was publicly broken was a 109-bit ECDLP in 2004. Certicom had
already predicted the lack of further progress: it had stated in [Cer97, page 20]

23
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that the subsequent challenges were “expected to be infeasible against realistic
software and hardware attacks, unless of course, a new algorithm for the ECDLP
is discovered.”

Since then new hardware platforms have become available to the attacker.
Processor design has moved away from increasing the clock speed and towards
increasing the number of cores. This means that implementations need to be
parallelized in order to make full use of the processor. Running a serial imple-
mentation on a recent processor might take longer than five years ago, because the
average clock speed has decreased, but if this implementation can be parallelized
and occupy the entire processor then the implementation will run much faster.

Certicom’s estimate was that ECC2K-130, the first “infeasible” challenge,
would require (on average) 2 700 000 000 “machine days” of computation. The
main result of this chapter is that a cluster of just 1066 NVIDIA GTX 295 graph-
ics cards or 2636 PlayStation 3 gaming consoles would solve ECC2K-130 in just
one year; therefore nowadays this challenge requires only 379 496 machine days
on a graphics card or 938 416 machine days on a gaming console.

The research presented in this chapter is joint work with Bos, Kleinjung, and
Schwabe published in [BKN+10] as well as with Bernstein, Chen, Cheng, Lange,
Schwabe, and Yang published in [BCC+10]. It is also included in the PhD thesis
of Schwabe [Sch11a, Chapter 6]. Furthermore it is part of a large collaborative
project that has optimized ECDLP computations for several different platforms
and that aims to break ECC2K-130. See [BBB+09] and [Ano] for more infor-
mation about the project. This research has been supported by the Netherlands
National Computing Facilities foundation (NCF) as project MP-185-10.

This chapter is structured as follows: Section 3.1 and Section 3.2 briefly intro-
duce Pollard’s rho method and the iteration function of this method for ECC2K-
130. Section 3.3 gives a detailed description of the implementation for the Cell
processor and section 3.4 for the GTX 295 graphics card. Section 3.5 will conclude
with a comparison of both implementations.

3.1 The ECDLP and the parallel version of
Pollard’s rho method

The standard method for solving the ECDLP in prime-order subgroups is Pollard’s
rho method [Pol78]. For large instances of the ECDLP, one usually uses a paral-
lelized version of Pollard’s rho method due to van Oorschot and Wiener [OW99].
This section briefly reviews the ECDLP and the parallel version of Pollard’s rho
method.

The ECDLP is the following problem: Given an elliptic curve E over a finite
field Fq and two points P ∈ E(Fq) and Q ∈ 〈P 〉, find an integer k such that
Q = [k]P .

Let ` be the order of P , and assume in the following that ` is prime. The
parallel version of Pollard’s rho method uses a client-server approach in which
each client does the following:
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1. Generate a pseudo-random starting point R0 as a known linear combination
of P and Q: R0 = a0P + b0Q;

2. apply a pseudo-random iteration function f to obtain a sequence Ri+1 =
f(Ri), where f is constructed to preserve knowledge about the linear com-
bination of P and Q;

3. for each i, after computing Ri, check whether Ri belongs to an easy-to-
recognize set D, the set of distinguished points, a subset of 〈P 〉;

4. if at some moment a distinguished point Ri is reached, send (Ri, ai, bi) to
the server and go to step 1.

The server receives all the incoming triples (R, a, b) and does the following:

1. Search the entries for a collision, i.e., two triples (R, a, b), (R′, a′, b′) with
R = R′ and b 6≡ b′ (mod `);

2. obtain the discrete logarithm of Q to the base P as k = a′−a
b−b′ modulo `.

The expected number of calls to the iteration function f is approximately√
π`/2 assuming perfectly random behavior of f . Therefore the expected total

runtime of the parallel version of Pollard’s rho algorithm is
√
π`/2 · t/N given the

time t for executing one step of iteration function f and N computing devices.
The implementation of the server and the communication between the clients

and the server has been implemented by Bernstein and is not part of this thesis.
Details on this part of the ECC2K-130 computation can be found in [BBB+09,
Appendices C and D]. The server for collecting and processing the distinguished
points that are computed by the clients is running on a cluster at the Eindhoven
Institute for the Protection of Systems and Information (Ei/Ψ) at the University
of Technology Eindhoven.

3.2 ECC2K-130 and the iteration function
The specific ECDLP addressed in this chapter is given in the list of Certicom chal-
lenges [Cer97] as Challenge ECC2K-130. The given elliptic curve is the Koblitz
curve E : y2 + xy = x3 + 1 over the finite field F2131 ; the two given points P and
Q have order `, where ` is a 129-bit prime. This section reviews the definition of
distinguished points and the iteration function used in [BBB+09]. For a more de-
tailed discussion, an analysis of communication costs, and a comparison to other
possible implementation choices, the interested reader is referred to [BBB+09].

Definition of the iteration function. A point R ∈ 〈P 〉 is distinguished if
HW(xR), the Hamming weight of the x-coordinate of R in normal-basis represen-
tation, is smaller than or equal to 34. The iteration function is defined as

Ri+1 = f(Ri) = σj(Ri) +Ri,

where σ is the Frobenius endomorphism and j = ((HW(xRi)/2) mod 8) + 3.



26 CHAPTER 3. POLLARD’S RHO METHOD

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with a partic-
ular easily computed scalar r. For an input Ri = aiP + biQ, the output of f will
be Ri+1 = (rjai + ai)P + (rjbi + bi)Q.

Each walk starts by picking a random 64-bit seed s which is then expanded
deterministically into a linear combination R0 = a0P+b0Q. To reduce bandwidth
and storage requirements, the client does not report a distinguished triple (R, a, b)
to the server but instead transmits only s and a 64-bit hash of R. On the occasions
that a hash collision is found, the server recomputes the linear combinations in P
and Q for R = aP + bQ and R′ = a′P + b′Q from the corresponding seeds s and
s′. This has the additional benefit that the client does not need to keep track of
the coefficients a and b or maintain counters for how often each Frobenius power
is used. This speedup is particularly beneficial for highly parallel architectures
such as GPUs and vector processors, which otherwise would need a conditional
addition to each counter in each step.

Computing the iteration function. Computing the iteration function re-
quires one application of σj and one elliptic-curve addition. Furthermore the
x-coordinate of the resulting point is converted to normal basis, if a polynomial-
basis representation is used, to check whether the point is a distinguished point
and to obtain j.

Many applications use so-called inversion-free coordinate systems to represent
points on elliptic curves (see, e.g., [HMV04, Sec. 3.2]) to speed up the computation
of point multiplications. These coordinate systems use a redundant representation
for points. Identifying distinguished points requires a unique representation. This
is why affine Weierstrass representation is used to represent points on the elliptic
curve. Elliptic-curve addition in affineWeierstrass coordinates on the given elliptic
curve requires 2 multiplications, 1 squaring, 6 additions, and 1 inversion in F2131

(see, e.g. [BL07]). Application of σj means computing the 2j-th powers of the x-
and the y-coordinate. In total, one iteration takes 2 multiplications, 1 squaring,
2 computations of the form r2

m

, with 3 ≤ m ≤ 10, 1 inversion, 1 conversion to
normal-basis, and 1 Hamming-weight computation. In the following computations
of the form r2

m

will be called m-squaring.

A note on the inversion.Montgomery’s trick [Mon87] can be used on a batch of
inversions to speed up this relatively costly operation: m batched inversions can be
computed with 3(m− 1) multiplications and one inversion. For example, m = 64
batched elliptic curve additions take 2 · 64 + 3 · (64− 1) = 317 multiplications, 64
squarings and 1 inversion. This corresponds to 4.953 multiplications, 1 squaring
and 0.016 inversions for a single elliptic-curve addition.

3.3 Implementing ECC2K-130 on the
Cell processor

The Cell processor is a hybrid multi-core processor consisting of a traditional
PowerPC core for general-purpose tasks, in particular running the operating sys-
tem, and up to eight vector cores with fully controlled caches. Since the Cell
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processor is a highly parallel architecture, it is well suited for the parallel work-
load of Pollard’s rho method. The Cell processor powers the PlayStation 3 gaming
console and therefore can be obtained at relatively low cost.

This section is structured as follows: First the Cell processor is introduced.
Then general design questions for the implementation of the iteration function are
stated. This is followed by a detailed description of the implementation of the it-
eration function and a close investigation of the memory management. Eventually
the results of the implementation for the Cell processor are discussed.

3.3.1 A Brief Description of the Cell processor
The Cell Broadband Engine Architecture [Hof05] was jointly developed by Sony,
Toshiba and IBM. By November 2011 there were two implementations of this
architecture, the Cell Broadband Engine (Cell/B.E.) and the PowerXCell 8i. The
PowerXCell 8i is a derivative of the Cell/B.E. and offers enhanced double-precision
floating-point capabilities and an improved memory interface. Both implementa-
tions consist of a central Power Processor Element (PPE), based on the Power
5 architecture and 8 Synergistic Processor Elements (SPEs) which are optimized
for high-throughput vector instructions. All units are linked by a high-speed ring
bus with an accumulated bandwidth of 204 GB/s.

The Cell/B.E. can be found in the IBM blade servers of the QS20 and QS21
series, in the Sony PlayStation 3, and several acceleration cards like the Cell
Accelerator Board from Mercury Computer Systems. The PowerXCell 8i can be
found in the IBM QS22 servers. Note that the PlayStation 3 only makes 6 SPEs
available to the programmer.

The code described in this section runs on the SPEs directly and does not
interact with the PPE or other SPEs during core computation. The enhanced
double-precision floating-point capabilities of the PowerXCell 8i are not required
for this implementation of the iteration function. Therefore in the remainder of
this section only those features of the SPE are described which are of interest for
the implementation and are common to both the Cell/B.E. and the PowerXCell
8i. The Cell/B.E. and the PowerXCell 8i will be addressed jointly as the Cell
processor. More detailed information on the Cell Broadband Engine Architecture
can be found in [IBM08].

Each SPE consists of a Synergistic Processor Unit (SPU) as its computation
unit and a Memory Flow Controller (MFC) which grants access to the ring bus
and therefore in particular to main memory.

Architecture and instruction set. The SPU is composed of three parts: The
execution unit is the computational core of each SPE. It is fed with data either
by the register file or by the local storage that also feeds the instructions into the
execution unit.

The register file contains 128 general-purpose registers with a width of 128 bits
each. The execution unit has fast and direct access to the local storage but the
local storage is limited to only 256 KB of memory. The execution unit does
not have transparent access to main memory; all data must be transferred from
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main memory to local storage and vice versa explicitly by instructing the DMA
controller of the MFC. Due to the relatively small size of the local storage and the
lack of transparent access to main memory, the programmer has to ensure that
instructions and the active data set fit into the local storage and are transferred
between main memory and local storage accordingly.

The execution unit has a pure RISC-like SIMD instruction set encoded into
32-bit instruction words; instructions are issued strictly in order to two pipelines
called odd and even pipeline, which execute disjoint subsets of the instruction
set. The even pipeline handles floating-point operations, integer arithmetic, log-
ical instructions, and word shifts and rotates. The odd pipeline executes byte-
granularity shift, rotate-mask, and shuffle operations on quadwords, and branches
as well as loads and stores.

Up to two instructions can be issued each cycle, one in each pipeline, given that
alignment rules are respected (i.e., the instruction for the even pipeline is aligned
to a multiple of 8 bytes and the instruction for the odd pipeline is aligned to a
multiple of 8 bytes plus an offset of 4 bytes), that there are no interdependencies
to pending previous instructions for either of the two instructions, and that there
are in fact at least two instructions available for execution. Therefore, a careful
scheduling and alignment of instructions is necessary to achieve best performance.

Accessing main memory. As mentioned before, the MFC is the gate for the
SPU to reach main memory as well as other processor elements. Memory transfer
is initiated by the SPU and afterwards executed by the DMA controller of the
MFC in parallel to ongoing instruction execution by the SPU.

Since data transfers are executed in the background by the DMA controller,
the SPU needs feedback about when a previously initiated transfer has finished.
Therefore, each transfer is tagged with one of 32 tags. Later on, the SPU can
probe either in a blocking or non-blocking way if a subset of tags has any out-
standing transactions. The programmer should avoid reading data buffers for
incoming data or writing to buffers for outgoing data before checking the state of
the corresponding tag to ensure deterministic program behaviour.

Accessing local storage. The local storage is single ported and has a line in-
terface of 128 bytes width for DMA transfers and instruction fetch as well as a
quadword interface of 16 bytes width for SPU load and store. Since there is only
one port, the access to the local storage is arbitrated using the highest priority
for DMA transfers (at most every 8 cycles), followed by SPU load/store, and the
lowest priority for instruction fetch.

Instructions are fetched in lines of 128 bytes, i.e., 32 instructions. In the case
that all instructions can be dual issued, new instructions need to be fetched every
16 cycles. Since SPU loads/stores have precedence over instruction fetch, in case
of high memory access there should be a NOP instruction for the odd pipeline every
16 cycles to avoid instruction starvation. If there are ongoing DMA transfers an
HBRP instruction should be used giving instruction fetch explicit precedence over
DMA transfers.
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Determining performance. The instruction set of the Cell processor gives ac-
cess to a decrementer (see [IBM08, Sec. 13.3.3]) for timing measurements. The
disadvantage of this decrementer is that it is updated with the frequency of the
so-called timebase of the processor. The timebase is usually much smaller than
the processor frequency. The Cell processor (rev. 5.1) in the PlayStation 3 for
example changes the decrementer only every 40 cycles, the Cell processor in the
QS21 blades even only every 120 cycles. Small sections of code can thus only
be measured on average by running the code several times repeatedly. All cycle
counts reported in this chapter have been measured by running the code and
reading the decrementer.

3.3.2 Approaches for implementing the iteration function
The following paragraphs discuss two main design decisions for the implementa-
tion of the iteration function: Is it faster to use bitslicing or a standard approach
and is it better to use normal-basis or polynomial-basis representation for elements
of the finite field.

Bitsliced or not bitsliced? Binary-field arithmetic was commonly believed to
be more efficient than prime-field arithmetic for hardware but less efficient for
software implementations. This is due to the fact that most common micropro-
cessors spend high effort on accelerating integer- and floating-point multiplica-
tions. Prime-field arithmetic can benefit from those high-speed multiplication
instructions, binary-field arithmetic cannot. However, Bernstein showed that for
batched multiplications, binary fields can provide better performance than prime
fields also in software [Ber09c]. In his implementation of batched Edwards-curve
arithmetic the bitslicing technique is used to compute (at least) 128 binary-field
multiplications in parallel on an Intel Core 2 processor.

Bitslicing is a matter of transposition: Instead of storing the coefficients of an
element of F2131 as sequence of 131 bits in 2 128-bit registers, 131 registers can be
used to store the 131 coefficients of an element, one register per bit. Algorithms
are then implemented by simulating a hardware implementation—gates become
bit operations such as AND and XOR. For one element in 131 registers this is highly
inefficient, but it may become efficient if all 128 bits of the registers are used for
independent operations on 128 field elements. The number of field elements which
are processed in parallel using the bitslicing technique is called bitslicing width.
The lack of registers—most architectures including the SPU do not support 131
registers—can easily be compensated for by register spills, i.e. storing currently
unused values on the stack and loading them when they are required.

The results of [Ber09c] show that for batched binary-field arithmetic on the In-
tel Core 2 processor bitsliced implementations are faster than non-bitsliced imple-
mentations. To determine whether this is also true for binary-field arithmetic on
the Cell processor, the iteration function was implemented with both approaches,
a bitsliced and a non-bitsliced version. It turned out that the bitsliced version
is faster than the non-bitsliced version. Both versions are described in detail in
[BKN+10]. In this chapter only the faster bitsliced version will be explained.
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Polynomial or normal basis? Another choice to make for both bitsliced and
non-bitsliced implementations is the representation of elements of F2131 : Poly-
nomial bases are of the form (1, z, z2, z3, . . . , z130), so the basis elements are
increasing powers of some element z ∈ F2131 . Normal bases are of the form
(α, α2, α4, . . . , α2130), so each basis element is the square of the previous one.

Performing arithmetic in normal-basis representation has the advantage that
squaring elements is just a rotation of coefficients. Furthermore there is no need
for basis transformation before computing the Hamming weight in normal basis.
On the other hand, implementations of multiplications in normal basis are widely
believed to be less efficient than those of multiplications in polynomial basis.

In [GSS07], von zur Gathen, Shokrollahi and Shokrollahi proposed an effi-
cient method to multiply elements in type-2 optimal-normal-basis representation
(see also [Sho07]). The following gives a review of this multiplier as shown in
[BBB+09]:

An element of F2131 in type-2 optimal-normal-basis representation is of the
form

f0(ζ + ζ−1) + f1(ζ2 + ζ−2) + f2(ζ4 + ζ−4) + · · ·+ f130(ζ2
130

+ ζ−2
130

),

where ζ is a 263rd root of unity in F2131 . This representation is first permuted to
obtain coefficients of

ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ131 + ζ−131,

and then transformed to coefficients in polynomial basis

ζ + ζ−1, (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)131.

Applying this transformation to both inputs makes it possible to use a fast
polynomial-basis multiplier to retrieve coefficients of

(ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)262.

Applying the inverse of the input transformation yields coefficients of

ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ262 + ζ−262.

Conversion to permuted normal basis just requires adding appropriate coefficients,
for example ζ200 is the same as ζ−63 and thus ζ200+ζ−200 is the same as ζ63+ζ−63.
The normal-basis representation can be computed by applying the inverse of the
input permutation.

This multiplication still incurs overhead compared to modular multiplication
in polynomial basis, but it needs careful analysis to understand whether this
overhead is compensated for by the above-described benefits of normal-basis rep-
resentation. Observe that all permutations involved in this method are free for
hardware and bitsliced implementations while they are quite expensive in non-
bitsliced software implementations. Nevertheless, it is not obvious which basis
representation has better performance for a bitsliced implementation. Therefore
all finite-field operations are implemented in both polynomial- and normal-basis
representation. By this the overall runtime can be compared to determine which
approach gives the better performance.
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3.3.3 ECC2K-130 iterations on the Cell processor

This section describes the implementation of the speed-critical parts of the iter-
ation function in detail. Due to bitslicing and the register width of 128 bits, all
operations process 128 inputs in parallel. The cycle counts stated in this section
therefore account for 128 parallel computations. The polynomial-basis implemen-
tation uses F2131

∼= F2[z]/(z131 + z13 + z2 + z + 1).

Multiplication. The smallest known number of bit operations required to mul-
tiply two degree-130 polynomials over F2 is 11961 [Ber09b]. However, converting
the sequence of bit operations in [Ber09b] to C syntax and feeding it to the com-
piler did not succeed because the size of the resulting function exceeds the size of
the local storage. After reducing the number of variables for intermediate results
and using some more tweaks the compiler produced functioning code, which had
a code size of more than 100 KB and required more than 20000 cycles to compute
a multiplication.

To achieve better performance, each polynomial of 131 coefficients can be
extended to 132 coefficients by adding a zero at the highest position. Now two
levels of the Karatsuba multiplication technique [KO63] can easily be applied to
perform the multiplication of two 132-coefficient polynomials as nine 32-coefficient
polynomial multiplications with some additional operations. This increases the
number of bit operations but results in better-scheduled and more efficient code.
Furthermore improvements to classical Karatsuba can be used to combine the
results of the 9 multiplications as described in [Ber09a].

With this approach, one 131-coefficient polynomial multiplication takes 14503
cycles in total. This includes 11727 cycles for nine 32-coefficient polynomial mul-
tiplications, cycles required for combination of the results, and function-call over-
head. Reduction modulo the pentanomial z131 + z13 + z2 + z + 1 takes 520 bit
operations, the fully unrolled reduction function takes 590 cycles, so multiplication
in F2131 takes 14503 + 590 = 15093 cycles.

The normal-basis multiplication uses the conversion to polynomial basis as
described in Section 3.3.2. Both conversion of inputs to polynomial basis and
conversion of the result to normal basis (including reduction) is performed by
fully unrolled assembly functions. One input conversion takes 434 cycles; output
conversion including reduction takes 1288 cycles; one normal-basis multiplication
including all conversions and runtime overhead takes 16635 cycles.

Squaring. In polynomial-basis representation, squaring consists of two parts:
Zero-bits are inserted between all bits of the input and this intermediate result
must be reduced by modular reduction. The first part does not require any
instructions in bitsliced representation because the additional zeros do not need
to be stored anywhere. Instead, the change of the positions must be respected
during the reduction. For squaring the reduction is cheaper than for multiplication
because it is known that every second bit is zero. In total squaring needs 190 bit
operations, hence, it is bottlenecked by loading 131 inputs and storing 131 outputs.
One call to the squaring function takes 400 cycles.
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In normal-basis representation a squaring is a cyclic shift of bits. This is
performed by 131 loads and 131 stores to cyclically shifted locations. A call to
the squaring function in normal-basis representation takes 328 cycles.

m-Squaring. For polynomial-basis representation m-squarings are implemented
as a sequence of squarings. Fully unrolled code can hide most of the 131 load and
131 store operations between the 190 bit operations of a squaring. Implementing
dedicated m-squaring functions for different values of m would mostly remove the
overhead of m− 1 function calls but on the other hand significantly increase the
overall code size.

For the normal-basis representation separate m-squarings are used for all rel-
evant values of m as fully unrolled functions. The only difference between these
functions is the shifting distance of the store locations. Eachm-squaring therefore
takes 328 cycles, just like a single squaring.

Computation of σj. The computation of σj cannot be realized as a single
m-squaring with m = j, because the value of j = ((HW(xRi

)/2) mod 8) + 3
is most likely different for the 128 bitsliced values in one batch. For the three
bits b1, b2, b3 (skipping the least significant bit b0) of xRi

, j can be computed as
j = b1 + 2b2 + 4b3 + 3. Therefore the computation of r = σj(xRi

) can be carried
out using 1 unconditional and 3 conditional m-squarings as follows:

r ← x2
3

Ri

if b1 then r ← r2

if b2 then r ← r2
2

if b3 then r ← r2
4

return r
The computation of σj(yRi) is carried out in the same way.

When using bitsliced representation, conditional statements have to be re-
placed by equivalent arithmetic computations. The k-th bit of the result of a
conditional m-squaring of r depending on a bit b is computed as

rk ← (rk ∧ ¬b)⊕ (r2
m

k ∧ b).

The additional three bit operations per output bit can be interleaved with the
loads and stores which are needed for squaring. In particular when using normal-
basis representation (which does not involve any bit operations for squarings), this
speeds up the computation: In case of normal-basis representation, computation
of σj takes 1380 cycles.

For polynomial-basis representation a conditionalm-squaring consists of anm-
squaring followed by a conditional move. The conditional move function requires
262 loads, 131 stores and 393 bit operations and thus balances instructions on
the two pipelines. One call to the conditional move function takes 518 cycles. In
total, computing σj takes 10 squarings and 3 conditional moves summing up to
5554 cycles.

Addition. Addition is the same for normal-basis and polynomial-basis represen-
tation. It requires loading 262 inputs, 131 XOR instructions and storing of 131
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outputs. Just as squaring, the function is bottlenecked by loads and stores rather
than bit operations. One call to the addition function takes 492 cycles.

Inversion. For both polynomial-basis and normal-basis representation the inver-
sion is implemented using Fermat’s little theorem. It involves 8 multiplications,
3 squarings and 6 m-squarings (with m = 2, 4, 8, 16, 32, 65). It takes 173325 cy-
cles using polynomial-basis representation and 135460 cycles using normal-basis
representation. Observe that with a sufficiently large batch size for Montgomery
inversion this does not have big impact on the cycle count of one iteration.

Conversion to normal basis. For polynomial-basis representation the x-coor-
dinate must be converted to normal basis before it can be detected whether it
belongs to a distinguished point. This basis conversion is generated using the
techniques described in [Ber09c] and uses 3380 bit operations. The carefully
scheduled code takes 3748 cycles.

Hamming-weight computation. The bitsliced Hamming-weight computation
of a 131-bit number represented in normal-basis representation can be done in
a divide-and-conquer approach (producing bitsliced results) using 625 bit op-
erations. This algorithm was unrolled to obtain a function that computes the
Hamming weight using 844 cycles.

Overhead. For both polynomial-basis representation and normal-basis represen-
tation there is additional overhead from loop control and reading new input points
after a distinguished point has been found. This overhead accounts only for about
8 percent of the total computation time. After a distinguished point has been
found, reading a new input point takes about 2 009 000 cycles. As an input point
takes on average 225.7 ≈ 40 460 197 iterations to reach a distinguished point, these
costs are negligible and are ignored in the overall cycle counts for the iteration
function.

3.3.4 Using DMA transfers to increase the batch size

As long as main memory is not used during computation of the iteration function,
the batch size for Montgomery inversions is restricted by the size of the local
storage. Recall that the program code, the stack, and the current working set of
the data needs to fit into local storage during execution. In case of polynomial-
basis representation the storage space is sufficient for a batch size of 12 bitsliced
iterations. The average time for one bitsliced iteration is 113844 cycles. The
normal-basis implementation requires less space for program code and therefore a
maximum batch size of 14 iterations fits into local storage. One bitsliced iteration
takes 99994 cycles.

For comparison, using only a batch size of 12 iterations for the normal-basis
representation gives an average runtime of approximately 101607 cycles per bit-
sliced iteration. This is about 10% less than the time for polynomial-basis rep-
resentation with the same batch size. Clearly, the overhead caused by the con-
versions for multiplications in the normal-basis implementation is redeemed by
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the benefits in faster m-squarings, conditional m-squarings, and the saved ba-
sis conversion before Hamming-weight computation. Therefore the normal-basis
implementation was chosen to be further improved by storing data in main mem-
ory as well: A larger number for the batch size of Montgomery inversion can be
achieved by taking advantage of DMA transfers from and to main memory. The
batches are stored in main memory and are fetched into local storage temporarily
for computation.

Since the access pattern to the batches is totally deterministic, it is possible
to use multi-buffering to prefetch data while processing previously loaded data
and to write back data to main memory during ongoing computations. At least
three slots—one for outgoing data, one for computation, and one for incoming
data—are required in local storage for the buffering logic. The slots are organized
as a ring buffer. One DMA tag is assigned to each of the slots to monitor ongoing
transactions.

Before the computation starts, the first batch is loaded into the first slot in
local storage. During one step of the iteration function, the SPU iterates multiple
times over the batches. Each time, first the SPU checks whether the last write
back from the next slot in the ring-buffer has finished. This is done using a
blocking call to the MFC on the tag assigned to the slot. When the slot is free for
use, the SPU initiates a prefetch for the next required batch into the next slot.
Now—again in a blocking manner—it is checked whether the data for the current
batch already has arrived. If so, data is processed and finally the SPU initiates a
DMA transfer to write changed data back to main memory.

Due to this access pattern, all data transfers can be performed with mini-
mal overhead and delay. Therefore it is possible to increase the batch size to
512 improving the runtime per iteration for the normal basis implementation by
about 5% to 94949 cycles. Measurements on IBM blade servers QS21 and QS22
showed that neither processor bus nor main memory is a bottleneck even if 8
SPEs are doing independent computations and DMA transfers in parallel.

3.3.5 Overall results on the Cell processor

From the two implementations described in this section it becomes evident that on
the Cell processor normal-basis representation of finite-field elements outperforms
polynomial-basis representation when using a bitsliced implementation. The cycle
counts for all field operations are summarized in Table 3.1. The numbers are
normalized to operations on a single input, i.e. the numbers mentioned previously
for bitsliced measurements are divided by the bitslicing width of 128bits.

Using the bitsliced normal-basis implementation—which employs DMA trans-
fers to main memory to support a batch size of 512 for Montgomery inversions—
on all 6 SPUs of a Sony PlayStation 3 in parallel, 25.88 million iterations can be
computed per second. The expected total number of iterations required to solve
the ECDLP given in the ECC2K-130 challenge is 260.9 (see [BBB+09]). This
number of iterations can be computed in one year using only the SPEs of 2636
PlayStation 3 gaming consoles.
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polynomial basis normal basis
building block cycles cycles
multiplication 117.91 129.96
squaring / m-squaring m · 3.16 2.56
computation of σj 43.39 10.78
Hamming-weight computation 6.60 6.60
addition 3.84 3.84
inversion 1354.10 1058.28
conversion to normal basis 29.28 —
full iteration:

B = 12 889.41 793.80
B = 14 — 781.20
B = 512 — 741.79

Table 3.1: Cycle counts per input for all building blocks on one SPE of a
3192 MHz Cell Broadband Engine (rev. 5.1). Cycle counts for 128 bitsliced
inputs are divided by 128. The value B in the last row denotes the batch size
for Montgomery inversions.

At the time of this writing, the computations have not been finished so far. The
Cell implementation has been running on the MariCel cluster at the Barcelona
Supercomputing Center (BSC), on the JUICE cluster at the Jülich Supercomput-
ing Centre, and on the PlayStation 3 cluster of the École Polytechnique Fédérale
de Lausanne (EPFL).

3.4 Implementing ECC2K-130 on a GPU

GPUs are massively parallel computing architectures, even more so than the Cell
processor. As explained in Section 2.3, they have initially been developed as
highly specialized gaming devices but nowadays they are also used for general-
purpose computing. Compared to the Cell processor GPUs offer a much higher
number of ALUs but a smaller amount of low-latency storage per ALU. Therefore
the GPU implementation of the iteration function diverges significantly from the
Cell implementation.

This section is organized as follows: First the target platform for this imple-
mentation, NVIDIA’s GTX 295 graphics card, is introduced. Then general design
decisions for the GPU implementation are explained. This is followed by a de-
tailed description of the polynomial multiplication on the GPU because this is
the most expensive and complex operation. Afterwards all other operations for
the iteration function are described briefly. This section is concluded with a brief
overview of the performance results for the GPU implementation.
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3.4.1 The GTX 295 graphics card

The most impressive feature of GPUs is their theoretical floating-point perfor-
mance. Each of the 480 ALUs on a GTX 295 can dispatch a single-precision
floating-point multiplication (with a free addition) every cycle at a clock fre-
quency of 1.242 GHz. There are also 120 “special-function units” that can each
dispatch another single-precision floating-point multiplication every cycle, for a
total of 745 billion floating-point multiplications per second.

The most useful GPU arithmetic instructions for the ECC2K-130 computation
are 32-bit logical instructions (AND and XOR) rather than floating-point multiplica-
tions. Logical instructions can be executed only by the 480 ALUs. Nevertheless,
596 billion 32-bit logical instructions per second are still much more impressive
than, e.g., the 28.8 billion 128-bit logical instructions per second performed by a
typical 2.4 GHz Intel Core 2 CPU with 4 cores and 3 128-bit ALUs per core.

However, the GPUs also have many bottlenecks that make most applications
run slower, often one or two orders of magnitude slower, than the theoretical
throughput figures would suggest. The most troublesome bottlenecks are dis-
cussed in the remainder of this section and include a heavy divergence penalty,
high instruction latency, low SRAM capacity, high DRAM latency, and relatively
low DRAM throughput per ALU.

The dispatcher. The 8 ALUs in a GPU core are fed by a single dispatcher.
The dispatcher cannot issue more than one new instruction to the ALUs every
4 cycles. The dispatcher can send this one instruction to a warp containing 32
separate threads of computation, applying the instruction to 32 pieces of data in
parallel and keeping all 8 ALUs busy for all 4 cycles; but the dispatcher cannot
direct some of the 32 threads to follow one instruction while the remaining threads
follow another.

Branching is allowed, but if threads within one warp take different branches,
the threads taking one branch will no longer operate in parallel with the threads
in the other branch; execution of the two branches is serialized and the time it
takes to execute diverging branches is the sum of the time taken in all branches.

SRAM: registers and shared memory. Each core has 16384 32-bit registers;
these registers are divided among the threads. For example, if the core is running
256 threads, then each thread is assigned 64 registers. If the core is running 128
threads, then each thread is assigned 128 registers, although access to the high
64 registers is somewhat limited: the architecture does not allow a high register
as the second operand of an instruction. Even with fewer than 128 threads, only
128 registers are available per thread.

The core also has 16384 bytes of shared memory. This memory enables com-
munication between threads. It is split into 16 banks, each of which can dispatch
one 32-bit read or write operation every two cycles. To avoid bank conflicts, ei-
ther each of the 16 threads of a half-warp must access different memory banks or
the same memory address must be touched by all 16 threads. Otherwise accesses
to the same memory bank are serialized; in the worst case, when all threads are
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requesting data from different addresses on the same bank, memory access takes
16 times longer than memory access without bank conflicts.

Threads also have fast access to an 8192-byte constant cache. This cache can
broadcast a 32-bit value from one location to every thread simultaneously, but it
cannot read more than one location per cycle.

DRAM: global memory and local memory. The CPU makes data available
to the GPU by copying it into DRAM on the graphics card outside the GPU. The
cores on the GPU can then load data from this global memory and store results in
global memory to be retrieved by the CPU. Global memory is also a convenient
temporary storage area for data that does not fit into shared memory. However,
global memory is limited to a throughput of just one 32-bit load from each GPU
core per cycle, with a latency of 400–600 cycles.

Each thread also has access to local memory. The name “local memory” might
suggest that this storage is fast, but in fact it is another area of DRAM, as slow
as global memory. Instructions accessing local memory automatically incorporate
the thread ID into the address being accessed, effectively partitioning the local
memory among threads without any extra address-calculation instructions.

There are no hardware caches for global memory and local memory. Program-
mers can, and must, set up their own schedules for moving data between shared
memory and global memory.

Instruction latency. The ALUs execute the instruction stream strictly in order.
NVIDIA does not document the exact pipeline structure but recommends running
at least 192 threads (6 warps) on each core to hide arithmetic latency. If all 8
ALUs of a core are fully occupied with 192 threads then each thread runs every
24 cycles; evidently the latency of an arithmetic instruction is at most 24 cycles.

One might think that a single warp of 32 threads can keep the 8 ALUs fully
occupied, if the instructions in each thread are scheduled for 24-cycle arithmetic
latency (i.e., if an arithmetic result is not used until 6 instructions later). However,
if only one warp is executed on one core, the dispatcher will issue instructions
only every second dispatching cycle. Therefore at least 2 warps (64 threads)
are necessary to exploit all ALU cycles. Furthermore, experiments showed that
additional penalty is encountered when shared memory is accessed. This penalty
can be hidden if enough warps are executed concurrently or if the density of
memory accesses is sufficiently low. For instance the ALU can be kept busy in
all cycles with 128 threads as long as fewer than 25% of the instructions include
shared-memory access and as long as these instructions are not adjacent.

NVIDIA also recommends running many more than 192 threads to hide DRAM
latency. This does not mean that one can achieve the best performance by simply
running the maximum number of threads that fit into the core. Threads share
the register bank and shared memory, so increasing the number of threads means
reducing the amount of these resources available to each thread. The ECC2K-
130 computation puts extreme pressure on shared memory, as discussed later in
this section; to minimize this pressure, this implementation is using 128 threads,
skirting the edge of severe latency problems.
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3.4.2 Approaches for implementing the iteration function

Similar to the implementation for the Cell processor, two major design decisions
must be made for the GPU implementation: Whether bitslicing should be used
and what basis representation should be chosen. The experiences made for the
Cell-processor can be taken into account for the GPU implementation:

Bitsliced or not bitsliced? The main task in optimizing multiplication, squar-
ing, etc. in F2131 is to decompose these arithmetic operations into the operations
available on the target platform. Similarly to the Cell processor bitslicing is used
on the GPU as it allows very efficient usage of logical operations in implementing
binary-field operations.

The bitslicing technique has the disadvantage that it increases the size of the
working set roughly by a factor of the bitslicing width. Since register spills to
DRAM are expensive, this is particularly troublesome for architectures which
offer a small amount of low-latency memory. In case of the GTX 295 this is
the register bank and shared memory. Section 3.4.3 explains how GPU threads
can be programmed to cooperate on the computation of the iteration function.
Compared to an implementation where the threads process data independently,
by this cooperation the overall working set of one processor core can be reduced
while enabling usage of a large number of concurrent threads.

Polynomial or normal basis? From the Cell implementation of the iteration
function it is known that normal-basis representation outperforms polynomial-
basis representation for bitsliced implementations. Therefore the GPU imple-
mentation also uses Shokrollahi’s type-2 optimal-normal-basis representation as
explained in Section 3.3.2. Compared to the Cell implementation, the performance
of the normal-basis representation has been improved by applying a technique in-
troduced by Bernstein and Lange in [BL10]. Bernstein and Lange reduced the
overhead that is introduced by basis conversion by combining the optimal nor-
mal basis with an optimal polynomial basis. This makes it possible to skip the
conversion from normal basis to polynomial basis in cases where several multipli-
cations are performed consecutively: The output of a polynomial multiplication
is converted to a suitable input for a follow-up multiplication directly without
fully converting to normal basis in between. This technique reduces the cost
of multiplications for the ECC2K-130 iteration compared to the Cell processor
implementation.

Therefore the GPU implementation uses two multiplication routines: In case a
multiplication is followed by a squaring and therefore a conversion to normal basis
is necessary, the function PPN is called that takes two inputs in polynomial-basis
representation, performs a multiplication, and returns an output in normal basis
representation as described in Section 3.3.2.

In case a multiplication is followed by another multiplication, the function PPP
is called. This function takes two inputs in polynomial-basis representation and
performs a multiplication. Now it keeps the lower half of the polynomial product
in polynomial-basis representation and use the conversion routine only to compute
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the polynomial reduction, ending up in polynomial-basis representation. For full
details on the conversion routines see [BL10].

If a value in normal-basis representation needs to be converted to polynomial
basis as an input for one of these multiplication functions, a separate conversion
function is called.

3.4.3 Polynomial multiplication on the GPU

The costs of either type of field multiplication, PPN or PPP, are dominated by the
costs of the 131-bit polynomial multiplication. With optimal polynomial bases
(see Section 3.4.2), each iteration involves slightly more (depending on the batch
size for Montgomery inversion) than five 131-bit polynomial multiplications and
only about 10000 extra bit operations. Up to now, there is no 131-bit polyno-
mial multiplier using fewer than 11000 bit operations; in particular, Bernstein’s
multiplier [Ber09b] uses 11961 bit operations.

These figures show that polynomial multiplication consumes more than 80% of
the bit operations in each iteration. Therefore optimization of the multiplication
has a high priority. This section explains how this goal can be achieved.

The importance of avoiding DRAM. Consider an embarrassingly vectorized
approach: T threads in a core work on 32T independent multiplication problems
in bitsliced form. The 32T × 2 inputs are stored as 262 vectors of 32T bits each,
and the 32T outputs are stored as 261 vectors of 32T bits.

The main difficulty with this approach is that, even if the outputs are perfectly
overlapped with the inputs, even if no additional storage is required, the inputs
cannot fit into SRAM. For T = 128 the inputs consume 134144 bytes, while
shared memory and registers together have only 81920 bytes. Reducing T to 64
(and risking severe GPU under-utilization) would fit the inputs into 67072 bytes,
but would also make half of the registers inaccessible (since each thread can access
at most 128 registers), reducing the total capacity of shared memory and registers
to 49152 bytes.

There is more than enough space in DRAM, even with very large T , but
DRAM throughput then becomes a serious bottleneck. A single pass through the
input vectors, followed by a single pass through the output vectors, keeps the
DRAM occupied for 523T cycles (i.e., more than 16 cycles per multiplication),
and any low-memory multiplication algorithm requires many such passes.

Several implementations of the complete iteration function using different mul-
tiplication algorithms achieved at most 26 million iterations per second on a
GTX 295 with this approach. The remainder of this section describes a faster
approach.

How to fit into shared memory. The SIMD programming model of GPUs
highly relies on the exploitation of data-level parallelism. However, data-level par-
allelism does not require having each thread to work on completely independent
computations: parallelism is also available within computations. For example,
the addition of two 32-way-bitsliced field elements is nothing but a sequence of
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131 32-bit XOR operations; it naturally contains 131-way data-level parallelism.
Similarly, there are many ways to break 131-bit binary-polynomial multiplication
into several smaller-degree polynomial multiplications that can be carried out in
parallel.

Registers cannot be used for communication between threads. Having sev-
eral threads cooperate on a single computation requires the active data for the
computation to fit into shared memory. Furthermore, registers offer more space
than shared memory; therefore during multiplication some registers can be used as
spill locations for data not involved in the multiplication, reversing the traditional
direction of data spilling from registers to memory.

The implementation carries out 128 independent 131-bit multiplications (i.e.,
four 32-way bitsliced 131-bit multiplications) inside shared memory and registers,
with no DRAM access. This means that each multiplication has to fit within
1024 bits of shared memory. This is not a problem for schoolbook multiplication,
but it is a rather tight fit for a fast Karatsuba-type multiplication algorithm
(see below); more simultaneous multiplications would require compromises in the
multiplication algorithm.

When using 128 threads, 32 threads are cooperating on each of the four 32-
way bitsliced 131-bit multiplications. Experiments confirmed that this number of
threads is enough to achieve almost 80% ALU occupancy during the multiplication
which is the most time-consuming part of the iteration function. The 131-bit
multiplication algorithm allows close to 32-way parallelization, as discussed below,
although the parallelization is not perfect.

There would be higher ALU occupancy when using 192 or 256 threads. This
would require either to handle more than 128 iterations in parallel and thus raise
pressure on fast memory or to increase the parallelization degree within each mul-
tiplication. In the opposite direction, the memory demand or the parallelization
degree could be reduced by running 96 or 64 threads; but below 128 threads the
GPU performance drops drastically. Therefore using 128 threads to compute on
128 independent iterations seems to yield the best performance.

The main task is now to multiply 131-bit polynomials, at each step using 32
parallel bit operations to the maximum extent possible. The resulting algorithm is
expanded to 128 independent, bitsliced inputs to obtain code for 128 cooperating
threads: performing 128 separate multiplications of 131-bit polynomials, stored
in bitsliced form as 4 · 131 32-bit words, using 128 concurrent 32-bit operations
to the maximum extent possible.

Vectorized 128-bit multiplication. First consider the simpler task of multiply-
ing 128-bit polynomials. This can efficiently be performed by applying three levels
of Karatsuba expansion. Each level uses 2n XOR instructions to expand a 2n-bit
multiplication into three n-bit multiplications, and then 5n − 3 XOR instructions
to collect the results (with Bernstein’s “refined Karatsuba” from [Ber09b]).

Three levels of Karatsuba result in 27 times 16-bit polynomial multiplications.
The inputs to these multiplications occupy a total of 864 bits, consuming most but
not all of the 1024 bits of shared memory available to each 131-bit multiplication.
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The code from [Ber09b] for a 16-bit polynomial multiplication can be scheduled
to fit into 67 registers. It is applied to the 27 multiplications in parallel, leaving 5
threads idle out of 32. In total 27 · 4 = 108 16-bit polynomial multiplications on
32-bit words are carried out by 108 threads in this subroutine leaving 20 threads
idle. Each thread executes 413 instructions (350 bit operations and 63 load/store
instructions).

The initial expansion can be parallelized trivially. Operations on all three
levels can be joined and performed together on blocks of 16 bits per operand
using 8 loads, 19 XOR instructions, and 27 stores per thread.

Karatsuba collection is more work: On the highest level (level 3), each block
of 3 times 32-bit results (with leading coefficient zero) is combined into a 64-bit
intermediate result for level 2. This takes 5 loads (2 of these conditional), 3 XOR
operations and 3 stores per thread on each of the 9 blocks. Level 2 operates on
blocks of 3 64-bit intermediate results leading to 3 128-bit blocks of intermediate
results for level 1. This needs 6 loads and 5 XOR operations for each of the 3
blocks. The 3 blocks of intermediate results of this step do not need to be written
to shared memory and remain in registers for the following final step on level 1.
Level 1 combines the remaining three blocks of 128 bits to the final 256-bit result
by 12 XOR operations per thread.

Vectorized 131-bit multiplication. To multiply 131-bit polynomials, the in-
puts are split into a 128-bit low part and a 3-bit high part. The 128-bit multi-
plications of the two low parts are handled by a 128-bit multiplier as described
above, the 3×3-bit product of the high parts and the two 3×128-bit mixed prod-
ucts are handled in a straightforward way: The 3×3-bit multiplication can be
carried out almost for free by an otherwise idle 16-bit multiplication thread. The
3×128-bit multiplications can be implemented straightforwardly by schoolbook
multiplication.

However, some of the additions to obtain the final result can be saved and
the code can be shaped more streamlined by distributing the computations in the
following way: The 5 most-significant bits of the final result only depend on the 5
most-significant bits of each input. Thus they can be obtained by computing the
product of these bits (using the 16-bit multiplier) and by cutting off the 4 least-
significant bits of the 9 resulting bits. Now the 2 most significant bits of the results
from the 3×128-bit multiplications do not need to be computed and summed up
anymore; the 128 least significant bits of the 3×128-bit multiplications can be
obtained each by 6 loads for the 3 highest bits of each input, 3 · 128 combined
load-AND instructions per input, and 2·128 XOR instructions (some of them masked
for the 2 least-significant bits).

Overall the multiplier uses 13087 bit operations, and about 40% of the ALU
cycles are spent on these bit operations rather than on loads, stores, address
calculations, and other overhead. An extra factor of about 1.1 is lost from 32-way
parallelization, since the 32 threads are not always all active. For comparison, the
Toom-type techniques from [Ber09b] use only 11961 bit operations, saving about
10%, but appear to be more difficult to parallelize.
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3.4.4 ECC2K-130 iterations on the GPU

This section discusses several aspects of the overhead in the ECC2K-130 compu-
tation. The main goal, as in the previous section, is to identify 32-way parallelism
in the bit operations inside each 131-bit operation. This is often more challeng-
ing for the “overhead” operations than it is for multiplication, and in some cases
the algorithms are modified to improve parallelism. All of these operations work
entirely in shared memory.

Basis conversion. As explained in Section 3.4.2 most of the elements of F2131

are represented in (permuted) normal basis. Before those elements are multiplied,
they are converted from normal basis to polynomial basis. Consider an element
a of F2131 in (permuted) normal basis:

a = a0(ζ + ζ−1) + a1(ζ2 + ζ−2) + · · ·+ a130(ζ131 + ζ−131).

On the first two levels of the basis conversion algorithm the following sequence of
operations is executed on bits a0, a62, a64, a126:

a62 ← a62 + a64

a0 ← a0 + a126

a64 ← a64 + a126

a0 ← a0 + a62.

Meanwhile the same operations are performed on bits a1, a61, a65, a125; on bits
a2, a60, a66, a124; and so on through a30, a32, a94, a96. These 31 groups of bits
are assigned to 32 threads, keeping almost all of the threads busy.

Merging levels 2 and 3 and levels 4 and 5 works in the same way. This
assignment keeps 24 out of 32 threads busy on levels 2 and 3, and 16 out of
32 threads busy on levels 4 and 5. This assignment of operations to threads also
avoids almost all memory-bank conflicts.

Multiplication with reduction. Recall that the PPP multiplication produces
a product in polynomial basis, suitable for input to a subsequent multiplication.
The PPN multiplication produces a product in normal basis, suitable for input
to a squaring.

The main work in PPN, beyond polynomial multiplication as described in
Section 3.4.3, is a conversion of the product from polynomial basis to normal
basis. This conversion is almost identical to basis conversion described above,
except that it is double-size and in reverse order. The reduction PPP is a more
complicated double-size conversion, with similar parallelization.

Squaring and m-squaring. Squaring and m-squaring are simply permutations
in normal basis, costing 0 bit operations, but this does not mean that they cost 0
cycles.

The obvious method for 32 threads to permute 131 bits is for them to pick up
the first 32 bits, store them in the correct locations, pick up the next 32 bits, store
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them in the correct locations, etc.; each thread performs 5 loads and 5 stores, with
most of the threads idle for the final load and store. The addresses determined
by the permutation for different m-squarings can be kept in constant memory.
However, this approach triggers two GPU bottlenecks.

The first bottleneck is shared-memory bank throughput. Recall from Sec-
tion 3.4 that threads in the same half-warp cannot simultaneously store values to
the same memory bank. To almost completely eliminate this bottleneck a greedy
search is performed that finds a suitable order to pick up 131 bits, trying to avoid
all memory bank conflicts for both the loads and the stores. For almost all values
of m, including the most frequently used ones, this approach finds a conflict-free
assignment. For two values of m the assignment involves a few bank conflicts, but
these values are used only in inversion, not in the main loop.

The second bottleneck is the throughput of constant cache. Constant cache
delivers only one 32-bit word per cycle; this value can be broadcasted to all threads
in a warp. If the threads load from different positions in constant memory, then
these accesses are serialized. To eliminate this bottleneck, the loads are moved
out of the main loop. Each thread reserves 10 registers to hold 20 load and 20
store positions for the 4 most-often used m-squarings, packing 4 1-byte positions
in one 32-bit register. Unpacking the positions costs just one shift and one mask
instruction for the two middle bytes, a mask instruction for the low byte, and a
shift instruction for the high byte.

Addition. The addition of 128 bitsliced elements of F2131 is decomposed into
computing the XOR of two sets of 4 · 131 = 524 of 32-bit words. This can be
accomplished by 128 threads using 2 · 5 loads, 5 XOR operations and 5 stores per
thread where 2 loads, 1 XOR and 1 store are conditional and carried out by only
12 threads.

Hamming-weight computation. The subroutine for Hamming-weight compu-
tation receives elements of F2131 in bitsliced normal-basis representation as input
and returns the Hamming weight, i.e. the sum of all bits of the input value,
as bitsliced output. More specifically, it returns 8 bits h0, . . . , h7 such that the
Hamming weight of the input value is

∑7
i=0 hi2

i.
The basic building block for the parallel computation is a full adder, which

has three input bits b1, b2, b3 and uses 5 bit operations to compute 2 output bits
c0, c1 such that b1 + b2 + b3 = c12 + c0. At the beginning of the computation all
131 bits have a weight of 20. When the full adder operates on bits of weight 20,
output bit c1 gets a weight of 21 and the bit c0 a weight of 20. If three bits with
a weight of 21 are input to a full adder, output bit c1 will have the weight 22, bit
c0 weight 21. More generally: If three bits with a weight of 2i enter a full adder,
output bit c1 will have a weight of 2i+1, output bit c0 a weight of 2i. The full
adder sums up bits of each weight until only one bit of each weight is left giving
the final result of the computation.

Because there are many input bits, it is easy to keep many threads active in
parallel. In the first addition round 32 threads perform 32 independent full-adder
operations, 96 bits with weight 20 are transformed into 32 bits with weight 20 and
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32 bits with weight 21. This leaves 131 − 96 + 32 = 67 bits of weight 20 and 32
bits of weight 21. In the second round, 22 threads pick up 66 bits of weight 20 and
produce 22 bits of weight 20 and 22 bits of weight 21. At the same time 10 other
threads pick up 30 bits of weight 21 and produce 10 bits of weight 21 and 10 bits
of weight 22. This leaves 67−66+22 = 23 bits of weight 20, 32−30+22+10 = 34
bits of weight 21, and 10 bits of weight 22.

Following this approach, it takes at least 13 rounds to compute the bits
h0, . . . , h7, i.e. 8 bits with weight 20, . . . , 27. The implementation actually uses
a somewhat less parallel approach with 21 rounds, two of these rounds being
half-adder operations which receive only 2 input bits and take only 2 bit opera-
tions. This has the benefit of simplifying computation of the input positions as a
function of the thread ID.

Once the Hamming weight is computed, it can be tested whether the weight
is below 34, i.e., whether a distinguished point has been reached. Furthermore,
the Hamming weight is needed to compute j.

3.4.5 Overall results on the GPU

GPU code is organized into kernels called from the CPU. Launching a kernel
takes several microseconds on top of any time needed to copy data between global
memory and the CPU. To eliminate these costs, the kernel runs for several sec-
onds. The kernel consists of a loop around a complete iteration; it performs the
iteration repeatedly without contacting the CPU. Any distinguished points are
masked out of subsequent updates; distinguished points are rare, so negligible
time is lost computing unused updates.

The high costs for inversions are alleviated by using Montgomery’s trick as
described in Section 3.2: Only one inversion is used for a batch of iterations.
Therefore, a batch of 128 iterations is streamed in a simple way between global
memory and shared memory; this involves a small number of global-memory
copies in each iteration. Spilling of any additional data to DRAM is totally
avoided; in particular, the kernel refrains from using local memory.

All of this sounds straightforward but in fact required a complete redesign
of NVIDIA’s programming environment. As explained in Section 2.3, NVIDIA’s
register allocator was designed to handle small kernels consisting of hundreds of
instructions. For medium-size kernels the code produced by NVIDIA’s compiler
involved frequent spills to local memory, dropping performance by an order of
magnitude. For larger kernels the compiler ran out of memory and eventually
crashed.

An early attempt to implement the iteration function was to write the code
in NVIDIA’s PTX language. As described in Section 2.3, this language does not
use hardware registers but register variables. Register allocation is performed
by NVIDIA’s PTX compiler—and this compiler turns out to be the culprit in
NVIDIA’s register-allocation problems. To control register allocation, eventually
the whole kernel was implemented using the reverse-engineered assembler cudasm
by van der Laan [Laa07] and the new tool chain introduced in Section 2.3 with m5
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normal basis
building block cycles
multiplication

PPN 159.54
PPP 158.08

squaring / m-squaring 9.60
computation of σj 44.99
Hamming-weight computation 41.60
addition 4.01
inversion 1758.72
conversion to polynomial basis 12.63
full iteration:

B = 128 1164.43

Table 3.2: Cycle counts per input for all building blocks on one core of a
GTX 295. Cycle counts for 128 bitsliced inputs are divided by 128. The value
B in the last row denotes the batch size for Montgomery inversions.

and qhasm on top of cudasm. Furthermore a function-call convention was designed
on the assembly level. Using this convention, large stretches of instructions were
merged into functions to reduce code size and thus instruction-cache misses.

Table 3.2 reports timings of all major building blocks on the GPU. These
numbers were collected during a typical pass through the main iteration loop by
reading the GTX 295’s hardware cycle counter. As in case for the Cell processor,
the cycle counts have been divided by the bitslicing width of 128 independent
iterations.

The complete kernel uses 1164.43 cycles per iteration on average on a single
core of a GTX 295 graphics card. Therefore the 60 cores of the whole card achieve
about 64 million iterations per second at a clock speed of 1.242 GHz. The whole
ECC2K-130 computation would be finished in one year (on average; Pollard’s rho
method is probabilistic) using 1066 GTX 295 graphics cards.

As stated in Section 3.3.5, the ECC2K-130 computation is still ongoing at time
of this writing. The GPU implementation has been running on the GPU clusters
Lincoln at the National Center for Supercomputing Applications (NCSA) and
Longhorn at the Texas Advanced Computing Center (TACC) as part of the former
TeraGrid initiative. Furthermore it has been running on the AC GPU cluster at
NCSA and on the GPU Cluster at the SARA Computing and Networking Services
of the Netherlands National Computing Facilities foundation (NCF).

3.5 Performance comparison
NVIDIA’s graphics card GTX 295 computes about 64 million iterations per sec-
ond. That is almost 2.5 times faster than IBM’s Cell processor which performs
about 25.88 million iterations per second. Nevertheless, judging from the raw
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instruction throughput, the graphics card should perform much better than that:
The 60 cores of a GTX 295 deliver up to 596.16 billion logical operations on 32-bit
words per second. This is more than 7.5 times the performance of the 6 SPEs
of a Cell processor in the PlayStation 3 delivering 76.8 billion logical operations
on 32-bit words per second. There are several reasons why the Cell processor
performs more efficiently than the GPU:

• The SPEs of the Cell processor can execute one memory operation in parallel
to each logical instruction while the GPU has to spend extra cycles on
loading and storing data.

• The memory controller of the SPE can transfer data between local storage
and main memory per DMA in parallel to the computation of the ALU; set-
ting up data transfers costs only a fraction of an instruction per transferred
byte. On the GPU, memory transfers between device memory and shared
memory take a path through the ALU, consuming additional cycles.

• The local storage of the SPEs is large enough to keep the full working set
and all code during computation while the instruction cache of the GPU is
too small for the code size.

• For the GPU implementation, several threads are cooperating on the bit op-
erations of one iteration. This requires synchronization and communication
which adds more cycles to the overall cycle count.

• Due to the cooperation of threads during the computation, not all threads
of the GPU can be kept busy all the time.

• Sequential computations like address calculations are more frequent on the
GPU due to the thread-based programming model.

• More than 128 threads would need to run concurrently to hide all latency
effects which arise on the GPU.

Some of these issues could have been avoided by increasing the number of
concurrent threads on each GPU core. However, the multiplication which is the
most expensive instruction requires an amount of resources that is only available
when using at most 128 threads. Any reduction of the resources would result in
less efficient multiplication algorithms and thus eat up all improvements achieved
by a higher ALU occupancy.

To put the results into perspective, similar implementations of the iteration
function are presented in [BBB+09]: A Core 2 Extreme Q6850 CPU with 4 cores
running at 3 GHz clock frequency achieves 22.45 million iterations/second. A
previous, more straightforward GPU implementation that was not sharing work
between the threads, carries out 25.12 million iterations/second on the same
GTX 295 graphics cards. A Spartan-3 XC3S5000-4FG676 FPGA delivers 33.67
million iterations/second. A 16mm2 ASIC is estimated to achieve 800 million
iterations/second.



4
Parallel implementation of

the XL algorithm

Some cryptographic systems can be attacked by solving a system of multivariate
quadratic equations. For example the symmetric block cipher AES can be at-
tacked by solving a system of 8000 quadratic equations with 1600 variables over
F2 as shown by Courtois and Pieprzyk in [CP02] or by solving a system of 840
sparse quadratic equations and 1408 linear equations over 3968 variables of F256

as shown by Murphy and Robshaw in [MR02] (see also remarks by Murphy and
Robshaw in [MR03]). Multivariate cryptographic systems can be attacked natu-
rally by solving their multivariate quadratic system; see for example the analysis
of the QUAD stream cipher by Yang, Chen, Bernstein, and Chen in [YCB+07].

This chapter describes a parallel implementation of an algorithm for solving
quadratic systems that was first suggested by Lazard in [Laz83]. Later it was
reinvented by Courtois, Klimov, Patarin, and Shamir and published in [CKP+00];
they call the algorithm XL as an acronym for extended linearization: XL extends
a quadratic system by multiplying with appropriate monomials and linearizes it
by treating each monomial as an independent variable. Due to this extended
linearization, the problem of solving a quadratic system turns into a problem of
linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère,
Imai, Kawazoe, and Sugita in [AFI+04]) and can be used as an alternative to
other Gröbner basis solvers like Faugère’s F4 and F5 algorithms (introduced in
[Fau99] and [Fau02]). An enhanced version of F4 is implemented for example by
the computer algebra system Magma.

47
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There is an ongoing discussion on whether XL-based algorithms or algorithms
of the F4/F5-family are more efficient in terms of runtime complexity and memory
complexity. To achieve a better understanding of the practical behaviour of XL,
this chapter describes a parallel implementation of the XL algorithm for shared
memory systems, for small computer clusters, and for a combination of both.
Measurements of the efficiency of the parallelization have been taken at small size
clusters of up to 8 nodes and shared memory systems of up to 48 cores.

The content of this chapter is joined work with Ming-Shing Chen, Chen-Mou
Cheng, Tung Chou, Yun-Ju Huang, and Bo-YinYang. This research has been
supported by the Netherlands National Computing Facilities foundation (NCF)
as project MP-230-11. A paper about the implementation with more details on
the comparison between XL and F4/F5 is going to be finished in 2012.

This chapter is structured as follows: The XL algorithm is introduced in Sec-
tion 4.1. Section 4.2 explains Coppersmith’s block Wiedemann algorithm which
is used for solving the linearized system. Sections 4.3 and 4.4 introduce vari-
ations of the Berlekamp–Massey algorithm that are used as building block for
Coppersmith’s block Wiedemann algorithm: Section 4.3 describes Coppersmith’s
version and Section 4.4 introduces an alternative algorithm invented by Thomé.
An implementation of XL using the block Wiedemann algorithm is described in
Section 4.5. Section 4.6 gives runtime measurements and performance values that
are achieved by this implementation for a set of parameters on several parallel
systems.

Notations: In this chapter a subscript is usually used to denote a row in a
matrix, e.g., Ai means the i-th row of matrix A. The entry at the i-th row and j-th
column of the matrix A is denoted by Ai,j . A sequence is denoted as {s(i)}∞i=0.
The coefficient of the degree-i term in the expansion of a polynomial f(λ) is
denoted as f [i], e.g., (λ+ 1)3[2] = (λ3 + 3λ2 + 3λ+ 1)[2] = 3. The cost (number
of field operations) to perform a matrix multiplication AB of matrices A ∈ Ka×b

and B ∈ Kb×c is denoted as Mul(a, b, c). The asymptotic time complexity of
such a matrix multiplication depends on the size of the matrices, on the field K,
and on the algorithm that is used for the computation. Therefore the complexity
analyses in this chapter use the bound for simple matrix multiplication O(a · b · c)
as upper bound for the asymptotic time complexity of matrix multiplications.

4.1 The XL algorithm

The original description of XL for multivariate quadratic systems can be found in
[CKP+00]; a more general definition of XL for systems of higher degree is given in
[Cou03]. The following gives a brief introduction of the XL algorithm for quadratic
systems; the notation is adapted from [YCC04]:

Consider a finite field K = Fq and a system A of m multivariate quadratic
equations `1 = `2 = · · · = `m = 0 for `i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote by
xb the monomial xb11 x

b2
2 . . . xbnn and by |b| = b1+b2+ · · ·+bn the total degree of xb.
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XL first chooses a D ∈ N, called the operational degree, and extends the
system A to the system R(D) = {xb`i = 0 : |b| ≤ D − 2, `i ∈ A} of maximum
degree D by multiplying each equation of A by all monomials of degree less than
or equal to D− 2. Now each monomial xd, d ≤ D is considered a new variable to
obtain a linear systemM. Note that the systemM is sparse since each equation
has the same number of non-zero coefficients as the corresponding equation of the
quadratic system A. Finally the linear system M is solved. If the operational
degree D was well chosen, the linear system contains sufficient information about
the quadratic equations so that the solution for x1, x2, . . . xn of the linearized
system of R(D) is also a solution for A; this can easily be checked. Otherwise, the
algorithm is repeated with a larger D.

Let T (D−2) = {xb : |b| ≤ D− 2} be the set of all monomials with total degree
less than or equal to D − 2. The number |T (D−2)| of all these monomials can be
computed by writing each of these monomials xb = xb11 x

b2
2 . . . xbnn as a string

“ foo foo . . . foo︸ ︷︷ ︸
b1-many

x1 foo foo . . . foo︸ ︷︷ ︸
b2-many

x2 . . . xn foo foo . . . foo︸ ︷︷ ︸
(D−2−|b|)-many

”.

This string has n+(D−2) words, n times “xi” and D−2 times “foo”. The number
of all such strings is

(
n+(D−2)

n

)
=
(
n+(D−2)
D−2

)
. Thus the number |T (D−2)| of all

monomials with total degree less than or equal to D − 2 is
(
n+(D−2)

n

)
. Therefore

the size ofR(D) grows exponentially with the operational degreeD. Consequently,
the choice of D should not be larger than the minimum degree that is necessary to
find a solution. On the other hand, starting with a small operational degree may
result in several repetitions of the XL algorithm and therefore would take more
computation than necessary. The solution for this dilemma is given by Yang and
Chen in [YC05] (see also Moh in [Moh01] and Diem in [Die04]): they show that
for random systems the minimum degree D0 required for the reliable termination
of XL is given by D0 := min{D : ((1− λ)m−n−1(1 + λ)m)[D] ≤ 0}.

4.2 The block Wiedemann algorithm
The computationally most expensive task in XL is to find a solution for a sparse
linear system of equations over a finite field. There are two popular algorithms
for that task, the block Lanczos algorithm [Mon95] and the block Wiedemann al-
gorithm [Cop94]. The block Wiedemann algorithm was proposed by Coppersmith
in 1994 and is a generalization of the original Wiedemann algorithm [Wie86]. It
has several features that make it powerful for computation in XL. From the orig-
inal Wiedemann algorithm it inherits the property that the runtime is directly
proportional to the weight of the input matrix. Therefore this algorithm is suit-
able for solving sparse matrices, which is exactly the case for XL. Furthermore
big parts of the block Wiedemann algorithm can be parallelized on several types
of parallel architectures.

This section describes the implementation of the block Wiedemann algorithm.
Although this algorithm is used as a subroutine of XL, the contents in this section
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are suitable for other applications since they are independent of the shape or data
structure of the input matrix.

The block Wiedemann algorithm is a probabilistic algorithm. It solves a linear
systemM by computing kernel vectors of a corresponding matrix B in three steps
which are called BW1, BW2, and BW3 for the remainder of this chapter. The
following paragraphs give a review of these three steps on an operational level;
for more details please see [Cop94].

BW1: Given an input matrix B ∈ KN×N , parameters m,n ∈ N with m ≥ n,
and κ ∈ N of size N/m + N/n + O(1), the first step BW1 computes the first κ
elements of a sequence {a(i)}∞i=0 of matrices a(i) ∈ Kn×m using random matrices
x ∈ Km×N and z ∈ KN×n such that

a(i) = (xBiy)T , for y = Bz.

The parameters m and n are chosen such that operations on vectors Km and Kn

can be computed efficiently on the target computing architecture. In this chapter
the quotient dm/ne is treated as a constant for convenience. In practice each a(i)
can be efficiently computed using two matrix multiplications with the help of a
sequence {t(i)}∞i=0 of matrices t(i) ∈ KN×n defined as

t(i) =

{
y = Bz for i = 0

Bt(i−1) for i > 0.

Thus, a(i) can be computed as

a(i) = (xt(i))T .

Therefore, the asymptotic time complexity of BW1 can be written as

O

((
N

m
+
N

n

)
(NwBn+mNn)

)
= O

(
(wB +m)N2

)
,

where wB is the average number of nonzero entries per row of B.

BW2: Coppersmith uses an algorithm for this step that is a generalization of the
Berlekamp–Massey algorithm given in [Ber66; Mas69]. Literature calls Copper-
smith’s modified version of the Berlekamp–Massey algorithm “matrix Berlekamp–
Massey” algorithm or “block Berlekamp–Massey” algorithm in analogy to the
name “block Wiedemann”.

The block Berlekamp–Massey algorithm is an iterative algorithm. It takes the
sequence {a(i)}∞i=0 from BW1 as input and defines the polynomial a(λ) of degree
N/m+N/n+O(1) with coefficients in Kn×m as

a(λ) =

κ∑
i=0

a(i)λi.
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input : H(j) ∈ K(m+n)×m

a list of nominal degrees d(j)
output: P (j) ∈ K(m+n)×(m+n)

E(j) ∈ K(m+n)×(m+n)

1 M ← H(j), P ← Im+n, E ← Im+n;
2 sort the rows of M by the nominal degrees in decreasing order and apply
the same permutation to P (j) and E(j);

3 for k = 1→ m do
4 for i = (m+ n+ 1− k) downto 1 do
5 if Mi,k 6= 0 then
6 v(M) ←Mi, v(P ) ← Pi, v(E) ← Ei;
7 break;

8 for l = i+ 1 to (m+ n+ 1− k) do
9 Ml−1 ←Ml, Pl−1 ← Pl, El−1 ← El;

10 M(m+n+1−k) ← v(M), P(m+n+1−k) ← v(P ), E(m+n+1−k) ← v(E);
11 for l = 1 to (m+ n− k) do
12 if Ml,k 6= 0 then
13 Ml ←Ml − v(M) · (Ml,k/v(M)k);
14 Pl ← Pl − v(P ) · (Ml,k/v(M)k);

15 P (j) ← P ;
16 E(j) ← E;

Algorithm 1: Gaussian elimination in Coppersmith’s Berlekamp–Massey algo-
rithm

The j-th iteration step receives two inputs from the previous iteration: One in-
put is an (m + n)-tuple of polynomials (f

(j)
1 (λ), . . . , f

(j)
m+n(λ)) with coefficients

in K1×n; these polynomials are jointly written as f (j)(λ) with coefficients in
K(m+n)×n such that (f (j)[k])i = f

(j)
i [k]. The other input is an (m+n)-tuple d(j)

of nominal degrees (d
(j)
1 , . . . , d

(j)
m+n); each nominal degree d(j)k is an upper bound

of deg(f
(j)
k ).

An initialization step generates f (j0) for j0 = dm/ne as follows: Set the polyno-
mials f (j0)m+i, 1 ≤ i ≤ n, to the polynomial of degree j0 where coefficient f (j0)m+i[j0] =

ei is the i-th unit vector and with all other coefficients f (j0)m+i[k] = 0, k 6= j0. Re-
peat choosing the polynomials f (j0)1 , . . . , f

(j0)
m randomly with degree j0 − 1 until

H(j0) = (f (j0)a)[j0] has rank m. Finally set d(j0)i = j0, for 0 ≤ i ≤ (m+ n).
After f (j0) and d(j0) have been initialized, iterations are carried out until

f (deg(a)) is computed as follows: In the j-th iteration, a Gaussian elimination
according to Algorithm 1 is performed on the matrix

H(j) = (f (j)a)[j] ∈ K(m+n)×m.
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Note that the algorithm first sorts the rows of the input matrix by their cor-
responding nominal degree in decreasing order. This ensures that during the
Gaussian elimination no rows of higher nominal degree are subtracted from a row
with lower nominal degree. The Gaussian elimination finds a nonsingular matrix
P (j) ∈ K(m+n)×(m+n) such that the first n rows of P (j)H(j) are all zeros and a
permutation matrix E(j) ∈ K(m+n)×(m+n) corresponding to a permutation φ(j).
Using P (j), the polynomial f (j+1) of the next iteration step is computed as

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

The nominal degrees d(j+1)
i are computed corresponding to the multiplication by

Q and the permutation φ(j) as

d
(j+1)
i =

d
(j)

φ
(j)
i

for 1 ≤ i ≤ n,

d
(j)

φ
(j)
i

+ 1 for n < i ≤ (n+m).

The major tasks in each iteration are:

1. The computation of H(j), which takes

deg(f (j))Mul(m+ n, n,m) = O(deg(f (j)) · n3);

note that only the coefficient of λj of f (j)(λ)a(λ) needs to be computed.

2. The Gaussian elimination, which takes O(n3).

3. The multiplication P (j)f (j), which takes

deg(f (j))Mul(m+ n,m+ n, n) = O(deg(f (j)) · n3).

In fact deg(f (j)) is always bounded by j since max(d(j)) is at most increased by
one in each round. Therefore, the total asymptotic time complexity of Berlekamp–
Massey is

N/m+N/n+O(1)∑
j=j0

O(j · n3) = O
(
N2 · n

)
.

For the output of BW2, the last m rows of f (deg(a)) are discarded; the output
is an n-tuple of polynomials (f1(λ), . . . fn(λ)) with coefficients in K1×n and an
n-tuple d = (d1, . . . , dn) of nominal degrees such that

fk = f
(deg(a))
k

and
dk = d

(deg(a))
k ,

for 1 ≤ k ≤ n, where max(d) ≈ N/n.
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BW3: This step receives an n-tuple of polynomials (f1(λ), . . . fn(λ)) with coef-
ficients in K1×n and an n-tuple d = (d1, . . . , dn) as input from BW2. For each
fi(λ), 1 ≤ i ≤ n, compute wi ∈ KN as

wi = z(fi[deg(fi)])
T +B1z(fi[deg(fi)− 1])T + . . .+Bdeg(fi)z(fi[0])T

=

deg(fi)∑
j=0

Bjz(fi[deg(fi)− j])T .

Note that this corresponds to an evaluation of the reverse of fi. To obtain a kernel
vector of B, multiply wi by B until B(ki+1)wi = 0, 0 ≤ ki ≤ (di−deg(fi)). Thus,
Bkiwi is a kernel vector of B.

The block Wiedemann algorithm is a probabilistic algorithm. Therefore, it is
possible that this computation does not find a kernel vector for some fi(λ). For
a probabilistic analysis of Coppersmith’s block Wiedemann algorithm see [Kal95;
Vil97b; Vil97a].

In practice, the kernel vectors can be computed efficiently by operating on
all polynomials fi(λ) together. As in step BW2, all fi(λ) are written jointly as
f(λ) with coefficients in Kn×n such that (f [k])i = fi[k]. By applying Horner’s
scheme, the kernel vectors can be computed iteratively with the help of a sequence
{W (j)}max(d)

j=0 , W (j) ∈ KN×n using up to two matrix multiplications for each
iteration as follows:

W (j) =


z · (f [0])T for j = 0,

z · (f [j])T +B ·W (j−1) for 0 < j ≤ deg(f),

B ·W (j−1) for deg(f) < j ≤ max(d).

The kernel vectors of B are found during the iterative computation of W (max(d))

by checking whether an individual column i ∈ {1, . . . , n} is nonzero in iteration k
but becomes zero in iteration k + 1. Therefore, column i of matrix W (k) is a
kernel vector of B.

Each iteration step has asymptotically time complexity

O
(
Nn2 +NwBn

)
= O (N · (n+ wB) · n) .

Therefore, W (max(d)) for max(d) ≈ N/n can be computed with the asymptotic
time complexity

O
(
N2 · (wB + n)

)
.

The output of BW3 and of the whole block Wiedemann algorithm consist of up
to n kernel vectors of B.

4.3 The block Berlekamp–Massey algorithm
This section first introduces a tweak that makes it possible to speed up compu-
tations of Coppersmith’s variant of the Berlekamp–Massey algorithm. Later the
parallelization of the algorithm is described.



54 CHAPTER 4. PARALLEL IMPLEMENTATION OF XL

4.3.1 Reducing the cost of the block Berlekamp–Massey
algorithm

The j-th iteration of Coppersmith’s Berlekamp–Massey algorithm requires a ma-
trix P (j) ∈ K(m+n)×(m+n) such that the first n rows of P (j)H(j) are all zeros.
The main idea of this tweak is to make P (j) have the form

P (j) =

(
In ∗
0 Im

)
E(j),

where E(j) is a permutation matrix corresponding to a permutation φ(j) (the
superscript of φ(j) will be omitted in this section). Therefore, the multiplication
P (j)f (j) takes only deg(f (j)) ·Mul(n,m, n) field operations (for the upper right
submatrix in P (j)).

The special form of P (j) also makes the computation of H(j) more efficient:
The bottom m rows of each coefficient are simply permuted due to the multipli-
cation by P (j), thus

(P (j)f (j)[k])i = (f (j)[k])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since multiplication by Q corresponds to
a multiplication of the bottom m rows by λ, it does not modify the upper n rows
of the coefficients. Therefore, the bottom m rows of the coefficients of f (j+1) can
be obtained from f (j) as

(f (j+1)[k])i = (QP (j)f (j)[k − 1])i = (f (j)[k − 1])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since the bottom right corner of P (j) is
the identity matrix of size m, this also holds for

((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i).

Thus, H(j+1)
i for n < i ≤ m+ n can be computed as

H
(j+1)
i = ((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i) = H

(j)
φ(i).

This means the last m rows of H(j+1) can actually be copied from H(j); only the
first n rows of H(j+1) need to be computed. Therefore the cost of computing any
H(j>j0) is reduced to deg(f (j)) ·Mul(n, n,m).

The matrix P (j) can be assembled as follows: The matrix P (j) is computed
using Algorithm 1. In this algorithm a sequence of row operations is applied to
M := H(j). The matrix H(j) has rank m for all j ≥ j0. Therefore in the end
the first n rows of M are all zeros. The composition of all the operations is P (j);
some of these operations are permutations of rows. The composition of these
permutations is E(j):

P (j)(E(j))−1 =

(
In ∗
0 F (j)

)
⇐⇒ P (j) =

(
In ∗
0 F (j)

)
E(j).
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The algorithm by Coppersmith requires that the first n rows of P (j)H(j) are all
zero (see [Cop94, p. 7]); there is no condition for the bottom m rows. However,
the first n rows of P (j)H(j) are all zero independently of the value of F (j). Thus,
F (j) can be replaced by Im without harming this requirement.

4.3.2 Parallelization of the block Berlekamp–Massey
algorithm

The parallel implementation of the block Berlekamp–Massey algorithm on c nodes
works as follows: In each iteration step, the coefficients of f (j)(λ) are equally
distributed over the computing nodes; for 0 ≤ i < c, let S(j)

i be the set containing
all indices of coefficients stored by node i during the j-th iteration. Each node
stores a copy of all coefficients of a(λ).

Due to the distribution of the coefficients, the computation of

H(j) = (f (j)a)[j] =

j∑
l=0

f (j)[l]a[j − l]

requires communication: Each node i first locally computes a part of the sum
using only its own coefficients S(j)

i of f (j). The matrix H(j) is the sum of all these
intermediate results. Therefore, all nodes broadcast their intermediate results
to the other nodes. Each node computes H(j) locally; Gaussian elimination is
performed on every node locally and is not parallelized over the nodes. Since only
small matrices are handled, this sequential overhead is negligibly small.

Also the computation of f (j+1) requires communication. Recall that

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

Each coefficient k is computed row-wise as

(f (j+1)[k])l =

{
((P (j)f (j))[k])l, for 0 < l ≤ n,
((P (j)f (j))[k − 1])l, for n < l ≤ m+ n.

Computation of f (j+1)[k] requires access to both coefficients k and (k−1) of f (j).
Therefore, communication cost is reduced by distributing the coefficients equally
over the nodes such that each node stores a continuous range of coefficients of f (j)

and such that the indices in S(j)
i+1 always are larger than those in S(j)

i .
Due to the multiplication by Q, the degree of f (j) is increased by at most

one in each iteration. Therefore at most one more coefficient must be stored.
The new coefficient obviously is the coefficient with highest degree and therefore
must be stored on node (c − 1). To maintain load balancing, one node i(j) is
chosen in a round-robin fashion to receive one additional coefficient; coefficients
are exchanged between neighbouring nodes to maintain an ordered distribution
of the coefficients.
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iteration j S
(j)
3 S

(j)
2 S

(j)
1 S

(j)
0 max(d(j))

0 ∅ ∅ {1} {0} 1
1 ∅ {2} {1} {0} 2
2 {3} {2} {1} {0} 3
3 {4} {3} {2} {1,0} 4
4 {5} {4} {3,2} {1,0} 5
5 {6} {5,4} {3,2} {1,0} 6
6 {7,6} {5,4} {3,2} {1,0} 7
. . . . . . . . . . . . . . . . . .

Table 4.1: Example for the workload distribution over 4 nodes. Iteration
0 receives the distribution in the first line as input and computes the new
distribution in line two as input for iteration 1.

Observe, that only node (c − 1) can check whether the degree has increased,
i.e. whether deg(f (j+1)) = deg(f (j)) + 1, and whether coefficients need to be
redistributed; this information needs to be communicated to the other nodes.
To avoid this communication, the maximum nominal degree max(d(j)) is used to
approximate deg(f (j)). Note that in each iteration all nodes can update a local list
of the nominal degrees. Therefore, all nodes decide locally without communication
whether coefficients need to be reassigned: If max(d(j+1)) = max(d(j)) + 1, the
number i(j) is computed as

i(j) = max(d(j+1)) mod c.

Node i(j) is chosen to store one additional coefficient, the coefficients of nodes i,
for i ≥ i(j), are redistributed accordingly.

Table 4.1 illustrates the distribution strategy for 4 nodes. For example in
iteration 3, node 1 has been chosen to store one more coefficient. Therefore it
receives one coefficient from node 2. Another coefficient is moved from node 3 to
node 2. The new coefficient is assigned to node 3.

This distribution scheme does not avoid all communication for the computa-
tion of f (j+1): First all nodes compute P (j)f (j) locally. After that, the coefficients
are multiplied by Q. For almost all coefficients of f (j), both coefficients k and
(k − 1) of P (j)f (j) are stored on the same node, i.e. k ∈ S(j)

(i) and (k − 1) ∈ S(j)
(i) .

Thus, f (j+1)[k] can be computed locally without communication. In the example
in Figure 4.1, this is the case for k ∈ {0, 1, 2, 4, 5, 7, 9, 10}. Note that the bottom
m rows of f (j+1)[0] and the top n rows of f (j+1)[max(d(j+1))] are 0.

Communication is necessary if coefficients k and (k− 1) of P (j)f (j) are not on
the same node. There are two cases:

• In case k − 1 = max(S
(j+1)
i−1 ) = max(S

(j)
i−1), i 6= 1, the bottom m rows of

(P (j)f (j))[k − 1] are sent from node i − 1 to node i. This is the case for
k ∈ {6, 3} in Figure 4.1. This case occurs if in iteration j + 1 no coefficient
is reassigned to node i− 1 due to load balancing.
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P (j)f (j)

f (j+1)
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012345678910 k
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Figure 4.1: Example for the communication between 4 nodes. The top n
rows of the coefficients are colored in blue, the bottom m rows are colored in
red.

• In case k = min(S
(j)
i ) = max(S

(j+1)
i−1 ), i 6= 1, the top n rows of (P (j)f (j))[k]

are sent from node i to node i− 1. The example in Figure 4.1 has only one
such case, namely for coefficient k = 8. This happens, if coefficient k got
reassigned from node i to node i− 1 in iteration j + 1.

If max(d(j+1)) = max(d(j)), i.e. the maximum nominal degree is not increased
during iteration step j, only the first case occurs since no coefficient is added and
therefore reassignment of coefficients is not necessary.

The implementation of this parallelization scheme uses the Message Passing
Interface (MPI) for computer clusters and OpenMP for multi-core architectures.
For OpenMP, each core is treated as one node in the parallelization scheme. Note
that the communication for the parallelization with OpenMP is not programmed
explicitly since all cores have access to all coefficients; however, the workload
distribution is performed as described above. For the cluster implementation,
each cluster node is used as one node in the parallelization scheme. Broadcast
communication for the computation of H(j) is implemented using a call to the
MPI_Allreduce function. One-to-one communication during the multiplication
by Q is performed with the non-blocking primitives MPI_Isend and MPI_Irecv
to avoid deadlocks during communication. Both OpenMP and MPI can be used
together for clusters of multi-core architectures. For NUMA systems the best
performance is achieved when one MPI process is used for each NUMA node
since this prevents expensive remote-memory accesses during computation.

The communication overhead of this parallelization scheme is very small. In
each iteration, each node only needs to receive and/or send data of total size
O(n2). Expensive broadcast communication is only required rarely compared to
the time spent for computation. Therefore this parallelization of Coppersmith’s
Berlekamp–Massey algorithm scales well on a large number of nodes. Further-
more, since f (j) is distributed over the nodes, the memory requirement is dis-
tributed over the nodes as well.
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4.4 Thomé’s subquadratic version of the block
Berlekamp–Massey algorithm

In 2002 Thomé presented an improved version of Coppersmith’s variation of the
Berlekamp–Massey algorithm [Tho02]. Thomé’s version is asymptotically faster:
It reduces the complexity from O(N2) to O(N log2(N)) (assuming that m and
n are constants). The subquadratic complexity is achieved by converting the
block Berlekamp–Massey algorithm into a recursive divide-and-conquer process.
Thomé’s version builds the output polynomial f(λ) of BW2 using a binary product
tree; therefore, the main operations in the algorithm are multiplications of matrix
polynomials. The implementation of Coppersmith’s version of the algorithm is
used to handle bottom levels of the recursion in Thomé’s algorithm, as suggested
in [Tho02, Section 4.1].

The main computations in Thomé’s version of the Berlekamp–Massey algo-
rithm are multiplications of matrix polynomials. The first part of this section will
take a brief look how to implement these efficiently. The second part gives an
overview of the approach for the parallelization of Thomé’s Berlekamp–Massey
algorithm.

4.4.1 Matrix polynomial multiplications
In order to support multiplication of matrix polynomials with various operand
sizes in Thomé’s Berlekamp–Massey algorithm, several implementations of multi-
plication algorithms are used including Karatsuba, Toom–Cook, and FFT-based
multiplications. FFT-based multiplications are the most important ones because
they are used to deal with computationally expensive multiplications of operands
with large degrees.

Different kinds of FFT-based multiplications are used for different fields: The
field F2 uses the radix-3 FFT multiplication presented in [Sch77]. For F16 the
operands are transformed into polynomials over F169 by packing groups of 5 coef-
ficients together. Then a mixed-radix FFT is applied using a primitive r-th root of
unity in F169 . In order to accelerate FFTs, it is ensured that r is a number without
large (≥ 50) prime factors. F169 is chosen because it has several advantages. First,
by exploiting the Toom-Cook multiplication, a multiplication in F169 takes only
9log3 5 = 25 multiplications in F16. Moreover, by setting F16 = F2[x]/(x4 + x+ 1)
and F169 = F16[y]/(y9 + x), reductions after multiplications can be performed
efficiently because of the simple form of y9 + x. Finally, 169 − 1 has many small
prime factors and thus there are plenty of choices of r to cover various sizes of
operands.

4.4.2 Parallelization of Thomé’s Berlekamp–Massey
algorithm

Thomé’s Berlekamp–Massey algorithm uses multiplication of large matrix poly-
nomials and Coppersmith’s Berlekamp–Massey algorithm as building blocks. The
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parallelization of Coppersmith’s version has already been explained. Here the par-
allelization of the matrix polynomial multiplications is described on the example
of the FFT-based multiplication.

The FFT-based multiplication is mainly composed of 3 stages: forward FFTs,
point-wise multiplications, and the reverse FFT. Let f, g be the inputs of forward
FFTs and f ′, g′ be the corresponding outputs; the point-wise multiplications take
f ′, g′ as operands and give h′ as output; finally, the reverse FFT takes h′ as input
and generates h.

For this implementation, the parallelization scheme for Thomé’s Berlekamp–
Massey algorithm is quite different from that for Coppersmith’s: Each node deals
with a certain range of rows. In the forward and reverse FFTs the rows of f , g, and
h′ are independent. Therefore, each FFT can be carried out in a distributed man-
ner without communication. The problem is that the point-wise multiplications
require partial f ′ but full g′. To solve this each node collects the missing rows
of g′ from the other nodes. This is done by using the function MPI_Allgather.
Karatsuba and Toom-Cook multiplication are parallelized in a similar way.

One drawback of this scheme is that the number of nodes is limited by the
number of rows of the operands. However, when the Macaulay matrix B is very
large, the runtime of BW2 is very small compared to BW1 and BW3 since it is
subquadratic in N . In this case using a different, smaller cluster or a powerful
multi-core machine for BW2 might give a sufficient performance as suggested in
[KAF+10]. Another drawback is, that the divide-and-conquer approach and the
recursive algorithms for polynomial multiplication require much more memory
than Coppersmith’s version of the Berlekamp–Massey algorithm. Thus Copper-
smith’s version might be a better choice on memory-restricted architectures or for
very large systems.

4.5 Implementation of XL

This section gives an overview of the implementation of XL. Section 4.5.1 de-
scribes some tweaks that are used to reduce the computational cost of the steps
BW1 and BW2. This is followed by a description of the building block for these
two steps. The building blocks are explained bottom up: Section 4.5.2 describes
the field arithmetic on vectors of Fq; although the implementation offers several
fields (F2, F16, and F31), F16 is chosen as a representative for the discussion in this
section. The modularity of the source code makes it possible to easily extend the
implementation to arbitrary fields. Section 4.5.3 describes an efficient approach
for storing the Macaulay matrix that takes its special structure into account.
This approach reduces the memory demand significantly compared to standard
data formats for sparse matrices. Section 4.5.4 details how the Macaulay matrix
multiplication in the stages BW1 and BW3 is performed efficiently, Section 4.5.5
explains how the multiplication is performed in parallel on a cluster using MPI
and on a multi-core system using OpenMP. Both techniques for parallelization
can be combined on clusters of multi-core systems.
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4.5.1 Reducing the computational cost of BW1 and BW3
To accelerate BW1, Coppersmith suggests in [Cop94] to use x = (Im|0) instead
of making x a random matrix. However, for the implementation described in this
thesis, using x = (Im|0) turned out to drastically reduce the probability of finding
kernel vectors. Instead, a random sparse matrix is used for x with row weight wx.
This reduces the complexity of BW1 from O(N2(wB+m)) to O(N2wB+Nmwx).

A similar tweak can be used in BW3: Recall that the computations in BW3
can be performed iteratively such that each iteration requires two multiplications
z · (f [k])T and B ·W (k−1). However, z is also a randomly generated matrix, so it
is deliberately made sparse to have row weight wz < n. This tweak reduces the
complexity of BW3 from O

(
N2 · (wB + n)

)
to O

(
N2 · (wB + wz)

)
.

In this implementation wx = wz = 32 is used in all cases.

Notes. The tweaks for BW1 and BW3, though useful in practice, actually reduce
the entropy of x and z. Therefore, theoretical analyses of [Kal95; Vil97b; Vil97a]
do no longer apply.

4.5.2 SIMD vector operations in F16

In this implementation, field elements of F16 are represented as polynomials over
F2 with arithmetic modulo the irreducible polynomial x4 + x + 1. Therefore,
one field element is stored using 4 bits b0, . . . , b3 ∈ {0, 1} where each field element
b ∈ F16 is represented as b =

∑3
i=0 bix

i. To save memory and fully exploit memory
throughput, two field elements are packed into one byte. Therefore, the 128-bit
SSE vector registers are able to compute on 32 field elements in parallel. To fully
exploit SSE registers, vector sizes of a multiple of 32 elements are chosen whenever
possible. In the following only vectors of length 32 are considered; operations on
longer vectors can be accomplished piecewise on 32 elements at a time.

Additions of two F16 vectors of 32 elements can be easily accomplished by using
a single XOR instruction of the SSE instruction set. Scalar multiplications are more
expensive. Depending on the microarchitecture, two different implementations are
used: Processors which offer the SSSE3 extension can profit from the advanced
PSHUFB instruction. On all other SSE architectures a slightly slower version is
used which is based on bitshift operations and logical operations.

General (non-PSHUFB) scalar multiplication: Scalar multiplication by x, x2
and x3 is implemented using a small number of bit-operations, e.g., multiplication
by x is performed as

(a3x
3 + a2x

2 + a1x+ a0) · x = a3(x+ 1) + a2x
3 + a1x

2 + a0x

= a2x
3 + a1x

2 + (a0 + a3)x+ a3.

Seen from the bit-representation, multiplication by x results in shifting bits
0,1, and 2 by one position to the left and adding (XOR) bit 3 to positions 0 and 1.
This sequence of operations can be executed on 32 values in an SSE vector register
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INPUT GF(16) vector A
OUTPUT A * x

mask_a3 = 10001000|10001000|10001000| ...
mask_a2a1a0 = 01110111|01110111|01110111| ...

a3 = A AND mask_a3
tmp = A AND mask_a2a1a0
tmp = tmp << 1
new_a0 = a3 >> 3
tmp = tmp XOR new_a0
add_a1 = a3 >> 2
ret = tmp XOR add_a1

RETURN ret

Listing 4.1: Pseudocode for scalar multiplication by x.

in parallel using 7 bit-operations as shown in Listing 4.1. Similar computations
give the multiplication by x2 and x3 respectively.

Multiplying a vector a ∈ F32
16 by an arbitrary scalar value b ∈ F16 is decomposed

to adding up the results of a · xi, i ∈ [0, 3] for all bits bi of b that are set to 1:

c = a · b =

3∑
i=0

a · xi · bi, c ∈ F32
16.

The number of bit-operations varies with the actual value of b since it is not
necessary to explicitly compute a · xi in case bit i of b is 0.

Scalar multiplication using PSHUFB: The PSHUFB (Packed Shuffle Bytes) in-
struction was introduced by Intel with the SSSE3 instruction set extension in
2006. The instruction takes two byte vectors A = (a0, a1, . . . , a15) and B =
(b0, b1, . . . , b15) as input and returns C = (ab0 , ab1 , . . . , ab15). In case the top bit
of bi is set, ci is set to zero. Using this instruction, scalar multiplication is im-
plemented using a lookup table as follows: For F16 the lookup table L contains
16 entries of 128-bit vectors Li = (0 · i, 1 · i, x · i, (x + 1) · i, . . . ), i ∈ F16. Given
a vector register A that contains 16 elements of F16, one in each byte slot, the
scalar multiplication A · b, b ∈ F16 is computed as A · b = PSHUFB(Lb, A).

Since in the implementation each vector register of the input contains 32
packed elements, two PSHUFB instructions are used. The input is unpacked using
shift and mask operations accordingly as shown in Listing 4.2. Using the PSHUFB
instruction, the scalar multiplication needs 7 operations for any input value b with
the extra cost of accessing the lookup table. The lookup table consumes 256 bytes
of memory.
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INPUT GF(16) vector A
GF(16) element b

GLOBAL lookup table L
OUTPUT A * b

mask_low = 00001111|00001111|00001111|...
mask_high = 11110000|11110000|11110000|...

low = A AND mask_low
high = A AND mask_high
low = PSHUFB(L[b], low)
high = high >> 4
high = PSHUFB(L[b], high)
high = high << 4
ret = low OR high

RETURN ret

Listing 4.2: Pseudocode for scalar multiplication using PSHUFB.

4.5.3 Exploiting the structure of the Macaulay matrix

Recall that in XL a system A of m quadratic equations in n variables over a
field Fq is linearized by multiplying the equations by each of the T = |T (D−2)|
monomials with degree smaller than or equal to D−2. The resulting system R(D)

is treated as a linear system using the monomials as independent variables. This
linear system is represented by a sparse matrix that consists of T row blocks of m
rows where each row in a row block is associated with one row in the underlying
system A. The entries in these blocks have the same value as the entries in A and
the column positions of the entries are all the same for any line in one row block.

The resulting matrix has the structure of a Macaulay matrix. Since the matrix
does not have a square structure as demanded by the Wiedemann algorithm, rows
are dropped randomly from the matrix until the resulting matrix has a square
shape. Let each equation in A have w coefficients. Therefore each row in the
Macaulay matrix has a weight of at most w.

The Macaulay matrix can be stored in a general sparse-matrix format in mem-
ory. Usually for each row in a sparse matrix the non-zero entries are stored along-
side with their column position. In a field Fq a Macaulay matrix with a row
weight of at most w has about w q−1

q non-zero entries per row. For a Macaulay
matrix of N rows such a format would need at least N · w q−1

q · (bvalue + bindex)
bits, bvalue and bindex denoting the number of bits necessary to store the actual
value and the column index respectively.

Nevertheless, in a Macaulay matrix all entries are picked from the same un-
derlying quadratic system. Furthermore, the column indices in each row repeat
for the up to m consecutive rows spanning over one row block.
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Figure 4.2: Memory demand of XL for several system sizes using F16 in
standard and compact representation.

Therefore, it is possible to save memory by storing the values only once as a
dense matrix according to the underlying quadratic system. This needsm·w·bvalue
bits of memory. Furthermore, for each row block the column positions of the
entries need to be stored. This takes T ·w · bindex bits. Finally, it must be stored
to which row of the quadratic system each row in the square Macaulay matrix
is referring to—since a bunch of rows has been dropped to get a square matrix.
Therefore, an index to each row of the quadratic system is stored for each row of
the Macaulay matrix. This takes N · bsys−index bits of memory.

All in all, the memory demand of the sparse Macaulay matrix can be com-
pressed to m · w · bvalue + T · w · bindex + N · bsys−index bits which reduces the
memory demand compared to a sparse matrix storage format significantly. The
disadvantage of this storage format is that entries of the underlying quadratic
system A that are known to be zero cannot be skipped as it would be possible
when using a standard sparse-matrix format. This may give some computational
overhead during the matrix operations. However, this makes it possible to assume
that the Macaulay matrix has the fixed row weight w for each row regardless of
the actual values of the coefficients in A for the reminder of this chapter.

Figure 4.2 shows a graph of the memory demand for several systems with m
equations and n = m − 2 variables over F16. Given a certain memory size, e.g.,
16 GB, systems of about two more equations can be computed in RAM by using
the compact storage format.

Note that the column positions can also be recomputed dynamically for each
row block instead of storing them explicitly. However, recomputation increases
the computational cost significantly while only a relatively small amount of mem-
ory is necessary to store precomputed column positions. As long as the target
architecture offers a sufficient amount of memory, it is more efficient to store the
values instead of recomputing them on demand.
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INPUT: macaulay_matrix<N, N> B;
sparse_matrix<N, n> z;

matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + O(1)];
sparse_matrix<m, N, weight> x;

x.rand();
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + O(1); i++)
{

t_new = B * t_old;
a[i] = x * t_new;
swap(t_old, t_new);

}

RETURN a

Listing 4.3: Top-level iteration loop for BW1.

4.5.4 Macaulay matrix multiplication in XL

Recall that in the XL algorithm, stage BW1 of the block Wiedemann algorithm
is an iterative computation of

a(i) = (xT · (B ·Biz))T , 0 ≤ i ≤ N

m
+
N

n
+O(1),

and stage BW3 iteratively computes

W (j) = z · (f [j])T +B ·W (j−1),

where B is a Macaulay matrix, x and z are sparse matrices, and a(i), f [k] are
dense matrices (see Section 4.2).

Listings 4.3 and 4.4 show pseudo-code for the iteration loops. The most ex-
pensive part in the computation of stages BW1 and BW3 of XL is a repetitive
multiplication of the shape

tnew = B · told,

where tnew, told ∈ KN×n are dense matrices and B ∈ KN×N is a sparse Macaulay
matrix of row weight w.

Due to the row-block structure of the Macaulay matrix, there is a guaranteed
number of entries per row (i.e. the row weight w) but a varying number of entires
per column, ranging from just a few to more than 2w. Therefore the multiplication
is computed in row order in a big loop over all row indices.

For F16 the field size is significantly smaller than the row weight. Therefore,
the number of actual multiplications for a row r can be reduced by summing
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INPUT: macaulay_matrix<N, N> B;
sparse_matrix<N, n> z;
matrix_polynomial f;

matrix<N, n_sol> t_new, t_old;
matrix<N, n_sol> sol;

t_old = z * f[0].transpose();
for (unsigned k = 1; k <= f.deg; k++)
{

t_new = B * t_old;
t_new += z * f[k].transpose();
[...] // check columns of t_new for solution

// and cpoy found solutions to sol
swap(t_new, t_old);

}

RETURN sol

Listing 4.4: Top-level iteration loop for BW3.

up all row-vectors of told which are to be multiplied by the same field element
and performing the multiplication on all of them together. A temporary buffer
bi, i ∈ F16 of vectors of length n is used to collect the sum of row vectors that
ought to be multiplied by i. For all entries Br,c row c of told is added to bBr,c .
Finally b is reduced by computing

∑
i · bi, i 6= 0, i ∈ F16, which gives the result

for row r of the matrix tnew.

With the strategy explained so far, computing the result for one row of B takes
w+14 additions and 14 scalar multiplications (there is no need for the multiplica-
tion of 0 and 1, see [Sch11b, Statement 8], and for the addition of 0, see [Pet11b,
Statement 10]). This can be further reduced by decomposing each scalar factor
into the components of the polynomial that represents the field element. Summing
up the entries in bi according to the non-zero coefficients of i’s polynomial results
in 4 buckets which need to be multiplied by 1, x, x2, and x3 (multiplying by 1
can be omitted once more). This reduces 14 scalar multiplications from before to
only 3 multiplications at the cost of 22 more additions. All in all the computation
on one row of B (row weight w) on Fpn costs w+ 2(pn−n−1) + (n−1) additions
and n−1 scalar multiplications (by x, x2, . . . , xn−1). For F16 this results in w+25
additions and 3 multiplications per row.

In general multiplications are more expensive on architectures which do not
support the PSHUFB-instruction than on those which do. Observe that in this case
the non-PSHUFB multiplications are about as cheap (rather slightly cheaper) since
the coefficients already have been decomposed into the polynomial components
which gives low-cost SIMD multiplication code in either case.
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4.5.5 Parallel Macaulay matrix multiplication in XL

The parallelization of the Macaulay matrix multiplication of stages BW1 and BW3
is implemented in two ways: On multi-core architectures OpenMP is used to keep
all cores busy; on cluster architectures MPI is used to communicate between the
cluster nodes. Both approaches can be combined for clusters of multi-core nodes.

The efficiency of a parallelization of the Macaulay matrix multiplication de-
pends on two factors: The workload must be balanced over all computing units
(cores and/or nodes respectively) to fully exploit all available processor cores and
the communication overhead must be small.

The strategy of the workload distribution is similar for both OpenMP and
MPI. Figure 4.3 shows an example of a Macaulay matrix. Recall that each
row has the same number of entries from the original quadratic system. Due
to the structure of the matrix and the low row weight a splitting into column
blocks would reduce load balancing and performance drastically. Therefore the
workload is distributed by assigning blocks of rows of the Macaulay matrix to the
computing units.
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If the matrix is split into blocks of equal size, every unit has to compute
the same number of multiplications. Nevertheless, due to the structure of the
Macaulay matrix the runtime of the computing units may vary slightly: in the
bottom of the Macaulay matrix it is more likely that neighbouring row blocks
have non-zero entries in the same column. Therefore it is more likely to find
the corresponding row of told in the caches and the computations can be finished
faster than in the top of the Macaulay matrix. This imbalance may be addressed
by dynamically assigning row ranges depending on the actual computing time of
each block.

Parallelization for shared-memory systems: OpenMP

OpenMP offers a straightforward way to parallelize data-independent loops by
adding an OpenMP compiler directive in front of a loop. This makes it possible
to easily assign blocks of rows of the Macaulay matrix to the processor cores: The
outer loop which is iterating over the rows of the Macaulay matrix is parallelized
using the directive “#pragma omp parallel for”. This automatically assigns a
subset of rows to each OpenMP thread.

It is not easy to overcome the above mentioned workload imbalance induced
by caching effects since OpenMP does not allow row ranges to be split into a fixed
number of blocks of different sizes. The scheduling directive “schedule(guided)”
gives a fair workload distribution; however, each processor core obtains sev-
eral row ranges which are not spanning over consecutive rows. The outcome
of this is a loss in cache locality. Thus the workload is fairly distributed but
full performance is not achieved due to an increased number of cache misses.
In fact, using “schedule(guided)” does not result in better performance than
“schedule(static)”. To achieve best performance the row ranges would need
to be distributed according to the runtime of earlier iterations; however, it is not
possible to express this with OpenMP in a straightforward way. Experiments
showed that this results in a loss in performance of up to 5%.

Running one thread per virtual core on SMT architectures might increase the
ALU exploitation but puts a higher pressure on the processor caches. Whether
the higher efficiency outweighs the higher pressure on the caches needs to be tried
out by experiments on each computer architecture for each problem size. Running
two threads per physical core, i.e. one thread per virtual core, on an Intel Nehalem
CPU increased performance by about 10% for medium sized systems. However,
this advantage decreases for larger systems due to the higher cache pressure.

An OpenMP parallelization on UMA systems encounters no additional com-
munication cost although the pressure on shared caches may be increased. On
NUMA systems data must be distributed over the NUMA nodes in a way that
takes the higher cost of remote memory access into account. Each row of the tar-
get matrix tnew is touched only once while the rows in the source matrix told may
be touched several times. Therefore on NUMA systems the rows of told and tnew
are placed on the NUMA node which accesses them first during the computation.
This gives reasonable memory locality and also distributes memory accesses fairly
between the memory controllers.
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Parallelization for cluster systems: MPI and Infiniband verbs

On a cluster system, the workload is distributed similar to OpenMP by splitting
the Macaulay matrix into blocks of rows. The computation on one row block of
the Macaulay matrix depends on many rows of matrix told. A straightforward
approach is to make the full matrix told available on all cluster nodes. This can
be achieved by a blocking all-to-all communication step after each iteration step
of stages BW1 and BW3.

If B were a dense matrix, such communication would take only a small portion
of the overall runtime. But since B is a sparse Macaulay matrix which has a
very low row weight, the computation time for one single row of B takes only
a small amount of time. In fact this time is in the order of magnitude of the
time that is necessary to send one row of tnew to all other nodes during the
communication phase. Therefore this simple workload-distribution pattern gives
a large communication overhead.

This overhead is hidden when communication is performed in parallel to com-
putation. Today’s high-performance network interconnects are able to transfer
data via direct memory access (DMA) without interaction with the CPU. The
computation of tnew can be split into several parts; during computation on one
part, previously computed results are distributed to the other nodes and therefore
are available at the next iteration step. Under the condition that computation
takes more time than communication, the communication overhead can almost
entirely be hidden. Otherwise speedup and therefore efficiency of cluster paral-
lelization is bound by communication cost.

Apart from hiding the communication overhead it is also possible to totally
avoid all communication by splitting tnew into independent column blocks. There-
fore three communication strategies have been implemented which either avoid
all communication during stages BW1 and BW3 or perform computation and
communication in parallel. All three approaches have certain advantages and
disadvantages which make them suitable for different scenarios. The following
paragraphs explain the approaches in detail:

a) Operating on one shared column block of told and tnew:
For this approach the Macaulay matrix is split into blocks of rows in the
same way as for the OpenMP parallelization. Each row of tnew is only
touched once per iteration. Therefore each row can be sent to the other
cluster nodes immediately after the computation on it has finished.
However, sending many small data packets has a higher overhead than send-
ing few big packets. Therefore, the results of several consecutive rows are
computed and sent together in an all-to-all communication: First the result
of k rows is computed. Then a non-blocking communication for these k rows
is initiated. While data is transferred, the next k rows are computed. At
the end of each iteration step the nodes have to wait for the transfer of the
last k rows to be finished; the last communication step is blocking.
Finding the ideal number of rows in one packet for best performance poses a
dilemma: On the one hand if k is too small, the communication overhead is
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increased since many communication phases need to be performed. On the
other hand since the last communication step is blocking, large packages
result in a long waiting time at the end of each iteration. Finding the
best choice of the package size can be achieved by benchmarking the target
hardware with the actual program code.

b) Operating on two shared column blocks of told and tnew:
One can avoid both small packet size and blocking communication steps
by splitting the matrices told and tnew into two column blocks told,0 and
told,1 as well as tnew,0 and tnew,1. The workload is distributed over the
nodes row-wise as before. First each node computes the results of its row
range for column block tnew,0 using rows from block told,0. Then a non-
blocking all-to-all communication is initiated which distributes the results
of block tnew,0 over all nodes. While the communication is going on, the
nodes compute the results of block tnew,1 using data from block told,1. After
computation on tnew,1 is finished, the nodes wait until the data transfer of
block tnew,0 has been accomplished. Ideally communication of block tnew,0
is finished earlier than the computation of block tnew,1 so that the results of
block tnew,1 can be distributed without waiting time while the computation
on block tnew,0 goes on with the next iteration step.
One disadvantage of this approach is that the entries of the Macaulay matrix
need to be loaded twice per iteration, once for each block. This gives a
higher memory contention and more cache misses than a single column
block version. However, these memory accesses are sequential. Therefore it
is likely that the access pattern can be detected by the memory interface
and that the data is prefetched into the caches.
Furthermore the width of the matrices told and tnew has an impact on the
performance of the whole block Wiedemann algorithm. For BW1 and BW3
there is no big impact on the number of field-element multiplications which
need to be performed since the number of iterations is decreased while the
block width is increased; but altering the block size has an effect on memory
efficiency due to cache effects. For the Berlekamp–Massey algorithm in step
BW2 the width directly influences the number of multiplications, increasing
the block width also increases the computation time.
Therefore computing on two column blocks of told and tnew requires to
either compute on a smaller block size (since told and tnew are split) or to
increase the total matrix width; a combination of both is possible as well.
Reducing the block size might impact the efficiency due to memory effects;
enlarging the total matrix width increases the runtime of the Berlekamp–
Massey algorithm. The best choice for the block size and therefore the
matrix width must be determined by benchmarking.

c) Operating on independent column blocks of told and tnew:
Any communication during stages BW1 and BW3 can be avoided by split-
ting the matrices told and tnew into independent column blocks for each
cluster node. The nodes compute over the whole Macaulay matrix B on a
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column stripe of told and tnew. All computation can be accomplished locally;
the results are collected at the end of the computation of these stages.
Although this is the most efficient parallelization approach when looking at
communication cost, the per-node efficiency drops drastically with higher
node count: For a high node count, the impact of the width of the column
stripes of told and tnew becomes even stronger than for the previous ap-
proach. Therefore this approach only scales well for small clusters. For a
large number of nodes, the efficiency of the parallelization declines signifi-
cantly.
Another disadvantage of this approach is that all nodes must store the
whole Macaulay matrix in their memory. For large systems this is may not
be feasible.

All three parallelization approaches have advantages and disadvantages; the
ideal approach can only be found by testing each approach on the target hardware.
For small clusters approach c) might be the most efficient one although it loses
efficiency due to the effect of the width of told and tnew. The performance of
approach a) and approach b) depends heavily on the network configuration and
the ratio between computation time and communication time. For these two
approaches, also the structure of the Macaulay matrix accounts for a loss in
parallelization efficiency: As described earlier, even though the number of entries
is equal in each row of the Macaulay matrix, due to memory caching effects the
runtime might be different in different areas of the matrix. Runtime differences
between cluster nodes can be straightened out by assigning a different number of
rows to each cluster node.

The version 2.2 of the MPI standard offers non-blocking communication prim-
itives for point-to-point communication and gives easy access to the DMA capa-
bilities of high-performance interconnects. Unfortunately there is no support for
non-blocking collectives. Therefore a non-blocking MPI_Iallgather function was
implemented that uses several non-blocking MPI_Isend and MPI_Irecv instruc-
tions. To ensure progress of the non-blocking communication, the MPI function
MPI_Test must be called periodically for each transfer.

Approach b) is implemented in two ways: The first implementation uses MPI.
After computation on one column block has been finished, the results are sent
to all other nodes using the MPI_Iallgather function. During computation on
the next column block, the MPI_Test function is called periodically to guarantee
communication progress. Due to the structure of the Macaulay matrix, these
calls to the MPI API occur out of sync between the nodes which might result in
a performance penalty.

However, looking at the structure of the Macaulay matrix (an example is shown
in Figure 4.3) one can observe that this communication scheme performs much
more communication than necessary. For example on a cluster of four computing
nodes, node 0 computes the top quarter of the rows of matrix tnew,0 and tnew,1.
Node 1 computes the second quarter, node 2 the third quarter, and node 3 the
bottom quarter. Node 3 does not require any row that has been computed by
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node 0 since the Macaulay matrix does not have entries in the first quarter of the
columns for these rows. The obvious solution is that a node i sends only these
rows to a node j that are actually required by node j in the next iteration step.
Depending on the system size and the cluster size, this may require to send many
separate data blocks to some nodes. This increases the communication overhead
and requires to call MPI_Test even more often.

Therefore, to reduce the communication overhead and communication time,
the second implementation of approach b) circumvents the MPI API and pro-
grams the network hardware directly. This implementation uses an InfiniBand
network; the same approach can be used for other high-performance networks.
The InfiniBand hardware is accessed using the InfiniBand verbs API. Program-
ming the InfiniBand cards directly has several benefits: All data structures that
are required for communication can be prepared offline; initiating communication
requires only one call to the InfiniBand API. The hardware is able to perform
all operations for sending and receiving data autonomously after this API call;
there is no need for calling further functions to ensure communication progress as
it is necessary when using MPI. Finally, complex communication patterns using
scatter-gather lists for incoming and outgoing data do not have a large overhead.
This implementation allows to send only such rows to the other nodes that are
actually required for computation with a small communication overhead. This
reduces communication to the smallest amount possible for the cost of only a
negligibly small initialization overhead. One disadvantage of this approach is an
unbalanced communication demand of the nodes. Another disadvantage is that
the InfiniBand verbs API is much more difficult to handle than MPI.

Figure 4.4 shows the communication demand of each node for both implemen-
tations. The figure shows the values for a quadratic system of 18 equations and
16 variables; however, the values are qualitatively similar for different parameter
choices. While for the MPI implementation the number of rows that are sent is the
same for all nodes, it varies heavily for the InfiniBand verbs API implementation.
The demand on communication is increased for large clusters for the MPI case; for
the InfiniBand case, communication demand has a peak for 4 nodes and declines
afterwards. However, the scalability of the InfiniBand approach depends on the
ratio between computation time and communication time. Perfect scalability is
only achieved as long as computation time is longer than communication time.
While computation time is roughly halved when doubling the number of nodes,
communication time decreases in a smaller slope. Therefore, at some point for a
certain number of nodes, computation time is catching up with communication
time. For moderate system sizes on a cluster with a fast InfiniBand network, the
MPI implementation scales almost perfectly for up to four nodes while the In-
finiBand verbs API implementation scales almost perfectly for up to eight nodes
(details are discussed in the following Section 4.6). A better scalability for large
problem size is not likely: On the one hand, larger systems have a higher row
weight and therefore require more computation time per row. But on the other
hand, a higher row weight also increases the amount of rows that need to be
communicated.
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Figure 4.4: Ratio between the number of rows that each node sends in one
iteration step and the total number of rows N . For MPI, the number of rows
that are sent is equal for all cluster nodes. For InfiniBand, the number of rows
varies; the maximum, minimum and average is shown.

Approach c) obviously does not profit from programming the InfiniBand cards
directly—since it does not require any communication. Currently, there is only
an MPI version of approach a). This approach would profit from a more efficient
communication strategy; providing such an implementation is yet an open task.

All parallelization approaches stated above are based on the memory-efficient
Macaulay matrix representation described in Section 4.5.3. Alternatively the com-
pact data format can be dropped in favor of a standard sparse-matrix data format.
This gives the opportunity to optimize the structure of the Macaulay matrix for
cluster computation. For example, the Macaulay matrix could be partitioned
using the Mondriaan partitioner of Bisseling, Fagginger Auer, Yzelman, and Vas-
tenhouw available at [BFAY+10]. Due to the low row-density, a repartitioning of
the Macaulay matrix may reduce the communication demand and provide a better
communication scheme. On the other hand, the Mondriaan partitioner performs
well for random sparse matrices, but the Macaulay matrix is highly structured.
Therefore, it is not obvious if the communication demand can be reduced by such
an approach. First experiments with the Mondriaan partitioner did not yet yield
lower communication cost. Another approach for reducing communication cost
is to modify the Macaulay matrix systematically. Currently the terms of the
linearized system are listed in graded reverse lexicographical (grevlex) monomial
order. For XL, the choice of the monomial order is totally free. Other monomial
orders may give a lower communication cost and improve caching effects. Analyz-
ing the impact of the Mondriaan partitioner, choosing a different monomial order,
and evaluating the trade-off between communication cost, memory demand, and
computational efficiency is a major topic of future research.
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NUMA Cluster
CPU

Name AMD Opteron 6172 Intel Xeon E5620
Microarchitecture Magny–Cours Nehalem
Support for PSHUFB 7 3
Frequency 2100 MHz 2400 MHz
Memory Bandwidth per socket 2 × 25.6 GB/s 25.6 GB/s
Number of CPUs per socket 2 1
Number of cores per socket 12 (2 x 6) 4
Level 1 data cache size 12 × 64 KB 4 × 32 KB
Level 2 data cache size 12 × 512 KB 4 × 256 KB
Level 3 data cache size 2 × 6 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Number of cluster nodes — 8
Total number of cores 48 64
Network interconnect — InfiniBand 40 GB/s

Memory
Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 288 GB

Table 4.2: Computer architectures used for the experiments.

4.6 Experimental results
This section gives an overview of the performance and the scalability of the XL
implementation described in the previous sections. Experiments have been carried
out on two computer systems: on a 48-core NUMA system and on an eight
node InfiniBand cluster. Table 4.2 lists the key features of these systems. The
computers are located at the Institute for Information Technology of the Academia
Sinica in Taipei, Taiwan.

To reduce the parameter space of the experiments, m was restricted to the
smallest value allowed depending on n, thus m = n. On the one hand, the choice
of m has an impact on the number of iterations of BW1: A larger m reduces
the number of iterations. On the other hand, a larger m increases the amount of
computations and thus the runtime of BW2. Therefore, fixing m to m = n does
not result in the shortest overall runtime of all three steps of the block Wiedemann
algorithm.

Three different experiments were executed: First a quadratic system of a
moderate size with 16 equations and 14 variables was used to show the impact of
block sizes n andm = n on the blockWiedemann algorithm. The same system was
then used to measure the performance of the three parallelization strategies for
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Figure 4.5: Runtime of XL 16-14 on one cluster node with two CPUs (8
cores in total) with different block sizes.

the large matrix multiplication in the steps BW1 and BW3. The third experiment
used a second quadratic system with 18 equations and 16 variables to measure the
performance of the parallelization on the cluster system with a varying number of
cluster nodes and on the NUMA system with a varying number of NUMA nodes.
The following paragraphs give the details of these experiments.

4.6.1 Impact of the block size
The impact of the block size of the block Wiedemann algorithm on the perfor-
mance of the implementation was measured using a quadratic system with 16
equations and 14 variables over F16. In this case, the degree D0 for the lin-
earization is 9. The input for the algorithm is a square Macaulay matrix B with
N = 817190 rows (and columns) and row weight wB = 120.

Given the fixed size of the Macaulay matrix and m = n, the number of field
operations for BW1 and BW2 is roughly the same for different choices of the block
size n since the number of iterations is proportional to 1/n and the number of
field operations per iteration is roughly proportional to n. However, the efficiency
of the computation varies depending on n. The following paragraphs investigate
the impact of the choice of n on each part of the algorithm.

Figure 4.5 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024.
During the j-th iteration step of BW1 and BW3, the Macaulay matrix is multi-
plied with a matrix t(j−1) ∈ FN×n16 . For F16 each row of t(j−1) requires n/2 bytes
of memory. In the cases m = n = 32 and m = n = 64 each row thus occupies
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Figure 4.6: Memory consumption of XL 16-14 on a single cluster node with
36 GB RAM.

less than one cache line of 64 bytes. This explains why the best performance in
BW1 and BW3 is achieved for larger values of n. The runtime of BW1 and BW3
is minimal for block sizes m = n = 256. In this case one row of t(j−1) occu-
pies two cache lines. The reason why this case gives a better performance than
m = n = 128 might be that the memory controller is able to prefetch the second
cache line. For larger values of m and n the performance declines probably due
to cache saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s
versions of the Berlekamp–Massey algorithm, the runtime of BW2 should be pro-
portional to m and n. However, this turns out to be the case only for moderate
sizes of m and n; note the different scale of the graph in Figure 4.5 for a runtime
of more than 2000 seconds. For m = n = 256 the runtime of Coppersmith’s
version of BW2 is already larger than that of BW1 and BW3, for m = n = 512
and m = m = 1024 both versions of BW2 dominate the total runtime of the
computation. Thomé’s version is faster than Coppersmith’s version for small and
moderate block sizes. However, by doubling the block size, the memory demand
of BW2 roughly doubles as well; Figure 4.6 shows the memory demand of both
variants for this experiment. Due to the memory–time trade-off of Thomé’s BW2,
the memory demand exceeds the available RAM for a block size of m = n = 512
and more. Therefore memory pages are swapped out of RAM onto hard disk
which makes the runtime of Thomé’s BW2 longer than that of Coppersmith’s
version of BW2.
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Figure 4.7: Runtime of stage BW1 for XL 16-14 on 1, 2, 4, and 8 cluster
nodes using 8 cores per node.

4.6.2 Performance of the Macaulay matrix multiplication

This experiment investigates which of the approaches given in Section 4.5.5 for
cluster parallelization of the Macaulay matrix multiplication gives the best per-
formance. Given the runtime T1 for one computing node and Tp for p computing
nodes, the parallel efficiency Ep on the p nodes is computed as Ep = T1/pTp.
Figure 4.7 shows the runtime of BW1 for each of the approaches on one to eight
cluster nodes, Figure 4.8 shows parallel speedup and parallel efficiency. The same
system size was used as in the previous experiment. Since this experiment is only
concerned about the parallelization of stage BW1 and not about the performance
of stage BW2, a block size of m = n = 256 was used for all these experiments.
Similar results apply for stage BW3.

Recall that in each iteration step j, the first approach distributes the workload
for the Macaulay matrix multiplication row-wise over the cluster nodes and sends
the results of the multiplication while computation continues. This approach is
called “1 Block” in Figure 4.7 and 4.8. The second approach splits the workload
similarly to the first approach but also splits t(j−1) and t(j) into two column blocks.
The data of one column block is sent in the background of the computation of the
other column block. For n = 256, each of the two column blocks has a width of
128 elements. This approach has two implementations. The first implementation
uses MPI for communication; it is called “2 Blocks MPI” in the figures. The second
implementation uses the InfiniBand verbs API; it is called “2 Blocks IB” in the
figures. The last approach splits the matrices t(j−1) and t(j) into as many column
blocks as there are cluster nodes; each node computes independently on its own
column block. The results are collected when the computations are finished. In
this case the width of the column blocks is only 128 for 2 cluster nodes, 64 for 4
cluster nodes, and 32 for 8 cluster nodes due to the fixed n = 256. This approach
is called “Ind. Blocks” in the figures.
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Figure 4.8: Speedup and efficiency of stage BW1 for XL 16-14 on 1, 2, 4,
and 8 cluster nodes using 8 cores per node.

Since the approaches “2 Blocks MPI” and “2 Blocks IB” split the data into two
column blocks independently of the number of computing nodes, they have some
overhead when computing on a single cluster node. Therefore, for 1 cluster node
the runtime is longer than for the other two approaches.

The approach “1 Block” does not scale very well for more than two nodes
and thus is not appropriate for this cluster. The approach “2 Blocks MPI” scales
almost perfectly for up to 4 nodes but takes about as long on 8 nodes as on 4
nodes. This is due to the fact that for 8 nodes communication takes twice as
much time as computation. The approach “2 Blocks IB” scales almost perfectly
for up to 8 nodes. For 8 nodes, communication time is about two thirds of the
computation time and thus can entirely be hidden. Doubling the number of nodes
to 16 decreases communication time by a factor of about 0.7 (see Figure 4.4) while
computation time is halved. Therefore, this approach may scale very well for up to
16 nodes or even further. However, a larger cluster with a high-speed InfiniBand
network is required to proof this claim. The approach “Ind. Blocks” scales well
for up to 8 nodes. It looses performance due to the reduction of the block size
per node. In case the per-node block size is kept constant by increasing the total
block size n, this approach scales perfectly as well even for larger clusters—since
no communication is required during the computation. However, increasing the
total block size also increases runtime and memory demand of BW2 as described
earlier.

The approach “2 blocks IB” was used for the scalability tests that are described
in the next paragraphs since it has a good performance for up to 8 cluster nodes
and uses a fixed number of column blocks independent of the cluster size. Fur-
thermore it uses a larger column-block size for a fixed total block size n than the
third approach with several independent column blocks.
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Figure 4.9: Runtime of XL 18-16 with Thomé’s variant of BW2 on an 8 node
cluster with 8 cores per node and on an 8 node NUMA systems with 6 cores
per node.

4.6.3 Scalability experiments

The scalability was measured using a quadratic system with 18 equations and 16
variables over F16. The operational degree D0 for this system is 10. The square
Macaulay matrix B has a size of N = 5 311 735 rows and columns; the row weight
is wB = 153.

For this experiment, the implementation of the block Wiedemann algorithm
ran on 1, 2, 4, and 8 nodes of the cluster and on 1 to 8 CPUs of the NUMA system.
Figure 4.9 gives an overview of the runtime of each step of the algorithm. Since
this experiment is not concerned about peak performance but about scalability,
a block size of m = n = 256 is used. The runtime on one cluster node is shorter
than on one NUMA node since each cluster node has more computing power than
one NUMA node (see Table 4.2). At a first glance the implementation scales
nicely: doubling of the core count roughly halves the runtime.

Figures 4.10 and 4.11 give a closer look on the parallel speedup and the paral-
lel efficiency of BW1 and BW2; the performance of BW3 behaves very similarly
to BW1 and thus is not depicted in detail. These figures show that BW1 and
Coppersmith’s BW2 indeed have a nice speedup and an efficiency of at least 90%
on 2, 4, and 8 cluster nodes. The efficiency of Thomé’s BW2 is only around 75%
on 4 nodes and drops to under 50% on 8 nodes. In particular the polynomial mul-
tiplications require a more efficient parallelization approach. However, Thomé’s
BW2 takes only a small part of the total runtime for this system size; for larger
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Figure 4.10: Speedup and efficiency of BW1 and BW2 on the cluster system.
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Figure 4.11: Speedup and efficiency of BW1 and BW2 on the NUMA system.
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systems it is even smaller due its smaller asymptotic time complexity compared
to steps BW1 and BW3. Thus, a lower scalability than BW1 and BW3 can be
tolerated.

On the NUMA system, BW1 achieves an efficiency of over 75% on up to 8
NUMA nodes. The workload was distributed such that each CPU socket was
filled up with OpenMP threads as much as possible. Therefore in the case of
two NUMA nodes (12 threads) the implementation achieves a high efficiency of
over 90% since a memory controller on the same socket is used for remote memory
access and the remote memory access has only moderate cost. For three and more
NUMA nodes, the efficiency declines to around 80% due to the higher cost of
remote memory access between different sockets. Also on the NUMA system the
parallelization of Thomé’s BW2 achieves only a moderate efficiency of around 55%
for 8 NUMA nodes. The parallelization scheme used for OpenMP does not scale
well for a large number of threads. The parallelization of Coppersmith’s version
of BW2 scales almost perfectly on the NUMA system. The experiment with this
version of BW2 is performed using hybrid parallelization by running one MPI
process per NUMA node and one OpenMP thread per core. The blocking MPI
communication happens that rarely that it does not have much impact on the
efficiency of up to 8 NUMA nodes.



5
Parallel implementation of

Wagner’s generalized birthday attack

Wagner’s generalized birthday attack computes collisions for a cryptographic hash
function. It is a generic attack that can be applied to a broad range of hash
functions. Wagner’s generalized birthday attack is relatively cheap in terms of
computation but expensive in terms of memory demand. This puts a high pressure
on capacity and bandwidth of mass storage.

This chapter describes a parallelized implementation of Wagner’s generalized
birthday attack that computes collisions for the compression function of the hash
function FSB48. This hash function is a toy version of the Fast Syndrome-Based
hash function (FSB) proposed by Augot, Finiasz and Sendrier in [AFG+08b] for
the NIST SHA-3 competition. A straightforward implementation of Wagner’s
generalized birthday attack [Wag02a] would need 20 TB of storage. However,
the attack was successfully performed on a small scale workstation-cluster of 8
nodes with a total memory of 64 GB RAM and 5.5 TB hard-disk storage. This
chapter will give details about how to deal with this restricted storage capacity
by applying and generalizing ideas described by Bernstein in [Ber07a].

This chapter is based on joint work with Bernstein, Lange, Peters, and Schwabe
published in [BLN+09] and as part of the PhD theses of Peters [Pet11a] and
Schwabe [Sch11a]. The content of this chapter differs from [BLN+09] only slightly
in notation, structure and phrasing. The source code of the attack is publicly
available and can be obtained from [NPS09].

Section 5.1 gives a short introduction to Wagner’s generalized birthday attack
and Bernstein’s adaptation of this attack to storage-restricted environments. Sec-
tion 5.2 describes the FSB hash function to the extent necessary to understand
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the attack methodology. Section 5.3 explains what strategy is used for the attack
to make it fit on the restricted hard-disk space of the available computer cluster.
Section 5.4 details the measures that have been applied to make the attack run as
efficiently as possible. The overall cost of the attack is evaluated in Section 5.5 and
cost estimates for a similar attack against full-size FSB are given in Section 5.6.

5.1 Wagner’s generalized birthday attack

The generalized birthday problem, given 2i−1 lists containing B-bit strings, is to
find 2i−1 elements—exactly one in each list—whose xor equals 0.

The special case i = 2 is the classic birthday problem: given two lists contain-
ing B-bit strings, find two elements—exactly one in each list—whose xor equals
0. In other words, find an element of the first list that is equal to an element of
the second list.

This section describes a solution to the generalized birthday problem due to
Wagner [Wag02a]. Wagner also considered generalizations to operations other
than xor, and to the case of k lists when k is not a power of 2.

5.1.1 Wagner’s tree algorithm

Wagner’s algorithm builds a binary tree of lists starting from the input lists.
Let Lk,j denote list j on level k of this tree. Therefore the input lists are
L0,0, L0,1, . . . , L0,2i−1−1 (see Figure 5.1). The speed and success probability of
the algorithm are analyzed under the assumption that each list contains 2B/i

elements chosen uniformly at random. The algorithm works as follows:
On level 0 take the first two lists L0,0 and L0,1 and compare their list elements

on their least significant B/i bits. Given that each list contains about 2B/i ele-
ments, 2B/i pairs of elements are expected to be equal on those least significant
B/i bits. Compute the xor of both elements on all their B bits and put the xor
into a new list L1,0. Similarly compare the other lists—always two at a time—and
look for elements matching on their least significant B/i bits which are xored and
put into new lists. This process of merging yields 2i−2 lists containing each about
2B/i elements which are zero on their least significant B/i bits. This completes
level 0.

On level 1 take the first two lists L1,0 and L1,1 which are the results of merging
the lists L0,0 and L0,1 as well as L0,2 and L0,3 from level 0. Compare the elements
of L1,0 and L1,1 on their least significant 2B/i bits. As a result of the xoring in
the previous level, the last B/i bits are already known to be 0, so it is sufficient to
compare the next B/i bits. Since each list on level 1 contains about 2B/i elements
again about 2B/i elements can be expected to match on B/i bits. Compute the
xor of each pair of matching elements and include it in a new list L2,0. Similarly
compare the remaining lists on level 1.

Continue in the same way until level i − 2. On each level j consider the
elements on their least significant (j + 1)B/i bits of which jB/i bits are known
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to be zero as a result of the previous merge. Computation on level i− 2 results in
two lists containing about 2B/i elements. The least significant (i− 2)B/i bits of
each element in both lists are zero. Comparing the elements of both lists on their
2B/i remaining bits gives one expected match, i.e., one xor equal to zero. Since
each element is the xor of elements from the previous steps this final xor is the
xor of 2i−1 elements from the original lists and thus a solution to the generalized
birthday problem.

5.1.2 Wagner in storage-restricted environments

A 2007 paper [Ber07a] by Bernstein includes two techniques to mount Wagner’s
attack on computers which do not have enough memory to hold all list entries.
Various special cases of the same techniques also appear in a 2005 paper [AFS05]
by Augot, Finiasz, and Sendrier and in a 2009 paper [MS09] by Minder and
Sinclair.

Clamping through precomputation. Suppose that there is space for lists of
size only 2b with b < B/i. Bernstein suggests to generate 2b(B−ib) entries per list
and only consider those of which the least significant B − ib bits are zero.

This idea is generalized as follows: The least significant B − ib bits can have
an arbitrary value; this clamping value does not even have to be the same on all
lists as long as the sum of all clamping values is zero. This will be important if an
attack does not produce a collision. In this case the attack can simply be started
again with different clamping values.

Clamping through precomputation may be limited by the maximal number
of entries which can be generated per list. Furthermore, halving the available
storage space increases the time of the precomputation by a factor of 2i.

Note that clamping some bits through precomputation might be a good idea
even if enough memory is available as the amount of data can be reduced in later
steps. Therefore less data has to be moved and processed and thus it makes the
computation more efficient.

After the precomputation step Wagner’s tree algorithm is applied to lists con-
taining bit strings of length B′ where B′ equals B minus the number of clamped
bits. In the performance evaluation lists on level 0 will be considered only af-
ter clamping through precomputation. Therefore B instead of B′ is used for the
number of bits in these entries.

Repeating the attack. Another way to mount Wagner’s attack in memory-
restricted environments is to carry out the whole computation with smaller lists
leaving some high bits at the end “uncontrolled”. The lower success probability
can be handled by repeatedly running the attack with different clamping values.

In the context of clamping through precomputation in each repetition the
clamping values used during precomputation can be varied. If for some reason
it is not possible to clamp any bits through precomputation the same idea of
changing clamping values can be applied in an arbitrary merge step of the tree
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algorithm. Note that any solution to the generalized birthday problem can be
found by some choice of clamping values.

Expected number of runs. Wagner’s generalized birthday attack is a prob-
abilistic algorithm. Without clamping through precomputation it produces an
expected number of exactly one collision. However this does not mean that run-
ning the algorithm always gives a collision.

In general, the expected number of runs of Wagner’s attack is a function of
the number of remaining bits in the entries of the two input lists of the last merge
step and the number of elements in these lists.

Assume that b bits are clamped on each level and that lists have length 2b.
Then the probability to have at least one collision after running the attack once is

Psuccess = 1−
(

2B−(i−2)b − 1

2B−(i−2)b

)22b

,

and the expected number of runs E(R) is

E(R) =
1

Psuccess
. (5.1)

For larger values of B − ib the expected number of runs is about 2B−ib. The
total runtime tW of the attack can be modeled as being linear in the amount of
data on level 0, i.e.,

tW ∈ Θ
(
2i−12B−ib2b

)
. (5.2)

Here 2i−1 is the number of lists, 2B−ib is approximately the number of runs,
and 2b is the number of entries per list. Observe that this formula will usually
underestimate the actual runtime of the attack by assuming that all computations
on subsequent levels are together still linear in the time required for computations
on level 0.

Using Pollard iteration. If the number of uncontrolled bits is high because of
memory restrictions, it may be more efficient to use a variant of Wagner’s attack
that uses Pollard iteration [Knu97, Chapter 3, exercises 6 and 7].

Assume that L0 = L1, L2 = L3, etc., and that combinations x0 + x1 with
x0 = x1 are excluded. The output of the generalized birthday attack will then be
a collision between two distinct elements of L0 + L2 + · · · .

Alternatively the usual Wagner tree algorithm can be performed by starting
with only 2i−2 lists L0, L2, . . . and using a nonzero clamping constant to enforce
the condition that x0 6= x1. The number of clamped bits before the last merge step
is now (i− 3)b. The last merge step produces 22b possible values, the smallest of
which has an expected number of 2b leading zeros, leaving B−(i−1)b uncontrolled.

Think of this computation as a function mapping clamping constants to the
final B − (i− 1)b uncontrolled bits and apply Pollard iteration to find a collision
between the output of two such computations; combination then yields a collision
of 2i−1 vectors.
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As Pollard iteration has square-root running time, the expected number of
runs for this variant is 2B/2−(i−1)b/2, each taking time 2i−22b (see (5.2)), so the
expected running time is

tPW ∈ Θ
(

2i−2+B/2−(i−3)b/2
)
. (5.3)

The Pollard variant of the attack becomes more efficient than plain Wagner
with repeated runs if B > (i+ 2)b.

5.2 The FSB hash function
FSB was one of the 64 hash functions submitted to NIST’s SHA-3 competition,
and one of the 51 hash functions selected for the first round. However, FSB was
significantly slower than most submissions, and was not selected for the second
round.

This section briefly describes the construction of the FSB hash function. De-
tails which are necessary for implementing the function but do not influence the
attack are omitted. The second part of this section gives a rough description
of how to apply Wagner’s generalized birthday attack to find collisions of the
compression function of FSB.

5.2.1 Details of the FSB hash function

The Fast Syndrome Based hash function (FSB) was introduced by Augot, Finiasz
and Sendrier in 2003. See [AFS03], [AFS05], and [AFG+08b]. The security of
FSB’s compression function relies on the difficulty of the “Syndrome Decoding
Problem” from coding theory.

The FSB hash function processes a message in three steps: First the message is
converted by a so-called domain extender into suitable inputs for the compression
function which processes the inputs in the second step. In the third and final step
the Whirlpool hash function designed by Barreto and Rijmen [BR01] is applied to
the output of the compression function in order to produce the desired length of
output. Wagner’s generalized birthday attack addresses the compression function
of the second step. Therefore the domain extender, the conversion of the message
to inputs for the compression function, and the last step involving Whirlpool will
not be described.

The compression function. The main parameters of the compression function
are called n, r and w: Consider n strings of length r which are chosen uniformly at
random and can be written as an r×n binary matrix H. Note that the matrix H
can be seen as the parity check matrix of a binary linear code. The FSB proposal
[AFG+08b] specifies a particular structure of H for efficiency.

An n-bit string of weight w is called regular if there is exactly a single 1 in
each interval [(i− 1) nw , i

n
w − 1]1≤i≤w. Such an interval is called block. The input

to the compression function is a regular n-bit string of weight w.
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The compression function works as follows. The matrixH is split into w blocks
of n/w columns. Each non-zero entry of the input bit string indicates exactly one
column in each block. The output of the compression function is an r-bit string
which is produced by computing the xor of all the w columns of the matrix H
indicated by the input string.

Preimages and collisions. A preimage of an output of length r of one round of
the compression function is a regular n-bit string of weight w. A collision occurs
if there are 2w columns of H—exactly two in each block—which add up to zero.

Finding preimages or collisions means solving two problems coming from cod-
ing theory: finding a preimage means solving the Regular Syndrome Decod-
ing problem and finding collisions means solving the so-called 2-regular Null-
Syndrome Decoding problem. Both problems were defined and proven to be
NP-complete in [AFS05].

Parameters. Following the notation in [AFG+08b] the term FSBlength denotes
the version of FSB which produces a hash value of length length. Note that the
output of the compression function has r bits where r is considerably larger than
length.

For the SHA-3 competition NIST demanded hash lengths of 160, 224, 256,
384, and 512 bits, respectively. Therefore the SHA-3 proposal contains five ver-
sions of FSB: FSB160, FSB224, FSB256, FSB384, and FSB512. Table 5.1 gives the
parameters for these versions.

The proposal also contains FSB48, which is a reduced-size version of FSB called
“toy” version. FSB48 is the main attack target in this chapter. The binary matrix
H for FSB48 has dimension 192× 3 · 217; i.e., r equals 192 and n is 3 · 217. In each
round a message chunk is converted into a regular 3 · 217-bit string of Hamming
weight w = 24. The matrix H contains 24 blocks of length 214. Each 1 in the
regular bit string indicates exactly one column in a block of the matrix H. The
output of the compression function is the xor of those 24 columns.

A pseudo-random matrix. The attack against FSB48 uses a pseudo-random
matrix H which is constructed as described in [AFG+08b, Section 1.2.2]: H con-
sists of 2048 submatrices, each of dimension 192 × 192. For the first submatrix
consider a slightly larger matrix of dimension 197× 192. Its first column consists
of the first 197 digits of π where each digit is taken modulo 2. The remaining 191
columns of this submatrix are cyclic shifts of the first column. The matrix is then
truncated to its first 192 rows which form the first submatrix of H. For the second
submatrix consider digits 198 up to 394 of π. Again build a 197× 192 bit matrix
where the first column corresponds to the selected digits (each taken modulo 2)
and the remaining columns are cyclic shifts of the first column. Truncating to the
first 192 rows yields the second block matrix of H. The remaining submatrices
are constructed in the same way.

This is one possible choice for the matrix H; the matrix may be defined dif-
ferently. The attack described in this chapter does not make use of the structure
of this particular matrix. This construction is used in the implementation since
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it is also contained in the FSB reference implementation submitted to NIST by
the FSB designers. The reference implementation is available at [AFG+08a].

5.2.2 Attacking the compression function of FSB48

Coron and Joux pointed out in [CJ04] that Wagner’s generalized birthday attack
can be used to find preimages and collisions in the compression function of FSB.
The following paragraphs present a slightly streamlined version of the attack of
[CJ04] in the case of FSB48.

Determining the number of lists for a Wagner attack on FSB48. A col-
lision for FSB48 is given by 48 columns of the matrix H which add up to zero;
the collision has exactly two columns per block. Each block contains 214 columns
and each column is a 192-bit string.

The attack uses 16 lists to solve this particular 48-sum problem. Each list
entry will be the xor of three columns coming from one and a half blocks. This
ensures that there are no overlaps, i.e., more than two columns coming from the
same matrix block in the end. Applying Wagner’s attack in a straightforward
way means that each list has at least 2d192/5e entries. By clamping away 39 bits
in each step at least one collision is expected after one run of the tree algorithm.

Building lists. The 16 lists contain 192-bit strings each being the xor of three
distinct columns of the matrix H. Each triple of three columns from one and a
half blocks of H is selected in the following way:

List L0,0 contains the sums of columns i0, j0, k0, where columns i0 and j0 come
from the first block of 214 columns, and column k0 is picked from the following
block with the restriction that it is taken from the first half of it. Since there are
no overlapping elements about 227 sums of columns i0 and j0 are coming from
the first block. These two columns are added to all possible columns k0 coming
from the first 213 elements of the second block of the matrix H. In total there are
about 240 elements for L0,0.

The second list L0,1 contains sums of columns i1, j1, k1, where column i1 is
picked from the second half of the second block of H and j1 and k1 come from
the third block of 214 columns. This again yields about 240 elements. The lists
L0,2, L0,3,. . . , L0,15 are constructed in the same way.

By splitting every second block in half several solutions of the 48-xor problem
are neglected. For example, a solution involving two columns from the first half
of the second block cannot be found by this algorithm. However, the alternative
option of using fewer lists would require more storage and a longer precomputation
phase to build the lists. This justifies the loss of possible solutions.

The proposed scheme generates more than twice the number of entries for each
list than needed for a straightforward attack as explained in Section 5.1. About
240/4 elements are likely to be zero on their least significant two bits. Clamping
those two bits away should thus yield a list of 238 bit strings. Note that since the
two least significant bits of the list elements are known, they can be ignored and
the list elements can be regarded as 190-bit strings. Therefore a straightforward
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application of Wagner’s attack to 16 lists with about 2190/5 elements is expected
to yield a collision after completing the tree algorithm.

5.3 Attack strategy

The computation platform for this particular implementation of Wagner’s gener-
alized birthday attack on FSB is an eight-node cluster of conventional desktop
PCs. Each node has an Intel Core 2 Quad Q6600 CPU with a clock rate of
2.40 GHz and direct fully cached access to 8 GB of RAM. About 700 GB mass
storage are provided by a Western Digital SATA hard disk with some space re-
served for system and user data. This results in a total storage amount of less
than 8 · 700 GB = 5.5 TB for the full cluster. The nodes are connected via
switched Gigabit Ethernet.

This section describes how to fit the attack on this cluster. Key issues are
how to adapt the lists to the available storage and how to distribute data and
computation over the nodes. Similar considerations can be drawn for a different
target platform, in particular regarding number of computing nodes and available
memory amount.

5.3.1 How large is a list entry?

The number of bytes required to store one list entry depends on how the entry is
represented:

Value-only representation. The obvious way of representing a list entry is as a
192-bit string, the xor of columns of the matrix. Bits which are already known to
be zero of course do not have to be stored, so on each level of the tree the number
of bits per entry decreases by the number of bits clamped on the previous level.
Ultimately the actual value of the entry is not of interest—for a successful attack
it will be all-zero at the end—but the column positions in the matrix that lead
to this all-zero value. However, Section 5.3.3 will show that computations only
involving the value can be useful if the attack has to be run multiple times due
to storage restrictions.

Value-and-positions representation. If enough storage is available, positions
in the matrix can be stored alongside the value. Observe that unlike storage
requirements for values the number of bytes for positions increases with increasing
levels, and becomes dominant for higher levels.

Value-and-clipped-positions representation. Instead of storing full positions
alongside the value, storage can be saved by clipping the positions with loss of
information. Positions can be clipped by, e.g., storing the position modulo 256.
After the attack has successfully finished, the full position information can be
computed by checking which of the possible positions lead to the respective in-
termediate results on each level.
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Positions-only representation. If full positions are kept throughout the com-
putation, the values do not need to be stored at all. Every time a value is required,
it can be dynamically recomputed from the positions. In each level the size of
a single entry doubles (because the number of positions doubles). The expected
number of entries per list remains the same, but the number of lists halves. There-
fore the total amount of data is the same on each level when using positions-only
representation. As discussed in Section 5.2 there are 240 possibilities to choose
columns to produce entries of a list, so positions on level 0 can be encoded in 40
bits (5 bytes).

Observe that it is possible to switch between representations during compu-
tation if at some level another representation becomes more efficient: from value-
and-positions representation to positions-only representation and back, from one
of these two to value-and-clipped-positions representation, and from any other
representation to value-only representation.

5.3.2 What list size can be handled?

To estimate the storage requirements it is convenient to consider positions-only
representation because in this case the amount of required storage is constant
over all levels and this representation has the smallest memory consumption on
level 0.

As described in Section 5.2.2 the attack can start with 16 lists of size 238,
each containing bit strings of length r′ = 190. However, storing 16 lists with
238 entries, each entry encoded in 5 bytes requires 20 TB of storage space which
obviously does not fit the total amount of storage of 5.5 TB that is available on
the cluster.

There are 16 lists on the first level, each list entry needs a minimum of 5 bytes
for storage. Therefore at most 5.5 · 240/24/5 = 1.1 × 236 entries per list fit into
5.5 TB storage. Some of the disk space is used for the operating system and user
data. Therefore a straightforward implementation would use lists of size 236.

At most 240 entries can be generated per list so following [Ber07a] by clamping
4 bits during list generation, each of the 16 lists has 236 values. These values have
a length of 188 bits represented through 5 bytes holding the positions from the
matrix. Clamping 36 bits in each of the 3 steps leaves two lists of length 236 with
80 non-zero bits. According to (5.1) the attack would be expected to run 256.5
times until a collision is found. The only way of increasing the list size to 237

and thus reduce the number of runs is to use value-only representation on higher
levels.

5.3.3 The strategy

The main idea of the attack strategy is to distinguish between the task of finding
clamping constants that yield a final collision and the task of actually computing
the collision.
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Finding appropriate clamping constants. This task does not require storing
the positions, since it only determines whether a certain set of clamping constants
leads to a collision; it does not tell which matrix positions give this collision.
Whenever storing the value needs less space than storing positions, the entries
can be compressed by switching representation from positions to values. As a
side effect this speeds up the computations because less data has to be loaded
and stored.

Starting from lists L0,0, . . . , L0,7, each containing 237 entries first list L3,0 (see
Figure 5.1) is computed on 8 nodes. This list has entries with 78 remaining bits
each. Section 5.4 will describe how these entries are presorted into 512 buck-
ets according to 9 bits that therefore do not need to be stored. Another 3 bits
are determined by the node holding the data (also see Section 5.4) so only 66
bits or 9 bytes of each entry have to be stored, yielding a total storage require-
ment of 1152 GB versus 5120 GB necessary for storing entries in positions-only
representation.

Then the attack continues with the computation of list L2,2, which has entries
of 115 remaining bits. Again 9 of these bits do not have to be stored due to
presorting, 3 are determined by the node, so only 103 bits or 13 bytes have to
be stored, yielding a storage requirement of 1664 GB instead of 2560 GB for
uncompressed entries.

After these lists have been stored persistently on disk, proceed with the com-
putation list L2,3, then L3,1 and finally check whether L4,0 contains at least one
element. These computations require another 2560 GB.

Therefore total amount of storage sums up to 1152 GB + 1664 GB + 2560 GB
= 5376 GB; obviously all data fits onto the hard disk of the 8 nodes.

If a computation with given clamping constants is not successful, clamping
constants are changed only for the computation of L2,3. The lists L3,0 and L2,2

do not have to be computed again. All combinations of clamping values for lists
L0,12 to L0,15 summing up to 0 are allowed. Therefore there are a large number
of valid clamp-bit combinations.

With 37 bits clamped on every level and 3 clamped through precomputation
there are only 4 uncontrolled bits left and therefore, according to (5.1), the algo-
rithm is expected to yield a collision after 16.5 repetitions.

Computing the matrix positions of the collision. After the clamping con-
stants which lead to a collision have been found, it is also known which value
in the lists L3,0 and L3,1 yields a final collision. Now recompute lists L3,0 and
L3,1 without compression to obtain the positions. For this task only positions
are stored; values are obtained by dynamic recomputation. In total one half-tree
computation requires 5120 GB of storage, hence, they can be performed one after
the other on 8 nodes.

The (re-)computation of lists L3,0 and L3,2 is an additional time overhead over
doing all computation on list positions in the first place. However, this cost is
incurred only once, and is amply compensated for by the reduction of the number
of repetitions compared to the straight forward attack.
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5.4 Implementing the attack
The communication between cluster nodes is accomplished by using MPICH2
[ANL] from the University of Chicago. MPICH2 is an implementation of the
Message Passing Interface standard version 2.0. It provides an Ethernet-based
back end for the communication with remote nodes and a fast shared-memory-
based back end for local data exchange.

The rest of this section explains how Wagner’s attack was parallelized and
streamlined to make the best of the available hardware.

5.4.1 Parallelization
Most of the time in the attack is spent on determining the right clamping con-
stants. As described in Section 5.3 this involves computations of several partial
trees, e.g., the computation of L3,0 from lists L0,0, . . . , L0,7 (half tree) or the
computation of L2,2 from lists L0,8, . . . , L0,11 (quarter tree). There are also com-
putations which do not start with lists of level 0; the computation of list L3,1 for
example is computed from the (previously computed and stored) lists L2,2 and
L2,3.

Lists of level 0 are generated with the current clamping constants. On every
level, each list is sorted and afterwards merged with its neighboring list giving the
entries for the next level. The sorting and merging is repeated until the final list
of the partial tree is computed.

Distributing data over nodes. This algorithm is parallelized by distributing
fractions of lists over the nodes in a way that each node can perform sort and
merge locally on two lists. On each level of the computation, each node contains
fractions of two lists. The lists on level j are split between n nodes according to
lg(n) bits of each value. For example when computing the left half-tree, on level
0, node 0 contains all entries of lists L0,0 and L0,1 ending with a zero bit (in the
bits not controlled by initial clamping), and node 1 contains all entries of lists
L0,0 and L0,1 ending with a one bit.

Therefore, from the view of one node, on each level the fractions of both lists
are loaded from hard disk, the entries are sorted and the two lists are merged.
The newly generated list is split into its fractions and these fractions are sent over
the network to their associated nodes. There the data is received and stored onto
the hard disk.

The continuous dataflow of this implementation is depicted in Figure 5.2.

Presorting into buckets. To be able to perform the sort in memory, incoming
data is presorted into one of 512 buckets according to the 9 least significant bits
of the current sort range. This leads to an expected bucket size for uncompressed
entries of 640 MB (0.625 GB) which can be loaded into main memory at once to
be sorted further. The benefit of presorting the entries before storing them is:

1. A whole fraction that exceeds the size of the memory can be sorted by
sorting its presorted buckets independently.
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2. Two adjacent buckets of the two lists on one node (with the same presort-
bits) can be merged directly after they are sorted.

3. The 9 bits that determine the bucket for presorting do not need to be stored
when entries are compressed to value-only representation.

Merge. The merge is implemented straightforwardly. If blocks of entries in both
lists share the same value then all possible combinations are generated: specifi-
cally, if a b-bit string appears in the compared positions in c1 entries in the first
list and c2 entries in the second list then all c1c2 xors appear in the output list.

5.4.2 Efficient implementation

Cluster computation imposes three main bottlenecks:

• the computational power and memory latency of the CPUs for computation-
intensive applications

• limitations of network throughput and latency for communication-intensive
applications

• hard-disk throughput and latency for data-intensive applications

Wagner’s algorithm imposes hard load on all of these components: a large
amount of data needs to be sorted, merged and distributed over the nodes occu-
pying as much storage as possible. Therefore, demand for optimization is primar-
ily determined by the slowest component in terms of data throughput; latency
generally can be hidden by pipelining and data prefetch.

Finding bottlenecks. Hard-disk and network throughput of the cluster nodes
are shown in Figure 5.3. Note that hard-disk throughput is measured directly on
the device, circumventing the filesystem, to reach peak performance of the hard
disk. Both sequential (seq) and randomized (rnd) access to the disk are shown.

The benchmarks reveal that, for sufficiently large packets, the performance of
the system is mainly bottlenecked by hard-disk throughput. Since the throughput
of MPI over Gigabit Ethernet is higher than the hard-disk throughput for packet
sizes larger than 216 bytes and since the same amount of data has to be sent that
needs to be stored, no performance penalty is expected by the network for this
size of packets.

Therefore, the first implementation goal was to design an interface to the
hard disk that permits maximum hard-disk throughput. The second goal was to
optimize the implementation of sort and merge algorithms up to a level where the
hard disks are kept busy at peak throughput.

Persistent data storage. To gain full hard-disk throughput a hand-written,
throughput-optimized filesystem called AleSystem was implemented for the at-
tack. The AleSystem provides fast and direct access to the hard disk and stores
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Figure 5.3: Benchmarks of hard-disk and network throughput. Hard-disk
throughput is measured with sequential (seq) and random (rnd) access.

data in portions of Ales. Each cluster node has one large unformatted data parti-
tion, which is directly opened by the AleSystem using native Linux file I/O. After
data has been written, it is not read for a long time and does not benefit from
caching. Therefore caching is deactivated by using the open flag O_DIRECT.
All administrative information is persistently stored as a file in the native Linux
filesystem and mapped into the virtual address space of the process. On sequen-
tial access, the throughput of the AleSystem reaches about 90 MB/s which is
roughly the maximum that the hard disk permits.

Tasks and threads. Since the cluster nodes are driven by quad-core CPUs, the
speed of the computation is primarily based on multi-threaded parallelization. On
the one side the tasks for receiving, presorting, and storing, on the other side the
tasks for loading, sorting, merging, and sending are pipelined. Several threads are
used for sending and receiving data and for running the AleSystem. The core of
the implementation is given by five threads which process the main computation.
There are two threads which have the task to presort incoming data (one thread
for each list). Furthermore, sorting is parallelized with two threads (one thread
for each list) and the merge task is assigned to another thread.

Memory layout. The benchmarks show that bigger buffers generally lead to
higher throughput. However, the sum of all buffer sizes is limited by the size of
the available RAM. Six buffers are needed for loading, sorting, and merging of
two list buckets. Furthermore two times 2 · 8 network buffers are required for
double-buffered send and receive, which results in 32 network buffers. Presorting
entries of the two lists double-buffered into 512 buckets requires 2048 ales.
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When a bucket is loaded from disk, its ales are treated as a continuous field of
entries to avoid conditions and branches. Therefore, each ale must be completely
filled with entries; no data padding at the end of each ale is allowed. Thus, the
ales must have a size which allows them to be completely filled independent of the
varying size of entries over the whole run of the program. Possible sizes of entries
are 5, 10, 20, and 40 bytes when storing positions and 5, 10, 13, and 9 bytes when
storing compressed entries. Furthermore, since the hard disk is accessed using
DMA, the size of each ale must be a multiple of 512 bytes. Therefore the size of
one ale must be a multiple of 5 · 9 · 13 · 512 bytes.

The size of network packets does not necessarily need to be a multiple of all
possible entry sizes; if network packets happen not to be completely filled is is
merely a small waste of network bandwidth.

In the worst case, on level 0 one list containing 237 entries is distributed over
2 nodes and presorted into 512 buckets; thus the size of each bucket should be
larger than 237/2/512 ·5 bytes = 640 MB. The actual size of each bucket depends
on the size of the ales since it must be an integer multiple of the ale size.

Following these conditions the network packets have a size of 220 · 5 bytes
= 5 MB summing up to 160 MB for 32 buffers. The size of the ales is 5 · 9 ·
13 · 512 · 5 = 1 497 600 bytes (about 1.4 MB). Therefore 2.9 GB are necessary
to store 2048 buffers for ales in memory. The buffers for the list buckets require
5 ·9 ·13 ·512 ·5 ·512 = 766 771 200 bytes (731.25 MB) each summing up to 4.3 GB
for 6 buckets. Overall the implementation requires about 7.4 GB of RAM leaving
enough space for the operating system and additional data, e.g., stack or data for
the AleSystem.

Efficiency and further optimizations. The assignment of tasks to threads as
described above results in an average CPU usage of about 60% and reaches a peak
of up to 80%. The average hard-disk throughput is about 40 MB/s. The hard-disk
benchmark (see Figure 5.3) shows that an average throughput between 45 MB/s
and 50 MB/s should be feasible for packet sizes of 1.4 MB. Therefore further
optimization of the sort task may make it possible to get closer to maximum
hard-disk throughput.

5.5 Results
The implementation described in Sections 5.3 and 5.4 successfully computed a
collision for the compression function of FSB48. This section presents (1) the
estimates, before starting the attack, of the amount of time that the attack would
need; (2) measurements of the amount of time actually consumed by the attack;
and (3) comments on how different amounts of storage would have changed the
runtime of the attack.

5.5.1 Cost estimates

Finding appropriate clamping constants. As described before the first major
step is to compute a set of clamping values which leads to a collision. In this first
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step entries are stored by positions on level 0 and 1 and from level 2 on list entries
consist of values. Computation of list L3,0 takes about 32 hours and list L2,2

about 14 hours, summing up to 46 hours. These computations need to be done
only once.

The time needed to compute list L2,3 is about the same as for L2,2 (14 hours),
list L3,1 takes about 4 hours and checking for a collision in lists L3,0 and L3,1 on
level 4 about another 3.5 hours, summing up to about 21.5 hours. The expected
number of repetitions of these steps is 16.5 and thus the expected runtime is about
16.5 · 21.5 = 355 hours.

Computing the matrix positions of the collision. Finally, computing the
matrix positions after finding a collision requires recomputation with uncom-
pressed lists. Entries of lists L3,0 and L3,1 need to be computed only until the
entry is found that yields the collision. In the worst case this computation with
uncompressed (positions-only) entries takes 33 hours for each half-tree, summing
up to 66 hours.

Total expected runtime. Overall a collision for the FSB48 compression function
is expected to be found in 46 + 355 + 66 = 467 hours or about 19.5 days.

5.5.2 Cost measurements

Appropriate clamping constants were already found after only five iterations in-
stead of the expected 16.5 iterations. In total the first phase of the attack took 5
days, 13 hours and 20 minutes.

Recomputation of the positions in L3,0 took 1 day, 8 hours and 22 minutes
and recomputation of the positions in L3,1 took 1 day, 2 hours and 11 minutes.
In total the attack took 7 days, 23 hours and 53 minutes.

Recall that the matrix used in the attack is the pseudo-random matrix defined
in Section 5.2. The following column positions in this matrix have been found
by the attack to yield a collision in the compression function: 734, 15006, 20748,
25431, 33115, 46670, 50235, 51099, 70220, 76606, 89523, 90851, 99649, 113400,
118568, 126202, 144768, 146047, 153819, 163606, 168187, 173996, 185420, 191473
198284, 207458, 214106, 223080, 241047, 245456, 247218, 261928, 264386, 273345,
285069, 294658, 304245, 305792, 318044, 327120, 331742, 342519, 344652, 356623,
364676, 368702, 376923, 390678.

5.5.3 Time-storage tradeoffs

As described in Section 5.3, the main restriction on the attack strategy was the
total amount of background storage.

If 10496 GB of storage are available, lists of 238 entries can be handled (again
using the compression techniques described in Section 5.3). As described in Sec-
tion 5.3 this would give exactly one expected collision in the last merge step and
thus reduce the expected number of required runs to find the right clamping con-
stants from 16.5 to 1.58. A total storage of 20 TB makes it possible to run a
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straightforward Wagner attack without compression which eliminates the need to
recompute two half trees at the end.

Increasing the size of the background storage even further would eventually
make it possible to store list entry values alongside the positions and thus eliminate
the need for dynamic recomputation. However, the performance of the attack is
bottlenecked by hard-disk throughput rather than CPU time so this measure is
not likely to give any improvement.

On clusters with even less background storage the computation time will
(asymptotically) increase by a factor of 16 with each halving of the storage size.
For example a cluster with 2688 GB of storage can only handle lists of size 236.
The attack would then require (expected) 256.5 computations to find appropriate
clamping constants.

Of course the time required for one half-tree computation depends on the
amount of data. As long as the performance is mainly bottlenecked by hard-disk
(or network) throughput the running time is linearly dependent on the amount of
data, i.e., a Wagner computation involving 2 half-tree computations with lists of
size 238 is about 4.5 times faster than a Wagner computation involving 18 half-tree
computations with lists of size 237.

5.6 Scalability analysis

The attack described in this chapter and the variants discussed in Section 5.5.3 are
much more expensive in terms of time and especially memory than a brute-force
attack against the 48-bit hash function FSB48.

This section gives estimates of the power of Wagner’s attack against the larger
versions of FSB, demonstrating that the FSB design overestimated the power of
the attack. Table 5.1 gives the parameters of all FSB hash functions.

A straightforward Wagner attack against FSB160 uses 16 lists of size 2127

containing elements with 632 bits. The entries of these lists are generated as xors
of 10 columns from 5 blocks, yielding 2135 possibilities to generate the entries.
Precomputation includes clamping of 8 bits. Each entry then requires 135 bits of
storage so each list occupies more than 2131 bytes. For comparison, the largest
available storage system in November 2011 offered 120 petabytes (less than 257

bytes) of storage [Sim11].
To limit the amount of memory, e.g., 32 lists of size 260 can be generated,

where each list entry is the xor of 5 columns from 2.5 blocks, with 7 bits clamped
during precomputation. Each list entry then requires 67 bits of storage.

Clamping 60 bits in each step leaves 273 bits uncontrolled so the Pollard
variant of Wagner’s algorithm (see Section 5.1.2) becomes more efficient than the
plain attack. This attack generates 16 lists of size 260, containing entries which
are the xor of 5 columns from 5 distinct blocks each. This gives the possibility
to clamp 10 bits through precomputation, leaving B = 630 bits for each entry on
level 0.
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list bits / total
n w r lists size entry storage time

FSB48 3× 217 24 192 16 238 190 5 · 242 5 · 242
FSB160 7× 218 112 640 16 2127 632 17 · 2131 17 · 2131

16∗ 260 630 9 · 264 9 · 2224
FSB224 221 128 896 16 2177 884 24 · 2181 24 · 2181

16∗ 260 858 13 · 264 13 · 2343
FSB256 23× 216 184 1024 16 2202 1010 27 · 2206 27 · 2206

16∗ 260 972 14 · 264 14 · 2386
32∗ 256 1024 18 · 260 18 · 2405

FSB384 23× 216 184 1472 16 2291 1453 39 · 2295 39 · 2295
32∗ 260 1467 9 · 265 18 · 2618.5

FSB512 31× 216 248 1984 16 2393 1962 53 · 2397 53 · 2397
32∗ 260 1956 12 · 265 24 · 2863

Table 5.1: Parameters of the FSB variants and estimates for the cost of
generalized birthday attacks against the compression function. For Pollard’s
variant the number of lists is marked with a ∗. Storage is measured in bytes.

The time required by this attack is approximately 2224 (see (5.3)). This is sub-
stantially faster than a brute-force collision attack on the compression function,
but is clearly much slower than a brute-force collision attack on the hash function,
and even slower than a brute-force preimage attack on the hash function.

Similar statements hold for the other full-size versions of FSB. Table 5.1
gives rough estimates for the time complexity of Wagner’s attack without storage
restriction and with storage restricted to a few hundred exabytes (260 entries per
list). These estimates only consider the number and size of lists being a power of
2 and the number of bits clamped in each level being the same. The estimates
ignore the time complexity of precomputation. Time is computed according to
(5.2) and (5.3) with the size of level-0 entries (in bytes) as a constant factor.

Although fine-tuning the attacks might give small speedups compared to the
estimates, it is clear that the compression function of FSB is oversized, assuming
that Wagner’s algorithm in a somewhat memory-restricted environment is the
most efficient attack strategy.
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Summary

Parallel Cryptanalysis
Most of today’s cryptographic primitives are based on computations that are hard
to perform for a potential attacker but easy to perform for somebody who is in
possession of some secret information, the key, that opens a back door in these
hard computations and allows them to be solved in a small amount of time. To
estimate the strength of a cryptographic primitive it is important to know how
hard it is to perform the computation without knowledge of the secret back door
and to get an understanding of how much money or time the attacker has to spend.
Usually a cryptographic primitive allows the cryptographer to choose parameters
that make an attack harder at the cost of making the computations using the
secret key harder as well. Therefore designing a cryptographic primitive imposes
the dilemma of choosing the parameters strong enough to resist an attack up to
a certain cost while choosing them small enough to allow usage of the primitive
in the real world, e.g. on small computing devices like smart phones.

This thesis investigates three different attacks on particular cryptographic sys-
tems: Wagner’s generalized birthday attack is applied to the compression function
of the hash function FSB. Pollard’s rho algorithm is used for attacking Certicom’s
ECC Challenge ECC2K-130. The implementation of the XL algorithm has not
been specialized for an attack on a specific cryptographic primitive but can be
used for attacking some cryptographic primitives by solving multivariate quadratic
systems. All three attacks are general attacks, i.e. they apply to various cryp-
tographic systems; the implementations of Wagner’s generalized birthday attack
and Pollard’s rho algorithm can be adapted for attacking other primitives than
those given in this thesis.

The three attacks have been implemented on different parallel architectures.
XL has been parallelized using the Block Wiedemann algorithm on a NUMA
system using OpenMP and on an InfiniBand cluster using MPI. Wagner’s attack
was performed on a distributed system of 8 multi-core nodes connected by an
Ethernet network. The work on Pollard’s Rho algorithm is part of a large research
collaboration with several research groups; the computations are embarrassingly
parallel and are executed in a distributed fashion in several facilities with almost
negligible communication cost. This dissertation presents implementations of the
iteration function of Pollard’s Rho algorithm on Graphics Processing Units and
on the Cell Broadband Engine.
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